xref: /openbsd-src/lib/libpcap/gencode.c (revision 5262edafad5bc5784d91cd8e4a68ecd2668ca51e)
1 /*	$OpenBSD: gencode.c,v 1.2 1996/03/04 15:47:18 mickey Exp $	*/
2 /*	$NetBSD: gencode.c,v 1.2 1995/03/06 11:38:21 mycroft Exp $	*/
3 
4 /*
5  * Copyright (c) 1990, 1991, 1992, 1993, 1994
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that: (1) source code distributions
10  * retain the above copyright notice and this paragraph in its entirety, (2)
11  * distributions including binary code include the above copyright notice and
12  * this paragraph in its entirety in the documentation or other materials
13  * provided with the distribution, and (3) all advertising materials mentioning
14  * features or use of this software display the following acknowledgement:
15  * ``This product includes software developed by the University of California,
16  * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
17  * the University nor the names of its contributors may be used to endorse
18  * or promote products derived from this software without specific prior
19  * written permission.
20  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
21  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
22  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
23  */
24 #ifndef lint
25 static char rcsid[] =
26     "@(#) Header: gencode.c,v 1.55 94/06/20 19:07:53 leres Exp (LBL)";
27 #endif
28 
29 #include <sys/types.h>
30 #include <sys/socket.h>
31 #include <sys/time.h>
32 
33 #include <net/if.h>
34 #include <net/bpf.h>
35 
36 #include <netinet/in.h>
37 #include <netinet/if_ether.h>
38 
39 #include <memory.h>
40 #include <pcap.h>
41 #include <pcap-namedb.h>
42 #include <setjmp.h>
43 #if __STDC__
44 #include <stdarg.h>
45 #include <stdlib.h>
46 #else
47 #include <varargs.h>
48 #endif
49 
50 #include "gencode.h"
51 
52 #ifndef __GNUC__
53 #define inline
54 #endif
55 
56 #ifndef ETHERTYPE_REVARP
57 #define ETHERTYPE_REVARP	0x8035
58 #endif
59 #ifndef	ETHERTYPE_MOPDL
60 #define	ETHERTYPE_MOPDL		0x6001
61 #endif
62 #ifndef	ETHERTYPE_MOPRC
63 #define	ETHERTYPE_MOPRC		0x6002
64 #endif
65 #ifndef	ETHERTYPE_DN
66 #define	ETHERTYPE_DN		0x6003
67 #endif
68 #ifndef	ETHERTYPE_LAT
69 #define	ETHERTYPE_LAT		0x6004
70 #endif
71 
72 #define JMP(c) ((c)|BPF_JMP|BPF_K)
73 
74 static jmp_buf top_ctx;
75 static pcap_t *bpf_pcap;
76 
77 /* VARARGS */
78 volatile void
79 #if __STDC__ || defined(SOLARIS)
80 bpf_error(char *fmt, ...)
81 #else
82 bpf_error(fmt, va_alist)
83 	char *fmt;
84 	va_dcl
85 #endif
86 {
87 	va_list ap;
88 
89 #if __STDC__
90 	va_start(ap, fmt);
91 #else
92 	va_start(ap);
93 #endif
94 	if (bpf_pcap != NULL)
95 		(void)vsprintf(pcap_geterr(bpf_pcap), fmt, ap);
96 	va_end(ap);
97 	longjmp(top_ctx, 1);
98 	/* NOTREACHED */
99 }
100 
101 static void init_linktype(int);
102 
103 static int alloc_reg(void);
104 static void free_reg(int);
105 
106 static struct block *root;
107 
108 /*
109  * We divy out chunks of memory rather than call malloc each time so
110  * we don't have to worry about leaking memory.  It's probably
111  * not a big deal if all this memory was wasted but it this ever
112  * goes into a library that would probably not be a good idea.
113  */
114 #define NCHUNKS 16
115 #define CHUNK0SIZE 1024
116 struct chunk {
117 	u_int n_left;
118 	void *m;
119 };
120 
121 static struct chunk chunks[NCHUNKS];
122 static int cur_chunk;
123 
124 static void *newchunk(u_int);
125 static void freechunks(void);
126 static inline struct block *new_block(int);
127 static inline struct slist *new_stmt(int);
128 static struct block *gen_retblk(int);
129 static inline void syntax(void);
130 
131 static void backpatch(struct block *, struct block *);
132 static void merge(struct block *, struct block *);
133 static struct block *gen_cmp(u_int, u_int, long);
134 static struct block *gen_mcmp(u_int, u_int, long, u_long);
135 static struct block *gen_bcmp(u_int, u_int, u_char *);
136 static struct block *gen_uncond(int);
137 static inline struct block *gen_true(void);
138 static inline struct block *gen_false(void);
139 static struct block *gen_linktype(int);
140 static struct block *gen_hostop(u_long, u_long, int, int, u_int, u_int);
141 static struct block *gen_ehostop(u_char *, int);
142 #ifdef FDDI
143 static struct block *gen_fhostop(u_char *, int);
144 #endif
145 static struct block *gen_dnhostop(u_long, int, u_int);
146 static struct block *gen_host(u_long, u_long, int, int);
147 static struct block *gen_gateway(u_char *, u_long **, int, int);
148 static struct block *gen_ipfrag(void);
149 static struct block *gen_portatom(int, long);
150 struct block *gen_portop(int, int, int);
151 static struct block *gen_port(int, int, int);
152 static int lookup_proto(char *, int);
153 static struct block *gen_proto(int, int, int);
154 static u_long net_mask(u_long *);
155 static u_long net_mask(u_long *);
156 static struct slist *xfer_to_x(struct arth *);
157 static struct slist *xfer_to_a(struct arth *);
158 static struct block *gen_len(int, int);
159 
160 static void *
161 newchunk(n)
162 	u_int n;
163 {
164 	struct chunk *cp;
165 	int k, size;
166 
167 	/* XXX Round up to nearest long. */
168 	n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
169 
170 	cp = &chunks[cur_chunk];
171 	if (n > cp->n_left) {
172 		++cp, k = ++cur_chunk;
173 		if (k >= NCHUNKS)
174 			bpf_error("out of memory");
175 		size = CHUNK0SIZE << k;
176 		cp->m = (void *)malloc(size);
177 		memset((char *)cp->m, 0, size);
178 		cp->n_left = size;
179 		if (n > size)
180 			bpf_error("out of memory");
181 	}
182 	cp->n_left -= n;
183 	return (void *)((char *)cp->m + cp->n_left);
184 }
185 
186 static void
187 freechunks()
188 {
189 	int i;
190 
191 	for (i = 0; i < NCHUNKS; ++i)
192 		if (chunks[i].m)
193 			free(chunks[i].m);
194 }
195 
196 /*
197  * A strdup whose allocations are freed after code generation is over.
198  */
199 char *
200 sdup(s)
201 	char *s;
202 {
203 	int n = strlen(s) + 1;
204 	char *cp = newchunk(n);
205 	strcpy(cp, s);
206 	return (cp);
207 }
208 
209 static inline struct block *
210 new_block(code)
211 	int code;
212 {
213 	struct block *p;
214 
215 	p = (struct block *)newchunk(sizeof(*p));
216 	p->s.code = code;
217 	p->head = p;
218 
219 	return p;
220 }
221 
222 static inline struct slist *
223 new_stmt(code)
224 	int code;
225 {
226 	struct slist *p;
227 
228 	p = (struct slist *)newchunk(sizeof(*p));
229 	p->s.code = code;
230 
231 	return p;
232 }
233 
234 static struct block *
235 gen_retblk(v)
236 	int v;
237 {
238 	struct block *b = new_block(BPF_RET|BPF_K);
239 
240 	b->s.k = v;
241 	return b;
242 }
243 
244 static inline void
245 syntax()
246 {
247 	bpf_error("syntax error in filter expression");
248 }
249 
250 static u_long netmask;
251 static int snaplen;
252 
253 int
254 pcap_compile(pcap_t *p, struct bpf_program *program,
255 	     char *buf, int optimize, u_long mask)
256 {
257 	extern int n_errors;
258 	int len;
259 
260 	bpf_pcap = p;
261 	if (setjmp(top_ctx))
262 		return (-1);
263 
264 	netmask = mask;
265 	snaplen = pcap_snapshot(p);
266 
267 	lex_init(buf ? buf : "");
268 	init_linktype(pcap_datalink(p));
269 	pcap_parse();
270 
271 	if (n_errors)
272 		syntax();
273 
274 	if (root == NULL)
275 		root = gen_retblk(snaplen);
276 
277 	if (optimize) {
278 		bpf_optimize(&root);
279 		if (root == NULL ||
280 		    (root->s.code == (BPF_RET|BPF_K) && root->s.k == 0))
281 			bpf_error("expression rejects all packets");
282 	}
283 	program->bf_insns = icode_to_fcode(root, &len);
284 	program->bf_len = len;
285 
286 	freechunks();
287 	return (0);
288 }
289 
290 /*
291  * Backpatch the blocks in 'list' to 'target'.  The 'sense' field indicates
292  * which of the jt and jf fields has been resolved and which is a pointer
293  * back to another unresolved block (or nil).  At least one of the fields
294  * in each block is already resolved.
295  */
296 static void
297 backpatch(list, target)
298 	struct block *list, *target;
299 {
300 	struct block *next;
301 
302 	while (list) {
303 		if (!list->sense) {
304 			next = JT(list);
305 			JT(list) = target;
306 		} else {
307 			next = JF(list);
308 			JF(list) = target;
309 		}
310 		list = next;
311 	}
312 }
313 
314 /*
315  * Merge the lists in b0 and b1, using the 'sense' field to indicate
316  * which of jt and jf is the link.
317  */
318 static void
319 merge(b0, b1)
320 	struct block *b0, *b1;
321 {
322 	register struct block **p = &b0;
323 
324 	/* Find end of list. */
325 	while (*p)
326 		p = !((*p)->sense) ? &JT(*p) : &JF(*p);
327 
328 	/* Concatenate the lists. */
329 	*p = b1;
330 }
331 
332 void
333 finish_parse(p)
334 	struct block *p;
335 {
336 	backpatch(p, gen_retblk(snaplen));
337 	p->sense = !p->sense;
338 	backpatch(p, gen_retblk(0));
339 	root = p->head;
340 }
341 
342 void
343 gen_and(b0, b1)
344 	struct block *b0, *b1;
345 {
346 	backpatch(b0, b1->head);
347 	b0->sense = !b0->sense;
348 	b1->sense = !b1->sense;
349 	merge(b1, b0);
350 	b1->sense = !b1->sense;
351 	b1->head = b0->head;
352 }
353 
354 void
355 gen_or(b0, b1)
356 	struct block *b0, *b1;
357 {
358 	b0->sense = !b0->sense;
359 	backpatch(b0, b1->head);
360 	b0->sense = !b0->sense;
361 	merge(b1, b0);
362 	b1->head = b0->head;
363 }
364 
365 void
366 gen_not(b)
367 	struct block *b;
368 {
369 	b->sense = !b->sense;
370 }
371 
372 static struct block *
373 gen_cmp(offset, size, v)
374 	u_int offset, size;
375 	long v;
376 {
377 	struct slist *s;
378 	struct block *b;
379 
380 	s = new_stmt(BPF_LD|BPF_ABS|size);
381 	s->s.k = offset;
382 
383 	b = new_block(JMP(BPF_JEQ));
384 	b->stmts = s;
385 	b->s.k = v;
386 
387 	return b;
388 }
389 
390 static struct block *
391 gen_mcmp(offset, size, v, mask)
392 	u_int offset, size;
393 	long v;
394 	u_long mask;
395 {
396 	struct block *b = gen_cmp(offset, size, v);
397 	struct slist *s;
398 
399 	if (mask != 0xffffffff) {
400 		s = new_stmt(BPF_ALU|BPF_AND|BPF_K);
401 		s->s.k = mask;
402 		b->stmts->next = s;
403 	}
404 	return b;
405 }
406 
407 static struct block *
408 gen_bcmp(offset, size, v)
409 	u_int offset, size;
410 	u_char *v;
411 {
412 	struct block *b, *tmp;
413 
414 	b = NULL;
415 	while (size >= 4) {
416 		u_char *p = &v[size - 4];
417 		long w = (p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3];
418 		tmp = gen_cmp(offset + size - 4, BPF_W, w);
419 		if (b != NULL)
420 			gen_and(b, tmp);
421 		b = tmp;
422 		size -= 4;
423 	}
424 	while (size >= 2) {
425 		u_char *p = &v[size - 2];
426 		long w = (p[0] << 8) | p[1];
427 		tmp = gen_cmp(offset + size - 2, BPF_H, w);
428 		if (b != NULL)
429 			gen_and(b, tmp);
430 		b = tmp;
431 		size -= 2;
432 	}
433 	if (size > 0) {
434 		tmp = gen_cmp(offset, BPF_B, (long)v[0]);
435 		if (b != NULL)
436 			gen_and(b, tmp);
437 		b = tmp;
438 	}
439 	return b;
440 }
441 
442 /*
443  * Various code constructs need to know the layout of the data link
444  * layer.  These variables give the necessary offsets.  off_linktype
445  * is set to -1 for no encapsulation, in which case, IP is assumed.
446  */
447 static u_int off_linktype;
448 static u_int off_nl;
449 static int linktype;
450 #ifdef FDDI
451 extern int fddipad;
452 #endif
453 
454 static void
455 init_linktype(type)
456 	int type;
457 {
458 	linktype = type;
459 
460 	switch (type) {
461 
462 	case DLT_EN10MB:
463 		off_linktype = 12;
464 		off_nl = 14;
465 		return;
466 
467 	case DLT_SLIP:
468 		/*
469 		 * SLIP doesn't have a link level type.  The 16 byte
470 		 * header is hacked into our SLIP driver.
471 		 */
472 		off_linktype = -1;
473 		off_nl = 16;
474 		return;
475 
476 	case DLT_NULL:
477 		off_linktype = -1;
478 		off_nl = 0;
479 		return;
480 
481 	case DLT_PPP:
482 		off_linktype = 2;
483 		off_nl = 4;
484 		return;
485 
486 #ifdef FDDI
487 	case DLT_FDDI:
488 		/*
489 		 * FDDI doesn't really have a link-level type field.
490 		 * We assume that SSAP = SNAP is being used and pick
491 		 * out the encapsulated Ethernet type.
492 		 */
493 		off_linktype = 19 + fddipad;
494 		off_nl = 21 + fddipad;
495 		return;
496 #endif
497 
498 	case DLT_IEEE802:
499 		off_linktype = 20;
500 		off_nl = 22;
501 		return;
502 	}
503 	bpf_error("unknown data link type 0x%x", linktype);
504 	/* NOTREACHED */
505 }
506 
507 static struct block *
508 gen_uncond(rsense)
509 	int rsense;
510 {
511 	struct block *b;
512 	struct slist *s;
513 
514 	s = new_stmt(BPF_LD|BPF_IMM);
515 	s->s.k = !rsense;
516 	b = new_block(JMP(BPF_JEQ));
517 	b->stmts = s;
518 
519 	return b;
520 }
521 
522 static inline struct block *
523 gen_true()
524 {
525 	return gen_uncond(1);
526 }
527 
528 static inline struct block *
529 gen_false()
530 {
531 	return gen_uncond(0);
532 }
533 
534 static struct block *
535 gen_linktype(proto)
536 	int proto;
537 {
538 	switch (linktype) {
539 	case DLT_SLIP:
540 		if (proto == ETHERTYPE_IP)
541 			return gen_true();
542 		else
543 			return gen_false();
544 
545 	case DLT_PPP:
546 		if (proto == ETHERTYPE_IP)
547 			proto = 0x0021;		/* XXX - need ppp.h defs */
548 		break;
549 	}
550 	return gen_cmp(off_linktype, BPF_H, (long)proto);
551 }
552 
553 static struct block *
554 gen_hostop(addr, mask, dir, proto, src_off, dst_off)
555 	u_long addr;
556 	u_long mask;
557 	int dir, proto;
558 	u_int src_off, dst_off;
559 {
560 	struct block *b0, *b1;
561 	u_int offset;
562 
563 	switch (dir) {
564 
565 	case Q_SRC:
566 		offset = src_off;
567 		break;
568 
569 	case Q_DST:
570 		offset = dst_off;
571 		break;
572 
573 	case Q_AND:
574 		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
575 		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
576 		gen_and(b0, b1);
577 		return b1;
578 
579 	case Q_OR:
580 	case Q_DEFAULT:
581 		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
582 		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
583 		gen_or(b0, b1);
584 		return b1;
585 
586 	default:
587 		abort();
588 	}
589 	b0 = gen_linktype(proto);
590 	b1 = gen_mcmp(offset, BPF_W, (long)addr, mask);
591 	gen_and(b0, b1);
592 	return b1;
593 }
594 
595 static struct block *
596 gen_ehostop(eaddr, dir)
597 	u_char *eaddr;
598 	int dir;
599 {
600 	struct block *b0, *b1;
601 
602 	switch (dir) {
603 	case Q_SRC:
604 		return gen_bcmp(6, 6, eaddr);
605 
606 	case Q_DST:
607 		return gen_bcmp(0, 6, eaddr);
608 
609 	case Q_AND:
610 		b0 = gen_ehostop(eaddr, Q_SRC);
611 		b1 = gen_ehostop(eaddr, Q_DST);
612 		gen_and(b0, b1);
613 		return b1;
614 
615 	case Q_DEFAULT:
616 	case Q_OR:
617 		b0 = gen_ehostop(eaddr, Q_SRC);
618 		b1 = gen_ehostop(eaddr, Q_DST);
619 		gen_or(b0, b1);
620 		return b1;
621 	}
622 	abort();
623 	/* NOTREACHED */
624 }
625 
626 #ifdef FDDI
627 /*
628  * Like gen_ehostop, but for DLT_FDDI
629  */
630 static struct block *
631 gen_fhostop(eaddr, dir)
632 	u_char *eaddr;
633 	int dir;
634 {
635 	struct block *b0, *b1;
636 
637 	switch (dir) {
638 	case Q_SRC:
639 		return gen_bcmp(6 + 1 + fddipad, 6, eaddr);
640 
641 	case Q_DST:
642 		return gen_bcmp(0 + 1 + fddipad, 6, eaddr);
643 
644 	case Q_AND:
645 		b0 = gen_fhostop(eaddr, Q_SRC);
646 		b1 = gen_fhostop(eaddr, Q_DST);
647 		gen_and(b0, b1);
648 		return b1;
649 
650 	case Q_DEFAULT:
651 	case Q_OR:
652 		b0 = gen_fhostop(eaddr, Q_SRC);
653 		b1 = gen_fhostop(eaddr, Q_DST);
654 		gen_or(b0, b1);
655 		return b1;
656 	}
657 	abort();
658 	/* NOTREACHED */
659 }
660 #endif
661 
662 /*
663  * This is quite tricky because there may be pad bytes in front of the
664  * DECNET header, and then there are two possible data packet formats that
665  * carry both src and dst addresses, plus 5 packet types in a format that
666  * carries only the src node, plus 2 types that use a different format and
667  * also carry just the src node.
668  *
669  * Yuck.
670  *
671  * Instead of doing those all right, we just look for data packets with
672  * 0 or 1 bytes of padding.  If you want to look at other packets, that
673  * will require a lot more hacking.
674  *
675  * To add support for filtering on DECNET "areas" (network numbers)
676  * one would want to add a "mask" argument to this routine.  That would
677  * make the filter even more inefficient, although one could be clever
678  * and not generate masking instructions if the mask is 0xFFFF.
679  */
680 static struct block *
681 gen_dnhostop(addr, dir, base_off)
682 	u_long addr;
683 	int dir;
684 	u_int base_off;
685 {
686 	struct block *b0, *b1, *b2, *tmp;
687 	u_int offset_lh;	/* offset if long header is received */
688 	u_int offset_sh;	/* offset if short header is received */
689 
690 	switch (dir) {
691 
692 	case Q_DST:
693 		offset_sh = 1;	/* follows flags */
694 		offset_lh = 7;	/* flgs,darea,dsubarea,HIORD */
695 		break;
696 
697 	case Q_SRC:
698 		offset_sh = 3;	/* follows flags, dstnode */
699 		offset_lh = 15;	/* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
700 		break;
701 
702 	case Q_AND:
703 		/* Inefficient because we do our Calvinball dance twice */
704 		b0 = gen_dnhostop(addr, Q_SRC, base_off);
705 		b1 = gen_dnhostop(addr, Q_DST, base_off);
706 		gen_and(b0, b1);
707 		return b1;
708 
709 	case Q_OR:
710 	case Q_DEFAULT:
711 		/* Inefficient because we do our Calvinball dance twice */
712 		b0 = gen_dnhostop(addr, Q_SRC, base_off);
713 		b1 = gen_dnhostop(addr, Q_DST, base_off);
714 		gen_or(b0, b1);
715 		return b1;
716 
717 	default:
718 		abort();
719 	}
720 	b0 = gen_linktype(ETHERTYPE_DN);
721 	/* Check for pad = 1, long header case */
722 	tmp = gen_mcmp(base_off + 2, BPF_H,
723 				(long)ntohs(0x0681), (long)ntohs(0x07FF));
724 	b1 = gen_cmp(base_off + 2 + 1 + offset_lh, BPF_H, (long)ntohs(addr));
725 	gen_and(tmp, b1);
726 	/* Check for pad = 0, long header case */
727 	tmp = gen_mcmp(base_off + 2, BPF_B, (long)0x06, (long)0x7);
728 	b2 = gen_cmp(base_off + 2 + offset_lh, BPF_H, (long)ntohs(addr));
729 	gen_and(tmp, b2);
730 	gen_or(b2, b1);
731 	/* Check for pad = 1, short header case */
732 	tmp = gen_mcmp(base_off + 2, BPF_H,
733 				(long)ntohs(0x0281), (long)ntohs(0x07FF));
734 	b2 = gen_cmp(base_off + 2 + 1 + offset_sh, BPF_H, (long)ntohs(addr));
735 	gen_and(tmp, b2);
736 	gen_or(b2, b1);
737 	/* Check for pad = 0, short header case */
738 	tmp = gen_mcmp(base_off + 2, BPF_B, (long)0x02, (long)0x7);
739 	b2 = gen_cmp(base_off + 2 + offset_sh, BPF_H, (long)ntohs(addr));
740 	gen_and(tmp, b2);
741 	gen_or(b2, b1);
742 
743 	/* Combine with test for linktype */
744 	gen_and(b0, b1);
745 	return b1;
746 }
747 
748 static struct block *
749 gen_host(addr, mask, proto, dir)
750 	u_long addr;
751 	u_long mask;
752 	int proto;
753 	int dir;
754 {
755 	struct block *b0, *b1;
756 
757 	switch (proto) {
758 
759 	case Q_DEFAULT:
760 		b0 = gen_host(addr, mask, Q_IP, dir);
761 		b1 = gen_host(addr, mask, Q_ARP, dir);
762 		gen_or(b0, b1);
763 		b0 = gen_host(addr, mask, Q_RARP, dir);
764 		gen_or(b1, b0);
765 		return b0;
766 
767 	case Q_IP:
768 		return gen_hostop(addr, mask, dir, ETHERTYPE_IP,
769 				  off_nl + 12, off_nl + 16);
770 
771 	case Q_RARP:
772 		return gen_hostop(addr, mask, dir, ETHERTYPE_REVARP,
773 				  off_nl + 14, off_nl + 24);
774 
775 	case Q_ARP:
776 		return gen_hostop(addr, mask, dir, ETHERTYPE_ARP,
777 				  off_nl + 14, off_nl + 24);
778 
779 	case Q_TCP:
780 		bpf_error("'tcp' modifier applied to host");
781 
782 	case Q_UDP:
783 		bpf_error("'udp' modifier applied to host");
784 
785 	case Q_ICMP:
786 		bpf_error("'icmp' modifier applied to host");
787 
788 	case Q_DECNET:
789 		return gen_dnhostop(addr, dir, off_nl);
790 
791 	case Q_LAT:
792 		bpf_error("LAT host filtering not implemented");
793 
794 	case Q_MOPDL:
795 		bpf_error("MOPDL host filtering not implemented");
796 
797 	case Q_MOPRC:
798 		bpf_error("MOPRC host filtering not implemented");
799 
800 	default:
801 		abort();
802 	}
803 	/* NOTREACHED */
804 }
805 
806 static struct block *
807 gen_gateway(eaddr, alist, proto, dir)
808 	u_char *eaddr;
809 	u_long **alist;
810 	int proto;
811 	int dir;
812 {
813 	struct block *b0, *b1, *tmp;
814 
815 	if (dir != 0)
816 		bpf_error("direction applied to 'gateway'");
817 
818 	switch (proto) {
819 	case Q_DEFAULT:
820 	case Q_IP:
821 	case Q_ARP:
822 	case Q_RARP:
823 		if (linktype == DLT_EN10MB)
824 			b0 = gen_ehostop(eaddr, Q_OR);
825 #ifdef FDDI
826 		else if (linktype == DLT_FDDI)
827 			b0 = gen_fhostop(eaddr, Q_OR);
828 #endif
829 		else
830 			bpf_error("'gateway' supported only on ethernet or FDDI");
831 
832 		b1 = gen_host(**alist++, 0xffffffffL, proto, Q_OR);
833 		while (*alist) {
834 			tmp = gen_host(**alist++, 0xffffffffL, proto, Q_OR);
835 			gen_or(b1, tmp);
836 			b1 = tmp;
837 		}
838 		gen_not(b1);
839 		gen_and(b0, b1);
840 		return b1;
841 	}
842 	bpf_error("illegal modifier of 'gateway'");
843 	/* NOTREACHED */
844 }
845 
846 struct block *
847 gen_proto_abbrev(proto)
848 	int proto;
849 {
850 	struct block *b0, *b1;
851 
852 	switch (proto) {
853 
854 	case Q_TCP:
855 		b0 = gen_linktype(ETHERTYPE_IP);
856 		b1 = gen_cmp(off_nl + 9, BPF_B, (long)IPPROTO_TCP);
857 		gen_and(b0, b1);
858 		break;
859 
860 	case Q_UDP:
861 		b0 =  gen_linktype(ETHERTYPE_IP);
862 		b1 = gen_cmp(off_nl + 9, BPF_B, (long)IPPROTO_UDP);
863 		gen_and(b0, b1);
864 		break;
865 
866 	case Q_ICMP:
867 		b0 =  gen_linktype(ETHERTYPE_IP);
868 		b1 = gen_cmp(off_nl + 9, BPF_B, (long)IPPROTO_ICMP);
869 		gen_and(b0, b1);
870 		break;
871 
872 	case Q_IP:
873 		b1 =  gen_linktype(ETHERTYPE_IP);
874 		break;
875 
876 	case Q_ARP:
877 		b1 =  gen_linktype(ETHERTYPE_ARP);
878 		break;
879 
880 	case Q_RARP:
881 		b1 =  gen_linktype(ETHERTYPE_REVARP);
882 		break;
883 
884 	case Q_LINK:
885 		bpf_error("link layer applied in wrong context");
886 
887 	case Q_DECNET:
888 		b1 =  gen_linktype(ETHERTYPE_DN);
889 		break;
890 
891 	case Q_LAT:
892 		b1 =  gen_linktype(ETHERTYPE_LAT);
893 		break;
894 
895 	case Q_MOPDL:
896 		b1 =  gen_linktype(ETHERTYPE_MOPDL);
897 		break;
898 
899 	case Q_MOPRC:
900 		b1 =  gen_linktype(ETHERTYPE_MOPRC);
901 		break;
902 
903 	default:
904 		abort();
905 	}
906 	return b1;
907 }
908 
909 static struct block *
910 gen_ipfrag()
911 {
912 	struct slist *s;
913 	struct block *b;
914 
915 	/* not ip frag */
916 	s = new_stmt(BPF_LD|BPF_H|BPF_ABS);
917 	s->s.k = off_nl + 6;
918 	b = new_block(JMP(BPF_JSET));
919 	b->s.k = 0x1fff;
920 	b->stmts = s;
921 	gen_not(b);
922 
923 	return b;
924 }
925 
926 static struct block *
927 gen_portatom(off, v)
928 	int off;
929 	long v;
930 {
931 	struct slist *s;
932 	struct block *b;
933 
934 	s = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
935 	s->s.k = off_nl;
936 
937 	s->next = new_stmt(BPF_LD|BPF_IND|BPF_H);
938 	s->next->s.k = off_nl + off;
939 
940 	b = new_block(JMP(BPF_JEQ));
941 	b->stmts = s;
942 	b->s.k = v;
943 
944 	return b;
945 }
946 
947 struct block *
948 gen_portop(port, proto, dir)
949 	int port, proto, dir;
950 {
951 	struct block *b0, *b1, *tmp;
952 
953 	/* ip proto 'proto' */
954 	tmp = gen_cmp(off_nl + 9, BPF_B, (long)proto);
955 	b0 = gen_ipfrag();
956 	gen_and(tmp, b0);
957 
958 	switch (dir) {
959 	case Q_SRC:
960 		b1 = gen_portatom(0, (long)port);
961 		break;
962 
963 	case Q_DST:
964 		b1 = gen_portatom(2, (long)port);
965 		break;
966 
967 	case Q_OR:
968 	case Q_DEFAULT:
969 		tmp = gen_portatom(0, (long)port);
970 		b1 = gen_portatom(2, (long)port);
971 		gen_or(tmp, b1);
972 		break;
973 
974 	case Q_AND:
975 		tmp = gen_portatom(0, (long)port);
976 		b1 = gen_portatom(2, (long)port);
977 		gen_and(tmp, b1);
978 		break;
979 
980 	default:
981 		abort();
982 	}
983 	gen_and(b0, b1);
984 
985 	return b1;
986 }
987 
988 static struct block *
989 gen_port(port, ip_proto, dir)
990 	int port;
991 	int ip_proto;
992 	int dir;
993 {
994 	struct block *b0, *b1, *tmp;
995 
996 	/* ether proto ip */
997 	b0 =  gen_linktype(ETHERTYPE_IP);
998 
999 	switch (ip_proto) {
1000 	case IPPROTO_UDP:
1001 	case IPPROTO_TCP:
1002 		b1 = gen_portop(port, ip_proto, dir);
1003 		break;
1004 
1005 	case PROTO_UNDEF:
1006 		tmp = gen_portop(port, IPPROTO_TCP, dir);
1007 		b1 = gen_portop(port, IPPROTO_UDP, dir);
1008 		gen_or(tmp, b1);
1009 		break;
1010 
1011 	default:
1012 		abort();
1013 	}
1014 	gen_and(b0, b1);
1015 	return b1;
1016 }
1017 
1018 static int
1019 lookup_proto(name, proto)
1020 	char *name;
1021 	int proto;
1022 {
1023 	int v;
1024 
1025 	switch (proto) {
1026 	case Q_DEFAULT:
1027 	case Q_IP:
1028 		v = pcap_nametoproto(name);
1029 		if (v == PROTO_UNDEF)
1030 			bpf_error("unknown ip proto '%s'", name);
1031 		break;
1032 
1033 	case Q_LINK:
1034 		/* XXX should look up h/w protocol type based on linktype */
1035 		v = pcap_nametoeproto(name);
1036 		if (v == PROTO_UNDEF)
1037 			bpf_error("unknown ether proto '%s'", name);
1038 		break;
1039 
1040 	default:
1041 		v = PROTO_UNDEF;
1042 		break;
1043 	}
1044 	return v;
1045 }
1046 
1047 static struct block *
1048 gen_proto(v, proto, dir)
1049 	int v;
1050 	int proto;
1051 	int dir;
1052 {
1053 	struct block *b0, *b1;
1054 
1055 	if (dir != Q_DEFAULT)
1056 		bpf_error("direction applied to 'proto'");
1057 
1058 	switch (proto) {
1059 	case Q_DEFAULT:
1060 	case Q_IP:
1061 		b0 = gen_linktype(ETHERTYPE_IP);
1062 		b1 = gen_cmp(off_nl + 9, BPF_B, (long)v);
1063 		gen_and(b0, b1);
1064 		return b1;
1065 
1066 	case Q_ARP:
1067 		bpf_error("arp does not encapsulate another protocol");
1068 		/* NOTREACHED */
1069 
1070 	case Q_RARP:
1071 		bpf_error("rarp does not encapsulate another protocol");
1072 		/* NOTREACHED */
1073 
1074 	case Q_DECNET:
1075 		bpf_error("decnet encapsulation is not specifiable");
1076 		/* NOTREACHED */
1077 
1078 	case Q_LAT:
1079 		bpf_error("lat does not encapsulate another protocol");
1080 		/* NOTREACHED */
1081 
1082 	case Q_MOPRC:
1083 		bpf_error("moprc does not encapsulate another protocol");
1084 		/* NOTREACHED */
1085 
1086 	case Q_MOPDL:
1087 		bpf_error("mopdl does not encapsulate another protocol");
1088 		/* NOTREACHED */
1089 
1090 	case Q_LINK:
1091 		return gen_linktype(v);
1092 
1093 	case Q_UDP:
1094 		bpf_error("'udp proto' is bogus");
1095 		/* NOTREACHED */
1096 
1097 	case Q_TCP:
1098 		bpf_error("'tcp proto' is bogus");
1099 		/* NOTREACHED */
1100 
1101 	case Q_ICMP:
1102 		bpf_error("'icmp proto' is bogus");
1103 		/* NOTREACHED */
1104 
1105 	default:
1106 		abort();
1107 		/* NOTREACHED */
1108 	}
1109 	/* NOTREACHED */
1110 }
1111 
1112 /*
1113  * Left justify 'addr' and return its resulting network mask.
1114  */
1115 static u_long
1116 net_mask(addr)
1117 	u_long *addr;
1118 {
1119 	register u_long m = 0xffffffff;
1120 
1121 	if (*addr)
1122 		while ((*addr & 0xff000000) == 0)
1123 			*addr <<= 8, m <<= 8;
1124 
1125 	return m;
1126 }
1127 
1128 struct block *
1129 gen_scode(name, q)
1130 	char *name;
1131 	struct qual q;
1132 {
1133 	int proto = q.proto;
1134 	int dir = q.dir;
1135 	u_char *eaddr;
1136 	u_long mask, addr, **alist;
1137 	struct block *b, *tmp;
1138 	int port, real_proto;
1139 
1140 	switch (q.addr) {
1141 
1142 	case Q_NET:
1143 		addr = pcap_nametonetaddr(name);
1144 		if (addr == 0)
1145 			bpf_error("unknown network '%s'", name);
1146 		mask = net_mask(&addr);
1147 		return gen_host(addr, mask, proto, dir);
1148 
1149 	case Q_DEFAULT:
1150 	case Q_HOST:
1151 		if (proto == Q_LINK) {
1152 			switch (linktype) {
1153 			case DLT_EN10MB:
1154 				eaddr = pcap_ether_hostton(name);
1155 				if (eaddr == NULL)
1156 					bpf_error("unknown ether host '%s'", name);
1157 				return gen_ehostop(eaddr, dir);
1158 
1159 #ifdef FDDI
1160 			case DLT_FDDI:
1161 				eaddr = pcap_ether_hostton(name);
1162 				if (eaddr == NULL)
1163 					bpf_error("unknown FDDI host '%s'", name);
1164 				return gen_fhostop(eaddr, dir);
1165 #endif
1166 			default:
1167 				bpf_error("only ethernet/FDDI supports link-level host name");
1168 				break;
1169 			}
1170 		} else if (proto == Q_DECNET) {
1171 			unsigned short dn_addr = __pcap_nametodnaddr(name);
1172 			/*
1173 			 * I don't think DECNET hosts can be multihomed, so
1174 			 * there is no need to build up a list of addresses
1175 			 */
1176 			return (gen_host(dn_addr, 0, proto, dir));
1177 		} else {
1178 			alist = pcap_nametoaddr(name);
1179 			if (alist == NULL || *alist == NULL)
1180 				bpf_error("unknown host '%s'", name);
1181 			b = gen_host(**alist++, 0xffffffffL, proto, dir);
1182 			while (*alist) {
1183 				tmp = gen_host(**alist++, 0xffffffffL,
1184 					       proto, dir);
1185 				gen_or(b, tmp);
1186 				b = tmp;
1187 			}
1188 			return b;
1189 		}
1190 
1191 	case Q_PORT:
1192 		if (proto != Q_DEFAULT && proto != Q_UDP && proto != Q_TCP)
1193 			bpf_error("illegal qualifier of 'port'");
1194 		if (pcap_nametoport(name, &port, &real_proto) == 0)
1195 			bpf_error("unknown port '%s'", name);
1196 		if (proto == Q_UDP) {
1197 			if (real_proto == IPPROTO_TCP)
1198 				bpf_error("port '%s' is tcp", name);
1199 			else
1200 				/* override PROTO_UNDEF */
1201 				real_proto = IPPROTO_UDP;
1202 		}
1203 		if (proto == Q_TCP) {
1204 			if (real_proto == IPPROTO_UDP)
1205 				bpf_error("port '%s' is udp", name);
1206 			else
1207 				/* override PROTO_UNDEF */
1208 				real_proto = IPPROTO_TCP;
1209 		}
1210 		return gen_port(port, real_proto, dir);
1211 
1212 	case Q_GATEWAY:
1213 		eaddr = pcap_ether_hostton(name);
1214 		if (eaddr == NULL)
1215 			bpf_error("unknown ether host: %s", name);
1216 
1217 		alist = pcap_nametoaddr(name);
1218 		if (alist == NULL || *alist == NULL)
1219 			bpf_error("unknown host '%s'", name);
1220 		return gen_gateway(eaddr, alist, proto, dir);
1221 
1222 	case Q_PROTO:
1223 		real_proto = lookup_proto(name, proto);
1224 		if (real_proto >= 0)
1225 			return gen_proto(real_proto, proto, dir);
1226 		else
1227 			bpf_error("unknown protocol: %s", name);
1228 
1229 	case Q_UNDEF:
1230 		syntax();
1231 		/* NOTREACHED */
1232 	}
1233 	abort();
1234 	/* NOTREACHED */
1235 }
1236 
1237 struct block *
1238 gen_ncode(v, q)
1239 	u_long v;
1240 	struct qual q;
1241 {
1242 	u_long mask;
1243 	int proto = q.proto;
1244 	int dir = q.dir;
1245 
1246 	switch (q.addr) {
1247 
1248 	case Q_DEFAULT:
1249 	case Q_HOST:
1250 	case Q_NET:
1251 		if (proto == Q_DECNET)
1252 			return gen_host(v, 0, proto, dir);
1253 		else if (proto == Q_LINK) {
1254 			bpf_error("illegal link layer address");
1255 		} else {
1256 			mask = net_mask(&v);
1257 			return gen_host(v, mask, proto, dir);
1258 		}
1259 
1260 	case Q_PORT:
1261 		if (proto == Q_UDP)
1262 			proto = IPPROTO_UDP;
1263 		else if (proto == Q_TCP)
1264 			proto = IPPROTO_TCP;
1265 		else if (proto == Q_DEFAULT)
1266 			proto = PROTO_UNDEF;
1267 		else
1268 			bpf_error("illegal qualifier of 'port'");
1269 
1270 		return gen_port((int)v, proto, dir);
1271 
1272 	case Q_GATEWAY:
1273 		bpf_error("'gateway' requires a name");
1274 		/* NOTREACHED */
1275 
1276 	case Q_PROTO:
1277 		return gen_proto((int)v, proto, dir);
1278 
1279 	case Q_UNDEF:
1280 		syntax();
1281 		/* NOTREACHED */
1282 
1283 	default:
1284 		abort();
1285 		/* NOTREACHED */
1286 	}
1287 	/* NOTREACHED */
1288 }
1289 
1290 struct block *
1291 gen_ecode(eaddr, q)
1292 	u_char *eaddr;
1293 	struct qual q;
1294 {
1295 	if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
1296 		if (linktype == DLT_EN10MB)
1297 			return gen_ehostop(eaddr, (int)q.dir);
1298 #ifdef FDDI
1299 		if (linktype == DLT_FDDI)
1300 			return gen_fhostop(eaddr, (int)q.dir);
1301 #endif
1302 	}
1303 	bpf_error("ethernet address used in non-ether expression");
1304 	/* NOTREACHED */
1305 }
1306 
1307 void
1308 sappend(s0, s1)
1309 	struct slist *s0, *s1;
1310 {
1311 	/*
1312 	 * This is definitely not the best way to do this, but the
1313 	 * lists will rarely get long.
1314 	 */
1315 	while (s0->next)
1316 		s0 = s0->next;
1317 	s0->next = s1;
1318 }
1319 
1320 static struct slist *
1321 xfer_to_x(a)
1322 	struct arth *a;
1323 {
1324 	struct slist *s;
1325 
1326 	s = new_stmt(BPF_LDX|BPF_MEM);
1327 	s->s.k = a->regno;
1328 	return s;
1329 }
1330 
1331 static struct slist *
1332 xfer_to_a(a)
1333 	struct arth *a;
1334 {
1335 	struct slist *s;
1336 
1337 	s = new_stmt(BPF_LD|BPF_MEM);
1338 	s->s.k = a->regno;
1339 	return s;
1340 }
1341 
1342 struct arth *
1343 gen_load(proto, index, size)
1344 	int proto;
1345 	struct arth *index;
1346 	int size;
1347 {
1348 	struct slist *s, *tmp;
1349 	struct block *b;
1350 	int regno = alloc_reg();
1351 
1352 	free_reg(index->regno);
1353 	switch (size) {
1354 
1355 	default:
1356 		bpf_error("data size must be 1, 2, or 4");
1357 
1358 	case 1:
1359 		size = BPF_B;
1360 		break;
1361 
1362 	case 2:
1363 		size = BPF_H;
1364 		break;
1365 
1366 	case 4:
1367 		size = BPF_W;
1368 		break;
1369 	}
1370 	switch (proto) {
1371 	default:
1372 		bpf_error("unsupported index operation");
1373 
1374 	case Q_LINK:
1375 		s = xfer_to_x(index);
1376 		tmp = new_stmt(BPF_LD|BPF_IND|size);
1377 		sappend(s, tmp);
1378 		sappend(index->s, s);
1379 		break;
1380 
1381 	case Q_IP:
1382 	case Q_ARP:
1383 	case Q_RARP:
1384 	case Q_DECNET:
1385 	case Q_LAT:
1386 	case Q_MOPRC:
1387 	case Q_MOPDL:
1388 		/* XXX Note that we assume a fixed link link header here. */
1389 		s = xfer_to_x(index);
1390 		tmp = new_stmt(BPF_LD|BPF_IND|size);
1391 		tmp->s.k = off_nl;
1392 		sappend(s, tmp);
1393 		sappend(index->s, s);
1394 
1395 		b = gen_proto_abbrev(proto);
1396 		if (index->b)
1397 			gen_and(index->b, b);
1398 		index->b = b;
1399 		break;
1400 
1401 	case Q_TCP:
1402 	case Q_UDP:
1403 	case Q_ICMP:
1404 		s = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
1405 		s->s.k = off_nl;
1406 		sappend(s, xfer_to_a(index));
1407 		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
1408 		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
1409 		sappend(s, tmp = new_stmt(BPF_LD|BPF_IND|size));
1410 		tmp->s.k = off_nl;
1411 		sappend(index->s, s);
1412 
1413 		gen_and(gen_proto_abbrev(proto), b = gen_ipfrag());
1414 		if (index->b)
1415 			gen_and(index->b, b);
1416 		index->b = b;
1417 		break;
1418 	}
1419 	index->regno = regno;
1420 	s = new_stmt(BPF_ST);
1421 	s->s.k = regno;
1422 	sappend(index->s, s);
1423 
1424 	return index;
1425 }
1426 
1427 struct block *
1428 gen_relation(code, a0, a1, reversed)
1429 	int code;
1430 	struct arth *a0, *a1;
1431 	int reversed;
1432 {
1433 	struct slist *s0, *s1, *s2;
1434 	struct block *b, *tmp;
1435 
1436 	s0 = xfer_to_x(a1);
1437 	s1 = xfer_to_a(a0);
1438 	s2 = new_stmt(BPF_ALU|BPF_SUB|BPF_X);
1439 	b = new_block(JMP(code));
1440 	if (reversed)
1441 		gen_not(b);
1442 
1443 	sappend(s1, s2);
1444 	sappend(s0, s1);
1445 	sappend(a1->s, s0);
1446 	sappend(a0->s, a1->s);
1447 
1448 	b->stmts = a0->s;
1449 
1450 	free_reg(a0->regno);
1451 	free_reg(a1->regno);
1452 
1453 	/* 'and' together protocol checks */
1454 	if (a0->b) {
1455 		if (a1->b) {
1456 			gen_and(a0->b, tmp = a1->b);
1457 		}
1458 		else
1459 			tmp = a0->b;
1460 	} else
1461 		tmp = a1->b;
1462 
1463 	if (tmp)
1464 		gen_and(tmp, b);
1465 
1466 	return b;
1467 }
1468 
1469 struct arth *
1470 gen_loadlen()
1471 {
1472 	int regno = alloc_reg();
1473 	struct arth *a = (struct arth *)newchunk(sizeof(*a));
1474 	struct slist *s;
1475 
1476 	s = new_stmt(BPF_LD|BPF_LEN);
1477 	s->next = new_stmt(BPF_ST);
1478 	s->next->s.k = regno;
1479 	a->s = s;
1480 	a->regno = regno;
1481 
1482 	return a;
1483 }
1484 
1485 struct arth *
1486 gen_loadi(val)
1487 	int val;
1488 {
1489 	struct arth *a;
1490 	struct slist *s;
1491 	int reg;
1492 
1493 	a = (struct arth *)newchunk(sizeof(*a));
1494 
1495 	reg = alloc_reg();
1496 
1497 	s = new_stmt(BPF_LD|BPF_IMM);
1498 	s->s.k = val;
1499 	s->next = new_stmt(BPF_ST);
1500 	s->next->s.k = reg;
1501 	a->s = s;
1502 	a->regno = reg;
1503 
1504 	return a;
1505 }
1506 
1507 struct arth *
1508 gen_neg(a)
1509 	struct arth *a;
1510 {
1511 	struct slist *s;
1512 
1513 	s = xfer_to_a(a);
1514 	sappend(a->s, s);
1515 	s = new_stmt(BPF_ALU|BPF_NEG);
1516 	s->s.k = 0;
1517 	sappend(a->s, s);
1518 	s = new_stmt(BPF_ST);
1519 	s->s.k = a->regno;
1520 	sappend(a->s, s);
1521 
1522 	return a;
1523 }
1524 
1525 struct arth *
1526 gen_arth(code, a0, a1)
1527 	int code;
1528 	struct arth *a0, *a1;
1529 {
1530 	struct slist *s0, *s1, *s2;
1531 
1532 	s0 = xfer_to_x(a1);
1533 	s1 = xfer_to_a(a0);
1534 	s2 = new_stmt(BPF_ALU|BPF_X|code);
1535 
1536 	sappend(s1, s2);
1537 	sappend(s0, s1);
1538 	sappend(a1->s, s0);
1539 	sappend(a0->s, a1->s);
1540 
1541 	free_reg(a1->regno);
1542 
1543 	s0 = new_stmt(BPF_ST);
1544 	a0->regno = s0->s.k = alloc_reg();
1545 	sappend(a0->s, s0);
1546 
1547 	return a0;
1548 }
1549 
1550 /*
1551  * Here we handle simple allocation of the scratch registers.
1552  * If too many registers are alloc'd, the allocator punts.
1553  */
1554 static int regused[BPF_MEMWORDS];
1555 static int curreg;
1556 
1557 /*
1558  * Return the next free register.
1559  */
1560 static int
1561 alloc_reg()
1562 {
1563 	int n = BPF_MEMWORDS;
1564 
1565 	while (--n >= 0) {
1566 		if (regused[curreg])
1567 			curreg = (curreg + 1) % BPF_MEMWORDS;
1568 		else {
1569 			regused[curreg] = 1;
1570 			return curreg;
1571 		}
1572 	}
1573 	bpf_error("too many registers needed to evaluate expression");
1574 	/* NOTREACHED */
1575 }
1576 
1577 /*
1578  * Return a register to the table so it can
1579  * be used later.
1580  */
1581 static void
1582 free_reg(n)
1583 	int n;
1584 {
1585 	regused[n] = 0;
1586 }
1587 
1588 static struct block *
1589 gen_len(jmp, n)
1590 	int jmp, n;
1591 {
1592 	struct slist *s;
1593 	struct block *b;
1594 
1595 	s = new_stmt(BPF_LD|BPF_LEN);
1596 	s->next = new_stmt(BPF_ALU|BPF_SUB|BPF_K);
1597 	s->next->s.k = n;
1598 	b = new_block(JMP(jmp));
1599 	b->stmts = s;
1600 
1601 	return b;
1602 }
1603 
1604 struct block *
1605 gen_greater(n)
1606 	int n;
1607 {
1608 	return gen_len(BPF_JGE, n);
1609 }
1610 
1611 struct block *
1612 gen_less(n)
1613 	int n;
1614 {
1615 	struct block *b;
1616 
1617 	b = gen_len(BPF_JGT, n);
1618 	gen_not(b);
1619 
1620 	return b;
1621 }
1622 
1623 struct block *
1624 gen_byteop(op, idx, val)
1625 	int op, idx, val;
1626 {
1627 	struct block *b;
1628 	struct slist *s;
1629 
1630 	switch (op) {
1631 	default:
1632 		abort();
1633 
1634 	case '=':
1635 		return gen_cmp((u_int)idx, BPF_B, (long)val);
1636 
1637 	case '<':
1638 		b = gen_cmp((u_int)idx, BPF_B, (long)val);
1639 		b->s.code = JMP(BPF_JGE);
1640 		gen_not(b);
1641 		return b;
1642 
1643 	case '>':
1644 		b = gen_cmp((u_int)idx, BPF_B, (long)val);
1645 		b->s.code = JMP(BPF_JGT);
1646 		return b;
1647 
1648 	case '|':
1649 		s = new_stmt(BPF_ALU|BPF_OR|BPF_K);
1650 		break;
1651 
1652 	case '&':
1653 		s = new_stmt(BPF_ALU|BPF_AND|BPF_K);
1654 		break;
1655 	}
1656 	s->s.k = val;
1657 	b = new_block(JMP(BPF_JEQ));
1658 	b->stmts = s;
1659 	gen_not(b);
1660 
1661 	return b;
1662 }
1663 
1664 struct block *
1665 gen_broadcast(proto)
1666 	int proto;
1667 {
1668 	u_long hostmask;
1669 	struct block *b0, *b1, *b2;
1670 	static u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1671 
1672 	switch (proto) {
1673 
1674 	case Q_DEFAULT:
1675 	case Q_LINK:
1676 		if (linktype == DLT_EN10MB)
1677 			return gen_ehostop(ebroadcast, Q_DST);
1678 #ifdef FDDI
1679 		if (linktype == DLT_FDDI)
1680 			return gen_fhostop(ebroadcast, Q_DST);
1681 #endif
1682 		bpf_error("not a broadcast link");
1683 		break;
1684 
1685 	case Q_IP:
1686 		b0 = gen_linktype(ETHERTYPE_IP);
1687 		hostmask = ~netmask;
1688 		b1 = gen_mcmp(off_nl + 16, BPF_W, (long)0, hostmask);
1689 		b2 = gen_mcmp(off_nl + 16, BPF_W,
1690 			      (long)(~0 & hostmask), hostmask);
1691 		gen_or(b1, b2);
1692 		gen_and(b0, b2);
1693 		return b2;
1694 	}
1695 	bpf_error("only ether/ip broadcast filters supported");
1696 }
1697 
1698 struct block *
1699 gen_multicast(proto)
1700 	int proto;
1701 {
1702 	register struct block *b0, *b1;
1703 	register struct slist *s;
1704 
1705 	switch (proto) {
1706 
1707 	case Q_DEFAULT:
1708 	case Q_LINK:
1709 		if (linktype == DLT_EN10MB) {
1710 			/* ether[0] & 1 != 0 */
1711 			s = new_stmt(BPF_LD|BPF_B|BPF_ABS);
1712 			s->s.k = 0;
1713 			b0 = new_block(JMP(BPF_JSET));
1714 			b0->s.k = 1;
1715 			b0->stmts = s;
1716 			return b0;
1717 		}
1718 
1719 		if (linktype == DLT_FDDI) {
1720 			/* XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX */
1721 			/* fddi[1] & 1 != 0 */
1722 			s = new_stmt(BPF_LD|BPF_B|BPF_ABS);
1723 			s->s.k = 1;
1724 			b0 = new_block(JMP(BPF_JSET));
1725 			b0->s.k = 1;
1726 			b0->stmts = s;
1727 			return b0;
1728 		}
1729 		/* Link not known to support multicasts */
1730 		break;
1731 
1732 	case Q_IP:
1733 		b0 = gen_linktype(ETHERTYPE_IP);
1734 		b1 = gen_cmp(off_nl + 16, BPF_B, (long)224);
1735 		b1->s.code = JMP(BPF_JGE);
1736 		gen_and(b0, b1);
1737 		return b1;
1738 	}
1739 	bpf_error("only IP multicast filters supported on ethernet/FDDI");
1740 }
1741 
1742 /*
1743  * generate command for inbound/outbound.  It's here so we can
1744  * make it link-type specific.  'dir' = 0 implies "inbound",
1745  * = 1 implies "outbound".
1746  */
1747 struct block *
1748 gen_inbound(dir)
1749 	int dir;
1750 {
1751 	register struct block *b0;
1752 
1753 	b0 = gen_relation(BPF_JEQ,
1754 			  gen_load(Q_LINK, gen_loadi(0), 1),
1755 			  gen_loadi(0),
1756 			  dir);
1757 	return (b0);
1758 }
1759