xref: /openbsd-src/lib/libossaudio/ossaudio.c (revision b2ea75c1b17e1a9a339660e7ed45cd24946b230e)
1 /*	$OpenBSD: ossaudio.c,v 1.3 2001/05/24 04:21:03 aaron Exp $	*/
2 /*	$NetBSD: ossaudio.c,v 1.5 1998/03/23 00:39:18 augustss Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *        This product includes software developed by the NetBSD
19  *        Foundation, Inc. and its contributors.
20  * 4. Neither the name of The NetBSD Foundation nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 /*
38  * This is an OSS (Linux) sound API emulator.
39  * It provides the essentials of the API.
40  */
41 
42 /* XXX This file is essentially the same as sys/compat/ossaudio.c.
43  * With some preprocessor magic it could be the same file.
44  */
45 
46 #include <string.h>
47 #include <sys/types.h>
48 #include <sys/ioctl.h>
49 #include <sys/audioio.h>
50 #include <sys/stat.h>
51 #include <errno.h>
52 
53 #include "soundcard.h"
54 #undef ioctl
55 
56 #define GET_DEV(com) ((com) & 0xff)
57 
58 #define TO_OSSVOL(x) ((x) * 100 / 255)
59 #define FROM_OSSVOL(x) ((x) * 255 / 100)
60 
61 static struct audiodevinfo *getdevinfo(int);
62 
63 static void setblocksize(int, struct audio_info *);
64 
65 static int audio_ioctl(int, unsigned long, void *);
66 static int mixer_ioctl(int, unsigned long, void *);
67 
68 #define INTARG (*(int*)argp)
69 
70 int
71 _oss_ioctl(int fd, unsigned long com, void *argp)
72 {
73 	if (IOCGROUP(com) == 'P')
74 		return audio_ioctl(fd, com, argp);
75 	else if (IOCGROUP(com) == 'M')
76 		return mixer_ioctl(fd, com, argp);
77 	else
78 		return ioctl(fd, com, argp);
79 }
80 
81 static int
82 audio_ioctl(int fd, unsigned long com, void *argp)
83 {
84 
85 	struct audio_info tmpinfo;
86 	struct audio_offset tmpoffs;
87 	struct audio_buf_info bufinfo;
88 	struct count_info cntinfo;
89 	struct audio_encoding tmpenc;
90 	u_int u;
91 	int idat, idata;
92 	int retval;
93 
94 	switch (com) {
95 	case SNDCTL_DSP_RESET:
96 		retval = ioctl(fd, AUDIO_FLUSH, 0);
97 		if (retval < 0)
98 			return retval;
99 		break;
100 	case SNDCTL_DSP_SYNC:
101 	case SNDCTL_DSP_POST:
102 		retval = ioctl(fd, AUDIO_DRAIN, 0);
103 		if (retval < 0)
104 			return retval;
105 		break;
106 	case SNDCTL_DSP_SPEED:
107 		AUDIO_INITINFO(&tmpinfo);
108 		tmpinfo.play.sample_rate =
109 		tmpinfo.record.sample_rate = INTARG;
110 		(void) ioctl(fd, AUDIO_SETINFO, &tmpinfo);
111 		/* fall into ... */
112 	case SOUND_PCM_READ_RATE:
113 		retval = ioctl(fd, AUDIO_GETINFO, &tmpinfo);
114 		if (retval < 0)
115 			return retval;
116 		INTARG = tmpinfo.play.sample_rate;
117 		break;
118 	case SNDCTL_DSP_STEREO:
119 		AUDIO_INITINFO(&tmpinfo);
120 		tmpinfo.play.channels =
121 		tmpinfo.record.channels = INTARG ? 2 : 1;
122 		(void) ioctl(fd, AUDIO_SETINFO, &tmpinfo);
123 		retval = ioctl(fd, AUDIO_GETINFO, &tmpinfo);
124 		if (retval < 0)
125 			return retval;
126 		INTARG = tmpinfo.play.channels - 1;
127 		break;
128 	case SNDCTL_DSP_GETBLKSIZE:
129 		retval = ioctl(fd, AUDIO_GETINFO, &tmpinfo);
130 		if (retval < 0)
131 			return retval;
132 		setblocksize(fd, &tmpinfo);
133 		INTARG = tmpinfo.blocksize;
134 		break;
135 	case SNDCTL_DSP_SETFMT:
136 		AUDIO_INITINFO(&tmpinfo);
137 		switch (INTARG) {
138 		case AFMT_MU_LAW:
139 			tmpinfo.play.precision =
140 			tmpinfo.record.precision = 8;
141 			tmpinfo.play.encoding =
142 			tmpinfo.record.encoding = AUDIO_ENCODING_ULAW;
143 			break;
144 		case AFMT_A_LAW:
145 			tmpinfo.play.precision =
146 			tmpinfo.record.precision = 8;
147 			tmpinfo.play.encoding =
148 			tmpinfo.record.encoding = AUDIO_ENCODING_ALAW;
149 			break;
150 		case AFMT_U8:
151 			tmpinfo.play.precision =
152 			tmpinfo.record.precision = 8;
153 			tmpinfo.play.encoding =
154 			tmpinfo.record.encoding = AUDIO_ENCODING_ULINEAR;
155 			break;
156 		case AFMT_S8:
157 			tmpinfo.play.precision =
158 			tmpinfo.record.precision = 8;
159 			tmpinfo.play.encoding =
160 			tmpinfo.record.encoding = AUDIO_ENCODING_SLINEAR;
161 			break;
162 		case AFMT_S16_LE:
163 			tmpinfo.play.precision =
164 			tmpinfo.record.precision = 16;
165 			tmpinfo.play.encoding =
166 			tmpinfo.record.encoding = AUDIO_ENCODING_SLINEAR_LE;
167 			break;
168 		case AFMT_S16_BE:
169 			tmpinfo.play.precision =
170 			tmpinfo.record.precision = 16;
171 			tmpinfo.play.encoding =
172 			tmpinfo.record.encoding = AUDIO_ENCODING_SLINEAR_BE;
173 			break;
174 		case AFMT_U16_LE:
175 			tmpinfo.play.precision =
176 			tmpinfo.record.precision = 16;
177 			tmpinfo.play.encoding =
178 			tmpinfo.record.encoding = AUDIO_ENCODING_ULINEAR_LE;
179 			break;
180 		case AFMT_U16_BE:
181 			tmpinfo.play.precision =
182 			tmpinfo.record.precision = 16;
183 			tmpinfo.play.encoding =
184 			tmpinfo.record.encoding = AUDIO_ENCODING_ULINEAR_BE;
185 			break;
186 		default:
187 			return EINVAL;
188 		}
189 		(void) ioctl(fd, AUDIO_SETINFO, &tmpinfo);
190 		/* fall into ... */
191 	case SOUND_PCM_READ_BITS:
192 		retval = ioctl(fd, AUDIO_GETINFO, &tmpinfo);
193 		if (retval < 0)
194 			return retval;
195 		switch (tmpinfo.play.encoding) {
196 		case AUDIO_ENCODING_ULAW:
197 			idat = AFMT_MU_LAW;
198 			break;
199 		case AUDIO_ENCODING_ALAW:
200 			idat = AFMT_A_LAW;
201 			break;
202 		case AUDIO_ENCODING_SLINEAR_LE:
203 			if (tmpinfo.play.precision == 16)
204 				idat = AFMT_S16_LE;
205 			else
206 				idat = AFMT_S8;
207 			break;
208 		case AUDIO_ENCODING_SLINEAR_BE:
209 			if (tmpinfo.play.precision == 16)
210 				idat = AFMT_S16_BE;
211 			else
212 				idat = AFMT_S8;
213 			break;
214 		case AUDIO_ENCODING_ULINEAR_LE:
215 			if (tmpinfo.play.precision == 16)
216 				idat = AFMT_U16_LE;
217 			else
218 				idat = AFMT_U8;
219 			break;
220 		case AUDIO_ENCODING_ULINEAR_BE:
221 			if (tmpinfo.play.precision == 16)
222 				idat = AFMT_U16_BE;
223 			else
224 				idat = AFMT_U8;
225 			break;
226 		case AUDIO_ENCODING_ADPCM:
227 			idat = AFMT_IMA_ADPCM;
228 			break;
229 		}
230 		INTARG = idat;
231 		break;
232 	case SNDCTL_DSP_CHANNELS:
233 		AUDIO_INITINFO(&tmpinfo);
234 		tmpinfo.play.channels =
235 		tmpinfo.record.channels = INTARG;
236 		(void) ioctl(fd, AUDIO_SETINFO, &tmpinfo);
237 		/* fall into ... */
238 	case SOUND_PCM_READ_CHANNELS:
239 		retval = ioctl(fd, AUDIO_GETINFO, &tmpinfo);
240 		if (retval < 0)
241 			return retval;
242 		INTARG = tmpinfo.play.channels;
243 		break;
244 	case SOUND_PCM_WRITE_FILTER:
245 	case SOUND_PCM_READ_FILTER:
246 		errno = EINVAL;
247 		return -1; /* XXX unimplemented */
248 	case SNDCTL_DSP_SUBDIVIDE:
249 		retval = ioctl(fd, AUDIO_GETINFO, &tmpinfo);
250 		if (retval < 0)
251 			return retval;
252 		setblocksize(fd, &tmpinfo);
253 		idat = INTARG;
254 		if (idat == 0)
255 			idat = tmpinfo.play.buffer_size / tmpinfo.blocksize;
256 		idat = (tmpinfo.play.buffer_size / idat) & -4;
257 		AUDIO_INITINFO(&tmpinfo);
258 		tmpinfo.blocksize = idat;
259 		retval = ioctl(fd, AUDIO_SETINFO, &tmpinfo);
260 		if (retval < 0)
261 			return retval;
262 		INTARG = tmpinfo.play.buffer_size / tmpinfo.blocksize;
263 		break;
264 	case SNDCTL_DSP_SETFRAGMENT:
265 		AUDIO_INITINFO(&tmpinfo);
266 		idat = INTARG;
267 		if ((idat & 0xffff) < 4 || (idat & 0xffff) > 17)
268 			return EINVAL;
269 		tmpinfo.blocksize = 1 << (idat & 0xffff);
270 		tmpinfo.hiwat = (idat >> 16) & 0x7fff;
271 		if (tmpinfo.hiwat == 0)	/* 0 means set to max */
272 			tmpinfo.hiwat = 65536;
273 		(void) ioctl(fd, AUDIO_SETINFO, &tmpinfo);
274 		retval = ioctl(fd, AUDIO_GETINFO, &tmpinfo);
275 		if (retval < 0)
276 			return retval;
277 		u = tmpinfo.blocksize;
278 		for(idat = 0; u>1; idat++, u >>= 1)
279 			;
280 		idat |= (tmpinfo.hiwat & 0x7fff) << 16;
281 		INTARG = idat;
282 		break;
283 	case SNDCTL_DSP_GETFMTS:
284 		for(idat = 0, tmpenc.index = 0;
285 		    ioctl(fd, AUDIO_GETENC, &tmpenc) == 0;
286 		    tmpenc.index++) {
287 			if (tmpenc.flags & AUDIO_ENCODINGFLAG_EMULATED)
288 				continue; /* Don't report emulated modes */
289 			switch(tmpenc.encoding) {
290 			case AUDIO_ENCODING_ULAW:
291 				idat |= AFMT_MU_LAW;
292 				break;
293 			case AUDIO_ENCODING_ALAW:
294 				idat |= AFMT_A_LAW;
295 				break;
296 			case AUDIO_ENCODING_SLINEAR:
297 				idat |= AFMT_S8;
298 				break;
299 			case AUDIO_ENCODING_SLINEAR_LE:
300 				if (tmpenc.precision == 16)
301 					idat |= AFMT_S16_LE;
302 				else
303 					idat |= AFMT_S8;
304 				break;
305 			case AUDIO_ENCODING_SLINEAR_BE:
306 				if (tmpenc.precision == 16)
307 					idat |= AFMT_S16_BE;
308 				else
309 					idat |= AFMT_S8;
310 				break;
311 			case AUDIO_ENCODING_ULINEAR:
312 				idat |= AFMT_U8;
313 				break;
314 			case AUDIO_ENCODING_ULINEAR_LE:
315 				if (tmpenc.precision == 16)
316 					idat |= AFMT_U16_LE;
317 				else
318 					idat |= AFMT_U8;
319 				break;
320 			case AUDIO_ENCODING_ULINEAR_BE:
321 				if (tmpenc.precision == 16)
322 					idat |= AFMT_U16_BE;
323 				else
324 					idat |= AFMT_U8;
325 				break;
326 			case AUDIO_ENCODING_ADPCM:
327 				idat |= AFMT_IMA_ADPCM;
328 				break;
329 			default:
330 				break;
331 			}
332 		}
333 		INTARG = idat;
334 		break;
335 	case SNDCTL_DSP_GETOSPACE:
336 		retval = ioctl(fd, AUDIO_GETINFO, &tmpinfo);
337 		if (retval < 0)
338 			return retval;
339 		setblocksize(fd, &tmpinfo);
340 		bufinfo.fragsize = tmpinfo.blocksize;
341 		bufinfo.fragments = tmpinfo.hiwat -
342 		    (tmpinfo.play.seek + tmpinfo.blocksize - 1)/tmpinfo.blocksize;
343 		bufinfo.fragstotal = tmpinfo.hiwat;
344 		bufinfo.bytes = tmpinfo.hiwat * tmpinfo.blocksize - tmpinfo.play.seek;
345 		*(struct audio_buf_info *)argp = bufinfo;
346 		break;
347 	case SNDCTL_DSP_GETISPACE:
348 		retval = ioctl(fd, AUDIO_GETINFO, (caddr_t)&tmpinfo);
349 		if (retval < 0)
350 			return retval;
351 		setblocksize(fd, &tmpinfo);
352 		bufinfo.fragsize = tmpinfo.blocksize;
353 		bufinfo.fragments = tmpinfo.hiwat -
354 		    (tmpinfo.record.seek + tmpinfo.blocksize - 1)/tmpinfo.blocksize;
355 		bufinfo.fragstotal = tmpinfo.hiwat;
356 		bufinfo.bytes = tmpinfo.hiwat * tmpinfo.blocksize - tmpinfo.record.seek;
357 		*(struct audio_buf_info *)argp = bufinfo;
358 		break;
359 	case SNDCTL_DSP_NONBLOCK:
360 		idat = 1;
361 		retval = ioctl(fd, FIONBIO, &idat);
362 		if (retval < 0)
363 			return retval;
364 		break;
365 	case SNDCTL_DSP_GETCAPS:
366 		retval = ioctl(fd, AUDIO_GETPROPS, (caddr_t)&idata);
367 		if (retval < 0)
368 			return retval;
369 		idat = DSP_CAP_TRIGGER; /* pretend we have trigger */
370 		if (idata & AUDIO_PROP_FULLDUPLEX)
371 			idat |= DSP_CAP_DUPLEX;
372 		if (idata & AUDIO_PROP_MMAP)
373 			idat |= DSP_CAP_MMAP;
374 		INTARG = idat;
375 		break;
376 #if 0
377 	case SNDCTL_DSP_GETTRIGGER:
378 		retval = ioctl(fd, AUDIO_GETINFO, (caddr_t)&tmpinfo);
379 		if (retval < 0)
380 			return retval;
381 		idat = (tmpinfo.play.pause ? 0 : PCM_ENABLE_OUTPUT) |
382 		       (tmpinfo.record.pause ? 0 : PCM_ENABLE_INPUT);
383 		retval = copyout(&idat, SCARG(uap, data), sizeof idat);
384 		if (retval < 0)
385 			return retval;
386 		break;
387 	case SNDCTL_DSP_SETTRIGGER:
388 		AUDIO_INITINFO(&tmpinfo);
389 		retval = copyin(SCARG(uap, data), &idat, sizeof idat);
390 		if (retval < 0)
391 			return retval;
392 		tmpinfo.play.pause = (idat & PCM_ENABLE_OUTPUT) == 0;
393 		tmpinfo.record.pause = (idat & PCM_ENABLE_INPUT) == 0;
394 		(void) ioctl(fd, AUDIO_SETINFO, (caddr_t)&tmpinfo);
395 		retval = copyout(&idat, SCARG(uap, data), sizeof idat);
396 		if (retval < 0)
397 			return retval;
398 		break;
399 #else
400 	case SNDCTL_DSP_GETTRIGGER:
401 	case SNDCTL_DSP_SETTRIGGER:
402 		/* XXX Do nothing for now. */
403 		INTARG = PCM_ENABLE_OUTPUT;
404 		break;
405 #endif
406 	case SNDCTL_DSP_GETIPTR:
407 		retval = ioctl(fd, AUDIO_GETIOFFS, &tmpoffs);
408 		if (retval < 0)
409 			return retval;
410 		cntinfo.bytes = tmpoffs.samples;
411 		cntinfo.blocks = tmpoffs.deltablks;
412 		cntinfo.ptr = tmpoffs.offset;
413 		*(struct count_info *)argp = cntinfo;
414 		break;
415 	case SNDCTL_DSP_GETOPTR:
416 		retval = ioctl(fd, AUDIO_GETOOFFS, &tmpoffs);
417 		if (retval < 0)
418 			return retval;
419 		cntinfo.bytes = tmpoffs.samples;
420 		cntinfo.blocks = tmpoffs.deltablks;
421 		cntinfo.ptr = tmpoffs.offset;
422 		*(struct count_info *)argp = cntinfo;
423 		break;
424 	case SNDCTL_DSP_MAPINBUF:
425 	case SNDCTL_DSP_MAPOUTBUF:
426 	case SNDCTL_DSP_SETSYNCRO:
427 	case SNDCTL_DSP_SETDUPLEX:
428 	case SNDCTL_DSP_PROFILE:
429 		errno = EINVAL;
430 		return -1; /* XXX unimplemented */
431 	default:
432 		errno = EINVAL;
433 		return -1;
434 	}
435 
436 	return 0;
437 }
438 
439 
440 /* If the NetBSD mixer device should have more than 32 devices
441  * some will not be available to Linux */
442 #define NETBSD_MAXDEVS 32
443 struct audiodevinfo {
444 	int done;
445 	dev_t dev;
446 	int16_t devmap[SOUND_MIXER_NRDEVICES],
447 	        rdevmap[NETBSD_MAXDEVS];
448         u_long devmask, recmask, stereomask;
449 	u_long caps, source;
450 };
451 
452 /*
453  * Collect the audio device information to allow faster
454  * emulation of the Linux mixer ioctls.  Cache the information
455  * to eliminate the overhead of repeating all the ioctls needed
456  * to collect the information.
457  */
458 static struct audiodevinfo *
459 getdevinfo(int fd)
460 {
461 	mixer_devinfo_t mi;
462 	int i;
463 	static struct {
464 		char *name;
465 		int code;
466 	} *dp, devs[] = {
467 		{ AudioNmicrophone,	SOUND_MIXER_MIC },
468 		{ AudioNline,		SOUND_MIXER_LINE },
469 		{ AudioNcd,		SOUND_MIXER_CD },
470 		{ AudioNdac,		SOUND_MIXER_PCM },
471 		{ AudioNrecord,		SOUND_MIXER_IMIX },
472 		{ AudioNmaster,		SOUND_MIXER_VOLUME },
473 		{ AudioNtreble,		SOUND_MIXER_TREBLE },
474 		{ AudioNbass,		SOUND_MIXER_BASS },
475 		{ AudioNspeaker,	SOUND_MIXER_SPEAKER },
476 /*		{ AudioNheadphone,	?? },*/
477 		{ AudioNoutput,		SOUND_MIXER_OGAIN },
478 		{ AudioNinput,		SOUND_MIXER_IGAIN },
479 /*		{ AudioNmaster,		SOUND_MIXER_SPEAKER },*/
480 /*		{ AudioNstereo,		?? },*/
481 /*		{ AudioNmono,		?? },*/
482 		{ AudioNfmsynth,	SOUND_MIXER_SYNTH },
483 /*		{ AudioNwave,		SOUND_MIXER_PCM },*/
484 		{ AudioNmidi,		SOUND_MIXER_SYNTH },
485 /*		{ AudioNmixerout,	?? },*/
486 		{ 0, -1 }
487 	};
488 	static struct audiodevinfo devcache = { 0 };
489 	struct audiodevinfo *di = &devcache;
490 	struct stat sb;
491 
492 	/* Figure out what device it is so we can check if the
493 	 * cached data is valid.
494 	 */
495 	if (fstat(fd, &sb) < 0)
496 		return 0;
497 	if (di->done && di->dev == sb.st_dev)
498 		return di;
499 
500 	di->done = 1;
501 	di->dev = sb.st_dev;
502 	di->devmask = 0;
503 	di->recmask = 0;
504 	di->stereomask = 0;
505 	di->source = -1;
506 	di->caps = 0;
507 	for(i = 0; i < SOUND_MIXER_NRDEVICES; i++)
508 		di->devmap[i] = -1;
509 	for(i = 0; i < NETBSD_MAXDEVS; i++)
510 		di->rdevmap[i] = -1;
511 	for(i = 0; i < NETBSD_MAXDEVS; i++) {
512 		mi.index = i;
513 		if (ioctl(fd, AUDIO_MIXER_DEVINFO, &mi) < 0)
514 			break;
515 		switch(mi.type) {
516 		case AUDIO_MIXER_VALUE:
517 			for(dp = devs; dp->name; dp++)
518 		    		if (strcmp(dp->name, mi.label.name) == 0)
519 					break;
520 			if (dp->code >= 0) {
521 				di->devmap[dp->code] = i;
522 				di->rdevmap[i] = dp->code;
523 				di->devmask |= 1 << dp->code;
524 				if (mi.un.v.num_channels == 2)
525 					di->stereomask |= 1 << dp->code;
526 			}
527 			break;
528 		case AUDIO_MIXER_ENUM:
529 			if (strcmp(mi.label.name, AudioNsource) == 0) {
530 				int j;
531 				di->source = i;
532 				for(j = 0; j < mi.un.e.num_mem; j++)
533 					di->recmask |= 1 << di->rdevmap[mi.un.e.member[j].ord];
534 				di->caps = SOUND_CAP_EXCL_INPUT;
535 			}
536 			break;
537 		case AUDIO_MIXER_SET:
538 			if (strcmp(mi.label.name, AudioNsource) == 0) {
539 				int j;
540 				di->source = i;
541 				for(j = 0; j < mi.un.s.num_mem; j++) {
542 					int k, mask = mi.un.s.member[j].mask;
543 					if (mask) {
544 						for(k = 0; !(mask & 1); mask >>= 1, k++)
545 							;
546 						di->recmask |= 1 << di->rdevmap[k];
547 					}
548 				}
549 			}
550 			break;
551 		}
552 	}
553 	return di;
554 }
555 
556 int
557 mixer_ioctl(int fd, unsigned long com, void *argp)
558 {
559 	struct audiodevinfo *di;
560 	mixer_ctrl_t mc;
561 	int idat;
562 	int i;
563 	int retval;
564 	int l, r, n;
565 
566 	di = getdevinfo(fd);
567 	if (di == 0)
568 		return -1;
569 
570 	switch (com) {
571 	case SOUND_MIXER_READ_RECSRC:
572 		if (di->source == -1)
573 			return EINVAL;
574 		mc.dev = di->source;
575 		if (di->caps & SOUND_CAP_EXCL_INPUT) {
576 			mc.type = AUDIO_MIXER_ENUM;
577 			retval = ioctl(fd, AUDIO_MIXER_READ, &mc);
578 			if (retval < 0)
579 				return retval;
580 			idat = 1 << di->rdevmap[mc.un.ord];
581 		} else {
582 			int k;
583 			unsigned int mask;
584 			mc.type = AUDIO_MIXER_SET;
585 			retval = ioctl(fd, AUDIO_MIXER_READ, &mc);
586 			if (retval < 0)
587 				return retval;
588 			idat = 0;
589 			for(mask = mc.un.mask, k = 0; mask; mask >>= 1, k++)
590 				if (mask & 1)
591 					idat |= 1 << di->rdevmap[k];
592 		}
593 		break;
594 	case SOUND_MIXER_READ_DEVMASK:
595 		idat = di->devmask;
596 		break;
597 	case SOUND_MIXER_READ_RECMASK:
598 		idat = di->recmask;
599 		break;
600 	case SOUND_MIXER_READ_STEREODEVS:
601 		idat = di->stereomask;
602 		break;
603 	case SOUND_MIXER_READ_CAPS:
604 		idat = di->caps;
605 		break;
606 	case SOUND_MIXER_WRITE_RECSRC:
607 	case SOUND_MIXER_WRITE_R_RECSRC:
608 		if (di->source == -1)
609 			return EINVAL;
610 		mc.dev = di->source;
611 		idat = INTARG;
612 		if (di->caps & SOUND_CAP_EXCL_INPUT) {
613 			mc.type = AUDIO_MIXER_ENUM;
614 			for(i = 0; i < SOUND_MIXER_NRDEVICES; i++)
615 				if (idat & (1 << i))
616 					break;
617 			if (i >= SOUND_MIXER_NRDEVICES ||
618 			    di->devmap[i] == -1)
619 				return EINVAL;
620 			mc.un.ord = di->devmap[i];
621 		} else {
622 			mc.type = AUDIO_MIXER_SET;
623 			mc.un.mask = 0;
624 			for(i = 0; i < SOUND_MIXER_NRDEVICES; i++) {
625 				if (idat & (1 << i)) {
626 					if (di->devmap[i] == -1)
627 						return EINVAL;
628 					mc.un.mask |= 1 << di->devmap[i];
629 				}
630 			}
631 		}
632 		return ioctl(fd, AUDIO_MIXER_WRITE, &mc);
633 	default:
634 		if (MIXER_READ(SOUND_MIXER_FIRST) <= com &&
635 		    com < MIXER_READ(SOUND_MIXER_NRDEVICES)) {
636 			n = GET_DEV(com);
637 			if (di->devmap[n] == -1)
638 				return EINVAL;
639 			mc.dev = di->devmap[n];
640 			mc.type = AUDIO_MIXER_VALUE;
641 		    doread:
642 			mc.un.value.num_channels = di->stereomask & (1<<n) ? 2 : 1;
643 			retval = ioctl(fd, AUDIO_MIXER_READ, &mc);
644 			if (retval < 0)
645 				return retval;
646 			if (mc.type != AUDIO_MIXER_VALUE)
647 				return EINVAL;
648 			if (mc.un.value.num_channels != 2) {
649 				l = r = mc.un.value.level[AUDIO_MIXER_LEVEL_MONO];
650 			} else {
651 				l = mc.un.value.level[AUDIO_MIXER_LEVEL_LEFT];
652 				r = mc.un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
653 			}
654 			idat = TO_OSSVOL(l) | (TO_OSSVOL(r) << 8);
655 			break;
656 		} else if ((MIXER_WRITE_R(SOUND_MIXER_FIRST) <= com &&
657 			   com < MIXER_WRITE_R(SOUND_MIXER_NRDEVICES)) ||
658 			   (MIXER_WRITE(SOUND_MIXER_FIRST) <= com &&
659 			   com < MIXER_WRITE(SOUND_MIXER_NRDEVICES))) {
660 			n = GET_DEV(com);
661 			if (di->devmap[n] == -1)
662 				return EINVAL;
663 			idat = INTARG;
664 			l = FROM_OSSVOL( idat       & 0xff);
665 			r = FROM_OSSVOL((idat >> 8) & 0xff);
666 			mc.dev = di->devmap[n];
667 			mc.type = AUDIO_MIXER_VALUE;
668 			if (di->stereomask & (1<<n)) {
669 				mc.un.value.num_channels = 2;
670 				mc.un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
671 				mc.un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
672 			} else {
673 				mc.un.value.num_channels = 1;
674 				mc.un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
675 			}
676 			retval = ioctl(fd, AUDIO_MIXER_WRITE, &mc);
677 			if (retval < 0)
678 				return retval;
679 			if (MIXER_WRITE(SOUND_MIXER_FIRST) <= com &&
680 			   com < MIXER_WRITE(SOUND_MIXER_NRDEVICES))
681 				return 0;
682 			goto doread;
683 		} else {
684 			errno = EINVAL;
685 			return -1;
686 		}
687 	}
688 	INTARG = idat;
689 	return 0;
690 }
691 
692 /*
693  * Check that the blocksize is a power of 2 as OSS wants.
694  * If not, set it to be.
695  */
696 static void
697 setblocksize(int fd, struct audio_info *info)
698 {
699 	struct audio_info set;
700 	int s;
701 
702 	if (info->blocksize & (info->blocksize-1)) {
703 		for(s = 32; s < info->blocksize; s <<= 1)
704 			;
705 		AUDIO_INITINFO(&set);
706 		set.blocksize = s;
707 		ioctl(fd, AUDIO_SETINFO, &set);
708 		ioctl(fd, AUDIO_GETINFO, info);
709 	}
710 }
711 
712