xref: /openbsd-src/lib/libm/src/s_csqrt.c (revision d13be5d47e4149db2549a9828e244d59dbc43f15)
1 /*	$OpenBSD: s_csqrt.c,v 1.2 2011/07/08 19:25:31 martynas Exp $	*/
2 /*
3  * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
4  *
5  * Permission to use, copy, modify, and distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 /* LINTLIBRARY */
19 
20 /*							csqrt()
21  *
22  *	Complex square root
23  *
24  *
25  *
26  * SYNOPSIS:
27  *
28  * double complex csqrt();
29  * double complex z, w;
30  *
31  * w = csqrt (z);
32  *
33  *
34  *
35  * DESCRIPTION:
36  *
37  *
38  * If z = x + iy,  r = |z|, then
39  *
40  *                       1/2
41  * Re w  =  [ (r + x)/2 ]   ,
42  *
43  *                       1/2
44  * Im w  =  [ (r - x)/2 ]   .
45  *
46  * Cancellation error in r-x or r+x is avoided by using the
47  * identity  2 Re w Im w  =  y.
48  *
49  * Note that -w is also a square root of z.  The root chosen
50  * is always in the right half plane and Im w has the same sign as y.
51  *
52  *
53  *
54  * ACCURACY:
55  *
56  *                      Relative error:
57  * arithmetic   domain     # trials      peak         rms
58  *    DEC       -10,+10     25000       3.2e-17     9.6e-18
59  *    IEEE      -10,+10   1,000,000     2.9e-16     6.1e-17
60  *
61  */
62 
63 #include <sys/cdefs.h>
64 #include <complex.h>
65 #include <float.h>
66 #include <math.h>
67 
68 double complex
69 csqrt(double complex z)
70 {
71 	double complex w;
72 	double x, y, r, t, scale;
73 
74 	x = creal (z);
75 	y = cimag (z);
76 
77 	if (y == 0.0) {
78 		if (x == 0.0) {
79 			w = 0.0 + y * I;
80 		}
81 		else {
82 			r = fabs (x);
83 			r = sqrt (r);
84 			if (x < 0.0) {
85 				w = 0.0 + r * I;
86 			}
87 			else {
88 				w = r + y * I;
89 			}
90 		}
91 		return (w);
92 	}
93 	if (x == 0.0) {
94 		r = fabs (y);
95 		r = sqrt (0.5*r);
96 		if (y > 0)
97 			w = r + r * I;
98 		else
99 			w = r - r * I;
100 		return (w);
101 	}
102 	/* Rescale to avoid internal overflow or underflow.  */
103 	if ((fabs(x) > 4.0) || (fabs(y) > 4.0)) {
104 		x *= 0.25;
105 		y *= 0.25;
106 		scale = 2.0;
107 	}
108 	else {
109 		x *= 1.8014398509481984e16;  /* 2^54 */
110 		y *= 1.8014398509481984e16;
111 		scale = 7.450580596923828125e-9; /* 2^-27 */
112 #if 0
113 		x *= 4.0;
114 		y *= 4.0;
115 		scale = 0.5;
116 #endif
117 	}
118 	w = x + y * I;
119 	r = cabs(w);
120 	if (x > 0) {
121 		t = sqrt(0.5 * r + 0.5 * x);
122 		r = scale * fabs((0.5 * y) / t);
123 		t *= scale;
124 	}
125 	else {
126 		r = sqrt( 0.5 * r - 0.5 * x );
127 		t = scale * fabs( (0.5 * y) / r );
128 		r *= scale;
129 	}
130 	if (y < 0)
131 		w = t - r * I;
132 	else
133 		w = t + r * I;
134 	return (w);
135 }
136 
137 #if	LDBL_MANT_DIG == 53
138 #ifdef	lint
139 /* PROTOLIB1 */
140 long double complex csqrtl(long double complex);
141 #else	/* lint */
142 __weak_alias(csqrtl, csqrt);
143 #endif	/* lint */
144 #endif	/* LDBL_MANT_DIG == 53 */
145