xref: /openbsd-src/lib/libm/src/s_fmal.c (revision d13be5d47e4149db2549a9828e244d59dbc43f15)
1 /*	$OpenBSD: s_fmal.c,v 1.1 2011/07/06 00:02:42 martynas Exp $	*/
2 
3 /*-
4  * Copyright (c) 2005 David Schultz <das@FreeBSD.ORG>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #if 0
31 __FBSDID("$FreeBSD: src/lib/msun/src/s_fmal.c,v 1.4 2008/04/03 06:14:51 das Exp $");
32 #endif
33 
34 #include <fenv.h>
35 #include <float.h>
36 #include <math.h>
37 
38 /*
39  * Fused multiply-add: Compute x * y + z with a single rounding error.
40  *
41  * We use scaling to avoid overflow/underflow, along with the
42  * canonical precision-doubling technique adapted from:
43  *
44  *	Dekker, T.  A Floating-Point Technique for Extending the
45  *	Available Precision.  Numer. Math. 18, 224-242 (1971).
46  */
47 long double
48 fmal(long double x, long double y, long double z)
49 {
50 #if LDBL_MANT_DIG == 64
51 	static const long double split = 0x1p32L + 1.0;
52 #elif LDBL_MANT_DIG == 113
53 	static const long double split = 0x1p57L + 1.0;
54 #endif
55 	long double xs, ys, zs;
56 	long double c, cc, hx, hy, p, q, tx, ty;
57 	long double r, rr, s;
58 	int oround;
59 	int ex, ey, ez;
60 	int spread;
61 
62 	/*
63 	 * Handle special cases. The order of operations and the particular
64 	 * return values here are crucial in handling special cases involving
65 	 * infinities, NaNs, overflows, and signed zeroes correctly.
66 	 */
67 	if (x == 0.0 || y == 0.0)
68 		return (x * y + z);
69 	if (z == 0.0)
70 		return (x * y);
71 	if (!isfinite(x) || !isfinite(y))
72 		return (x * y + z);
73 	if (!isfinite(z))
74 		return (z);
75 
76 	xs = frexpl(x, &ex);
77 	ys = frexpl(y, &ey);
78 	zs = frexpl(z, &ez);
79 	oround = fegetround();
80 	spread = ex + ey - ez;
81 
82 	/*
83 	 * If x * y and z are many orders of magnitude apart, the scaling
84 	 * will overflow, so we handle these cases specially.  Rounding
85 	 * modes other than FE_TONEAREST are painful.
86 	 */
87 	if (spread > LDBL_MANT_DIG * 2) {
88 		fenv_t env;
89 		feraiseexcept(FE_INEXACT);
90 		switch(oround) {
91 		case FE_TONEAREST:
92 			return (x * y);
93 		case FE_TOWARDZERO:
94 			if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
95 				return (x * y);
96 			feholdexcept(&env);
97 			r = x * y;
98 			if (!fetestexcept(FE_INEXACT))
99 				r = nextafterl(r, 0);
100 			feupdateenv(&env);
101 			return (r);
102 		case FE_DOWNWARD:
103 			if (z > 0.0)
104 				return (x * y);
105 			feholdexcept(&env);
106 			r = x * y;
107 			if (!fetestexcept(FE_INEXACT))
108 				r = nextafterl(r, -INFINITY);
109 			feupdateenv(&env);
110 			return (r);
111 		default:	/* FE_UPWARD */
112 			if (z < 0.0)
113 				return (x * y);
114 			feholdexcept(&env);
115 			r = x * y;
116 			if (!fetestexcept(FE_INEXACT))
117 				r = nextafterl(r, INFINITY);
118 			feupdateenv(&env);
119 			return (r);
120 		}
121 	}
122 	if (spread < -LDBL_MANT_DIG) {
123 		feraiseexcept(FE_INEXACT);
124 		if (!isnormal(z))
125 			feraiseexcept(FE_UNDERFLOW);
126 		switch (oround) {
127 		case FE_TONEAREST:
128 			return (z);
129 		case FE_TOWARDZERO:
130 			if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
131 				return (z);
132 			else
133 				return (nextafterl(z, 0));
134 		case FE_DOWNWARD:
135 			if (x > 0.0 ^ y < 0.0)
136 				return (z);
137 			else
138 				return (nextafterl(z, -INFINITY));
139 		default:	/* FE_UPWARD */
140 			if (x > 0.0 ^ y < 0.0)
141 				return (nextafterl(z, INFINITY));
142 			else
143 				return (z);
144 		}
145 	}
146 
147 	/*
148 	 * Use Dekker's algorithm to perform the multiplication and
149 	 * subsequent addition in twice the machine precision.
150 	 * Arrange so that x * y = c + cc, and x * y + z = r + rr.
151 	 */
152 	fesetround(FE_TONEAREST);
153 
154 	p = xs * split;
155 	hx = xs - p;
156 	hx += p;
157 	tx = xs - hx;
158 
159 	p = ys * split;
160 	hy = ys - p;
161 	hy += p;
162 	ty = ys - hy;
163 
164 	p = hx * hy;
165 	q = hx * ty + tx * hy;
166 	c = p + q;
167 	cc = p - c + q + tx * ty;
168 
169 	zs = ldexpl(zs, -spread);
170 	r = c + zs;
171 	s = r - c;
172 	rr = (c - (r - s)) + (zs - s) + cc;
173 
174 	spread = ex + ey;
175 	if (spread + ilogbl(r) > -16383) {
176 		fesetround(oround);
177 		r = r + rr;
178 	} else {
179 		/*
180 		 * The result is subnormal, so we round before scaling to
181 		 * avoid double rounding.
182 		 */
183 		p = ldexpl(copysignl(0x1p-16382L, r), -spread);
184 		c = r + p;
185 		s = c - r;
186 		cc = (r - (c - s)) + (p - s) + rr;
187 		fesetround(oround);
188 		r = (c + cc) - p;
189 	}
190 	return (ldexpl(r, spread));
191 }
192