1 /* $OpenBSD: ssl_ciph.c,v 1.136 2023/07/08 16:40:13 beck Exp $ */ 2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) 3 * All rights reserved. 4 * 5 * This package is an SSL implementation written 6 * by Eric Young (eay@cryptsoft.com). 7 * The implementation was written so as to conform with Netscapes SSL. 8 * 9 * This library is free for commercial and non-commercial use as long as 10 * the following conditions are aheared to. The following conditions 11 * apply to all code found in this distribution, be it the RC4, RSA, 12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation 13 * included with this distribution is covered by the same copyright terms 14 * except that the holder is Tim Hudson (tjh@cryptsoft.com). 15 * 16 * Copyright remains Eric Young's, and as such any Copyright notices in 17 * the code are not to be removed. 18 * If this package is used in a product, Eric Young should be given attribution 19 * as the author of the parts of the library used. 20 * This can be in the form of a textual message at program startup or 21 * in documentation (online or textual) provided with the package. 22 * 23 * Redistribution and use in source and binary forms, with or without 24 * modification, are permitted provided that the following conditions 25 * are met: 26 * 1. Redistributions of source code must retain the copyright 27 * notice, this list of conditions and the following disclaimer. 28 * 2. Redistributions in binary form must reproduce the above copyright 29 * notice, this list of conditions and the following disclaimer in the 30 * documentation and/or other materials provided with the distribution. 31 * 3. All advertising materials mentioning features or use of this software 32 * must display the following acknowledgement: 33 * "This product includes cryptographic software written by 34 * Eric Young (eay@cryptsoft.com)" 35 * The word 'cryptographic' can be left out if the rouines from the library 36 * being used are not cryptographic related :-). 37 * 4. If you include any Windows specific code (or a derivative thereof) from 38 * the apps directory (application code) you must include an acknowledgement: 39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" 40 * 41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND 42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 51 * SUCH DAMAGE. 52 * 53 * The licence and distribution terms for any publically available version or 54 * derivative of this code cannot be changed. i.e. this code cannot simply be 55 * copied and put under another distribution licence 56 * [including the GNU Public Licence.] 57 */ 58 /* ==================================================================== 59 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. 60 * 61 * Redistribution and use in source and binary forms, with or without 62 * modification, are permitted provided that the following conditions 63 * are met: 64 * 65 * 1. Redistributions of source code must retain the above copyright 66 * notice, this list of conditions and the following disclaimer. 67 * 68 * 2. Redistributions in binary form must reproduce the above copyright 69 * notice, this list of conditions and the following disclaimer in 70 * the documentation and/or other materials provided with the 71 * distribution. 72 * 73 * 3. All advertising materials mentioning features or use of this 74 * software must display the following acknowledgment: 75 * "This product includes software developed by the OpenSSL Project 76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" 77 * 78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to 79 * endorse or promote products derived from this software without 80 * prior written permission. For written permission, please contact 81 * openssl-core@openssl.org. 82 * 83 * 5. Products derived from this software may not be called "OpenSSL" 84 * nor may "OpenSSL" appear in their names without prior written 85 * permission of the OpenSSL Project. 86 * 87 * 6. Redistributions of any form whatsoever must retain the following 88 * acknowledgment: 89 * "This product includes software developed by the OpenSSL Project 90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)" 91 * 92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY 93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR 96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 103 * OF THE POSSIBILITY OF SUCH DAMAGE. 104 * ==================================================================== 105 * 106 * This product includes cryptographic software written by Eric Young 107 * (eay@cryptsoft.com). This product includes software written by Tim 108 * Hudson (tjh@cryptsoft.com). 109 * 110 */ 111 /* ==================================================================== 112 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. 113 * ECC cipher suite support in OpenSSL originally developed by 114 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. 115 */ 116 /* ==================================================================== 117 * Copyright 2005 Nokia. All rights reserved. 118 * 119 * The portions of the attached software ("Contribution") is developed by 120 * Nokia Corporation and is licensed pursuant to the OpenSSL open source 121 * license. 122 * 123 * The Contribution, originally written by Mika Kousa and Pasi Eronen of 124 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites 125 * support (see RFC 4279) to OpenSSL. 126 * 127 * No patent licenses or other rights except those expressly stated in 128 * the OpenSSL open source license shall be deemed granted or received 129 * expressly, by implication, estoppel, or otherwise. 130 * 131 * No assurances are provided by Nokia that the Contribution does not 132 * infringe the patent or other intellectual property rights of any third 133 * party or that the license provides you with all the necessary rights 134 * to make use of the Contribution. 135 * 136 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN 137 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA 138 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY 139 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR 140 * OTHERWISE. 141 */ 142 143 #include <stdio.h> 144 145 #include <openssl/objects.h> 146 #include <openssl/opensslconf.h> 147 148 #ifndef OPENSSL_NO_ENGINE 149 #include <openssl/engine.h> 150 #endif 151 152 #include "ssl_local.h" 153 154 #define CIPHER_ADD 1 155 #define CIPHER_KILL 2 156 #define CIPHER_DEL 3 157 #define CIPHER_ORD 4 158 #define CIPHER_SPECIAL 5 159 160 typedef struct cipher_order_st { 161 const SSL_CIPHER *cipher; 162 int active; 163 int dead; 164 struct cipher_order_st *next, *prev; 165 } CIPHER_ORDER; 166 167 static const SSL_CIPHER cipher_aliases[] = { 168 169 /* "ALL" doesn't include eNULL (must be specifically enabled) */ 170 { 171 .name = SSL_TXT_ALL, 172 .algorithm_enc = ~SSL_eNULL, 173 }, 174 175 /* "COMPLEMENTOFALL" */ 176 { 177 .name = SSL_TXT_CMPALL, 178 .algorithm_enc = SSL_eNULL, 179 }, 180 181 /* 182 * "COMPLEMENTOFDEFAULT" 183 * (does *not* include ciphersuites not found in ALL!) 184 */ 185 { 186 .name = SSL_TXT_CMPDEF, 187 .algorithm_mkey = SSL_kDHE|SSL_kECDHE, 188 .algorithm_auth = SSL_aNULL, 189 .algorithm_enc = ~SSL_eNULL, 190 }, 191 192 /* 193 * key exchange aliases 194 * (some of those using only a single bit here combine multiple key 195 * exchange algs according to the RFCs, e.g. kEDH combines DHE_DSS 196 * and DHE_RSA) 197 */ 198 { 199 .name = SSL_TXT_kRSA, 200 .algorithm_mkey = SSL_kRSA, 201 }, 202 { 203 .name = SSL_TXT_kEDH, 204 .algorithm_mkey = SSL_kDHE, 205 }, 206 { 207 .name = SSL_TXT_DH, 208 .algorithm_mkey = SSL_kDHE, 209 }, 210 { 211 .name = SSL_TXT_kEECDH, 212 .algorithm_mkey = SSL_kECDHE, 213 }, 214 { 215 .name = SSL_TXT_ECDH, 216 .algorithm_mkey = SSL_kECDHE, 217 }, 218 { 219 .name = SSL_TXT_kGOST, 220 .algorithm_mkey = SSL_kGOST, 221 }, 222 223 /* server authentication aliases */ 224 { 225 .name = SSL_TXT_aRSA, 226 .algorithm_auth = SSL_aRSA, 227 }, 228 { 229 .name = SSL_TXT_aDSS, 230 .algorithm_auth = SSL_aDSS, 231 }, 232 { 233 .name = SSL_TXT_DSS, 234 .algorithm_auth = SSL_aDSS, 235 }, 236 { 237 .name = SSL_TXT_aNULL, 238 .algorithm_auth = SSL_aNULL, 239 }, 240 { 241 .name = SSL_TXT_aECDSA, 242 .algorithm_auth = SSL_aECDSA, 243 }, 244 { 245 .name = SSL_TXT_ECDSA, 246 .algorithm_auth = SSL_aECDSA, 247 }, 248 { 249 .name = SSL_TXT_aGOST01, 250 .algorithm_auth = SSL_aGOST01, 251 }, 252 { 253 .name = SSL_TXT_aGOST, 254 .algorithm_auth = SSL_aGOST01, 255 }, 256 257 /* aliases combining key exchange and server authentication */ 258 { 259 .name = SSL_TXT_DHE, 260 .algorithm_mkey = SSL_kDHE, 261 .algorithm_auth = ~SSL_aNULL, 262 }, 263 { 264 .name = SSL_TXT_EDH, 265 .algorithm_mkey = SSL_kDHE, 266 .algorithm_auth = ~SSL_aNULL, 267 }, 268 { 269 .name = SSL_TXT_ECDHE, 270 .algorithm_mkey = SSL_kECDHE, 271 .algorithm_auth = ~SSL_aNULL, 272 }, 273 { 274 .name = SSL_TXT_EECDH, 275 .algorithm_mkey = SSL_kECDHE, 276 .algorithm_auth = ~SSL_aNULL, 277 }, 278 { 279 .name = SSL_TXT_NULL, 280 .algorithm_enc = SSL_eNULL, 281 }, 282 { 283 .name = SSL_TXT_RSA, 284 .algorithm_mkey = SSL_kRSA, 285 .algorithm_auth = SSL_aRSA, 286 }, 287 { 288 .name = SSL_TXT_ADH, 289 .algorithm_mkey = SSL_kDHE, 290 .algorithm_auth = SSL_aNULL, 291 }, 292 { 293 .name = SSL_TXT_AECDH, 294 .algorithm_mkey = SSL_kECDHE, 295 .algorithm_auth = SSL_aNULL, 296 }, 297 298 /* symmetric encryption aliases */ 299 { 300 .name = SSL_TXT_3DES, 301 .algorithm_enc = SSL_3DES, 302 }, 303 { 304 .name = SSL_TXT_RC4, 305 .algorithm_enc = SSL_RC4, 306 }, 307 { 308 .name = SSL_TXT_eNULL, 309 .algorithm_enc = SSL_eNULL, 310 }, 311 { 312 .name = SSL_TXT_AES128, 313 .algorithm_enc = SSL_AES128|SSL_AES128GCM, 314 }, 315 { 316 .name = SSL_TXT_AES256, 317 .algorithm_enc = SSL_AES256|SSL_AES256GCM, 318 }, 319 { 320 .name = SSL_TXT_AES, 321 .algorithm_enc = SSL_AES, 322 }, 323 { 324 .name = SSL_TXT_AES_GCM, 325 .algorithm_enc = SSL_AES128GCM|SSL_AES256GCM, 326 }, 327 { 328 .name = SSL_TXT_CAMELLIA128, 329 .algorithm_enc = SSL_CAMELLIA128, 330 }, 331 { 332 .name = SSL_TXT_CAMELLIA256, 333 .algorithm_enc = SSL_CAMELLIA256, 334 }, 335 { 336 .name = SSL_TXT_CAMELLIA, 337 .algorithm_enc = SSL_CAMELLIA128|SSL_CAMELLIA256, 338 }, 339 { 340 .name = SSL_TXT_CHACHA20, 341 .algorithm_enc = SSL_CHACHA20POLY1305, 342 }, 343 344 /* MAC aliases */ 345 { 346 .name = SSL_TXT_AEAD, 347 .algorithm_mac = SSL_AEAD, 348 }, 349 { 350 .name = SSL_TXT_MD5, 351 .algorithm_mac = SSL_MD5, 352 }, 353 { 354 .name = SSL_TXT_SHA1, 355 .algorithm_mac = SSL_SHA1, 356 }, 357 { 358 .name = SSL_TXT_SHA, 359 .algorithm_mac = SSL_SHA1, 360 }, 361 { 362 .name = SSL_TXT_GOST94, 363 .algorithm_mac = SSL_GOST94, 364 }, 365 { 366 .name = SSL_TXT_GOST89MAC, 367 .algorithm_mac = SSL_GOST89MAC, 368 }, 369 { 370 .name = SSL_TXT_SHA256, 371 .algorithm_mac = SSL_SHA256, 372 }, 373 { 374 .name = SSL_TXT_SHA384, 375 .algorithm_mac = SSL_SHA384, 376 }, 377 { 378 .name = SSL_TXT_STREEBOG256, 379 .algorithm_mac = SSL_STREEBOG256, 380 }, 381 382 /* protocol version aliases */ 383 { 384 .name = SSL_TXT_SSLV3, 385 .algorithm_ssl = SSL_SSLV3, 386 }, 387 { 388 .name = SSL_TXT_TLSV1, 389 .algorithm_ssl = SSL_TLSV1, 390 }, 391 { 392 .name = SSL_TXT_TLSV1_2, 393 .algorithm_ssl = SSL_TLSV1_2, 394 }, 395 { 396 .name = SSL_TXT_TLSV1_3, 397 .algorithm_ssl = SSL_TLSV1_3, 398 }, 399 400 /* cipher suite aliases */ 401 #ifdef LIBRESSL_HAS_TLS1_3 402 { 403 .valid = 1, 404 .name = "TLS_AES_128_GCM_SHA256", 405 .id = TLS1_3_CK_AES_128_GCM_SHA256, 406 .algorithm_ssl = SSL_TLSV1_3, 407 }, 408 { 409 .valid = 1, 410 .name = "TLS_AES_256_GCM_SHA384", 411 .id = TLS1_3_CK_AES_256_GCM_SHA384, 412 .algorithm_ssl = SSL_TLSV1_3, 413 }, 414 { 415 .valid = 1, 416 .name = "TLS_CHACHA20_POLY1305_SHA256", 417 .id = TLS1_3_CK_CHACHA20_POLY1305_SHA256, 418 .algorithm_ssl = SSL_TLSV1_3, 419 }, 420 #endif 421 422 /* strength classes */ 423 { 424 .name = SSL_TXT_LOW, 425 .algo_strength = SSL_LOW, 426 }, 427 { 428 .name = SSL_TXT_MEDIUM, 429 .algo_strength = SSL_MEDIUM, 430 }, 431 { 432 .name = SSL_TXT_HIGH, 433 .algo_strength = SSL_HIGH, 434 }, 435 }; 436 437 int 438 ssl_cipher_get_evp(const SSL_SESSION *ss, const EVP_CIPHER **enc, 439 const EVP_MD **md, int *mac_pkey_type, int *mac_secret_size) 440 { 441 *enc = NULL; 442 *md = NULL; 443 *mac_pkey_type = NID_undef; 444 *mac_secret_size = 0; 445 446 if (ss->cipher == NULL) 447 return 0; 448 449 /* 450 * This function does not handle EVP_AEAD. 451 * See ssl_cipher_get_evp_aead instead. 452 */ 453 if (ss->cipher->algorithm_mac & SSL_AEAD) 454 return 0; 455 456 switch (ss->cipher->algorithm_enc) { 457 case SSL_3DES: 458 *enc = EVP_des_ede3_cbc(); 459 break; 460 case SSL_RC4: 461 *enc = EVP_rc4(); 462 break; 463 case SSL_eNULL: 464 *enc = EVP_enc_null(); 465 break; 466 case SSL_AES128: 467 *enc = EVP_aes_128_cbc(); 468 break; 469 case SSL_AES256: 470 *enc = EVP_aes_256_cbc(); 471 break; 472 case SSL_CAMELLIA128: 473 *enc = EVP_camellia_128_cbc(); 474 break; 475 case SSL_CAMELLIA256: 476 *enc = EVP_camellia_256_cbc(); 477 break; 478 #ifndef OPENSSL_NO_GOST 479 case SSL_eGOST2814789CNT: 480 *enc = EVP_gost2814789_cnt(); 481 break; 482 #endif 483 } 484 485 switch (ss->cipher->algorithm_mac) { 486 case SSL_MD5: 487 *md = EVP_md5(); 488 break; 489 case SSL_SHA1: 490 *md = EVP_sha1(); 491 break; 492 case SSL_SHA256: 493 *md = EVP_sha256(); 494 break; 495 case SSL_SHA384: 496 *md = EVP_sha384(); 497 break; 498 #ifndef OPENSSL_NO_GOST 499 case SSL_GOST89MAC: 500 *md = EVP_gost2814789imit(); 501 break; 502 case SSL_GOST94: 503 *md = EVP_gostr341194(); 504 break; 505 case SSL_STREEBOG256: 506 *md = EVP_streebog256(); 507 break; 508 #endif 509 } 510 if (*enc == NULL || *md == NULL) 511 return 0; 512 513 /* 514 * EVP_CIPH_FLAG_AEAD_CIPHER and EVP_CIPH_GCM_MODE ciphers are not 515 * supported via EVP_CIPHER (they should be using EVP_AEAD instead). 516 */ 517 if (EVP_CIPHER_flags(*enc) & EVP_CIPH_FLAG_AEAD_CIPHER) 518 return 0; 519 if (EVP_CIPHER_mode(*enc) == EVP_CIPH_GCM_MODE) 520 return 0; 521 #ifndef OPENSSL_NO_GOST 522 /* XXX JFC. die in fire already */ 523 if (ss->cipher->algorithm_mac == SSL_GOST89MAC) { 524 *mac_pkey_type = EVP_PKEY_GOSTIMIT; 525 *mac_secret_size = 32; /* XXX */ 526 } else { 527 #endif 528 *mac_pkey_type = EVP_PKEY_HMAC; 529 *mac_secret_size = EVP_MD_size(*md); 530 #ifndef OPENSSL_NO_GOST 531 } 532 #endif 533 return 1; 534 } 535 536 /* 537 * ssl_cipher_get_evp_aead sets aead to point to the correct EVP_AEAD object 538 * for s->cipher. It returns 1 on success and 0 on error. 539 */ 540 int 541 ssl_cipher_get_evp_aead(const SSL_SESSION *ss, const EVP_AEAD **aead) 542 { 543 *aead = NULL; 544 545 if (ss->cipher == NULL) 546 return 0; 547 if ((ss->cipher->algorithm_mac & SSL_AEAD) == 0) 548 return 0; 549 550 switch (ss->cipher->algorithm_enc) { 551 case SSL_AES128GCM: 552 *aead = EVP_aead_aes_128_gcm(); 553 return 1; 554 case SSL_AES256GCM: 555 *aead = EVP_aead_aes_256_gcm(); 556 return 1; 557 case SSL_CHACHA20POLY1305: 558 *aead = EVP_aead_chacha20_poly1305(); 559 return 1; 560 default: 561 break; 562 } 563 return 0; 564 } 565 566 int 567 ssl_get_handshake_evp_md(SSL *s, const EVP_MD **md) 568 { 569 unsigned long handshake_mac; 570 571 *md = NULL; 572 573 if (s->s3->hs.cipher == NULL) 574 return 0; 575 576 handshake_mac = s->s3->hs.cipher->algorithm2 & 577 SSL_HANDSHAKE_MAC_MASK; 578 579 /* For TLSv1.2 we upgrade the default MD5+SHA1 MAC to SHA256. */ 580 if (SSL_USE_SHA256_PRF(s) && handshake_mac == SSL_HANDSHAKE_MAC_DEFAULT) 581 handshake_mac = SSL_HANDSHAKE_MAC_SHA256; 582 583 switch (handshake_mac) { 584 case SSL_HANDSHAKE_MAC_DEFAULT: 585 *md = EVP_md5_sha1(); 586 return 1; 587 #ifndef OPENSSL_NO_GOST 588 case SSL_HANDSHAKE_MAC_GOST94: 589 *md = EVP_gostr341194(); 590 return 1; 591 case SSL_HANDSHAKE_MAC_STREEBOG256: 592 *md = EVP_streebog256(); 593 return 1; 594 #endif 595 case SSL_HANDSHAKE_MAC_SHA256: 596 *md = EVP_sha256(); 597 return 1; 598 case SSL_HANDSHAKE_MAC_SHA384: 599 *md = EVP_sha384(); 600 return 1; 601 default: 602 break; 603 } 604 605 return 0; 606 } 607 608 #define ITEM_SEP(a) \ 609 (((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ',')) 610 611 static void 612 ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr, 613 CIPHER_ORDER **tail) 614 { 615 if (curr == *tail) 616 return; 617 if (curr == *head) 618 *head = curr->next; 619 if (curr->prev != NULL) 620 curr->prev->next = curr->next; 621 if (curr->next != NULL) 622 curr->next->prev = curr->prev; 623 (*tail)->next = curr; 624 curr->prev= *tail; 625 curr->next = NULL; 626 *tail = curr; 627 } 628 629 static void 630 ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr, 631 CIPHER_ORDER **tail) 632 { 633 if (curr == *head) 634 return; 635 if (curr == *tail) 636 *tail = curr->prev; 637 if (curr->next != NULL) 638 curr->next->prev = curr->prev; 639 if (curr->prev != NULL) 640 curr->prev->next = curr->next; 641 (*head)->prev = curr; 642 curr->next= *head; 643 curr->prev = NULL; 644 *head = curr; 645 } 646 647 static void 648 ssl_cipher_get_disabled(unsigned long *mkey, unsigned long *auth, 649 unsigned long *enc, unsigned long *mac, unsigned long *ssl) 650 { 651 *mkey = 0; 652 *auth = 0; 653 *enc = 0; 654 *mac = 0; 655 *ssl = 0; 656 657 /* 658 * Check for the availability of GOST 34.10 public/private key 659 * algorithms. If they are not available disable the associated 660 * authentication and key exchange algorithms. 661 */ 662 if (EVP_PKEY_meth_find(NID_id_GostR3410_2001) == NULL) { 663 *auth |= SSL_aGOST01; 664 *mkey |= SSL_kGOST; 665 } 666 667 #ifdef SSL_FORBID_ENULL 668 *enc |= SSL_eNULL; 669 #endif 670 } 671 672 static void 673 ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method, int num_of_ciphers, 674 unsigned long disabled_mkey, unsigned long disabled_auth, 675 unsigned long disabled_enc, unsigned long disabled_mac, 676 unsigned long disabled_ssl, CIPHER_ORDER *co_list, 677 CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p) 678 { 679 int i, co_list_num; 680 const SSL_CIPHER *c; 681 682 /* 683 * We have num_of_ciphers descriptions compiled in, depending on the 684 * method selected (SSLv3, TLSv1, etc). These will later be sorted in 685 * a linked list with at most num entries. 686 */ 687 688 /* Get the initial list of ciphers */ 689 co_list_num = 0; /* actual count of ciphers */ 690 for (i = 0; i < num_of_ciphers; i++) { 691 c = ssl_method->get_cipher(i); 692 /* 693 * Drop any invalid ciphers and any which use unavailable 694 * algorithms. 695 */ 696 if ((c != NULL) && c->valid && 697 !(c->algorithm_mkey & disabled_mkey) && 698 !(c->algorithm_auth & disabled_auth) && 699 !(c->algorithm_enc & disabled_enc) && 700 !(c->algorithm_mac & disabled_mac) && 701 !(c->algorithm_ssl & disabled_ssl)) { 702 co_list[co_list_num].cipher = c; 703 co_list[co_list_num].next = NULL; 704 co_list[co_list_num].prev = NULL; 705 co_list[co_list_num].active = 0; 706 co_list_num++; 707 } 708 } 709 710 /* 711 * Prepare linked list from list entries 712 */ 713 if (co_list_num > 0) { 714 co_list[0].prev = NULL; 715 716 if (co_list_num > 1) { 717 co_list[0].next = &co_list[1]; 718 719 for (i = 1; i < co_list_num - 1; i++) { 720 co_list[i].prev = &co_list[i - 1]; 721 co_list[i].next = &co_list[i + 1]; 722 } 723 724 co_list[co_list_num - 1].prev = 725 &co_list[co_list_num - 2]; 726 } 727 728 co_list[co_list_num - 1].next = NULL; 729 730 *head_p = &co_list[0]; 731 *tail_p = &co_list[co_list_num - 1]; 732 } 733 } 734 735 static void 736 ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list, int num_of_group_aliases, 737 unsigned long disabled_mkey, unsigned long disabled_auth, 738 unsigned long disabled_enc, unsigned long disabled_mac, 739 unsigned long disabled_ssl, CIPHER_ORDER *head) 740 { 741 CIPHER_ORDER *ciph_curr; 742 const SSL_CIPHER **ca_curr; 743 int i; 744 unsigned long mask_mkey = ~disabled_mkey; 745 unsigned long mask_auth = ~disabled_auth; 746 unsigned long mask_enc = ~disabled_enc; 747 unsigned long mask_mac = ~disabled_mac; 748 unsigned long mask_ssl = ~disabled_ssl; 749 750 /* 751 * First, add the real ciphers as already collected 752 */ 753 ciph_curr = head; 754 ca_curr = ca_list; 755 while (ciph_curr != NULL) { 756 *ca_curr = ciph_curr->cipher; 757 ca_curr++; 758 ciph_curr = ciph_curr->next; 759 } 760 761 /* 762 * Now we add the available ones from the cipher_aliases[] table. 763 * They represent either one or more algorithms, some of which 764 * in any affected category must be supported (set in enabled_mask), 765 * or represent a cipher strength value (will be added in any case because algorithms=0). 766 */ 767 for (i = 0; i < num_of_group_aliases; i++) { 768 unsigned long algorithm_mkey = cipher_aliases[i].algorithm_mkey; 769 unsigned long algorithm_auth = cipher_aliases[i].algorithm_auth; 770 unsigned long algorithm_enc = cipher_aliases[i].algorithm_enc; 771 unsigned long algorithm_mac = cipher_aliases[i].algorithm_mac; 772 unsigned long algorithm_ssl = cipher_aliases[i].algorithm_ssl; 773 774 if (algorithm_mkey) 775 if ((algorithm_mkey & mask_mkey) == 0) 776 continue; 777 778 if (algorithm_auth) 779 if ((algorithm_auth & mask_auth) == 0) 780 continue; 781 782 if (algorithm_enc) 783 if ((algorithm_enc & mask_enc) == 0) 784 continue; 785 786 if (algorithm_mac) 787 if ((algorithm_mac & mask_mac) == 0) 788 continue; 789 790 if (algorithm_ssl) 791 if ((algorithm_ssl & mask_ssl) == 0) 792 continue; 793 794 *ca_curr = (SSL_CIPHER *)(cipher_aliases + i); 795 ca_curr++; 796 } 797 798 *ca_curr = NULL; /* end of list */ 799 } 800 801 static void 802 ssl_cipher_apply_rule(unsigned long cipher_id, unsigned long alg_mkey, 803 unsigned long alg_auth, unsigned long alg_enc, unsigned long alg_mac, 804 unsigned long alg_ssl, unsigned long algo_strength, int rule, 805 int strength_bits, CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p) 806 { 807 CIPHER_ORDER *head, *tail, *curr, *next, *last; 808 const SSL_CIPHER *cp; 809 int reverse = 0; 810 811 if (rule == CIPHER_DEL) 812 reverse = 1; /* needed to maintain sorting between currently deleted ciphers */ 813 814 head = *head_p; 815 tail = *tail_p; 816 817 if (reverse) { 818 next = tail; 819 last = head; 820 } else { 821 next = head; 822 last = tail; 823 } 824 825 curr = NULL; 826 for (;;) { 827 if (curr == last) 828 break; 829 curr = next; 830 next = reverse ? curr->prev : curr->next; 831 832 cp = curr->cipher; 833 834 if (cipher_id && cp->id != cipher_id) 835 continue; 836 837 /* 838 * Selection criteria is either the value of strength_bits 839 * or the algorithms used. 840 */ 841 if (strength_bits >= 0) { 842 if (strength_bits != cp->strength_bits) 843 continue; 844 } else { 845 if (alg_mkey && !(alg_mkey & cp->algorithm_mkey)) 846 continue; 847 if (alg_auth && !(alg_auth & cp->algorithm_auth)) 848 continue; 849 if (alg_enc && !(alg_enc & cp->algorithm_enc)) 850 continue; 851 if (alg_mac && !(alg_mac & cp->algorithm_mac)) 852 continue; 853 if (alg_ssl && !(alg_ssl & cp->algorithm_ssl)) 854 continue; 855 if ((algo_strength & SSL_STRONG_MASK) && !(algo_strength & SSL_STRONG_MASK & cp->algo_strength)) 856 continue; 857 } 858 859 /* add the cipher if it has not been added yet. */ 860 if (rule == CIPHER_ADD) { 861 /* reverse == 0 */ 862 if (!curr->active) { 863 ll_append_tail(&head, curr, &tail); 864 curr->active = 1; 865 } 866 } 867 /* Move the added cipher to this location */ 868 else if (rule == CIPHER_ORD) { 869 /* reverse == 0 */ 870 if (curr->active) { 871 ll_append_tail(&head, curr, &tail); 872 } 873 } else if (rule == CIPHER_DEL) { 874 /* reverse == 1 */ 875 if (curr->active) { 876 /* most recently deleted ciphersuites get best positions 877 * for any future CIPHER_ADD (note that the CIPHER_DEL loop 878 * works in reverse to maintain the order) */ 879 ll_append_head(&head, curr, &tail); 880 curr->active = 0; 881 } 882 } else if (rule == CIPHER_KILL) { 883 /* reverse == 0 */ 884 if (head == curr) 885 head = curr->next; 886 else 887 curr->prev->next = curr->next; 888 if (tail == curr) 889 tail = curr->prev; 890 curr->active = 0; 891 if (curr->next != NULL) 892 curr->next->prev = curr->prev; 893 if (curr->prev != NULL) 894 curr->prev->next = curr->next; 895 curr->next = NULL; 896 curr->prev = NULL; 897 } 898 } 899 900 *head_p = head; 901 *tail_p = tail; 902 } 903 904 static int 905 ssl_cipher_strength_sort(CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p) 906 { 907 int max_strength_bits, i, *number_uses; 908 CIPHER_ORDER *curr; 909 910 /* 911 * This routine sorts the ciphers with descending strength. The sorting 912 * must keep the pre-sorted sequence, so we apply the normal sorting 913 * routine as '+' movement to the end of the list. 914 */ 915 max_strength_bits = 0; 916 curr = *head_p; 917 while (curr != NULL) { 918 if (curr->active && 919 (curr->cipher->strength_bits > max_strength_bits)) 920 max_strength_bits = curr->cipher->strength_bits; 921 curr = curr->next; 922 } 923 924 number_uses = calloc((max_strength_bits + 1), sizeof(int)); 925 if (!number_uses) { 926 SSLerrorx(ERR_R_MALLOC_FAILURE); 927 return (0); 928 } 929 930 /* 931 * Now find the strength_bits values actually used 932 */ 933 curr = *head_p; 934 while (curr != NULL) { 935 if (curr->active) 936 number_uses[curr->cipher->strength_bits]++; 937 curr = curr->next; 938 } 939 /* 940 * Go through the list of used strength_bits values in descending 941 * order. 942 */ 943 for (i = max_strength_bits; i >= 0; i--) 944 if (number_uses[i] > 0) 945 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, head_p, tail_p); 946 947 free(number_uses); 948 return (1); 949 } 950 951 static int 952 ssl_cipher_process_rulestr(const char *rule_str, CIPHER_ORDER **head_p, 953 CIPHER_ORDER **tail_p, const SSL_CIPHER **ca_list, SSL_CERT *cert, 954 int *tls13_seen) 955 { 956 unsigned long alg_mkey, alg_auth, alg_enc, alg_mac, alg_ssl; 957 unsigned long algo_strength; 958 int j, multi, found, rule, retval, ok, buflen; 959 unsigned long cipher_id = 0; 960 const char *l, *buf; 961 char ch; 962 963 *tls13_seen = 0; 964 965 retval = 1; 966 l = rule_str; 967 for (;;) { 968 ch = *l; 969 970 if (ch == '\0') 971 break; 972 973 if (ch == '-') { 974 rule = CIPHER_DEL; 975 l++; 976 } else if (ch == '+') { 977 rule = CIPHER_ORD; 978 l++; 979 } else if (ch == '!') { 980 rule = CIPHER_KILL; 981 l++; 982 } else if (ch == '@') { 983 rule = CIPHER_SPECIAL; 984 l++; 985 } else { 986 rule = CIPHER_ADD; 987 } 988 989 if (ITEM_SEP(ch)) { 990 l++; 991 continue; 992 } 993 994 alg_mkey = 0; 995 alg_auth = 0; 996 alg_enc = 0; 997 alg_mac = 0; 998 alg_ssl = 0; 999 algo_strength = 0; 1000 1001 for (;;) { 1002 ch = *l; 1003 buf = l; 1004 buflen = 0; 1005 while (((ch >= 'A') && (ch <= 'Z')) || 1006 ((ch >= '0') && (ch <= '9')) || 1007 ((ch >= 'a') && (ch <= 'z')) || 1008 (ch == '-') || (ch == '.') || 1009 (ch == '_') || (ch == '=')) { 1010 ch = *(++l); 1011 buflen++; 1012 } 1013 1014 if (buflen == 0) { 1015 /* 1016 * We hit something we cannot deal with, 1017 * it is no command or separator nor 1018 * alphanumeric, so we call this an error. 1019 */ 1020 SSLerrorx(SSL_R_INVALID_COMMAND); 1021 return 0; 1022 } 1023 1024 if (rule == CIPHER_SPECIAL) { 1025 /* unused -- avoid compiler warning */ 1026 found = 0; 1027 /* special treatment */ 1028 break; 1029 } 1030 1031 /* check for multi-part specification */ 1032 if (ch == '+') { 1033 multi = 1; 1034 l++; 1035 } else 1036 multi = 0; 1037 1038 /* 1039 * Now search for the cipher alias in the ca_list. 1040 * Be careful with the strncmp, because the "buflen" 1041 * limitation will make the rule "ADH:SOME" and the 1042 * cipher "ADH-MY-CIPHER" look like a match for 1043 * buflen=3. So additionally check whether the cipher 1044 * name found has the correct length. We can save a 1045 * strlen() call: just checking for the '\0' at the 1046 * right place is sufficient, we have to strncmp() 1047 * anyway (we cannot use strcmp(), because buf is not 1048 * '\0' terminated.) 1049 */ 1050 j = found = 0; 1051 cipher_id = 0; 1052 while (ca_list[j]) { 1053 if (!strncmp(buf, ca_list[j]->name, buflen) && 1054 (ca_list[j]->name[buflen] == '\0')) { 1055 found = 1; 1056 break; 1057 } else 1058 j++; 1059 } 1060 1061 if (!found) 1062 break; /* ignore this entry */ 1063 1064 if (ca_list[j]->algorithm_mkey) { 1065 if (alg_mkey) { 1066 alg_mkey &= ca_list[j]->algorithm_mkey; 1067 if (!alg_mkey) { 1068 found = 0; 1069 break; 1070 } 1071 } else 1072 alg_mkey = ca_list[j]->algorithm_mkey; 1073 } 1074 1075 if (ca_list[j]->algorithm_auth) { 1076 if (alg_auth) { 1077 alg_auth &= ca_list[j]->algorithm_auth; 1078 if (!alg_auth) { 1079 found = 0; 1080 break; 1081 } 1082 } else 1083 alg_auth = ca_list[j]->algorithm_auth; 1084 } 1085 1086 if (ca_list[j]->algorithm_enc) { 1087 if (alg_enc) { 1088 alg_enc &= ca_list[j]->algorithm_enc; 1089 if (!alg_enc) { 1090 found = 0; 1091 break; 1092 } 1093 } else 1094 alg_enc = ca_list[j]->algorithm_enc; 1095 } 1096 1097 if (ca_list[j]->algorithm_mac) { 1098 if (alg_mac) { 1099 alg_mac &= ca_list[j]->algorithm_mac; 1100 if (!alg_mac) { 1101 found = 0; 1102 break; 1103 } 1104 } else 1105 alg_mac = ca_list[j]->algorithm_mac; 1106 } 1107 1108 if (ca_list[j]->algo_strength & SSL_STRONG_MASK) { 1109 if (algo_strength & SSL_STRONG_MASK) { 1110 algo_strength &= 1111 (ca_list[j]->algo_strength & 1112 SSL_STRONG_MASK) | ~SSL_STRONG_MASK; 1113 if (!(algo_strength & 1114 SSL_STRONG_MASK)) { 1115 found = 0; 1116 break; 1117 } 1118 } else 1119 algo_strength |= 1120 ca_list[j]->algo_strength & 1121 SSL_STRONG_MASK; 1122 } 1123 1124 if (ca_list[j]->valid) { 1125 /* 1126 * explicit ciphersuite found; its protocol 1127 * version does not become part of the search 1128 * pattern! 1129 */ 1130 cipher_id = ca_list[j]->id; 1131 if (ca_list[j]->algorithm_ssl == SSL_TLSV1_3) 1132 *tls13_seen = 1; 1133 } else { 1134 /* 1135 * not an explicit ciphersuite; only in this 1136 * case, the protocol version is considered 1137 * part of the search pattern 1138 */ 1139 if (ca_list[j]->algorithm_ssl) { 1140 if (alg_ssl) { 1141 alg_ssl &= 1142 ca_list[j]->algorithm_ssl; 1143 if (!alg_ssl) { 1144 found = 0; 1145 break; 1146 } 1147 } else 1148 alg_ssl = 1149 ca_list[j]->algorithm_ssl; 1150 } 1151 } 1152 1153 if (!multi) 1154 break; 1155 } 1156 1157 /* 1158 * Ok, we have the rule, now apply it 1159 */ 1160 if (rule == CIPHER_SPECIAL) { 1161 /* special command */ 1162 ok = 0; 1163 if (buflen == 8 && strncmp(buf, "STRENGTH", 8) == 0) { 1164 ok = ssl_cipher_strength_sort(head_p, tail_p); 1165 } else if (buflen == 10 && 1166 strncmp(buf, "SECLEVEL=", 9) == 0) { 1167 int level = buf[9] - '0'; 1168 1169 if (level >= 0 && level <= 5) { 1170 cert->security_level = level; 1171 ok = 1; 1172 } else { 1173 SSLerrorx(SSL_R_INVALID_COMMAND); 1174 } 1175 } else { 1176 SSLerrorx(SSL_R_INVALID_COMMAND); 1177 } 1178 if (ok == 0) 1179 retval = 0; 1180 1181 while ((*l != '\0') && !ITEM_SEP(*l)) 1182 l++; 1183 } else if (found) { 1184 if (alg_ssl == SSL_TLSV1_3) 1185 *tls13_seen = 1; 1186 ssl_cipher_apply_rule(cipher_id, alg_mkey, alg_auth, 1187 alg_enc, alg_mac, alg_ssl, algo_strength, rule, 1188 -1, head_p, tail_p); 1189 } else { 1190 while ((*l != '\0') && !ITEM_SEP(*l)) 1191 l++; 1192 } 1193 if (*l == '\0') 1194 break; /* done */ 1195 } 1196 1197 return (retval); 1198 } 1199 1200 static inline int 1201 ssl_aes_is_accelerated(void) 1202 { 1203 #if defined(__i386__) || defined(__x86_64__) 1204 return ((OPENSSL_cpu_caps() & (1ULL << 57)) != 0); 1205 #else 1206 return (0); 1207 #endif 1208 } 1209 1210 STACK_OF(SSL_CIPHER) * 1211 ssl_create_cipher_list(const SSL_METHOD *ssl_method, 1212 STACK_OF(SSL_CIPHER) **cipher_list, 1213 STACK_OF(SSL_CIPHER) *cipher_list_tls13, 1214 const char *rule_str, SSL_CERT *cert) 1215 { 1216 int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases; 1217 unsigned long disabled_mkey, disabled_auth, disabled_enc, disabled_mac, disabled_ssl; 1218 STACK_OF(SSL_CIPHER) *cipherstack = NULL, *ret = NULL; 1219 const char *rule_p; 1220 CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr; 1221 const SSL_CIPHER **ca_list = NULL; 1222 const SSL_CIPHER *cipher; 1223 int tls13_seen = 0; 1224 int any_active; 1225 int i; 1226 1227 /* 1228 * Return with error if nothing to do. 1229 */ 1230 if (rule_str == NULL || cipher_list == NULL) 1231 goto err; 1232 1233 /* 1234 * To reduce the work to do we only want to process the compiled 1235 * in algorithms, so we first get the mask of disabled ciphers. 1236 */ 1237 ssl_cipher_get_disabled(&disabled_mkey, &disabled_auth, &disabled_enc, &disabled_mac, &disabled_ssl); 1238 1239 /* 1240 * Now we have to collect the available ciphers from the compiled 1241 * in ciphers. We cannot get more than the number compiled in, so 1242 * it is used for allocation. 1243 */ 1244 num_of_ciphers = ssl3_num_ciphers(); 1245 co_list = reallocarray(NULL, num_of_ciphers, sizeof(CIPHER_ORDER)); 1246 if (co_list == NULL) { 1247 SSLerrorx(ERR_R_MALLOC_FAILURE); 1248 goto err; 1249 } 1250 1251 ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers, 1252 disabled_mkey, disabled_auth, disabled_enc, disabled_mac, disabled_ssl, 1253 co_list, &head, &tail); 1254 1255 1256 /* Now arrange all ciphers by preference: */ 1257 1258 /* Everything else being equal, prefer ephemeral ECDH over other key exchange mechanisms */ 1259 ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail); 1260 ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail); 1261 1262 if (ssl_aes_is_accelerated()) { 1263 /* 1264 * We have hardware assisted AES - prefer AES as a symmetric 1265 * cipher, with CHACHA20 second. 1266 */ 1267 ssl_cipher_apply_rule(0, 0, 0, SSL_AES, 0, 0, 0, 1268 CIPHER_ADD, -1, &head, &tail); 1269 ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20POLY1305, 1270 0, 0, 0, CIPHER_ADD, -1, &head, &tail); 1271 } else { 1272 /* 1273 * CHACHA20 is fast and safe on all hardware and is thus our 1274 * preferred symmetric cipher, with AES second. 1275 */ 1276 ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20POLY1305, 1277 0, 0, 0, CIPHER_ADD, -1, &head, &tail); 1278 ssl_cipher_apply_rule(0, 0, 0, SSL_AES, 0, 0, 0, 1279 CIPHER_ADD, -1, &head, &tail); 1280 } 1281 1282 /* Temporarily enable everything else for sorting */ 1283 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail); 1284 1285 /* Low priority for MD5 */ 1286 ssl_cipher_apply_rule(0, 0, 0, 0, SSL_MD5, 0, 0, CIPHER_ORD, -1, &head, &tail); 1287 1288 /* Move anonymous ciphers to the end. Usually, these will remain disabled. 1289 * (For applications that allow them, they aren't too bad, but we prefer 1290 * authenticated ciphers.) */ 1291 ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, &head, &tail); 1292 1293 /* Move ciphers without forward secrecy to the end */ 1294 ssl_cipher_apply_rule(0, SSL_kRSA, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head, &tail); 1295 1296 /* RC4 is sort of broken - move it to the end */ 1297 ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, 0, 0, 0, CIPHER_ORD, -1, &head, &tail); 1298 1299 /* Now sort by symmetric encryption strength. The above ordering remains 1300 * in force within each class */ 1301 if (!ssl_cipher_strength_sort(&head, &tail)) 1302 goto err; 1303 1304 /* Now disable everything (maintaining the ordering!) */ 1305 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail); 1306 1307 /* TLSv1.3 first. */ 1308 ssl_cipher_apply_rule(0, 0, 0, 0, 0, SSL_TLSV1_3, 0, CIPHER_ADD, -1, &head, &tail); 1309 ssl_cipher_apply_rule(0, 0, 0, 0, 0, SSL_TLSV1_3, 0, CIPHER_DEL, -1, &head, &tail); 1310 1311 /* 1312 * We also need cipher aliases for selecting based on the rule_str. 1313 * There might be two types of entries in the rule_str: 1) names 1314 * of ciphers themselves 2) aliases for groups of ciphers. 1315 * For 1) we need the available ciphers and for 2) the cipher 1316 * groups of cipher_aliases added together in one list (otherwise 1317 * we would be happy with just the cipher_aliases table). 1318 */ 1319 num_of_group_aliases = sizeof(cipher_aliases) / sizeof(SSL_CIPHER); 1320 num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1; 1321 ca_list = reallocarray(NULL, num_of_alias_max, sizeof(SSL_CIPHER *)); 1322 if (ca_list == NULL) { 1323 SSLerrorx(ERR_R_MALLOC_FAILURE); 1324 goto err; 1325 } 1326 ssl_cipher_collect_aliases(ca_list, num_of_group_aliases, disabled_mkey, 1327 disabled_auth, disabled_enc, disabled_mac, disabled_ssl, head); 1328 1329 /* 1330 * If the rule_string begins with DEFAULT, apply the default rule 1331 * before using the (possibly available) additional rules. 1332 */ 1333 ok = 1; 1334 rule_p = rule_str; 1335 if (strncmp(rule_str, "DEFAULT", 7) == 0) { 1336 ok = ssl_cipher_process_rulestr(SSL_DEFAULT_CIPHER_LIST, 1337 &head, &tail, ca_list, cert, &tls13_seen); 1338 rule_p += 7; 1339 if (*rule_p == ':') 1340 rule_p++; 1341 } 1342 1343 if (ok && (strlen(rule_p) > 0)) 1344 ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list, 1345 cert, &tls13_seen); 1346 1347 if (!ok) { 1348 /* Rule processing failure */ 1349 goto err; 1350 } 1351 1352 /* 1353 * Allocate new "cipherstack" for the result, return with error 1354 * if we cannot get one. 1355 */ 1356 if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) { 1357 SSLerrorx(ERR_R_MALLOC_FAILURE); 1358 goto err; 1359 } 1360 1361 /* Prefer TLSv1.3 cipher suites. */ 1362 if (cipher_list_tls13 != NULL) { 1363 for (i = 0; i < sk_SSL_CIPHER_num(cipher_list_tls13); i++) { 1364 cipher = sk_SSL_CIPHER_value(cipher_list_tls13, i); 1365 if (!sk_SSL_CIPHER_push(cipherstack, cipher)) { 1366 SSLerrorx(ERR_R_MALLOC_FAILURE); 1367 goto err; 1368 } 1369 } 1370 tls13_seen = 1; 1371 } 1372 1373 /* 1374 * The cipher selection for the list is done. The ciphers are added 1375 * to the resulting precedence to the STACK_OF(SSL_CIPHER). 1376 * 1377 * If the rule string did not contain any references to TLSv1.3 and 1378 * TLSv1.3 cipher suites have not been configured separately, 1379 * include inactive TLSv1.3 cipher suites. This avoids attempts to 1380 * use TLSv1.3 with an older rule string that does not include 1381 * TLSv1.3 cipher suites. If the rule string resulted in no active 1382 * cipher suites then we return an empty stack. 1383 */ 1384 any_active = 0; 1385 for (curr = head; curr != NULL; curr = curr->next) { 1386 if (curr->active || 1387 (!tls13_seen && curr->cipher->algorithm_ssl == SSL_TLSV1_3)) { 1388 if (!sk_SSL_CIPHER_push(cipherstack, curr->cipher)) { 1389 SSLerrorx(ERR_R_MALLOC_FAILURE); 1390 goto err; 1391 } 1392 } 1393 any_active |= curr->active; 1394 } 1395 if (!any_active) 1396 sk_SSL_CIPHER_zero(cipherstack); 1397 1398 sk_SSL_CIPHER_free(*cipher_list); 1399 *cipher_list = cipherstack; 1400 cipherstack = NULL; 1401 1402 ret = *cipher_list; 1403 1404 err: 1405 sk_SSL_CIPHER_free(cipherstack); 1406 free((void *)ca_list); 1407 free(co_list); 1408 1409 return ret; 1410 } 1411 1412 const SSL_CIPHER * 1413 SSL_CIPHER_get_by_id(unsigned int id) 1414 { 1415 return ssl3_get_cipher_by_id(id); 1416 } 1417 LSSL_ALIAS(SSL_CIPHER_get_by_id); 1418 1419 const SSL_CIPHER * 1420 SSL_CIPHER_get_by_value(uint16_t value) 1421 { 1422 return ssl3_get_cipher_by_value(value); 1423 } 1424 LSSL_ALIAS(SSL_CIPHER_get_by_value); 1425 1426 char * 1427 SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len) 1428 { 1429 unsigned long alg_mkey, alg_auth, alg_enc, alg_mac, alg_ssl, alg2; 1430 const char *ver, *kx, *au, *enc, *mac; 1431 char *ret; 1432 int l; 1433 1434 alg_mkey = cipher->algorithm_mkey; 1435 alg_auth = cipher->algorithm_auth; 1436 alg_enc = cipher->algorithm_enc; 1437 alg_mac = cipher->algorithm_mac; 1438 alg_ssl = cipher->algorithm_ssl; 1439 1440 alg2 = cipher->algorithm2; 1441 1442 if (alg_ssl & SSL_SSLV3) 1443 ver = "SSLv3"; 1444 else if (alg_ssl & SSL_TLSV1_2) 1445 ver = "TLSv1.2"; 1446 else if (alg_ssl & SSL_TLSV1_3) 1447 ver = "TLSv1.3"; 1448 else 1449 ver = "unknown"; 1450 1451 switch (alg_mkey) { 1452 case SSL_kRSA: 1453 kx = "RSA"; 1454 break; 1455 case SSL_kDHE: 1456 kx = "DH"; 1457 break; 1458 case SSL_kECDHE: 1459 kx = "ECDH"; 1460 break; 1461 case SSL_kGOST: 1462 kx = "GOST"; 1463 break; 1464 case SSL_kTLS1_3: 1465 kx = "TLSv1.3"; 1466 break; 1467 default: 1468 kx = "unknown"; 1469 } 1470 1471 switch (alg_auth) { 1472 case SSL_aRSA: 1473 au = "RSA"; 1474 break; 1475 case SSL_aDSS: 1476 au = "DSS"; 1477 break; 1478 case SSL_aNULL: 1479 au = "None"; 1480 break; 1481 case SSL_aECDSA: 1482 au = "ECDSA"; 1483 break; 1484 case SSL_aGOST01: 1485 au = "GOST01"; 1486 break; 1487 case SSL_aTLS1_3: 1488 au = "TLSv1.3"; 1489 break; 1490 default: 1491 au = "unknown"; 1492 break; 1493 } 1494 1495 switch (alg_enc) { 1496 case SSL_3DES: 1497 enc = "3DES(168)"; 1498 break; 1499 case SSL_RC4: 1500 enc = alg2 & SSL2_CF_8_BYTE_ENC ? "RC4(64)" : "RC4(128)"; 1501 break; 1502 case SSL_eNULL: 1503 enc = "None"; 1504 break; 1505 case SSL_AES128: 1506 enc = "AES(128)"; 1507 break; 1508 case SSL_AES256: 1509 enc = "AES(256)"; 1510 break; 1511 case SSL_AES128GCM: 1512 enc = "AESGCM(128)"; 1513 break; 1514 case SSL_AES256GCM: 1515 enc = "AESGCM(256)"; 1516 break; 1517 case SSL_CAMELLIA128: 1518 enc = "Camellia(128)"; 1519 break; 1520 case SSL_CAMELLIA256: 1521 enc = "Camellia(256)"; 1522 break; 1523 case SSL_CHACHA20POLY1305: 1524 enc = "ChaCha20-Poly1305"; 1525 break; 1526 case SSL_eGOST2814789CNT: 1527 enc = "GOST-28178-89-CNT"; 1528 break; 1529 default: 1530 enc = "unknown"; 1531 break; 1532 } 1533 1534 switch (alg_mac) { 1535 case SSL_MD5: 1536 mac = "MD5"; 1537 break; 1538 case SSL_SHA1: 1539 mac = "SHA1"; 1540 break; 1541 case SSL_SHA256: 1542 mac = "SHA256"; 1543 break; 1544 case SSL_SHA384: 1545 mac = "SHA384"; 1546 break; 1547 case SSL_AEAD: 1548 mac = "AEAD"; 1549 break; 1550 case SSL_GOST94: 1551 mac = "GOST94"; 1552 break; 1553 case SSL_GOST89MAC: 1554 mac = "GOST89IMIT"; 1555 break; 1556 case SSL_STREEBOG256: 1557 mac = "STREEBOG256"; 1558 break; 1559 default: 1560 mac = "unknown"; 1561 break; 1562 } 1563 1564 if (asprintf(&ret, "%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s\n", 1565 cipher->name, ver, kx, au, enc, mac) == -1) 1566 return "OPENSSL_malloc Error"; 1567 1568 if (buf != NULL) { 1569 l = strlcpy(buf, ret, len); 1570 free(ret); 1571 ret = buf; 1572 if (l >= len) 1573 ret = "Buffer too small"; 1574 } 1575 1576 return (ret); 1577 } 1578 LSSL_ALIAS(SSL_CIPHER_description); 1579 1580 const char * 1581 SSL_CIPHER_get_version(const SSL_CIPHER *c) 1582 { 1583 if (c == NULL) 1584 return("(NONE)"); 1585 if ((c->id >> 24) == 3) 1586 return("TLSv1/SSLv3"); 1587 else 1588 return("unknown"); 1589 } 1590 LSSL_ALIAS(SSL_CIPHER_get_version); 1591 1592 /* return the actual cipher being used */ 1593 const char * 1594 SSL_CIPHER_get_name(const SSL_CIPHER *c) 1595 { 1596 if (c != NULL) 1597 return (c->name); 1598 return("(NONE)"); 1599 } 1600 LSSL_ALIAS(SSL_CIPHER_get_name); 1601 1602 /* number of bits for symmetric cipher */ 1603 int 1604 SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits) 1605 { 1606 int ret = 0; 1607 1608 if (c != NULL) { 1609 if (alg_bits != NULL) 1610 *alg_bits = c->alg_bits; 1611 ret = c->strength_bits; 1612 } 1613 return (ret); 1614 } 1615 LSSL_ALIAS(SSL_CIPHER_get_bits); 1616 1617 unsigned long 1618 SSL_CIPHER_get_id(const SSL_CIPHER *c) 1619 { 1620 return c->id; 1621 } 1622 LSSL_ALIAS(SSL_CIPHER_get_id); 1623 1624 uint16_t 1625 SSL_CIPHER_get_value(const SSL_CIPHER *c) 1626 { 1627 return ssl3_cipher_get_value(c); 1628 } 1629 LSSL_ALIAS(SSL_CIPHER_get_value); 1630 1631 const SSL_CIPHER * 1632 SSL_CIPHER_find(SSL *ssl, const unsigned char *ptr) 1633 { 1634 uint16_t cipher_value; 1635 CBS cbs; 1636 1637 /* This API is documented with ptr being an array of length two. */ 1638 CBS_init(&cbs, ptr, 2); 1639 if (!CBS_get_u16(&cbs, &cipher_value)) 1640 return NULL; 1641 1642 return ssl3_get_cipher_by_value(cipher_value); 1643 } 1644 LSSL_ALIAS(SSL_CIPHER_find); 1645 1646 int 1647 SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *c) 1648 { 1649 switch (c->algorithm_enc) { 1650 case SSL_eNULL: 1651 return NID_undef; 1652 case SSL_3DES: 1653 return NID_des_ede3_cbc; 1654 case SSL_AES128: 1655 return NID_aes_128_cbc; 1656 case SSL_AES128GCM: 1657 return NID_aes_128_gcm; 1658 case SSL_AES256: 1659 return NID_aes_256_cbc; 1660 case SSL_AES256GCM: 1661 return NID_aes_256_gcm; 1662 case SSL_CAMELLIA128: 1663 return NID_camellia_128_cbc; 1664 case SSL_CAMELLIA256: 1665 return NID_camellia_256_cbc; 1666 case SSL_CHACHA20POLY1305: 1667 return NID_chacha20_poly1305; 1668 case SSL_DES: 1669 return NID_des_cbc; 1670 case SSL_RC4: 1671 return NID_rc4; 1672 case SSL_eGOST2814789CNT: 1673 return NID_gost89_cnt; 1674 default: 1675 return NID_undef; 1676 } 1677 } 1678 LSSL_ALIAS(SSL_CIPHER_get_cipher_nid); 1679 1680 int 1681 SSL_CIPHER_get_digest_nid(const SSL_CIPHER *c) 1682 { 1683 switch (c->algorithm_mac) { 1684 case SSL_AEAD: 1685 return NID_undef; 1686 case SSL_GOST89MAC: 1687 return NID_id_Gost28147_89_MAC; 1688 case SSL_GOST94: 1689 return NID_id_GostR3411_94; 1690 case SSL_MD5: 1691 return NID_md5; 1692 case SSL_SHA1: 1693 return NID_sha1; 1694 case SSL_SHA256: 1695 return NID_sha256; 1696 case SSL_SHA384: 1697 return NID_sha384; 1698 case SSL_STREEBOG256: 1699 return NID_id_tc26_gost3411_2012_256; 1700 default: 1701 return NID_undef; 1702 } 1703 } 1704 LSSL_ALIAS(SSL_CIPHER_get_digest_nid); 1705 1706 int 1707 SSL_CIPHER_get_kx_nid(const SSL_CIPHER *c) 1708 { 1709 switch (c->algorithm_mkey) { 1710 case SSL_kDHE: 1711 return NID_kx_dhe; 1712 case SSL_kECDHE: 1713 return NID_kx_ecdhe; 1714 case SSL_kGOST: 1715 return NID_kx_gost; 1716 case SSL_kRSA: 1717 return NID_kx_rsa; 1718 default: 1719 return NID_undef; 1720 } 1721 } 1722 LSSL_ALIAS(SSL_CIPHER_get_kx_nid); 1723 1724 int 1725 SSL_CIPHER_get_auth_nid(const SSL_CIPHER *c) 1726 { 1727 switch (c->algorithm_auth) { 1728 case SSL_aNULL: 1729 return NID_auth_null; 1730 case SSL_aECDSA: 1731 return NID_auth_ecdsa; 1732 case SSL_aGOST01: 1733 return NID_auth_gost01; 1734 case SSL_aRSA: 1735 return NID_auth_rsa; 1736 default: 1737 return NID_undef; 1738 } 1739 } 1740 LSSL_ALIAS(SSL_CIPHER_get_auth_nid); 1741 1742 int 1743 SSL_CIPHER_is_aead(const SSL_CIPHER *c) 1744 { 1745 return (c->algorithm_mac & SSL_AEAD) == SSL_AEAD; 1746 } 1747 LSSL_ALIAS(SSL_CIPHER_is_aead); 1748 1749 void * 1750 SSL_COMP_get_compression_methods(void) 1751 { 1752 return NULL; 1753 } 1754 LSSL_ALIAS(SSL_COMP_get_compression_methods); 1755 1756 int 1757 SSL_COMP_add_compression_method(int id, void *cm) 1758 { 1759 return 1; 1760 } 1761 LSSL_ALIAS(SSL_COMP_add_compression_method); 1762 1763 const char * 1764 SSL_COMP_get_name(const void *comp) 1765 { 1766 return NULL; 1767 } 1768 LSSL_ALIAS(SSL_COMP_get_name); 1769