1 /* $OpenBSD: ssl_ciph.c,v 1.96 2017/03/10 16:03:27 jsing Exp $ */ 2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) 3 * All rights reserved. 4 * 5 * This package is an SSL implementation written 6 * by Eric Young (eay@cryptsoft.com). 7 * The implementation was written so as to conform with Netscapes SSL. 8 * 9 * This library is free for commercial and non-commercial use as long as 10 * the following conditions are aheared to. The following conditions 11 * apply to all code found in this distribution, be it the RC4, RSA, 12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation 13 * included with this distribution is covered by the same copyright terms 14 * except that the holder is Tim Hudson (tjh@cryptsoft.com). 15 * 16 * Copyright remains Eric Young's, and as such any Copyright notices in 17 * the code are not to be removed. 18 * If this package is used in a product, Eric Young should be given attribution 19 * as the author of the parts of the library used. 20 * This can be in the form of a textual message at program startup or 21 * in documentation (online or textual) provided with the package. 22 * 23 * Redistribution and use in source and binary forms, with or without 24 * modification, are permitted provided that the following conditions 25 * are met: 26 * 1. Redistributions of source code must retain the copyright 27 * notice, this list of conditions and the following disclaimer. 28 * 2. Redistributions in binary form must reproduce the above copyright 29 * notice, this list of conditions and the following disclaimer in the 30 * documentation and/or other materials provided with the distribution. 31 * 3. All advertising materials mentioning features or use of this software 32 * must display the following acknowledgement: 33 * "This product includes cryptographic software written by 34 * Eric Young (eay@cryptsoft.com)" 35 * The word 'cryptographic' can be left out if the rouines from the library 36 * being used are not cryptographic related :-). 37 * 4. If you include any Windows specific code (or a derivative thereof) from 38 * the apps directory (application code) you must include an acknowledgement: 39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" 40 * 41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND 42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 51 * SUCH DAMAGE. 52 * 53 * The licence and distribution terms for any publically available version or 54 * derivative of this code cannot be changed. i.e. this code cannot simply be 55 * copied and put under another distribution licence 56 * [including the GNU Public Licence.] 57 */ 58 /* ==================================================================== 59 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. 60 * 61 * Redistribution and use in source and binary forms, with or without 62 * modification, are permitted provided that the following conditions 63 * are met: 64 * 65 * 1. Redistributions of source code must retain the above copyright 66 * notice, this list of conditions and the following disclaimer. 67 * 68 * 2. Redistributions in binary form must reproduce the above copyright 69 * notice, this list of conditions and the following disclaimer in 70 * the documentation and/or other materials provided with the 71 * distribution. 72 * 73 * 3. All advertising materials mentioning features or use of this 74 * software must display the following acknowledgment: 75 * "This product includes software developed by the OpenSSL Project 76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" 77 * 78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to 79 * endorse or promote products derived from this software without 80 * prior written permission. For written permission, please contact 81 * openssl-core@openssl.org. 82 * 83 * 5. Products derived from this software may not be called "OpenSSL" 84 * nor may "OpenSSL" appear in their names without prior written 85 * permission of the OpenSSL Project. 86 * 87 * 6. Redistributions of any form whatsoever must retain the following 88 * acknowledgment: 89 * "This product includes software developed by the OpenSSL Project 90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)" 91 * 92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY 93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR 96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 103 * OF THE POSSIBILITY OF SUCH DAMAGE. 104 * ==================================================================== 105 * 106 * This product includes cryptographic software written by Eric Young 107 * (eay@cryptsoft.com). This product includes software written by Tim 108 * Hudson (tjh@cryptsoft.com). 109 * 110 */ 111 /* ==================================================================== 112 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. 113 * ECC cipher suite support in OpenSSL originally developed by 114 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. 115 */ 116 /* ==================================================================== 117 * Copyright 2005 Nokia. All rights reserved. 118 * 119 * The portions of the attached software ("Contribution") is developed by 120 * Nokia Corporation and is licensed pursuant to the OpenSSL open source 121 * license. 122 * 123 * The Contribution, originally written by Mika Kousa and Pasi Eronen of 124 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites 125 * support (see RFC 4279) to OpenSSL. 126 * 127 * No patent licenses or other rights except those expressly stated in 128 * the OpenSSL open source license shall be deemed granted or received 129 * expressly, by implication, estoppel, or otherwise. 130 * 131 * No assurances are provided by Nokia that the Contribution does not 132 * infringe the patent or other intellectual property rights of any third 133 * party or that the license provides you with all the necessary rights 134 * to make use of the Contribution. 135 * 136 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN 137 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA 138 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY 139 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR 140 * OTHERWISE. 141 */ 142 143 #include <stdio.h> 144 145 #include <openssl/objects.h> 146 147 #ifndef OPENSSL_NO_ENGINE 148 #include <openssl/engine.h> 149 #endif 150 151 #include "ssl_locl.h" 152 153 #define SSL_ENC_DES_IDX 0 154 #define SSL_ENC_3DES_IDX 1 155 #define SSL_ENC_RC4_IDX 2 156 #define SSL_ENC_IDEA_IDX 3 157 #define SSL_ENC_NULL_IDX 4 158 #define SSL_ENC_AES128_IDX 5 159 #define SSL_ENC_AES256_IDX 6 160 #define SSL_ENC_CAMELLIA128_IDX 7 161 #define SSL_ENC_CAMELLIA256_IDX 8 162 #define SSL_ENC_GOST89_IDX 9 163 #define SSL_ENC_AES128GCM_IDX 10 164 #define SSL_ENC_AES256GCM_IDX 11 165 #define SSL_ENC_NUM_IDX 12 166 167 168 static const EVP_CIPHER *ssl_cipher_methods[SSL_ENC_NUM_IDX] = { 169 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL 170 }; 171 172 #define SSL_MD_MD5_IDX 0 173 #define SSL_MD_SHA1_IDX 1 174 #define SSL_MD_GOST94_IDX 2 175 #define SSL_MD_GOST89MAC_IDX 3 176 #define SSL_MD_SHA256_IDX 4 177 #define SSL_MD_SHA384_IDX 5 178 #define SSL_MD_STREEBOG256_IDX 6 179 /*Constant SSL_MAX_DIGEST equal to size of digests array should be 180 * defined in the 181 * ssl_locl.h */ 182 #define SSL_MD_NUM_IDX SSL_MAX_DIGEST 183 static const EVP_MD *ssl_digest_methods[SSL_MD_NUM_IDX] = { 184 NULL, NULL, NULL, NULL, NULL, NULL, NULL, 185 }; 186 187 static int ssl_mac_pkey_id[SSL_MD_NUM_IDX] = { 188 EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_GOSTIMIT, 189 EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, 190 }; 191 192 static int ssl_mac_secret_size[SSL_MD_NUM_IDX] = { 193 0, 0, 0, 0, 0, 0, 0, 194 }; 195 196 #define CIPHER_ADD 1 197 #define CIPHER_KILL 2 198 #define CIPHER_DEL 3 199 #define CIPHER_ORD 4 200 #define CIPHER_SPECIAL 5 201 202 typedef struct cipher_order_st { 203 const SSL_CIPHER *cipher; 204 int active; 205 int dead; 206 struct cipher_order_st *next, *prev; 207 } CIPHER_ORDER; 208 209 static const SSL_CIPHER cipher_aliases[] = { 210 211 /* "ALL" doesn't include eNULL (must be specifically enabled) */ 212 { 213 .name = SSL_TXT_ALL, 214 .algorithm_enc = ~SSL_eNULL, 215 }, 216 217 /* "COMPLEMENTOFALL" */ 218 { 219 .name = SSL_TXT_CMPALL, 220 .algorithm_enc = SSL_eNULL, 221 }, 222 223 /* 224 * "COMPLEMENTOFDEFAULT" 225 * (does *not* include ciphersuites not found in ALL!) 226 */ 227 { 228 .name = SSL_TXT_CMPDEF, 229 .algorithm_mkey = SSL_kDHE|SSL_kECDHE, 230 .algorithm_auth = SSL_aNULL, 231 .algorithm_enc = ~SSL_eNULL, 232 }, 233 234 /* 235 * key exchange aliases 236 * (some of those using only a single bit here combine multiple key 237 * exchange algs according to the RFCs, e.g. kEDH combines DHE_DSS 238 * and DHE_RSA) 239 */ 240 { 241 .name = SSL_TXT_kRSA, 242 .algorithm_mkey = SSL_kRSA, 243 }, 244 { 245 .name = SSL_TXT_kEDH, 246 .algorithm_mkey = SSL_kDHE, 247 }, 248 { 249 .name = SSL_TXT_DH, 250 .algorithm_mkey = SSL_kDHE, 251 }, 252 { 253 .name = SSL_TXT_kEECDH, 254 .algorithm_mkey = SSL_kECDHE, 255 }, 256 { 257 .name = SSL_TXT_ECDH, 258 .algorithm_mkey = SSL_kECDHE, 259 }, 260 { 261 .name = SSL_TXT_kGOST, 262 .algorithm_mkey = SSL_kGOST, 263 }, 264 265 /* server authentication aliases */ 266 { 267 .name = SSL_TXT_aRSA, 268 .algorithm_auth = SSL_aRSA, 269 }, 270 { 271 .name = SSL_TXT_aDSS, 272 .algorithm_auth = SSL_aDSS, 273 }, 274 { 275 .name = SSL_TXT_DSS, 276 .algorithm_auth = SSL_aDSS, 277 }, 278 { 279 .name = SSL_TXT_aNULL, 280 .algorithm_auth = SSL_aNULL, 281 }, 282 { 283 .name = SSL_TXT_aECDSA, 284 .algorithm_auth = SSL_aECDSA, 285 }, 286 { 287 .name = SSL_TXT_ECDSA, 288 .algorithm_auth = SSL_aECDSA, 289 }, 290 { 291 .name = SSL_TXT_aGOST01, 292 .algorithm_auth = SSL_aGOST01, 293 }, 294 { 295 .name = SSL_TXT_aGOST, 296 .algorithm_auth = SSL_aGOST01, 297 }, 298 299 /* aliases combining key exchange and server authentication */ 300 { 301 .name = SSL_TXT_DHE, 302 .algorithm_mkey = SSL_kDHE, 303 .algorithm_auth = ~SSL_aNULL, 304 }, 305 { 306 .name = SSL_TXT_EDH, 307 .algorithm_mkey = SSL_kDHE, 308 .algorithm_auth = ~SSL_aNULL, 309 }, 310 { 311 .name = SSL_TXT_ECDHE, 312 .algorithm_mkey = SSL_kECDHE, 313 .algorithm_auth = ~SSL_aNULL, 314 }, 315 { 316 .name = SSL_TXT_EECDH, 317 .algorithm_mkey = SSL_kECDHE, 318 .algorithm_auth = ~SSL_aNULL, 319 }, 320 { 321 .name = SSL_TXT_NULL, 322 .algorithm_enc = SSL_eNULL, 323 }, 324 { 325 .name = SSL_TXT_RSA, 326 .algorithm_mkey = SSL_kRSA, 327 .algorithm_auth = SSL_aRSA, 328 }, 329 { 330 .name = SSL_TXT_ADH, 331 .algorithm_mkey = SSL_kDHE, 332 .algorithm_auth = SSL_aNULL, 333 }, 334 { 335 .name = SSL_TXT_AECDH, 336 .algorithm_mkey = SSL_kECDHE, 337 .algorithm_auth = SSL_aNULL, 338 }, 339 340 /* symmetric encryption aliases */ 341 { 342 .name = SSL_TXT_DES, 343 .algorithm_enc = SSL_DES, 344 }, 345 { 346 .name = SSL_TXT_3DES, 347 .algorithm_enc = SSL_3DES, 348 }, 349 { 350 .name = SSL_TXT_RC4, 351 .algorithm_enc = SSL_RC4, 352 }, 353 { 354 .name = SSL_TXT_IDEA, 355 .algorithm_enc = SSL_IDEA, 356 }, 357 { 358 .name = SSL_TXT_eNULL, 359 .algorithm_enc = SSL_eNULL, 360 }, 361 { 362 .name = SSL_TXT_AES128, 363 .algorithm_enc = SSL_AES128|SSL_AES128GCM, 364 }, 365 { 366 .name = SSL_TXT_AES256, 367 .algorithm_enc = SSL_AES256|SSL_AES256GCM, 368 }, 369 { 370 .name = SSL_TXT_AES, 371 .algorithm_enc = SSL_AES, 372 }, 373 { 374 .name = SSL_TXT_AES_GCM, 375 .algorithm_enc = SSL_AES128GCM|SSL_AES256GCM, 376 }, 377 { 378 .name = SSL_TXT_CAMELLIA128, 379 .algorithm_enc = SSL_CAMELLIA128, 380 }, 381 { 382 .name = SSL_TXT_CAMELLIA256, 383 .algorithm_enc = SSL_CAMELLIA256, 384 }, 385 { 386 .name = SSL_TXT_CAMELLIA, 387 .algorithm_enc = SSL_CAMELLIA128|SSL_CAMELLIA256, 388 }, 389 { 390 .name = SSL_TXT_CHACHA20, 391 .algorithm_enc = SSL_CHACHA20POLY1305|SSL_CHACHA20POLY1305_OLD, 392 }, 393 394 /* MAC aliases */ 395 { 396 .name = SSL_TXT_AEAD, 397 .algorithm_mac = SSL_AEAD, 398 }, 399 { 400 .name = SSL_TXT_MD5, 401 .algorithm_mac = SSL_MD5, 402 }, 403 { 404 .name = SSL_TXT_SHA1, 405 .algorithm_mac = SSL_SHA1, 406 }, 407 { 408 .name = SSL_TXT_SHA, 409 .algorithm_mac = SSL_SHA1, 410 }, 411 { 412 .name = SSL_TXT_GOST94, 413 .algorithm_mac = SSL_GOST94, 414 }, 415 { 416 .name = SSL_TXT_GOST89MAC, 417 .algorithm_mac = SSL_GOST89MAC, 418 }, 419 { 420 .name = SSL_TXT_SHA256, 421 .algorithm_mac = SSL_SHA256, 422 }, 423 { 424 .name = SSL_TXT_SHA384, 425 .algorithm_mac = SSL_SHA384, 426 }, 427 { 428 .name = SSL_TXT_STREEBOG256, 429 .algorithm_mac = SSL_STREEBOG256, 430 }, 431 432 /* protocol version aliases */ 433 { 434 .name = SSL_TXT_SSLV3, 435 .algorithm_ssl = SSL_SSLV3, 436 }, 437 { 438 .name = SSL_TXT_TLSV1, 439 .algorithm_ssl = SSL_TLSV1, 440 }, 441 { 442 .name = SSL_TXT_TLSV1_2, 443 .algorithm_ssl = SSL_TLSV1_2, 444 }, 445 446 /* strength classes */ 447 { 448 .name = SSL_TXT_LOW, 449 .algo_strength = SSL_LOW, 450 }, 451 { 452 .name = SSL_TXT_MEDIUM, 453 .algo_strength = SSL_MEDIUM, 454 }, 455 { 456 .name = SSL_TXT_HIGH, 457 .algo_strength = SSL_HIGH, 458 }, 459 }; 460 461 void 462 ssl_load_ciphers(void) 463 { 464 ssl_cipher_methods[SSL_ENC_DES_IDX] = 465 EVP_get_cipherbyname(SN_des_cbc); 466 ssl_cipher_methods[SSL_ENC_3DES_IDX] = 467 EVP_get_cipherbyname(SN_des_ede3_cbc); 468 ssl_cipher_methods[SSL_ENC_RC4_IDX] = 469 EVP_get_cipherbyname(SN_rc4); 470 ssl_cipher_methods[SSL_ENC_IDEA_IDX] = NULL; 471 ssl_cipher_methods[SSL_ENC_AES128_IDX] = 472 EVP_get_cipherbyname(SN_aes_128_cbc); 473 ssl_cipher_methods[SSL_ENC_AES256_IDX] = 474 EVP_get_cipherbyname(SN_aes_256_cbc); 475 ssl_cipher_methods[SSL_ENC_CAMELLIA128_IDX] = 476 EVP_get_cipherbyname(SN_camellia_128_cbc); 477 ssl_cipher_methods[SSL_ENC_CAMELLIA256_IDX] = 478 EVP_get_cipherbyname(SN_camellia_256_cbc); 479 ssl_cipher_methods[SSL_ENC_GOST89_IDX] = 480 EVP_get_cipherbyname(SN_gost89_cnt); 481 482 ssl_cipher_methods[SSL_ENC_AES128GCM_IDX] = 483 EVP_get_cipherbyname(SN_aes_128_gcm); 484 ssl_cipher_methods[SSL_ENC_AES256GCM_IDX] = 485 EVP_get_cipherbyname(SN_aes_256_gcm); 486 487 ssl_digest_methods[SSL_MD_MD5_IDX] = 488 EVP_get_digestbyname(SN_md5); 489 ssl_mac_secret_size[SSL_MD_MD5_IDX] = 490 EVP_MD_size(ssl_digest_methods[SSL_MD_MD5_IDX]); 491 OPENSSL_assert(ssl_mac_secret_size[SSL_MD_MD5_IDX] >= 0); 492 ssl_digest_methods[SSL_MD_SHA1_IDX] = 493 EVP_get_digestbyname(SN_sha1); 494 ssl_mac_secret_size[SSL_MD_SHA1_IDX] = 495 EVP_MD_size(ssl_digest_methods[SSL_MD_SHA1_IDX]); 496 OPENSSL_assert(ssl_mac_secret_size[SSL_MD_SHA1_IDX] >= 0); 497 ssl_digest_methods[SSL_MD_GOST94_IDX] = 498 EVP_get_digestbyname(SN_id_GostR3411_94); 499 if (ssl_digest_methods[SSL_MD_GOST94_IDX]) { 500 ssl_mac_secret_size[SSL_MD_GOST94_IDX] = 501 EVP_MD_size(ssl_digest_methods[SSL_MD_GOST94_IDX]); 502 OPENSSL_assert(ssl_mac_secret_size[SSL_MD_GOST94_IDX] >= 0); 503 } 504 ssl_digest_methods[SSL_MD_GOST89MAC_IDX] = 505 EVP_get_digestbyname(SN_id_Gost28147_89_MAC); 506 if (ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX]) { 507 ssl_mac_secret_size[SSL_MD_GOST89MAC_IDX] = 32; 508 } 509 510 ssl_digest_methods[SSL_MD_SHA256_IDX] = 511 EVP_get_digestbyname(SN_sha256); 512 ssl_mac_secret_size[SSL_MD_SHA256_IDX] = 513 EVP_MD_size(ssl_digest_methods[SSL_MD_SHA256_IDX]); 514 ssl_digest_methods[SSL_MD_SHA384_IDX] = 515 EVP_get_digestbyname(SN_sha384); 516 ssl_mac_secret_size[SSL_MD_SHA384_IDX] = 517 EVP_MD_size(ssl_digest_methods[SSL_MD_SHA384_IDX]); 518 ssl_digest_methods[SSL_MD_STREEBOG256_IDX] = 519 EVP_get_digestbyname(SN_id_tc26_gost3411_2012_256); 520 ssl_mac_secret_size[SSL_MD_STREEBOG256_IDX] = 521 EVP_MD_size(ssl_digest_methods[SSL_MD_STREEBOG256_IDX]); 522 } 523 524 int 525 ssl_cipher_get_evp(const SSL_SESSION *s, const EVP_CIPHER **enc, 526 const EVP_MD **md, int *mac_pkey_type, int *mac_secret_size) 527 { 528 const SSL_CIPHER *c; 529 int i; 530 531 c = s->cipher; 532 if (c == NULL) 533 return (0); 534 535 /* 536 * This function does not handle EVP_AEAD. 537 * See ssl_cipher_get_aead_evp instead. 538 */ 539 if (c->algorithm2 & SSL_CIPHER_ALGORITHM2_AEAD) 540 return(0); 541 542 if ((enc == NULL) || (md == NULL)) 543 return (0); 544 545 switch (c->algorithm_enc) { 546 case SSL_DES: 547 i = SSL_ENC_DES_IDX; 548 break; 549 case SSL_3DES: 550 i = SSL_ENC_3DES_IDX; 551 break; 552 case SSL_RC4: 553 i = SSL_ENC_RC4_IDX; 554 break; 555 case SSL_IDEA: 556 i = SSL_ENC_IDEA_IDX; 557 break; 558 case SSL_eNULL: 559 i = SSL_ENC_NULL_IDX; 560 break; 561 case SSL_AES128: 562 i = SSL_ENC_AES128_IDX; 563 break; 564 case SSL_AES256: 565 i = SSL_ENC_AES256_IDX; 566 break; 567 case SSL_CAMELLIA128: 568 i = SSL_ENC_CAMELLIA128_IDX; 569 break; 570 case SSL_CAMELLIA256: 571 i = SSL_ENC_CAMELLIA256_IDX; 572 break; 573 case SSL_eGOST2814789CNT: 574 i = SSL_ENC_GOST89_IDX; 575 break; 576 case SSL_AES128GCM: 577 i = SSL_ENC_AES128GCM_IDX; 578 break; 579 case SSL_AES256GCM: 580 i = SSL_ENC_AES256GCM_IDX; 581 break; 582 default: 583 i = -1; 584 break; 585 } 586 587 if ((i < 0) || (i >= SSL_ENC_NUM_IDX)) 588 *enc = NULL; 589 else { 590 if (i == SSL_ENC_NULL_IDX) 591 *enc = EVP_enc_null(); 592 else 593 *enc = ssl_cipher_methods[i]; 594 } 595 596 switch (c->algorithm_mac) { 597 case SSL_MD5: 598 i = SSL_MD_MD5_IDX; 599 break; 600 case SSL_SHA1: 601 i = SSL_MD_SHA1_IDX; 602 break; 603 case SSL_SHA256: 604 i = SSL_MD_SHA256_IDX; 605 break; 606 case SSL_SHA384: 607 i = SSL_MD_SHA384_IDX; 608 break; 609 case SSL_GOST94: 610 i = SSL_MD_GOST94_IDX; 611 break; 612 case SSL_GOST89MAC: 613 i = SSL_MD_GOST89MAC_IDX; 614 break; 615 case SSL_STREEBOG256: 616 i = SSL_MD_STREEBOG256_IDX; 617 break; 618 default: 619 i = -1; 620 break; 621 } 622 if ((i < 0) || (i >= SSL_MD_NUM_IDX)) { 623 *md = NULL; 624 625 if (mac_pkey_type != NULL) 626 *mac_pkey_type = NID_undef; 627 if (mac_secret_size != NULL) 628 *mac_secret_size = 0; 629 if (c->algorithm_mac == SSL_AEAD) 630 mac_pkey_type = NULL; 631 } else { 632 *md = ssl_digest_methods[i]; 633 if (mac_pkey_type != NULL) 634 *mac_pkey_type = ssl_mac_pkey_id[i]; 635 if (mac_secret_size != NULL) 636 *mac_secret_size = ssl_mac_secret_size[i]; 637 } 638 639 if ((*enc != NULL) && 640 (*md != NULL || (EVP_CIPHER_flags(*enc)&EVP_CIPH_FLAG_AEAD_CIPHER)) && 641 (!mac_pkey_type || *mac_pkey_type != NID_undef)) { 642 const EVP_CIPHER *evp; 643 644 if (s->ssl_version >> 8 != TLS1_VERSION_MAJOR || 645 s->ssl_version < TLS1_VERSION) 646 return 1; 647 648 if (c->algorithm_enc == SSL_RC4 && 649 c->algorithm_mac == SSL_MD5 && 650 (evp = EVP_get_cipherbyname("RC4-HMAC-MD5"))) 651 *enc = evp, *md = NULL; 652 else if (c->algorithm_enc == SSL_AES128 && 653 c->algorithm_mac == SSL_SHA1 && 654 (evp = EVP_get_cipherbyname("AES-128-CBC-HMAC-SHA1"))) 655 *enc = evp, *md = NULL; 656 else if (c->algorithm_enc == SSL_AES256 && 657 c->algorithm_mac == SSL_SHA1 && 658 (evp = EVP_get_cipherbyname("AES-256-CBC-HMAC-SHA1"))) 659 *enc = evp, *md = NULL; 660 return (1); 661 } else 662 return (0); 663 } 664 665 /* 666 * ssl_cipher_get_evp_aead sets aead to point to the correct EVP_AEAD object 667 * for s->cipher. It returns 1 on success and 0 on error. 668 */ 669 int 670 ssl_cipher_get_evp_aead(const SSL_SESSION *s, const EVP_AEAD **aead) 671 { 672 const SSL_CIPHER *c = s->cipher; 673 674 *aead = NULL; 675 676 if (c == NULL) 677 return 0; 678 if ((c->algorithm2 & SSL_CIPHER_ALGORITHM2_AEAD) == 0) 679 return 0; 680 681 switch (c->algorithm_enc) { 682 #ifndef OPENSSL_NO_AES 683 case SSL_AES128GCM: 684 *aead = EVP_aead_aes_128_gcm(); 685 return 1; 686 case SSL_AES256GCM: 687 *aead = EVP_aead_aes_256_gcm(); 688 return 1; 689 #endif 690 case SSL_CHACHA20POLY1305: 691 *aead = EVP_aead_chacha20_poly1305(); 692 return 1; 693 case SSL_CHACHA20POLY1305_OLD: 694 *aead = EVP_aead_chacha20_poly1305_old(); 695 return 1; 696 default: 697 break; 698 } 699 return 0; 700 } 701 702 int 703 ssl_get_handshake_evp_md(SSL *s, const EVP_MD **md) 704 { 705 *md = NULL; 706 707 switch (ssl_get_algorithm2(s) & SSL_HANDSHAKE_MAC_MASK) { 708 case SSL_HANDSHAKE_MAC_DEFAULT: 709 *md = EVP_md5_sha1(); 710 return 1; 711 case SSL_HANDSHAKE_MAC_GOST94: 712 *md = EVP_gostr341194(); 713 return 1; 714 case SSL_HANDSHAKE_MAC_SHA256: 715 *md = EVP_sha256(); 716 return 1; 717 case SSL_HANDSHAKE_MAC_SHA384: 718 *md = EVP_sha384(); 719 return 1; 720 case SSL_HANDSHAKE_MAC_STREEBOG256: 721 *md = EVP_streebog256(); 722 return 1; 723 default: 724 break; 725 } 726 727 return 0; 728 } 729 730 #define ITEM_SEP(a) \ 731 (((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ',')) 732 733 static void 734 ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr, 735 CIPHER_ORDER **tail) 736 { 737 if (curr == *tail) 738 return; 739 if (curr == *head) 740 *head = curr->next; 741 if (curr->prev != NULL) 742 curr->prev->next = curr->next; 743 if (curr->next != NULL) 744 curr->next->prev = curr->prev; 745 (*tail)->next = curr; 746 curr->prev= *tail; 747 curr->next = NULL; 748 *tail = curr; 749 } 750 751 static void 752 ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr, 753 CIPHER_ORDER **tail) 754 { 755 if (curr == *head) 756 return; 757 if (curr == *tail) 758 *tail = curr->prev; 759 if (curr->next != NULL) 760 curr->next->prev = curr->prev; 761 if (curr->prev != NULL) 762 curr->prev->next = curr->next; 763 (*head)->prev = curr; 764 curr->next= *head; 765 curr->prev = NULL; 766 *head = curr; 767 } 768 769 static void 770 ssl_cipher_get_disabled(unsigned long *mkey, unsigned long *auth, 771 unsigned long *enc, unsigned long *mac, unsigned long *ssl) 772 { 773 *mkey = 0; 774 *auth = 0; 775 *enc = 0; 776 *mac = 0; 777 *ssl = 0; 778 779 /* 780 * Check for the availability of GOST 34.10 public/private key 781 * algorithms. If they are not available disable the associated 782 * authentication and key exchange algorithms. 783 */ 784 if (EVP_PKEY_meth_find(NID_id_GostR3410_2001) == NULL) { 785 *auth |= SSL_aGOST01; 786 *mkey |= SSL_kGOST; 787 } 788 789 #ifdef SSL_FORBID_ENULL 790 *enc |= SSL_eNULL; 791 #endif 792 793 *enc |= (ssl_cipher_methods[SSL_ENC_DES_IDX ] == NULL) ? SSL_DES : 0; 794 *enc |= (ssl_cipher_methods[SSL_ENC_3DES_IDX] == NULL) ? SSL_3DES : 0; 795 *enc |= (ssl_cipher_methods[SSL_ENC_RC4_IDX ] == NULL) ? SSL_RC4 : 0; 796 *enc |= (ssl_cipher_methods[SSL_ENC_IDEA_IDX] == NULL) ? SSL_IDEA : 0; 797 *enc |= (ssl_cipher_methods[SSL_ENC_AES128_IDX] == NULL) ? SSL_AES128 : 0; 798 *enc |= (ssl_cipher_methods[SSL_ENC_AES256_IDX] == NULL) ? SSL_AES256 : 0; 799 *enc |= (ssl_cipher_methods[SSL_ENC_AES128GCM_IDX] == NULL) ? SSL_AES128GCM : 0; 800 *enc |= (ssl_cipher_methods[SSL_ENC_AES256GCM_IDX] == NULL) ? SSL_AES256GCM : 0; 801 *enc |= (ssl_cipher_methods[SSL_ENC_CAMELLIA128_IDX] == NULL) ? SSL_CAMELLIA128 : 0; 802 *enc |= (ssl_cipher_methods[SSL_ENC_CAMELLIA256_IDX] == NULL) ? SSL_CAMELLIA256 : 0; 803 *enc |= (ssl_cipher_methods[SSL_ENC_GOST89_IDX] == NULL) ? SSL_eGOST2814789CNT : 0; 804 805 *mac |= (ssl_digest_methods[SSL_MD_MD5_IDX ] == NULL) ? SSL_MD5 : 0; 806 *mac |= (ssl_digest_methods[SSL_MD_SHA1_IDX] == NULL) ? SSL_SHA1 : 0; 807 *mac |= (ssl_digest_methods[SSL_MD_SHA256_IDX] == NULL) ? SSL_SHA256 : 0; 808 *mac |= (ssl_digest_methods[SSL_MD_SHA384_IDX] == NULL) ? SSL_SHA384 : 0; 809 *mac |= (ssl_digest_methods[SSL_MD_GOST94_IDX] == NULL) ? SSL_GOST94 : 0; 810 *mac |= (ssl_digest_methods[SSL_MD_GOST89MAC_IDX] == NULL) ? SSL_GOST89MAC : 0; 811 *mac |= (ssl_digest_methods[SSL_MD_STREEBOG256_IDX] == NULL) ? SSL_STREEBOG256 : 0; 812 } 813 814 static void 815 ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method, int num_of_ciphers, 816 unsigned long disabled_mkey, unsigned long disabled_auth, 817 unsigned long disabled_enc, unsigned long disabled_mac, 818 unsigned long disabled_ssl, CIPHER_ORDER *co_list, 819 CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p) 820 { 821 int i, co_list_num; 822 const SSL_CIPHER *c; 823 824 /* 825 * We have num_of_ciphers descriptions compiled in, depending on the 826 * method selected (SSLv3, TLSv1, etc). These will later be sorted in 827 * a linked list with at most num entries. 828 */ 829 830 /* Get the initial list of ciphers */ 831 co_list_num = 0; /* actual count of ciphers */ 832 for (i = 0; i < num_of_ciphers; i++) { 833 c = ssl_method->get_cipher(i); 834 /* drop those that use any of that is not available */ 835 if ((c != NULL) && c->valid && 836 !(c->algorithm_mkey & disabled_mkey) && 837 !(c->algorithm_auth & disabled_auth) && 838 !(c->algorithm_enc & disabled_enc) && 839 !(c->algorithm_mac & disabled_mac) && 840 !(c->algorithm_ssl & disabled_ssl)) { 841 co_list[co_list_num].cipher = c; 842 co_list[co_list_num].next = NULL; 843 co_list[co_list_num].prev = NULL; 844 co_list[co_list_num].active = 0; 845 co_list_num++; 846 /* 847 if (!sk_push(ca_list,(char *)c)) goto err; 848 */ 849 } 850 } 851 852 /* 853 * Prepare linked list from list entries 854 */ 855 if (co_list_num > 0) { 856 co_list[0].prev = NULL; 857 858 if (co_list_num > 1) { 859 co_list[0].next = &co_list[1]; 860 861 for (i = 1; i < co_list_num - 1; i++) { 862 co_list[i].prev = &co_list[i - 1]; 863 co_list[i].next = &co_list[i + 1]; 864 } 865 866 co_list[co_list_num - 1].prev = 867 &co_list[co_list_num - 2]; 868 } 869 870 co_list[co_list_num - 1].next = NULL; 871 872 *head_p = &co_list[0]; 873 *tail_p = &co_list[co_list_num - 1]; 874 } 875 } 876 877 static void 878 ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list, int num_of_group_aliases, 879 unsigned long disabled_mkey, unsigned long disabled_auth, 880 unsigned long disabled_enc, unsigned long disabled_mac, 881 unsigned long disabled_ssl, CIPHER_ORDER *head) 882 { 883 CIPHER_ORDER *ciph_curr; 884 const SSL_CIPHER **ca_curr; 885 int i; 886 unsigned long mask_mkey = ~disabled_mkey; 887 unsigned long mask_auth = ~disabled_auth; 888 unsigned long mask_enc = ~disabled_enc; 889 unsigned long mask_mac = ~disabled_mac; 890 unsigned long mask_ssl = ~disabled_ssl; 891 892 /* 893 * First, add the real ciphers as already collected 894 */ 895 ciph_curr = head; 896 ca_curr = ca_list; 897 while (ciph_curr != NULL) { 898 *ca_curr = ciph_curr->cipher; 899 ca_curr++; 900 ciph_curr = ciph_curr->next; 901 } 902 903 /* 904 * Now we add the available ones from the cipher_aliases[] table. 905 * They represent either one or more algorithms, some of which 906 * in any affected category must be supported (set in enabled_mask), 907 * or represent a cipher strength value (will be added in any case because algorithms=0). 908 */ 909 for (i = 0; i < num_of_group_aliases; i++) { 910 unsigned long algorithm_mkey = cipher_aliases[i].algorithm_mkey; 911 unsigned long algorithm_auth = cipher_aliases[i].algorithm_auth; 912 unsigned long algorithm_enc = cipher_aliases[i].algorithm_enc; 913 unsigned long algorithm_mac = cipher_aliases[i].algorithm_mac; 914 unsigned long algorithm_ssl = cipher_aliases[i].algorithm_ssl; 915 916 if (algorithm_mkey) 917 if ((algorithm_mkey & mask_mkey) == 0) 918 continue; 919 920 if (algorithm_auth) 921 if ((algorithm_auth & mask_auth) == 0) 922 continue; 923 924 if (algorithm_enc) 925 if ((algorithm_enc & mask_enc) == 0) 926 continue; 927 928 if (algorithm_mac) 929 if ((algorithm_mac & mask_mac) == 0) 930 continue; 931 932 if (algorithm_ssl) 933 if ((algorithm_ssl & mask_ssl) == 0) 934 continue; 935 936 *ca_curr = (SSL_CIPHER *)(cipher_aliases + i); 937 ca_curr++; 938 } 939 940 *ca_curr = NULL; /* end of list */ 941 } 942 943 static void 944 ssl_cipher_apply_rule(unsigned long cipher_id, unsigned long alg_mkey, 945 unsigned long alg_auth, unsigned long alg_enc, unsigned long alg_mac, 946 unsigned long alg_ssl, unsigned long algo_strength, 947 int rule, int strength_bits, CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p) 948 { 949 CIPHER_ORDER *head, *tail, *curr, *next, *last; 950 const SSL_CIPHER *cp; 951 int reverse = 0; 952 953 954 if (rule == CIPHER_DEL) 955 reverse = 1; /* needed to maintain sorting between currently deleted ciphers */ 956 957 head = *head_p; 958 tail = *tail_p; 959 960 if (reverse) { 961 next = tail; 962 last = head; 963 } else { 964 next = head; 965 last = tail; 966 } 967 968 curr = NULL; 969 for (;;) { 970 if (curr == last) 971 break; 972 curr = next; 973 next = reverse ? curr->prev : curr->next; 974 975 cp = curr->cipher; 976 977 /* 978 * Selection criteria is either the value of strength_bits 979 * or the algorithms used. 980 */ 981 if (strength_bits >= 0) { 982 if (strength_bits != cp->strength_bits) 983 continue; 984 } else { 985 986 if (alg_mkey && !(alg_mkey & cp->algorithm_mkey)) 987 continue; 988 if (alg_auth && !(alg_auth & cp->algorithm_auth)) 989 continue; 990 if (alg_enc && !(alg_enc & cp->algorithm_enc)) 991 continue; 992 if (alg_mac && !(alg_mac & cp->algorithm_mac)) 993 continue; 994 if (alg_ssl && !(alg_ssl & cp->algorithm_ssl)) 995 continue; 996 if ((algo_strength & SSL_STRONG_MASK) && !(algo_strength & SSL_STRONG_MASK & cp->algo_strength)) 997 continue; 998 } 999 1000 1001 /* add the cipher if it has not been added yet. */ 1002 if (rule == CIPHER_ADD) { 1003 /* reverse == 0 */ 1004 if (!curr->active) { 1005 ll_append_tail(&head, curr, &tail); 1006 curr->active = 1; 1007 } 1008 } 1009 /* Move the added cipher to this location */ 1010 else if (rule == CIPHER_ORD) { 1011 /* reverse == 0 */ 1012 if (curr->active) { 1013 ll_append_tail(&head, curr, &tail); 1014 } 1015 } else if (rule == CIPHER_DEL) { 1016 /* reverse == 1 */ 1017 if (curr->active) { 1018 /* most recently deleted ciphersuites get best positions 1019 * for any future CIPHER_ADD (note that the CIPHER_DEL loop 1020 * works in reverse to maintain the order) */ 1021 ll_append_head(&head, curr, &tail); 1022 curr->active = 0; 1023 } 1024 } else if (rule == CIPHER_KILL) { 1025 /* reverse == 0 */ 1026 if (head == curr) 1027 head = curr->next; 1028 else 1029 curr->prev->next = curr->next; 1030 if (tail == curr) 1031 tail = curr->prev; 1032 curr->active = 0; 1033 if (curr->next != NULL) 1034 curr->next->prev = curr->prev; 1035 if (curr->prev != NULL) 1036 curr->prev->next = curr->next; 1037 curr->next = NULL; 1038 curr->prev = NULL; 1039 } 1040 } 1041 1042 *head_p = head; 1043 *tail_p = tail; 1044 } 1045 1046 static int 1047 ssl_cipher_strength_sort(CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p) 1048 { 1049 int max_strength_bits, i, *number_uses; 1050 CIPHER_ORDER *curr; 1051 1052 /* 1053 * This routine sorts the ciphers with descending strength. The sorting 1054 * must keep the pre-sorted sequence, so we apply the normal sorting 1055 * routine as '+' movement to the end of the list. 1056 */ 1057 max_strength_bits = 0; 1058 curr = *head_p; 1059 while (curr != NULL) { 1060 if (curr->active && 1061 (curr->cipher->strength_bits > max_strength_bits)) 1062 max_strength_bits = curr->cipher->strength_bits; 1063 curr = curr->next; 1064 } 1065 1066 number_uses = calloc((max_strength_bits + 1), sizeof(int)); 1067 if (!number_uses) { 1068 SSLerrorx(ERR_R_MALLOC_FAILURE); 1069 return (0); 1070 } 1071 1072 /* 1073 * Now find the strength_bits values actually used 1074 */ 1075 curr = *head_p; 1076 while (curr != NULL) { 1077 if (curr->active) 1078 number_uses[curr->cipher->strength_bits]++; 1079 curr = curr->next; 1080 } 1081 /* 1082 * Go through the list of used strength_bits values in descending 1083 * order. 1084 */ 1085 for (i = max_strength_bits; i >= 0; i--) 1086 if (number_uses[i] > 0) 1087 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, head_p, tail_p); 1088 1089 free(number_uses); 1090 return (1); 1091 } 1092 1093 static int 1094 ssl_cipher_process_rulestr(const char *rule_str, CIPHER_ORDER **head_p, 1095 CIPHER_ORDER **tail_p, const SSL_CIPHER **ca_list) 1096 { 1097 unsigned long alg_mkey, alg_auth, alg_enc, alg_mac, alg_ssl; 1098 unsigned long algo_strength; 1099 int j, multi, found, rule, retval, ok, buflen; 1100 unsigned long cipher_id = 0; 1101 const char *l, *buf; 1102 char ch; 1103 1104 retval = 1; 1105 l = rule_str; 1106 for (;;) { 1107 ch = *l; 1108 1109 if (ch == '\0') 1110 break; 1111 1112 if (ch == '-') { 1113 rule = CIPHER_DEL; 1114 l++; 1115 } else if (ch == '+') { 1116 rule = CIPHER_ORD; 1117 l++; 1118 } else if (ch == '!') { 1119 rule = CIPHER_KILL; 1120 l++; 1121 } else if (ch == '@') { 1122 rule = CIPHER_SPECIAL; 1123 l++; 1124 } else { 1125 rule = CIPHER_ADD; 1126 } 1127 1128 if (ITEM_SEP(ch)) { 1129 l++; 1130 continue; 1131 } 1132 1133 alg_mkey = 0; 1134 alg_auth = 0; 1135 alg_enc = 0; 1136 alg_mac = 0; 1137 alg_ssl = 0; 1138 algo_strength = 0; 1139 1140 for (;;) { 1141 ch = *l; 1142 buf = l; 1143 buflen = 0; 1144 while (((ch >= 'A') && (ch <= 'Z')) || 1145 ((ch >= '0') && (ch <= '9')) || 1146 ((ch >= 'a') && (ch <= 'z')) || 1147 (ch == '-') || (ch == '.')) { 1148 ch = *(++l); 1149 buflen++; 1150 } 1151 1152 if (buflen == 0) { 1153 /* 1154 * We hit something we cannot deal with, 1155 * it is no command or separator nor 1156 * alphanumeric, so we call this an error. 1157 */ 1158 SSLerrorx(SSL_R_INVALID_COMMAND); 1159 retval = found = 0; 1160 l++; 1161 break; 1162 } 1163 1164 if (rule == CIPHER_SPECIAL) { 1165 /* unused -- avoid compiler warning */ 1166 found = 0; 1167 /* special treatment */ 1168 break; 1169 } 1170 1171 /* check for multi-part specification */ 1172 if (ch == '+') { 1173 multi = 1; 1174 l++; 1175 } else 1176 multi = 0; 1177 1178 /* 1179 * Now search for the cipher alias in the ca_list. 1180 * Be careful with the strncmp, because the "buflen" 1181 * limitation will make the rule "ADH:SOME" and the 1182 * cipher "ADH-MY-CIPHER" look like a match for 1183 * buflen=3. So additionally check whether the cipher 1184 * name found has the correct length. We can save a 1185 * strlen() call: just checking for the '\0' at the 1186 * right place is sufficient, we have to strncmp() 1187 * anyway (we cannot use strcmp(), because buf is not 1188 * '\0' terminated.) 1189 */ 1190 j = found = 0; 1191 cipher_id = 0; 1192 while (ca_list[j]) { 1193 if (!strncmp(buf, ca_list[j]->name, buflen) && 1194 (ca_list[j]->name[buflen] == '\0')) { 1195 found = 1; 1196 break; 1197 } else 1198 j++; 1199 } 1200 1201 if (!found) 1202 break; /* ignore this entry */ 1203 1204 if (ca_list[j]->algorithm_mkey) { 1205 if (alg_mkey) { 1206 alg_mkey &= ca_list[j]->algorithm_mkey; 1207 if (!alg_mkey) { 1208 found = 0; 1209 break; 1210 } 1211 } else 1212 alg_mkey = ca_list[j]->algorithm_mkey; 1213 } 1214 1215 if (ca_list[j]->algorithm_auth) { 1216 if (alg_auth) { 1217 alg_auth &= ca_list[j]->algorithm_auth; 1218 if (!alg_auth) { 1219 found = 0; 1220 break; 1221 } 1222 } else 1223 alg_auth = ca_list[j]->algorithm_auth; 1224 } 1225 1226 if (ca_list[j]->algorithm_enc) { 1227 if (alg_enc) { 1228 alg_enc &= ca_list[j]->algorithm_enc; 1229 if (!alg_enc) { 1230 found = 0; 1231 break; 1232 } 1233 } else 1234 alg_enc = ca_list[j]->algorithm_enc; 1235 } 1236 1237 if (ca_list[j]->algorithm_mac) { 1238 if (alg_mac) { 1239 alg_mac &= ca_list[j]->algorithm_mac; 1240 if (!alg_mac) { 1241 found = 0; 1242 break; 1243 } 1244 } else 1245 alg_mac = ca_list[j]->algorithm_mac; 1246 } 1247 1248 if (ca_list[j]->algo_strength & SSL_STRONG_MASK) { 1249 if (algo_strength & SSL_STRONG_MASK) { 1250 algo_strength &= 1251 (ca_list[j]->algo_strength & 1252 SSL_STRONG_MASK) | ~SSL_STRONG_MASK; 1253 if (!(algo_strength & 1254 SSL_STRONG_MASK)) { 1255 found = 0; 1256 break; 1257 } 1258 } else 1259 algo_strength |= 1260 ca_list[j]->algo_strength & 1261 SSL_STRONG_MASK; 1262 } 1263 1264 if (ca_list[j]->valid) { 1265 /* 1266 * explicit ciphersuite found; its protocol 1267 * version does not become part of the search 1268 * pattern! 1269 */ 1270 cipher_id = ca_list[j]->id; 1271 } else { 1272 /* 1273 * not an explicit ciphersuite; only in this 1274 * case, the protocol version is considered 1275 * part of the search pattern 1276 */ 1277 if (ca_list[j]->algorithm_ssl) { 1278 if (alg_ssl) { 1279 alg_ssl &= 1280 ca_list[j]->algorithm_ssl; 1281 if (!alg_ssl) { 1282 found = 0; 1283 break; 1284 } 1285 } else 1286 alg_ssl = 1287 ca_list[j]->algorithm_ssl; 1288 } 1289 } 1290 1291 if (!multi) 1292 break; 1293 } 1294 1295 /* 1296 * Ok, we have the rule, now apply it 1297 */ 1298 if (rule == CIPHER_SPECIAL) { 1299 /* special command */ 1300 ok = 0; 1301 if ((buflen == 8) && !strncmp(buf, "STRENGTH", 8)) 1302 ok = ssl_cipher_strength_sort(head_p, tail_p); 1303 else 1304 SSLerrorx(SSL_R_INVALID_COMMAND); 1305 if (ok == 0) 1306 retval = 0; 1307 /* 1308 * We do not support any "multi" options 1309 * together with "@", so throw away the 1310 * rest of the command, if any left, until 1311 * end or ':' is found. 1312 */ 1313 while ((*l != '\0') && !ITEM_SEP(*l)) 1314 l++; 1315 } else if (found) { 1316 ssl_cipher_apply_rule(cipher_id, alg_mkey, alg_auth, 1317 alg_enc, alg_mac, alg_ssl, algo_strength, rule, 1318 -1, head_p, tail_p); 1319 } else { 1320 while ((*l != '\0') && !ITEM_SEP(*l)) 1321 l++; 1322 } 1323 if (*l == '\0') 1324 break; /* done */ 1325 } 1326 1327 return (retval); 1328 } 1329 1330 static inline int 1331 ssl_aes_is_accelerated(void) 1332 { 1333 #if defined(__i386__) || defined(__x86_64__) 1334 return ((OPENSSL_cpu_caps() & (1ULL << 57)) != 0); 1335 #else 1336 return (0); 1337 #endif 1338 } 1339 1340 STACK_OF(SSL_CIPHER) * 1341 ssl_create_cipher_list(const SSL_METHOD *ssl_method, 1342 STACK_OF(SSL_CIPHER) **cipher_list, 1343 STACK_OF(SSL_CIPHER) **cipher_list_by_id, 1344 const char *rule_str) 1345 { 1346 int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases; 1347 unsigned long disabled_mkey, disabled_auth, disabled_enc, disabled_mac, disabled_ssl; 1348 STACK_OF(SSL_CIPHER) *cipherstack, *tmp_cipher_list; 1349 const char *rule_p; 1350 CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr; 1351 const SSL_CIPHER **ca_list = NULL; 1352 1353 /* 1354 * Return with error if nothing to do. 1355 */ 1356 if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL) 1357 return NULL; 1358 1359 /* 1360 * To reduce the work to do we only want to process the compiled 1361 * in algorithms, so we first get the mask of disabled ciphers. 1362 */ 1363 ssl_cipher_get_disabled(&disabled_mkey, &disabled_auth, &disabled_enc, &disabled_mac, &disabled_ssl); 1364 1365 /* 1366 * Now we have to collect the available ciphers from the compiled 1367 * in ciphers. We cannot get more than the number compiled in, so 1368 * it is used for allocation. 1369 */ 1370 num_of_ciphers = ssl_method->num_ciphers(); 1371 co_list = reallocarray(NULL, num_of_ciphers, sizeof(CIPHER_ORDER)); 1372 if (co_list == NULL) { 1373 SSLerrorx(ERR_R_MALLOC_FAILURE); 1374 return(NULL); /* Failure */ 1375 } 1376 1377 ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers, 1378 disabled_mkey, disabled_auth, disabled_enc, disabled_mac, disabled_ssl, 1379 co_list, &head, &tail); 1380 1381 1382 /* Now arrange all ciphers by preference: */ 1383 1384 /* Everything else being equal, prefer ephemeral ECDH over other key exchange mechanisms */ 1385 ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail); 1386 ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail); 1387 1388 if (ssl_aes_is_accelerated() == 1) { 1389 /* 1390 * We have hardware assisted AES - prefer AES as a symmetric 1391 * cipher, with CHACHA20 second. 1392 */ 1393 ssl_cipher_apply_rule(0, 0, 0, SSL_AES, 0, 0, 0, 1394 CIPHER_ADD, -1, &head, &tail); 1395 ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20POLY1305, 1396 0, 0, 0, CIPHER_ADD, -1, &head, &tail); 1397 ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20POLY1305_OLD, 1398 0, 0, 0, CIPHER_ADD, -1, &head, &tail); 1399 } else { 1400 /* 1401 * CHACHA20 is fast and safe on all hardware and is thus our 1402 * preferred symmetric cipher, with AES second. 1403 */ 1404 ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20POLY1305, 1405 0, 0, 0, CIPHER_ADD, -1, &head, &tail); 1406 ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20POLY1305_OLD, 1407 0, 0, 0, CIPHER_ADD, -1, &head, &tail); 1408 ssl_cipher_apply_rule(0, 0, 0, SSL_AES, 0, 0, 0, 1409 CIPHER_ADD, -1, &head, &tail); 1410 } 1411 1412 /* Temporarily enable everything else for sorting */ 1413 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail); 1414 1415 /* Low priority for MD5 */ 1416 ssl_cipher_apply_rule(0, 0, 0, 0, SSL_MD5, 0, 0, CIPHER_ORD, -1, &head, &tail); 1417 1418 /* Move anonymous ciphers to the end. Usually, these will remain disabled. 1419 * (For applications that allow them, they aren't too bad, but we prefer 1420 * authenticated ciphers.) */ 1421 ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, &head, &tail); 1422 1423 /* Move ciphers without forward secrecy to the end */ 1424 ssl_cipher_apply_rule(0, SSL_kRSA, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head, &tail); 1425 1426 /* RC4 is sort of broken - move it to the end */ 1427 ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, 0, 0, 0, CIPHER_ORD, -1, &head, &tail); 1428 1429 /* Now sort by symmetric encryption strength. The above ordering remains 1430 * in force within each class */ 1431 if (!ssl_cipher_strength_sort(&head, &tail)) { 1432 free(co_list); 1433 return NULL; 1434 } 1435 1436 /* Now disable everything (maintaining the ordering!) */ 1437 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail); 1438 1439 1440 /* 1441 * We also need cipher aliases for selecting based on the rule_str. 1442 * There might be two types of entries in the rule_str: 1) names 1443 * of ciphers themselves 2) aliases for groups of ciphers. 1444 * For 1) we need the available ciphers and for 2) the cipher 1445 * groups of cipher_aliases added together in one list (otherwise 1446 * we would be happy with just the cipher_aliases table). 1447 */ 1448 num_of_group_aliases = sizeof(cipher_aliases) / sizeof(SSL_CIPHER); 1449 num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1; 1450 ca_list = reallocarray(NULL, num_of_alias_max, sizeof(SSL_CIPHER *)); 1451 if (ca_list == NULL) { 1452 free(co_list); 1453 SSLerrorx(ERR_R_MALLOC_FAILURE); 1454 return(NULL); /* Failure */ 1455 } 1456 ssl_cipher_collect_aliases(ca_list, num_of_group_aliases, 1457 disabled_mkey, disabled_auth, disabled_enc, 1458 disabled_mac, disabled_ssl, head); 1459 1460 /* 1461 * If the rule_string begins with DEFAULT, apply the default rule 1462 * before using the (possibly available) additional rules. 1463 */ 1464 ok = 1; 1465 rule_p = rule_str; 1466 if (strncmp(rule_str, "DEFAULT", 7) == 0) { 1467 ok = ssl_cipher_process_rulestr(SSL_DEFAULT_CIPHER_LIST, 1468 &head, &tail, ca_list); 1469 rule_p += 7; 1470 if (*rule_p == ':') 1471 rule_p++; 1472 } 1473 1474 if (ok && (strlen(rule_p) > 0)) 1475 ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list); 1476 1477 free((void *)ca_list); /* Not needed anymore */ 1478 1479 if (!ok) { 1480 /* Rule processing failure */ 1481 free(co_list); 1482 return (NULL); 1483 } 1484 1485 /* 1486 * Allocate new "cipherstack" for the result, return with error 1487 * if we cannot get one. 1488 */ 1489 if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) { 1490 free(co_list); 1491 return (NULL); 1492 } 1493 1494 /* 1495 * The cipher selection for the list is done. The ciphers are added 1496 * to the resulting precedence to the STACK_OF(SSL_CIPHER). 1497 */ 1498 for (curr = head; curr != NULL; curr = curr->next) { 1499 if (curr->active) { 1500 sk_SSL_CIPHER_push(cipherstack, curr->cipher); 1501 } 1502 } 1503 free(co_list); /* Not needed any longer */ 1504 1505 tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack); 1506 if (tmp_cipher_list == NULL) { 1507 sk_SSL_CIPHER_free(cipherstack); 1508 return NULL; 1509 } 1510 sk_SSL_CIPHER_free(*cipher_list); 1511 *cipher_list = cipherstack; 1512 sk_SSL_CIPHER_free(*cipher_list_by_id); 1513 *cipher_list_by_id = tmp_cipher_list; 1514 (void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id, 1515 ssl_cipher_ptr_id_cmp); 1516 1517 sk_SSL_CIPHER_sort(*cipher_list_by_id); 1518 return (cipherstack); 1519 } 1520 1521 const SSL_CIPHER * 1522 SSL_CIPHER_get_by_id(unsigned int id) 1523 { 1524 return ssl3_get_cipher_by_id(id); 1525 } 1526 1527 const SSL_CIPHER * 1528 SSL_CIPHER_get_by_value(uint16_t value) 1529 { 1530 return ssl3_get_cipher_by_value(value); 1531 } 1532 1533 char * 1534 SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len) 1535 { 1536 unsigned long alg_mkey, alg_auth, alg_enc, alg_mac, alg_ssl, alg2; 1537 const char *ver, *kx, *au, *enc, *mac; 1538 char *ret; 1539 int l; 1540 1541 alg_mkey = cipher->algorithm_mkey; 1542 alg_auth = cipher->algorithm_auth; 1543 alg_enc = cipher->algorithm_enc; 1544 alg_mac = cipher->algorithm_mac; 1545 alg_ssl = cipher->algorithm_ssl; 1546 1547 alg2 = cipher->algorithm2; 1548 1549 if (alg_ssl & SSL_SSLV3) 1550 ver = "SSLv3"; 1551 else if (alg_ssl & SSL_TLSV1_2) 1552 ver = "TLSv1.2"; 1553 else 1554 ver = "unknown"; 1555 1556 switch (alg_mkey) { 1557 case SSL_kRSA: 1558 kx = "RSA"; 1559 break; 1560 case SSL_kDHE: 1561 kx = "DH"; 1562 break; 1563 case SSL_kECDHE: 1564 kx = "ECDH"; 1565 break; 1566 case SSL_kGOST: 1567 kx = "GOST"; 1568 break; 1569 default: 1570 kx = "unknown"; 1571 } 1572 1573 switch (alg_auth) { 1574 case SSL_aRSA: 1575 au = "RSA"; 1576 break; 1577 case SSL_aDSS: 1578 au = "DSS"; 1579 break; 1580 case SSL_aNULL: 1581 au = "None"; 1582 break; 1583 case SSL_aECDSA: 1584 au = "ECDSA"; 1585 break; 1586 case SSL_aGOST01: 1587 au = "GOST01"; 1588 break; 1589 default: 1590 au = "unknown"; 1591 break; 1592 } 1593 1594 switch (alg_enc) { 1595 case SSL_DES: 1596 enc = "DES(56)"; 1597 break; 1598 case SSL_3DES: 1599 enc = "3DES(168)"; 1600 break; 1601 case SSL_RC4: 1602 enc = alg2 & SSL2_CF_8_BYTE_ENC ? "RC4(64)" : "RC4(128)"; 1603 break; 1604 case SSL_IDEA: 1605 enc = "IDEA(128)"; 1606 break; 1607 case SSL_eNULL: 1608 enc = "None"; 1609 break; 1610 case SSL_AES128: 1611 enc = "AES(128)"; 1612 break; 1613 case SSL_AES256: 1614 enc = "AES(256)"; 1615 break; 1616 case SSL_AES128GCM: 1617 enc = "AESGCM(128)"; 1618 break; 1619 case SSL_AES256GCM: 1620 enc = "AESGCM(256)"; 1621 break; 1622 case SSL_CAMELLIA128: 1623 enc = "Camellia(128)"; 1624 break; 1625 case SSL_CAMELLIA256: 1626 enc = "Camellia(256)"; 1627 break; 1628 case SSL_CHACHA20POLY1305: 1629 enc = "ChaCha20-Poly1305"; 1630 break; 1631 case SSL_CHACHA20POLY1305_OLD: 1632 enc = "ChaCha20-Poly1305-Old"; 1633 break; 1634 case SSL_eGOST2814789CNT: 1635 enc = "GOST-28178-89-CNT"; 1636 break; 1637 default: 1638 enc = "unknown"; 1639 break; 1640 } 1641 1642 switch (alg_mac) { 1643 case SSL_MD5: 1644 mac = "MD5"; 1645 break; 1646 case SSL_SHA1: 1647 mac = "SHA1"; 1648 break; 1649 case SSL_SHA256: 1650 mac = "SHA256"; 1651 break; 1652 case SSL_SHA384: 1653 mac = "SHA384"; 1654 break; 1655 case SSL_AEAD: 1656 mac = "AEAD"; 1657 break; 1658 case SSL_GOST94: 1659 mac = "GOST94"; 1660 break; 1661 case SSL_GOST89MAC: 1662 mac = "GOST89IMIT"; 1663 break; 1664 case SSL_STREEBOG256: 1665 mac = "STREEBOG256"; 1666 break; 1667 default: 1668 mac = "unknown"; 1669 break; 1670 } 1671 1672 if (asprintf(&ret, "%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s\n", 1673 cipher->name, ver, kx, au, enc, mac) == -1) 1674 return "OPENSSL_malloc Error"; 1675 1676 if (buf != NULL) { 1677 l = strlcpy(buf, ret, len); 1678 free(ret); 1679 ret = buf; 1680 if (l >= len) 1681 ret = "Buffer too small"; 1682 } 1683 1684 return (ret); 1685 } 1686 1687 char * 1688 SSL_CIPHER_get_version(const SSL_CIPHER *c) 1689 { 1690 if (c == NULL) 1691 return("(NONE)"); 1692 if ((c->id >> 24) == 3) 1693 return("TLSv1/SSLv3"); 1694 else 1695 return("unknown"); 1696 } 1697 1698 /* return the actual cipher being used */ 1699 const char * 1700 SSL_CIPHER_get_name(const SSL_CIPHER *c) 1701 { 1702 if (c != NULL) 1703 return (c->name); 1704 return("(NONE)"); 1705 } 1706 1707 /* number of bits for symmetric cipher */ 1708 int 1709 SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits) 1710 { 1711 int ret = 0; 1712 1713 if (c != NULL) { 1714 if (alg_bits != NULL) 1715 *alg_bits = c->alg_bits; 1716 ret = c->strength_bits; 1717 } 1718 return (ret); 1719 } 1720 1721 unsigned long 1722 SSL_CIPHER_get_id(const SSL_CIPHER *c) 1723 { 1724 return c->id; 1725 } 1726 1727 uint16_t 1728 SSL_CIPHER_get_value(const SSL_CIPHER *c) 1729 { 1730 return ssl3_cipher_get_value(c); 1731 } 1732 1733 void * 1734 SSL_COMP_get_compression_methods(void) 1735 { 1736 return NULL; 1737 } 1738 1739 int 1740 SSL_COMP_add_compression_method(int id, void *cm) 1741 { 1742 return 1; 1743 } 1744 1745 const char * 1746 SSL_COMP_get_name(const void *comp) 1747 { 1748 return NULL; 1749 } 1750