xref: /openbsd-src/lib/libssl/ssl_ciph.c (revision 78fec973f57e9fc9edd564490c79661460ad807b)
1 /* $OpenBSD: ssl_ciph.c,v 1.129 2022/06/29 20:06:55 tb Exp $ */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3  * All rights reserved.
4  *
5  * This package is an SSL implementation written
6  * by Eric Young (eay@cryptsoft.com).
7  * The implementation was written so as to conform with Netscapes SSL.
8  *
9  * This library is free for commercial and non-commercial use as long as
10  * the following conditions are aheared to.  The following conditions
11  * apply to all code found in this distribution, be it the RC4, RSA,
12  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13  * included with this distribution is covered by the same copyright terms
14  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15  *
16  * Copyright remains Eric Young's, and as such any Copyright notices in
17  * the code are not to be removed.
18  * If this package is used in a product, Eric Young should be given attribution
19  * as the author of the parts of the library used.
20  * This can be in the form of a textual message at program startup or
21  * in documentation (online or textual) provided with the package.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 3. All advertising materials mentioning features or use of this software
32  *    must display the following acknowledgement:
33  *    "This product includes cryptographic software written by
34  *     Eric Young (eay@cryptsoft.com)"
35  *    The word 'cryptographic' can be left out if the rouines from the library
36  *    being used are not cryptographic related :-).
37  * 4. If you include any Windows specific code (or a derivative thereof) from
38  *    the apps directory (application code) you must include an acknowledgement:
39  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40  *
41  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  *
53  * The licence and distribution terms for any publically available version or
54  * derivative of this code cannot be changed.  i.e. this code cannot simply be
55  * copied and put under another distribution licence
56  * [including the GNU Public Licence.]
57  */
58 /* ====================================================================
59  * Copyright (c) 1998-2007 The OpenSSL Project.  All rights reserved.
60  *
61  * Redistribution and use in source and binary forms, with or without
62  * modification, are permitted provided that the following conditions
63  * are met:
64  *
65  * 1. Redistributions of source code must retain the above copyright
66  *    notice, this list of conditions and the following disclaimer.
67  *
68  * 2. Redistributions in binary form must reproduce the above copyright
69  *    notice, this list of conditions and the following disclaimer in
70  *    the documentation and/or other materials provided with the
71  *    distribution.
72  *
73  * 3. All advertising materials mentioning features or use of this
74  *    software must display the following acknowledgment:
75  *    "This product includes software developed by the OpenSSL Project
76  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77  *
78  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79  *    endorse or promote products derived from this software without
80  *    prior written permission. For written permission, please contact
81  *    openssl-core@openssl.org.
82  *
83  * 5. Products derived from this software may not be called "OpenSSL"
84  *    nor may "OpenSSL" appear in their names without prior written
85  *    permission of the OpenSSL Project.
86  *
87  * 6. Redistributions of any form whatsoever must retain the following
88  *    acknowledgment:
89  *    "This product includes software developed by the OpenSSL Project
90  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91  *
92  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
96  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103  * OF THE POSSIBILITY OF SUCH DAMAGE.
104  * ====================================================================
105  *
106  * This product includes cryptographic software written by Eric Young
107  * (eay@cryptsoft.com).  This product includes software written by Tim
108  * Hudson (tjh@cryptsoft.com).
109  *
110  */
111 /* ====================================================================
112  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
113  * ECC cipher suite support in OpenSSL originally developed by
114  * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
115  */
116 /* ====================================================================
117  * Copyright 2005 Nokia. All rights reserved.
118  *
119  * The portions of the attached software ("Contribution") is developed by
120  * Nokia Corporation and is licensed pursuant to the OpenSSL open source
121  * license.
122  *
123  * The Contribution, originally written by Mika Kousa and Pasi Eronen of
124  * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
125  * support (see RFC 4279) to OpenSSL.
126  *
127  * No patent licenses or other rights except those expressly stated in
128  * the OpenSSL open source license shall be deemed granted or received
129  * expressly, by implication, estoppel, or otherwise.
130  *
131  * No assurances are provided by Nokia that the Contribution does not
132  * infringe the patent or other intellectual property rights of any third
133  * party or that the license provides you with all the necessary rights
134  * to make use of the Contribution.
135  *
136  * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
137  * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
138  * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
139  * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
140  * OTHERWISE.
141  */
142 
143 #include <stdio.h>
144 
145 #include <openssl/objects.h>
146 #include <openssl/opensslconf.h>
147 
148 #ifndef OPENSSL_NO_ENGINE
149 #include <openssl/engine.h>
150 #endif
151 
152 #include "ssl_locl.h"
153 
154 #define CIPHER_ADD	1
155 #define CIPHER_KILL	2
156 #define CIPHER_DEL	3
157 #define CIPHER_ORD	4
158 #define CIPHER_SPECIAL	5
159 
160 typedef struct cipher_order_st {
161 	const SSL_CIPHER *cipher;
162 	int active;
163 	int dead;
164 	struct cipher_order_st *next, *prev;
165 } CIPHER_ORDER;
166 
167 static const SSL_CIPHER cipher_aliases[] = {
168 
169 	/* "ALL" doesn't include eNULL (must be specifically enabled) */
170 	{
171 		.name = SSL_TXT_ALL,
172 		.algorithm_enc = ~SSL_eNULL,
173 	},
174 
175 	/* "COMPLEMENTOFALL" */
176 	{
177 		.name = SSL_TXT_CMPALL,
178 		.algorithm_enc = SSL_eNULL,
179 	},
180 
181 	/*
182 	 * "COMPLEMENTOFDEFAULT"
183 	 * (does *not* include ciphersuites not found in ALL!)
184 	 */
185 	{
186 		.name = SSL_TXT_CMPDEF,
187 		.algorithm_mkey = SSL_kDHE|SSL_kECDHE,
188 		.algorithm_auth = SSL_aNULL,
189 		.algorithm_enc = ~SSL_eNULL,
190 	},
191 
192 	/*
193 	 * key exchange aliases
194 	 * (some of those using only a single bit here combine multiple key
195 	 * exchange algs according to the RFCs, e.g. kEDH combines DHE_DSS
196 	 * and DHE_RSA)
197 	 */
198 	{
199 		.name = SSL_TXT_kRSA,
200 		.algorithm_mkey = SSL_kRSA,
201 	},
202 	{
203 		.name = SSL_TXT_kEDH,
204 		.algorithm_mkey = SSL_kDHE,
205 	},
206 	{
207 		.name = SSL_TXT_DH,
208 		.algorithm_mkey = SSL_kDHE,
209 	},
210 	{
211 		.name = SSL_TXT_kEECDH,
212 		.algorithm_mkey = SSL_kECDHE,
213 	},
214 	{
215 		.name = SSL_TXT_ECDH,
216 		.algorithm_mkey = SSL_kECDHE,
217 	},
218 	{
219 		.name = SSL_TXT_kGOST,
220 		.algorithm_mkey = SSL_kGOST,
221 	},
222 
223 	/* server authentication aliases */
224 	{
225 		.name = SSL_TXT_aRSA,
226 		.algorithm_auth = SSL_aRSA,
227 	},
228 	{
229 		.name = SSL_TXT_aDSS,
230 		.algorithm_auth = SSL_aDSS,
231 	},
232 	{
233 		.name = SSL_TXT_DSS,
234 		.algorithm_auth = SSL_aDSS,
235 	},
236 	{
237 		.name = SSL_TXT_aNULL,
238 		.algorithm_auth = SSL_aNULL,
239 	},
240 	{
241 		.name = SSL_TXT_aECDSA,
242 		.algorithm_auth = SSL_aECDSA,
243 	},
244 	{
245 		.name = SSL_TXT_ECDSA,
246 		.algorithm_auth = SSL_aECDSA,
247 	},
248 	{
249 		.name = SSL_TXT_aGOST01,
250 		.algorithm_auth = SSL_aGOST01,
251 	},
252 	{
253 		.name = SSL_TXT_aGOST,
254 		.algorithm_auth = SSL_aGOST01,
255 	},
256 
257 	/* aliases combining key exchange and server authentication */
258 	{
259 		.name = SSL_TXT_DHE,
260 		.algorithm_mkey = SSL_kDHE,
261 		.algorithm_auth = ~SSL_aNULL,
262 	},
263 	{
264 		.name = SSL_TXT_EDH,
265 		.algorithm_mkey = SSL_kDHE,
266 		.algorithm_auth = ~SSL_aNULL,
267 	},
268 	{
269 		.name = SSL_TXT_ECDHE,
270 		.algorithm_mkey = SSL_kECDHE,
271 		.algorithm_auth = ~SSL_aNULL,
272 	},
273 	{
274 		.name = SSL_TXT_EECDH,
275 		.algorithm_mkey = SSL_kECDHE,
276 		.algorithm_auth = ~SSL_aNULL,
277 	},
278 	{
279 		.name = SSL_TXT_NULL,
280 		.algorithm_enc = SSL_eNULL,
281 	},
282 	{
283 		.name = SSL_TXT_RSA,
284 		.algorithm_mkey = SSL_kRSA,
285 		.algorithm_auth = SSL_aRSA,
286 	},
287 	{
288 		.name = SSL_TXT_ADH,
289 		.algorithm_mkey = SSL_kDHE,
290 		.algorithm_auth = SSL_aNULL,
291 	},
292 	{
293 		.name = SSL_TXT_AECDH,
294 		.algorithm_mkey = SSL_kECDHE,
295 		.algorithm_auth = SSL_aNULL,
296 	},
297 
298 	/* symmetric encryption aliases */
299 	{
300 		.name = SSL_TXT_3DES,
301 		.algorithm_enc = SSL_3DES,
302 	},
303 	{
304 		.name = SSL_TXT_RC4,
305 		.algorithm_enc = SSL_RC4,
306 	},
307 	{
308 		.name = SSL_TXT_eNULL,
309 		.algorithm_enc = SSL_eNULL,
310 	},
311 	{
312 		.name = SSL_TXT_AES128,
313 		.algorithm_enc = SSL_AES128|SSL_AES128GCM,
314 	},
315 	{
316 		.name = SSL_TXT_AES256,
317 		.algorithm_enc = SSL_AES256|SSL_AES256GCM,
318 	},
319 	{
320 		.name = SSL_TXT_AES,
321 		.algorithm_enc = SSL_AES,
322 	},
323 	{
324 		.name = SSL_TXT_AES_GCM,
325 		.algorithm_enc = SSL_AES128GCM|SSL_AES256GCM,
326 	},
327 	{
328 		.name = SSL_TXT_CAMELLIA128,
329 		.algorithm_enc = SSL_CAMELLIA128,
330 	},
331 	{
332 		.name = SSL_TXT_CAMELLIA256,
333 		.algorithm_enc = SSL_CAMELLIA256,
334 	},
335 	{
336 		.name = SSL_TXT_CAMELLIA,
337 		.algorithm_enc = SSL_CAMELLIA128|SSL_CAMELLIA256,
338 	},
339 	{
340 		.name = SSL_TXT_CHACHA20,
341 		.algorithm_enc = SSL_CHACHA20POLY1305,
342 	},
343 
344 	/* MAC aliases */
345 	{
346 		.name = SSL_TXT_AEAD,
347 		.algorithm_mac = SSL_AEAD,
348 	},
349 	{
350 		.name = SSL_TXT_MD5,
351 		.algorithm_mac = SSL_MD5,
352 	},
353 	{
354 		.name = SSL_TXT_SHA1,
355 		.algorithm_mac = SSL_SHA1,
356 	},
357 	{
358 		.name = SSL_TXT_SHA,
359 		.algorithm_mac = SSL_SHA1,
360 	},
361 	{
362 		.name = SSL_TXT_GOST94,
363 		.algorithm_mac = SSL_GOST94,
364 	},
365 	{
366 		.name = SSL_TXT_GOST89MAC,
367 		.algorithm_mac = SSL_GOST89MAC,
368 	},
369 	{
370 		.name = SSL_TXT_SHA256,
371 		.algorithm_mac = SSL_SHA256,
372 	},
373 	{
374 		.name = SSL_TXT_SHA384,
375 		.algorithm_mac = SSL_SHA384,
376 	},
377 	{
378 		.name = SSL_TXT_STREEBOG256,
379 		.algorithm_mac = SSL_STREEBOG256,
380 	},
381 
382 	/* protocol version aliases */
383 	{
384 		.name = SSL_TXT_SSLV3,
385 		.algorithm_ssl = SSL_SSLV3,
386 	},
387 	{
388 		.name = SSL_TXT_TLSV1,
389 		.algorithm_ssl = SSL_TLSV1,
390 	},
391 	{
392 		.name = SSL_TXT_TLSV1_2,
393 		.algorithm_ssl = SSL_TLSV1_2,
394 	},
395 	{
396 		.name = SSL_TXT_TLSV1_3,
397 		.algorithm_ssl = SSL_TLSV1_3,
398 	},
399 
400 	/* cipher suite aliases */
401 #ifdef LIBRESSL_HAS_TLS1_3
402 	{
403 		.valid = 1,
404 		.name = "TLS_AES_128_GCM_SHA256",
405 		.id = TLS1_3_CK_AES_128_GCM_SHA256,
406 		.algorithm_ssl = SSL_TLSV1_3,
407 	},
408 	{
409 		.valid = 1,
410 		.name = "TLS_AES_256_GCM_SHA384",
411 		.id = TLS1_3_CK_AES_256_GCM_SHA384,
412 		.algorithm_ssl = SSL_TLSV1_3,
413 	},
414 	{
415 		.valid = 1,
416 		.name = "TLS_CHACHA20_POLY1305_SHA256",
417 		.id = TLS1_3_CK_CHACHA20_POLY1305_SHA256,
418 		.algorithm_ssl = SSL_TLSV1_3,
419 	},
420 #endif
421 
422 	/* strength classes */
423 	{
424 		.name = SSL_TXT_LOW,
425 		.algo_strength = SSL_LOW,
426 	},
427 	{
428 		.name = SSL_TXT_MEDIUM,
429 		.algo_strength = SSL_MEDIUM,
430 	},
431 	{
432 		.name = SSL_TXT_HIGH,
433 		.algo_strength = SSL_HIGH,
434 	},
435 };
436 
437 int
438 ssl_cipher_get_evp(const SSL_SESSION *ss, const EVP_CIPHER **enc,
439     const EVP_MD **md, int *mac_pkey_type, int *mac_secret_size)
440 {
441 	*enc = NULL;
442 	*md = NULL;
443 	*mac_pkey_type = NID_undef;
444 	*mac_secret_size = 0;
445 
446 	if (ss->cipher == NULL)
447 		return 0;
448 
449 	/*
450 	 * This function does not handle EVP_AEAD.
451 	 * See ssl_cipher_get_evp_aead instead.
452 	 */
453 	if (ss->cipher->algorithm_mac & SSL_AEAD)
454 		return 0;
455 
456 	switch (ss->cipher->algorithm_enc) {
457 	case SSL_3DES:
458 		*enc = EVP_des_ede3_cbc();
459 		break;
460 	case SSL_RC4:
461 		*enc = EVP_rc4();
462 		break;
463 	case SSL_eNULL:
464 		*enc = EVP_enc_null();
465 		break;
466 	case SSL_AES128:
467 		*enc = EVP_aes_128_cbc();
468 		break;
469 	case SSL_AES256:
470 		*enc = EVP_aes_256_cbc();
471 		break;
472 	case SSL_CAMELLIA128:
473 		*enc = EVP_camellia_128_cbc();
474 		break;
475 	case SSL_CAMELLIA256:
476 		*enc = EVP_camellia_256_cbc();
477 		break;
478 	case SSL_eGOST2814789CNT:
479 		*enc = EVP_gost2814789_cnt();
480 		break;
481 	}
482 
483 	switch (ss->cipher->algorithm_mac) {
484 	case SSL_MD5:
485 		*md = EVP_md5();
486 		break;
487 	case SSL_SHA1:
488 		*md = EVP_sha1();
489 		break;
490 	case SSL_SHA256:
491 		*md = EVP_sha256();
492 		break;
493 	case SSL_SHA384:
494 		*md = EVP_sha384();
495 		break;
496 	case SSL_GOST89MAC:
497 		*md = EVP_gost2814789imit();
498 		break;
499 	case SSL_GOST94:
500 		*md = EVP_gostr341194();
501 		break;
502 	case SSL_STREEBOG256:
503 		*md = EVP_streebog256();
504 		break;
505 	}
506 
507 	if (*enc == NULL || *md == NULL)
508 		return 0;
509 
510 	/*
511 	 * EVP_CIPH_FLAG_AEAD_CIPHER and EVP_CIPH_GCM_MODE ciphers are not
512 	 * supported via EVP_CIPHER (they should be using EVP_AEAD instead).
513 	 */
514 	if (EVP_CIPHER_flags(*enc) & EVP_CIPH_FLAG_AEAD_CIPHER)
515 		return 0;
516 	if (EVP_CIPHER_mode(*enc) == EVP_CIPH_GCM_MODE)
517 		return 0;
518 
519 	if (ss->cipher->algorithm_mac == SSL_GOST89MAC) {
520 		*mac_pkey_type = EVP_PKEY_GOSTIMIT;
521 		*mac_secret_size = 32; /* XXX */
522 	} else {
523 		*mac_pkey_type = EVP_PKEY_HMAC;
524 		*mac_secret_size = EVP_MD_size(*md);
525 	}
526 
527 	return 1;
528 }
529 
530 /*
531  * ssl_cipher_get_evp_aead sets aead to point to the correct EVP_AEAD object
532  * for s->cipher. It returns 1 on success and 0 on error.
533  */
534 int
535 ssl_cipher_get_evp_aead(const SSL_SESSION *ss, const EVP_AEAD **aead)
536 {
537 	*aead = NULL;
538 
539 	if (ss->cipher == NULL)
540 		return 0;
541 	if ((ss->cipher->algorithm_mac & SSL_AEAD) == 0)
542 		return 0;
543 
544 	switch (ss->cipher->algorithm_enc) {
545 	case SSL_AES128GCM:
546 		*aead = EVP_aead_aes_128_gcm();
547 		return 1;
548 	case SSL_AES256GCM:
549 		*aead = EVP_aead_aes_256_gcm();
550 		return 1;
551 	case SSL_CHACHA20POLY1305:
552 		*aead = EVP_aead_chacha20_poly1305();
553 		return 1;
554 	default:
555 		break;
556 	}
557 	return 0;
558 }
559 
560 int
561 ssl_get_handshake_evp_md(SSL *s, const EVP_MD **md)
562 {
563 	unsigned long handshake_mac;
564 
565 	*md = NULL;
566 
567 	if (s->s3->hs.cipher == NULL)
568 		return 0;
569 
570 	handshake_mac = s->s3->hs.cipher->algorithm2 &
571 	    SSL_HANDSHAKE_MAC_MASK;
572 
573 	/* For TLSv1.2 we upgrade the default MD5+SHA1 MAC to SHA256. */
574 	if (SSL_USE_SHA256_PRF(s) && handshake_mac == SSL_HANDSHAKE_MAC_DEFAULT)
575 		handshake_mac = SSL_HANDSHAKE_MAC_SHA256;
576 
577 	switch (handshake_mac) {
578 	case SSL_HANDSHAKE_MAC_DEFAULT:
579 		*md = EVP_md5_sha1();
580 		return 1;
581 	case SSL_HANDSHAKE_MAC_GOST94:
582 		*md = EVP_gostr341194();
583 		return 1;
584 	case SSL_HANDSHAKE_MAC_SHA256:
585 		*md = EVP_sha256();
586 		return 1;
587 	case SSL_HANDSHAKE_MAC_SHA384:
588 		*md = EVP_sha384();
589 		return 1;
590 	case SSL_HANDSHAKE_MAC_STREEBOG256:
591 		*md = EVP_streebog256();
592 		return 1;
593 	default:
594 		break;
595 	}
596 
597 	return 0;
598 }
599 
600 #define ITEM_SEP(a) \
601 	(((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ','))
602 
603 static void
604 ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
605     CIPHER_ORDER **tail)
606 {
607 	if (curr == *tail)
608 		return;
609 	if (curr == *head)
610 		*head = curr->next;
611 	if (curr->prev != NULL)
612 		curr->prev->next = curr->next;
613 	if (curr->next != NULL)
614 		curr->next->prev = curr->prev;
615 	(*tail)->next = curr;
616 	curr->prev= *tail;
617 	curr->next = NULL;
618 	*tail = curr;
619 }
620 
621 static void
622 ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
623     CIPHER_ORDER **tail)
624 {
625 	if (curr == *head)
626 		return;
627 	if (curr == *tail)
628 		*tail = curr->prev;
629 	if (curr->next != NULL)
630 		curr->next->prev = curr->prev;
631 	if (curr->prev != NULL)
632 		curr->prev->next = curr->next;
633 	(*head)->prev = curr;
634 	curr->next= *head;
635 	curr->prev = NULL;
636 	*head = curr;
637 }
638 
639 static void
640 ssl_cipher_get_disabled(unsigned long *mkey, unsigned long *auth,
641     unsigned long *enc, unsigned long *mac, unsigned long *ssl)
642 {
643 	*mkey = 0;
644 	*auth = 0;
645 	*enc = 0;
646 	*mac = 0;
647 	*ssl = 0;
648 
649 	/*
650 	 * Check for the availability of GOST 34.10 public/private key
651 	 * algorithms. If they are not available disable the associated
652 	 * authentication and key exchange algorithms.
653 	 */
654 	if (EVP_PKEY_meth_find(NID_id_GostR3410_2001) == NULL) {
655 		*auth |= SSL_aGOST01;
656 		*mkey |= SSL_kGOST;
657 	}
658 
659 #ifdef SSL_FORBID_ENULL
660 	*enc |= SSL_eNULL;
661 #endif
662 }
663 
664 static void
665 ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method, int num_of_ciphers,
666     unsigned long disabled_mkey, unsigned long disabled_auth,
667     unsigned long disabled_enc, unsigned long disabled_mac,
668     unsigned long disabled_ssl, CIPHER_ORDER *co_list,
669     CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p)
670 {
671 	int i, co_list_num;
672 	const SSL_CIPHER *c;
673 
674 	/*
675 	 * We have num_of_ciphers descriptions compiled in, depending on the
676 	 * method selected (SSLv3, TLSv1, etc). These will later be sorted in
677 	 * a linked list with at most num entries.
678 	 */
679 
680 	/* Get the initial list of ciphers */
681 	co_list_num = 0;	/* actual count of ciphers */
682 	for (i = 0; i < num_of_ciphers; i++) {
683 		c = ssl_method->get_cipher(i);
684 		/*
685 		 * Drop any invalid ciphers and any which use unavailable
686 		 * algorithms.
687 		 */
688 		if ((c != NULL) && c->valid &&
689 		    !(c->algorithm_mkey & disabled_mkey) &&
690 		    !(c->algorithm_auth & disabled_auth) &&
691 		    !(c->algorithm_enc & disabled_enc) &&
692 		    !(c->algorithm_mac & disabled_mac) &&
693 		    !(c->algorithm_ssl & disabled_ssl)) {
694 			co_list[co_list_num].cipher = c;
695 			co_list[co_list_num].next = NULL;
696 			co_list[co_list_num].prev = NULL;
697 			co_list[co_list_num].active = 0;
698 			co_list_num++;
699 			/*
700 			if (!sk_push(ca_list,(char *)c)) goto err;
701 			*/
702 		}
703 	}
704 
705 	/*
706 	 * Prepare linked list from list entries
707 	 */
708 	if (co_list_num > 0) {
709 		co_list[0].prev = NULL;
710 
711 		if (co_list_num > 1) {
712 			co_list[0].next = &co_list[1];
713 
714 			for (i = 1; i < co_list_num - 1; i++) {
715 				co_list[i].prev = &co_list[i - 1];
716 				co_list[i].next = &co_list[i + 1];
717 			}
718 
719 			co_list[co_list_num - 1].prev =
720 			    &co_list[co_list_num - 2];
721 		}
722 
723 		co_list[co_list_num - 1].next = NULL;
724 
725 		*head_p = &co_list[0];
726 		*tail_p = &co_list[co_list_num - 1];
727 	}
728 }
729 
730 static void
731 ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list, int num_of_group_aliases,
732     unsigned long disabled_mkey, unsigned long disabled_auth,
733     unsigned long disabled_enc, unsigned long disabled_mac,
734     unsigned long disabled_ssl, CIPHER_ORDER *head)
735 {
736 	CIPHER_ORDER *ciph_curr;
737 	const SSL_CIPHER **ca_curr;
738 	int i;
739 	unsigned long mask_mkey = ~disabled_mkey;
740 	unsigned long mask_auth = ~disabled_auth;
741 	unsigned long mask_enc = ~disabled_enc;
742 	unsigned long mask_mac = ~disabled_mac;
743 	unsigned long mask_ssl = ~disabled_ssl;
744 
745 	/*
746 	 * First, add the real ciphers as already collected
747 	 */
748 	ciph_curr = head;
749 	ca_curr = ca_list;
750 	while (ciph_curr != NULL) {
751 		*ca_curr = ciph_curr->cipher;
752 		ca_curr++;
753 		ciph_curr = ciph_curr->next;
754 	}
755 
756 	/*
757 	 * Now we add the available ones from the cipher_aliases[] table.
758 	 * They represent either one or more algorithms, some of which
759 	 * in any affected category must be supported (set in enabled_mask),
760 	 * or represent a cipher strength value (will be added in any case because algorithms=0).
761 	 */
762 	for (i = 0; i < num_of_group_aliases; i++) {
763 		unsigned long algorithm_mkey = cipher_aliases[i].algorithm_mkey;
764 		unsigned long algorithm_auth = cipher_aliases[i].algorithm_auth;
765 		unsigned long algorithm_enc = cipher_aliases[i].algorithm_enc;
766 		unsigned long algorithm_mac = cipher_aliases[i].algorithm_mac;
767 		unsigned long algorithm_ssl = cipher_aliases[i].algorithm_ssl;
768 
769 		if (algorithm_mkey)
770 			if ((algorithm_mkey & mask_mkey) == 0)
771 				continue;
772 
773 		if (algorithm_auth)
774 			if ((algorithm_auth & mask_auth) == 0)
775 				continue;
776 
777 		if (algorithm_enc)
778 			if ((algorithm_enc & mask_enc) == 0)
779 				continue;
780 
781 		if (algorithm_mac)
782 			if ((algorithm_mac & mask_mac) == 0)
783 				continue;
784 
785 		if (algorithm_ssl)
786 			if ((algorithm_ssl & mask_ssl) == 0)
787 				continue;
788 
789 		*ca_curr = (SSL_CIPHER *)(cipher_aliases + i);
790 		ca_curr++;
791 	}
792 
793 	*ca_curr = NULL;	/* end of list */
794 }
795 
796 static void
797 ssl_cipher_apply_rule(unsigned long cipher_id, unsigned long alg_mkey,
798     unsigned long alg_auth, unsigned long alg_enc, unsigned long alg_mac,
799     unsigned long alg_ssl, unsigned long algo_strength, int rule,
800     int strength_bits, CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p)
801 {
802 	CIPHER_ORDER *head, *tail, *curr, *next, *last;
803 	const SSL_CIPHER *cp;
804 	int reverse = 0;
805 
806 	if (rule == CIPHER_DEL)
807 		reverse = 1; /* needed to maintain sorting between currently deleted ciphers */
808 
809 	head = *head_p;
810 	tail = *tail_p;
811 
812 	if (reverse) {
813 		next = tail;
814 		last = head;
815 	} else {
816 		next = head;
817 		last = tail;
818 	}
819 
820 	curr = NULL;
821 	for (;;) {
822 		if (curr == last)
823 			break;
824 		curr = next;
825 		next = reverse ? curr->prev : curr->next;
826 
827 		cp = curr->cipher;
828 
829 		if (cipher_id && cp->id != cipher_id)
830 			continue;
831 
832 		/*
833 		 * Selection criteria is either the value of strength_bits
834 		 * or the algorithms used.
835 		 */
836 		if (strength_bits >= 0) {
837 			if (strength_bits != cp->strength_bits)
838 				continue;
839 		} else {
840 			if (alg_mkey && !(alg_mkey & cp->algorithm_mkey))
841 				continue;
842 			if (alg_auth && !(alg_auth & cp->algorithm_auth))
843 				continue;
844 			if (alg_enc && !(alg_enc & cp->algorithm_enc))
845 				continue;
846 			if (alg_mac && !(alg_mac & cp->algorithm_mac))
847 				continue;
848 			if (alg_ssl && !(alg_ssl & cp->algorithm_ssl))
849 				continue;
850 			if ((algo_strength & SSL_STRONG_MASK) && !(algo_strength & SSL_STRONG_MASK & cp->algo_strength))
851 				continue;
852 		}
853 
854 		/* add the cipher if it has not been added yet. */
855 		if (rule == CIPHER_ADD) {
856 			/* reverse == 0 */
857 			if (!curr->active) {
858 				ll_append_tail(&head, curr, &tail);
859 				curr->active = 1;
860 			}
861 		}
862 		/* Move the added cipher to this location */
863 		else if (rule == CIPHER_ORD) {
864 			/* reverse == 0 */
865 			if (curr->active) {
866 				ll_append_tail(&head, curr, &tail);
867 			}
868 		} else if (rule == CIPHER_DEL) {
869 			/* reverse == 1 */
870 			if (curr->active) {
871 				/* most recently deleted ciphersuites get best positions
872 				 * for any future CIPHER_ADD (note that the CIPHER_DEL loop
873 				 * works in reverse to maintain the order) */
874 				ll_append_head(&head, curr, &tail);
875 				curr->active = 0;
876 			}
877 		} else if (rule == CIPHER_KILL) {
878 			/* reverse == 0 */
879 			if (head == curr)
880 				head = curr->next;
881 			else
882 				curr->prev->next = curr->next;
883 			if (tail == curr)
884 				tail = curr->prev;
885 			curr->active = 0;
886 			if (curr->next != NULL)
887 				curr->next->prev = curr->prev;
888 			if (curr->prev != NULL)
889 				curr->prev->next = curr->next;
890 			curr->next = NULL;
891 			curr->prev = NULL;
892 		}
893 	}
894 
895 	*head_p = head;
896 	*tail_p = tail;
897 }
898 
899 static int
900 ssl_cipher_strength_sort(CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p)
901 {
902 	int max_strength_bits, i, *number_uses;
903 	CIPHER_ORDER *curr;
904 
905 	/*
906 	 * This routine sorts the ciphers with descending strength. The sorting
907 	 * must keep the pre-sorted sequence, so we apply the normal sorting
908 	 * routine as '+' movement to the end of the list.
909 	 */
910 	max_strength_bits = 0;
911 	curr = *head_p;
912 	while (curr != NULL) {
913 		if (curr->active &&
914 		    (curr->cipher->strength_bits > max_strength_bits))
915 			max_strength_bits = curr->cipher->strength_bits;
916 		curr = curr->next;
917 	}
918 
919 	number_uses = calloc((max_strength_bits + 1), sizeof(int));
920 	if (!number_uses) {
921 		SSLerrorx(ERR_R_MALLOC_FAILURE);
922 		return (0);
923 	}
924 
925 	/*
926 	 * Now find the strength_bits values actually used
927 	 */
928 	curr = *head_p;
929 	while (curr != NULL) {
930 		if (curr->active)
931 			number_uses[curr->cipher->strength_bits]++;
932 		curr = curr->next;
933 	}
934 	/*
935 	 * Go through the list of used strength_bits values in descending
936 	 * order.
937 	 */
938 	for (i = max_strength_bits; i >= 0; i--)
939 		if (number_uses[i] > 0)
940 			ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, head_p, tail_p);
941 
942 	free(number_uses);
943 	return (1);
944 }
945 
946 static int
947 ssl_cipher_process_rulestr(const char *rule_str, CIPHER_ORDER **head_p,
948     CIPHER_ORDER **tail_p, const SSL_CIPHER **ca_list, SSL_CERT *cert,
949     int *tls13_seen)
950 {
951 	unsigned long alg_mkey, alg_auth, alg_enc, alg_mac, alg_ssl;
952 	unsigned long algo_strength;
953 	int j, multi, found, rule, retval, ok, buflen;
954 	unsigned long cipher_id = 0;
955 	const char *l, *buf;
956 	char ch;
957 
958 	*tls13_seen = 0;
959 
960 	retval = 1;
961 	l = rule_str;
962 	for (;;) {
963 		ch = *l;
964 
965 		if (ch == '\0')
966 			break;
967 
968 		if (ch == '-') {
969 			rule = CIPHER_DEL;
970 			l++;
971 		} else if (ch == '+') {
972 			rule = CIPHER_ORD;
973 			l++;
974 		} else if (ch == '!') {
975 			rule = CIPHER_KILL;
976 			l++;
977 		} else if (ch == '@') {
978 			rule = CIPHER_SPECIAL;
979 			l++;
980 		} else {
981 			rule = CIPHER_ADD;
982 		}
983 
984 		if (ITEM_SEP(ch)) {
985 			l++;
986 			continue;
987 		}
988 
989 		alg_mkey = 0;
990 		alg_auth = 0;
991 		alg_enc = 0;
992 		alg_mac = 0;
993 		alg_ssl = 0;
994 		algo_strength = 0;
995 
996 		for (;;) {
997 			ch = *l;
998 			buf = l;
999 			buflen = 0;
1000 			while (((ch >= 'A') && (ch <= 'Z')) ||
1001 			    ((ch >= '0') && (ch <= '9')) ||
1002 			    ((ch >= 'a') && (ch <= 'z')) ||
1003 			    (ch == '-') || (ch == '.') ||
1004 			    (ch == '_') || (ch == '=')) {
1005 				ch = *(++l);
1006 				buflen++;
1007 			}
1008 
1009 			if (buflen == 0) {
1010 				/*
1011 				 * We hit something we cannot deal with,
1012 				 * it is no command or separator nor
1013 				 * alphanumeric, so we call this an error.
1014 				 */
1015 				SSLerrorx(SSL_R_INVALID_COMMAND);
1016 				retval = found = 0;
1017 				l++;
1018 				break;
1019 			}
1020 
1021 			if (rule == CIPHER_SPECIAL) {
1022 				 /* unused -- avoid compiler warning */
1023 				found = 0;
1024 				/* special treatment */
1025 				break;
1026 			}
1027 
1028 			/* check for multi-part specification */
1029 			if (ch == '+') {
1030 				multi = 1;
1031 				l++;
1032 			} else
1033 				multi = 0;
1034 
1035 			/*
1036 			 * Now search for the cipher alias in the ca_list.
1037 			 * Be careful with the strncmp, because the "buflen"
1038 			 * limitation will make the rule "ADH:SOME" and the
1039 			 * cipher "ADH-MY-CIPHER" look like a match for
1040 			 * buflen=3. So additionally check whether the cipher
1041 			 * name found has the correct length. We can save a
1042 			 * strlen() call: just checking for the '\0' at the
1043 			 * right place is sufficient, we have to strncmp()
1044 			 * anyway (we cannot use strcmp(), because buf is not
1045 			 * '\0' terminated.)
1046 			 */
1047 			j = found = 0;
1048 			cipher_id = 0;
1049 			while (ca_list[j]) {
1050 				if (!strncmp(buf, ca_list[j]->name, buflen) &&
1051 				    (ca_list[j]->name[buflen] == '\0')) {
1052 					found = 1;
1053 					break;
1054 				} else
1055 					j++;
1056 			}
1057 
1058 			if (!found)
1059 				break;	/* ignore this entry */
1060 
1061 			if (ca_list[j]->algorithm_mkey) {
1062 				if (alg_mkey) {
1063 					alg_mkey &= ca_list[j]->algorithm_mkey;
1064 					if (!alg_mkey) {
1065 						found = 0;
1066 						break;
1067 					}
1068 				} else
1069 					alg_mkey = ca_list[j]->algorithm_mkey;
1070 			}
1071 
1072 			if (ca_list[j]->algorithm_auth) {
1073 				if (alg_auth) {
1074 					alg_auth &= ca_list[j]->algorithm_auth;
1075 					if (!alg_auth) {
1076 						found = 0;
1077 						break;
1078 					}
1079 				} else
1080 					alg_auth = ca_list[j]->algorithm_auth;
1081 			}
1082 
1083 			if (ca_list[j]->algorithm_enc) {
1084 				if (alg_enc) {
1085 					alg_enc &= ca_list[j]->algorithm_enc;
1086 					if (!alg_enc) {
1087 						found = 0;
1088 						break;
1089 					}
1090 				} else
1091 					alg_enc = ca_list[j]->algorithm_enc;
1092 			}
1093 
1094 			if (ca_list[j]->algorithm_mac) {
1095 				if (alg_mac) {
1096 					alg_mac &= ca_list[j]->algorithm_mac;
1097 					if (!alg_mac) {
1098 						found = 0;
1099 						break;
1100 					}
1101 				} else
1102 					alg_mac = ca_list[j]->algorithm_mac;
1103 			}
1104 
1105 			if (ca_list[j]->algo_strength & SSL_STRONG_MASK) {
1106 				if (algo_strength & SSL_STRONG_MASK) {
1107 					algo_strength &=
1108 					    (ca_list[j]->algo_strength &
1109 					    SSL_STRONG_MASK) | ~SSL_STRONG_MASK;
1110 					if (!(algo_strength &
1111 					    SSL_STRONG_MASK)) {
1112 						found = 0;
1113 						break;
1114 					}
1115 				} else
1116 					algo_strength |=
1117 					    ca_list[j]->algo_strength &
1118 					    SSL_STRONG_MASK;
1119 			}
1120 
1121 			if (ca_list[j]->valid) {
1122 				/*
1123 				 * explicit ciphersuite found; its protocol
1124 				 * version does not become part of the search
1125 				 * pattern!
1126 				 */
1127 				cipher_id = ca_list[j]->id;
1128 				if (ca_list[j]->algorithm_ssl == SSL_TLSV1_3)
1129 					*tls13_seen = 1;
1130 			} else {
1131 				/*
1132 				 * not an explicit ciphersuite; only in this
1133 				 * case, the protocol version is considered
1134 				 * part of the search pattern
1135 				 */
1136 				if (ca_list[j]->algorithm_ssl) {
1137 					if (alg_ssl) {
1138 						alg_ssl &=
1139 						    ca_list[j]->algorithm_ssl;
1140 						if (!alg_ssl) {
1141 							found = 0;
1142 							break;
1143 						}
1144 					} else
1145 						alg_ssl =
1146 						    ca_list[j]->algorithm_ssl;
1147 				}
1148 			}
1149 
1150 			if (!multi)
1151 				break;
1152 		}
1153 
1154 		/*
1155 		 * Ok, we have the rule, now apply it
1156 		 */
1157 		if (rule == CIPHER_SPECIAL) {
1158 			/* special command */
1159 			ok = 0;
1160 			if (buflen == 8 && strncmp(buf, "STRENGTH", 8) == 0) {
1161 				ok = ssl_cipher_strength_sort(head_p, tail_p);
1162 			} else if (buflen == 10 &&
1163 			    strncmp(buf, "SECLEVEL=", 9) == 0) {
1164 				int level = buf[9] - '0';
1165 
1166 				if (level >= 0 && level <= 5) {
1167 					cert->security_level = level;
1168 					ok = 1;
1169 				} else {
1170 					SSLerrorx(SSL_R_INVALID_COMMAND);
1171 				}
1172 			} else {
1173 				SSLerrorx(SSL_R_INVALID_COMMAND);
1174 			}
1175 			if (ok == 0)
1176 				retval = 0;
1177 
1178 			while ((*l != '\0') && !ITEM_SEP(*l))
1179 				l++;
1180 		} else if (found) {
1181 			if (alg_ssl == SSL_TLSV1_3)
1182 				*tls13_seen = 1;
1183 			ssl_cipher_apply_rule(cipher_id, alg_mkey, alg_auth,
1184 			    alg_enc, alg_mac, alg_ssl, algo_strength, rule,
1185 			    -1, head_p, tail_p);
1186 		} else {
1187 			while ((*l != '\0') && !ITEM_SEP(*l))
1188 				l++;
1189 		}
1190 		if (*l == '\0')
1191 			break; /* done */
1192 	}
1193 
1194 	return (retval);
1195 }
1196 
1197 static inline int
1198 ssl_aes_is_accelerated(void)
1199 {
1200 #if defined(__i386__) || defined(__x86_64__)
1201 	return ((OPENSSL_cpu_caps() & (1ULL << 57)) != 0);
1202 #else
1203 	return (0);
1204 #endif
1205 }
1206 
1207 STACK_OF(SSL_CIPHER) *
1208 ssl_create_cipher_list(const SSL_METHOD *ssl_method,
1209     STACK_OF(SSL_CIPHER) **cipher_list,
1210     STACK_OF(SSL_CIPHER) *cipher_list_tls13,
1211     const char *rule_str, SSL_CERT *cert)
1212 {
1213 	int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases;
1214 	unsigned long disabled_mkey, disabled_auth, disabled_enc, disabled_mac, disabled_ssl;
1215 	STACK_OF(SSL_CIPHER) *cipherstack;
1216 	const char *rule_p;
1217 	CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr;
1218 	const SSL_CIPHER **ca_list = NULL;
1219 	const SSL_CIPHER *cipher;
1220 	int tls13_seen = 0;
1221 	int any_active;
1222 	int i;
1223 
1224 	/*
1225 	 * Return with error if nothing to do.
1226 	 */
1227 	if (rule_str == NULL || cipher_list == NULL)
1228 		return NULL;
1229 
1230 	/*
1231 	 * To reduce the work to do we only want to process the compiled
1232 	 * in algorithms, so we first get the mask of disabled ciphers.
1233 	 */
1234 	ssl_cipher_get_disabled(&disabled_mkey, &disabled_auth, &disabled_enc, &disabled_mac, &disabled_ssl);
1235 
1236 	/*
1237 	 * Now we have to collect the available ciphers from the compiled
1238 	 * in ciphers. We cannot get more than the number compiled in, so
1239 	 * it is used for allocation.
1240 	 */
1241 	num_of_ciphers = ssl3_num_ciphers();
1242 	co_list = reallocarray(NULL, num_of_ciphers, sizeof(CIPHER_ORDER));
1243 	if (co_list == NULL) {
1244 		SSLerrorx(ERR_R_MALLOC_FAILURE);
1245 		return(NULL);	/* Failure */
1246 	}
1247 
1248 	ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers,
1249 	    disabled_mkey, disabled_auth, disabled_enc, disabled_mac, disabled_ssl,
1250 	    co_list, &head, &tail);
1251 
1252 
1253 	/* Now arrange all ciphers by preference: */
1254 
1255 	/* Everything else being equal, prefer ephemeral ECDH over other key exchange mechanisms */
1256 	ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail);
1257 	ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail);
1258 
1259 	if (ssl_aes_is_accelerated()) {
1260 		/*
1261 		 * We have hardware assisted AES - prefer AES as a symmetric
1262 		 * cipher, with CHACHA20 second.
1263 		 */
1264 		ssl_cipher_apply_rule(0, 0, 0, SSL_AES, 0, 0, 0,
1265 		    CIPHER_ADD, -1, &head, &tail);
1266 		ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20POLY1305,
1267 		    0, 0, 0, CIPHER_ADD, -1, &head, &tail);
1268 	} else {
1269 		/*
1270 		 * CHACHA20 is fast and safe on all hardware and is thus our
1271 		 * preferred symmetric cipher, with AES second.
1272 		 */
1273 		ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20POLY1305,
1274 		    0, 0, 0, CIPHER_ADD, -1, &head, &tail);
1275 		ssl_cipher_apply_rule(0, 0, 0, SSL_AES, 0, 0, 0,
1276 		    CIPHER_ADD, -1, &head, &tail);
1277 	}
1278 
1279 	/* Temporarily enable everything else for sorting */
1280 	ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail);
1281 
1282 	/* Low priority for MD5 */
1283 	ssl_cipher_apply_rule(0, 0, 0, 0, SSL_MD5, 0, 0, CIPHER_ORD, -1, &head, &tail);
1284 
1285 	/* Move anonymous ciphers to the end.  Usually, these will remain disabled.
1286 	 * (For applications that allow them, they aren't too bad, but we prefer
1287 	 * authenticated ciphers.) */
1288 	ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, &head, &tail);
1289 
1290 	/* Move ciphers without forward secrecy to the end */
1291 	ssl_cipher_apply_rule(0, SSL_kRSA, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head, &tail);
1292 
1293 	/* RC4 is sort of broken - move it to the end */
1294 	ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, 0, 0, 0, CIPHER_ORD, -1, &head, &tail);
1295 
1296 	/* Now sort by symmetric encryption strength.  The above ordering remains
1297 	 * in force within each class */
1298 	if (!ssl_cipher_strength_sort(&head, &tail)) {
1299 		free(co_list);
1300 		return NULL;
1301 	}
1302 
1303 	/* Now disable everything (maintaining the ordering!) */
1304 	ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail);
1305 
1306 	/* TLSv1.3 first. */
1307 	ssl_cipher_apply_rule(0, 0, 0, 0, 0, SSL_TLSV1_3, 0, CIPHER_ADD, -1, &head, &tail);
1308 	ssl_cipher_apply_rule(0, 0, 0, 0, 0, SSL_TLSV1_3, 0, CIPHER_DEL, -1, &head, &tail);
1309 
1310 	/*
1311 	 * We also need cipher aliases for selecting based on the rule_str.
1312 	 * There might be two types of entries in the rule_str: 1) names
1313 	 * of ciphers themselves 2) aliases for groups of ciphers.
1314 	 * For 1) we need the available ciphers and for 2) the cipher
1315 	 * groups of cipher_aliases added together in one list (otherwise
1316 	 * we would be happy with just the cipher_aliases table).
1317 	 */
1318 	num_of_group_aliases = sizeof(cipher_aliases) / sizeof(SSL_CIPHER);
1319 	num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1;
1320 	ca_list = reallocarray(NULL, num_of_alias_max, sizeof(SSL_CIPHER *));
1321 	if (ca_list == NULL) {
1322 		free(co_list);
1323 		SSLerrorx(ERR_R_MALLOC_FAILURE);
1324 		return(NULL);	/* Failure */
1325 	}
1326 	ssl_cipher_collect_aliases(ca_list, num_of_group_aliases, disabled_mkey,
1327 	    disabled_auth, disabled_enc, disabled_mac, disabled_ssl, head);
1328 
1329 	/*
1330 	 * If the rule_string begins with DEFAULT, apply the default rule
1331 	 * before using the (possibly available) additional rules.
1332 	 */
1333 	ok = 1;
1334 	rule_p = rule_str;
1335 	if (strncmp(rule_str, "DEFAULT", 7) == 0) {
1336 		ok = ssl_cipher_process_rulestr(SSL_DEFAULT_CIPHER_LIST,
1337 		    &head, &tail, ca_list, cert, &tls13_seen);
1338 		rule_p += 7;
1339 		if (*rule_p == ':')
1340 			rule_p++;
1341 	}
1342 
1343 	if (ok && (strlen(rule_p) > 0))
1344 		ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list,
1345 		    cert, &tls13_seen);
1346 
1347 	free((void *)ca_list);	/* Not needed anymore */
1348 
1349 	if (!ok) {
1350 		/* Rule processing failure */
1351 		free(co_list);
1352 		return (NULL);
1353 	}
1354 
1355 	/*
1356 	 * Allocate new "cipherstack" for the result, return with error
1357 	 * if we cannot get one.
1358 	 */
1359 	if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) {
1360 		free(co_list);
1361 		return (NULL);
1362 	}
1363 
1364 	/* Prefer TLSv1.3 cipher suites. */
1365 	if (cipher_list_tls13 != NULL) {
1366 		for (i = 0; i < sk_SSL_CIPHER_num(cipher_list_tls13); i++) {
1367 			cipher = sk_SSL_CIPHER_value(cipher_list_tls13, i);
1368 			sk_SSL_CIPHER_push(cipherstack, cipher);
1369 		}
1370 		tls13_seen = 1;
1371 	}
1372 
1373 	/*
1374 	 * The cipher selection for the list is done. The ciphers are added
1375 	 * to the resulting precedence to the STACK_OF(SSL_CIPHER).
1376 	 *
1377 	 * If the rule string did not contain any references to TLSv1.3 and
1378 	 * TLSv1.3 cipher suites have not been configured separately,
1379 	 * include inactive TLSv1.3 cipher suites. This avoids attempts to
1380 	 * use TLSv1.3 with an older rule string that does not include
1381 	 * TLSv1.3 cipher suites. If the rule string resulted in no active
1382 	 * cipher suites then we return an empty stack.
1383 	 */
1384 	any_active = 0;
1385 	for (curr = head; curr != NULL; curr = curr->next) {
1386 		if (curr->active ||
1387 		    (!tls13_seen && curr->cipher->algorithm_ssl == SSL_TLSV1_3))
1388 			sk_SSL_CIPHER_push(cipherstack, curr->cipher);
1389 		any_active |= curr->active;
1390 	}
1391 	if (!any_active)
1392 		sk_SSL_CIPHER_zero(cipherstack);
1393 
1394 	free(co_list);	/* Not needed any longer */
1395 
1396 	sk_SSL_CIPHER_free(*cipher_list);
1397 	*cipher_list = cipherstack;
1398 
1399 	return (cipherstack);
1400 }
1401 
1402 const SSL_CIPHER *
1403 SSL_CIPHER_get_by_id(unsigned int id)
1404 {
1405 	return ssl3_get_cipher_by_id(id);
1406 }
1407 
1408 const SSL_CIPHER *
1409 SSL_CIPHER_get_by_value(uint16_t value)
1410 {
1411 	return ssl3_get_cipher_by_value(value);
1412 }
1413 
1414 char *
1415 SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len)
1416 {
1417 	unsigned long alg_mkey, alg_auth, alg_enc, alg_mac, alg_ssl, alg2;
1418 	const char *ver, *kx, *au, *enc, *mac;
1419 	char *ret;
1420 	int l;
1421 
1422 	alg_mkey = cipher->algorithm_mkey;
1423 	alg_auth = cipher->algorithm_auth;
1424 	alg_enc = cipher->algorithm_enc;
1425 	alg_mac = cipher->algorithm_mac;
1426 	alg_ssl = cipher->algorithm_ssl;
1427 
1428 	alg2 = cipher->algorithm2;
1429 
1430 	if (alg_ssl & SSL_SSLV3)
1431 		ver = "SSLv3";
1432 	else if (alg_ssl & SSL_TLSV1_2)
1433 		ver = "TLSv1.2";
1434 	else if (alg_ssl & SSL_TLSV1_3)
1435 		ver = "TLSv1.3";
1436 	else
1437 		ver = "unknown";
1438 
1439 	switch (alg_mkey) {
1440 	case SSL_kRSA:
1441 		kx = "RSA";
1442 		break;
1443 	case SSL_kDHE:
1444 		kx = "DH";
1445 		break;
1446 	case SSL_kECDHE:
1447 		kx = "ECDH";
1448 		break;
1449 	case SSL_kGOST:
1450 		kx = "GOST";
1451 		break;
1452 	case SSL_kTLS1_3:
1453 		kx = "TLSv1.3";
1454 		break;
1455 	default:
1456 		kx = "unknown";
1457 	}
1458 
1459 	switch (alg_auth) {
1460 	case SSL_aRSA:
1461 		au = "RSA";
1462 		break;
1463 	case SSL_aDSS:
1464 		au = "DSS";
1465 		break;
1466 	case SSL_aNULL:
1467 		au = "None";
1468 		break;
1469 	case SSL_aECDSA:
1470 		au = "ECDSA";
1471 		break;
1472 	case SSL_aGOST01:
1473 		au = "GOST01";
1474 		break;
1475 	case SSL_aTLS1_3:
1476 		au = "TLSv1.3";
1477 		break;
1478 	default:
1479 		au = "unknown";
1480 		break;
1481 	}
1482 
1483 	switch (alg_enc) {
1484 	case SSL_3DES:
1485 		enc = "3DES(168)";
1486 		break;
1487 	case SSL_RC4:
1488 		enc = alg2 & SSL2_CF_8_BYTE_ENC ? "RC4(64)" : "RC4(128)";
1489 		break;
1490 	case SSL_eNULL:
1491 		enc = "None";
1492 		break;
1493 	case SSL_AES128:
1494 		enc = "AES(128)";
1495 		break;
1496 	case SSL_AES256:
1497 		enc = "AES(256)";
1498 		break;
1499 	case SSL_AES128GCM:
1500 		enc = "AESGCM(128)";
1501 		break;
1502 	case SSL_AES256GCM:
1503 		enc = "AESGCM(256)";
1504 		break;
1505 	case SSL_CAMELLIA128:
1506 		enc = "Camellia(128)";
1507 		break;
1508 	case SSL_CAMELLIA256:
1509 		enc = "Camellia(256)";
1510 		break;
1511 	case SSL_CHACHA20POLY1305:
1512 		enc = "ChaCha20-Poly1305";
1513 		break;
1514 	case SSL_eGOST2814789CNT:
1515 		enc = "GOST-28178-89-CNT";
1516 		break;
1517 	default:
1518 		enc = "unknown";
1519 		break;
1520 	}
1521 
1522 	switch (alg_mac) {
1523 	case SSL_MD5:
1524 		mac = "MD5";
1525 		break;
1526 	case SSL_SHA1:
1527 		mac = "SHA1";
1528 		break;
1529 	case SSL_SHA256:
1530 		mac = "SHA256";
1531 		break;
1532 	case SSL_SHA384:
1533 		mac = "SHA384";
1534 		break;
1535 	case SSL_AEAD:
1536 		mac = "AEAD";
1537 		break;
1538 	case SSL_GOST94:
1539 		mac = "GOST94";
1540 		break;
1541 	case SSL_GOST89MAC:
1542 		mac = "GOST89IMIT";
1543 		break;
1544 	case SSL_STREEBOG256:
1545 		mac = "STREEBOG256";
1546 		break;
1547 	default:
1548 		mac = "unknown";
1549 		break;
1550 	}
1551 
1552 	if (asprintf(&ret, "%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s\n",
1553 	    cipher->name, ver, kx, au, enc, mac) == -1)
1554 		return "OPENSSL_malloc Error";
1555 
1556 	if (buf != NULL) {
1557 		l = strlcpy(buf, ret, len);
1558 		free(ret);
1559 		ret = buf;
1560 		if (l >= len)
1561 			ret = "Buffer too small";
1562 	}
1563 
1564 	return (ret);
1565 }
1566 
1567 const char *
1568 SSL_CIPHER_get_version(const SSL_CIPHER *c)
1569 {
1570 	if (c == NULL)
1571 		return("(NONE)");
1572 	if ((c->id >> 24) == 3)
1573 		return("TLSv1/SSLv3");
1574 	else
1575 		return("unknown");
1576 }
1577 
1578 /* return the actual cipher being used */
1579 const char *
1580 SSL_CIPHER_get_name(const SSL_CIPHER *c)
1581 {
1582 	if (c != NULL)
1583 		return (c->name);
1584 	return("(NONE)");
1585 }
1586 
1587 /* number of bits for symmetric cipher */
1588 int
1589 SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits)
1590 {
1591 	int ret = 0;
1592 
1593 	if (c != NULL) {
1594 		if (alg_bits != NULL)
1595 			*alg_bits = c->alg_bits;
1596 		ret = c->strength_bits;
1597 	}
1598 	return (ret);
1599 }
1600 
1601 unsigned long
1602 SSL_CIPHER_get_id(const SSL_CIPHER *c)
1603 {
1604 	return c->id;
1605 }
1606 
1607 uint16_t
1608 SSL_CIPHER_get_value(const SSL_CIPHER *c)
1609 {
1610 	return ssl3_cipher_get_value(c);
1611 }
1612 
1613 const SSL_CIPHER *
1614 SSL_CIPHER_find(SSL *ssl, const unsigned char *ptr)
1615 {
1616 	uint16_t cipher_value;
1617 	CBS cbs;
1618 
1619 	/* This API is documented with ptr being an array of length two. */
1620 	CBS_init(&cbs, ptr, 2);
1621 	if (!CBS_get_u16(&cbs, &cipher_value))
1622 		return NULL;
1623 
1624 	return ssl3_get_cipher_by_value(cipher_value);
1625 }
1626 
1627 int
1628 SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *c)
1629 {
1630 	switch (c->algorithm_enc) {
1631 	case SSL_eNULL:
1632 		return NID_undef;
1633 	case SSL_3DES:
1634 		return NID_des_ede3_cbc;
1635 	case SSL_AES128:
1636 		return NID_aes_128_cbc;
1637 	case SSL_AES128GCM:
1638 		return NID_aes_128_gcm;
1639 	case SSL_AES256:
1640 		return NID_aes_256_cbc;
1641 	case SSL_AES256GCM:
1642 		return NID_aes_256_gcm;
1643 	case SSL_CAMELLIA128:
1644 		return NID_camellia_128_cbc;
1645 	case SSL_CAMELLIA256:
1646 		return NID_camellia_256_cbc;
1647 	case SSL_CHACHA20POLY1305:
1648 		return NID_chacha20_poly1305;
1649 	case SSL_DES:
1650 		return NID_des_cbc;
1651 	case SSL_RC4:
1652 		return NID_rc4;
1653 	case SSL_eGOST2814789CNT:
1654 		return NID_gost89_cnt;
1655 	default:
1656 		return NID_undef;
1657 	}
1658 }
1659 
1660 int
1661 SSL_CIPHER_get_digest_nid(const SSL_CIPHER *c)
1662 {
1663 	switch (c->algorithm_mac) {
1664 	case SSL_AEAD:
1665 		return NID_undef;
1666 	case SSL_GOST89MAC:
1667 		return NID_id_Gost28147_89_MAC;
1668 	case SSL_GOST94:
1669 		return NID_id_GostR3411_94;
1670 	case SSL_MD5:
1671 		return NID_md5;
1672 	case SSL_SHA1:
1673 		return NID_sha1;
1674 	case SSL_SHA256:
1675 		return NID_sha256;
1676 	case SSL_SHA384:
1677 		return NID_sha384;
1678 	case SSL_STREEBOG256:
1679 		return NID_id_tc26_gost3411_2012_256;
1680 	default:
1681 		return NID_undef;
1682 	}
1683 }
1684 
1685 int
1686 SSL_CIPHER_get_kx_nid(const SSL_CIPHER *c)
1687 {
1688 	switch (c->algorithm_mkey) {
1689 	case SSL_kDHE:
1690 		return NID_kx_dhe;
1691 	case SSL_kECDHE:
1692 		return NID_kx_ecdhe;
1693 	case SSL_kGOST:
1694 		return NID_kx_gost;
1695 	case SSL_kRSA:
1696 		return NID_kx_rsa;
1697 	default:
1698 		return NID_undef;
1699 	}
1700 }
1701 
1702 int
1703 SSL_CIPHER_get_auth_nid(const SSL_CIPHER *c)
1704 {
1705 	switch (c->algorithm_auth) {
1706 	case SSL_aNULL:
1707 		return NID_auth_null;
1708 	case SSL_aECDSA:
1709 		return NID_auth_ecdsa;
1710 	case SSL_aGOST01:
1711 		return NID_auth_gost01;
1712 	case SSL_aRSA:
1713 		return NID_auth_rsa;
1714 	default:
1715 		return NID_undef;
1716 	}
1717 }
1718 
1719 int
1720 SSL_CIPHER_is_aead(const SSL_CIPHER *c)
1721 {
1722 	return (c->algorithm_mac & SSL_AEAD) == SSL_AEAD;
1723 }
1724 
1725 void *
1726 SSL_COMP_get_compression_methods(void)
1727 {
1728 	return NULL;
1729 }
1730 
1731 int
1732 SSL_COMP_add_compression_method(int id, void *cm)
1733 {
1734 	return 1;
1735 }
1736 
1737 const char *
1738 SSL_COMP_get_name(const void *comp)
1739 {
1740 	return NULL;
1741 }
1742