xref: /openbsd-src/lib/libm/src/s_tan.c (revision 5054e3e78af0749a9bb00ba9a024b3ee2d90290f)
1 /* @(#)s_tan.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 /* tan(x)
14  * Return tangent function of x.
15  *
16  * kernel function:
17  *	__kernel_tan		... tangent function on [-pi/4,pi/4]
18  *	__ieee754_rem_pio2	... argument reduction routine
19  *
20  * Method.
21  *      Let S,C and T denote the sin, cos and tan respectively on
22  *	[-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
23  *	in [-pi/4 , +pi/4], and let n = k mod 4.
24  *	We have
25  *
26  *          n        sin(x)      cos(x)        tan(x)
27  *     ----------------------------------------------------------
28  *	    0	       S	   C		 T
29  *	    1	       C	  -S		-1/T
30  *	    2	      -S	  -C		 T
31  *	    3	      -C	   S		-1/T
32  *     ----------------------------------------------------------
33  *
34  * Special cases:
35  *      Let trig be any of sin, cos, or tan.
36  *      trig(+-INF)  is NaN, with signals;
37  *      trig(NaN)    is that NaN;
38  *
39  * Accuracy:
40  *	TRIG(x) returns trig(x) nearly rounded
41  */
42 
43 #include <sys/cdefs.h>
44 #include <float.h>
45 #include <math.h>
46 
47 #include "math_private.h"
48 
49 double
50 tan(double x)
51 {
52 	double y[2],z=0.0;
53 	int32_t n, ix;
54 
55     /* High word of x. */
56 	GET_HIGH_WORD(ix,x);
57 
58     /* |x| ~< pi/4 */
59 	ix &= 0x7fffffff;
60 	if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1);
61 
62     /* tan(Inf or NaN) is NaN */
63 	else if (ix>=0x7ff00000) return x-x;		/* NaN */
64 
65     /* argument reduction needed */
66 	else {
67 	    n = __ieee754_rem_pio2(x,y);
68 	    return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /*   1 -- n even
69 							-1 -- n odd */
70 	}
71 }
72 
73 #if LDBL_MANT_DIG == 53
74 #ifdef __weak_alias
75 __weak_alias(tanl, tan);
76 #endif /* __weak_alias */
77 #endif /* LDBL_MANT_DIG == 53 */
78