1*2f2c0062Sguenther /* $OpenBSD: s_expm1l.c,v 1.2 2016/09/12 19:47:02 guenther Exp $ */
249393c00Smartynas
349393c00Smartynas /*
449393c00Smartynas * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
549393c00Smartynas *
649393c00Smartynas * Permission to use, copy, modify, and distribute this software for any
749393c00Smartynas * purpose with or without fee is hereby granted, provided that the above
849393c00Smartynas * copyright notice and this permission notice appear in all copies.
949393c00Smartynas *
1049393c00Smartynas * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
1149393c00Smartynas * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
1249393c00Smartynas * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
1349393c00Smartynas * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
1449393c00Smartynas * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
1549393c00Smartynas * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
1649393c00Smartynas * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
1749393c00Smartynas */
1849393c00Smartynas
1949393c00Smartynas /* expm1l.c
2049393c00Smartynas *
2149393c00Smartynas * Exponential function, minus 1
2249393c00Smartynas * 128-bit long double precision
2349393c00Smartynas *
2449393c00Smartynas *
2549393c00Smartynas *
2649393c00Smartynas * SYNOPSIS:
2749393c00Smartynas *
2849393c00Smartynas * long double x, y, expm1l();
2949393c00Smartynas *
3049393c00Smartynas * y = expm1l( x );
3149393c00Smartynas *
3249393c00Smartynas *
3349393c00Smartynas *
3449393c00Smartynas * DESCRIPTION:
3549393c00Smartynas *
3649393c00Smartynas * Returns e (2.71828...) raised to the x power, minus one.
3749393c00Smartynas *
3849393c00Smartynas * Range reduction is accomplished by separating the argument
3949393c00Smartynas * into an integer k and fraction f such that
4049393c00Smartynas *
4149393c00Smartynas * x k f
4249393c00Smartynas * e = 2 e.
4349393c00Smartynas *
4449393c00Smartynas * An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1
4549393c00Smartynas * in the basic range [-0.5 ln 2, 0.5 ln 2].
4649393c00Smartynas *
4749393c00Smartynas *
4849393c00Smartynas * ACCURACY:
4949393c00Smartynas *
5049393c00Smartynas * Relative error:
5149393c00Smartynas * arithmetic domain # trials peak rms
5249393c00Smartynas * IEEE -79,+MAXLOG 100,000 1.7e-34 4.5e-35
5349393c00Smartynas *
5449393c00Smartynas */
5549393c00Smartynas
5649393c00Smartynas #include <errno.h>
5749393c00Smartynas #include <math.h>
5849393c00Smartynas
5949393c00Smartynas #include "math_private.h"
6049393c00Smartynas
6149393c00Smartynas /* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x)
6249393c00Smartynas -.5 ln 2 < x < .5 ln 2
6349393c00Smartynas Theoretical peak relative error = 8.1e-36 */
6449393c00Smartynas
6549393c00Smartynas static const long double
6649393c00Smartynas P0 = 2.943520915569954073888921213330863757240E8L,
6749393c00Smartynas P1 = -5.722847283900608941516165725053359168840E7L,
6849393c00Smartynas P2 = 8.944630806357575461578107295909719817253E6L,
6949393c00Smartynas P3 = -7.212432713558031519943281748462837065308E5L,
7049393c00Smartynas P4 = 4.578962475841642634225390068461943438441E4L,
7149393c00Smartynas P5 = -1.716772506388927649032068540558788106762E3L,
7249393c00Smartynas P6 = 4.401308817383362136048032038528753151144E1L,
7349393c00Smartynas P7 = -4.888737542888633647784737721812546636240E-1L,
7449393c00Smartynas Q0 = 1.766112549341972444333352727998584753865E9L,
7549393c00Smartynas Q1 = -7.848989743695296475743081255027098295771E8L,
7649393c00Smartynas Q2 = 1.615869009634292424463780387327037251069E8L,
7749393c00Smartynas Q3 = -2.019684072836541751428967854947019415698E7L,
7849393c00Smartynas Q4 = 1.682912729190313538934190635536631941751E6L,
7949393c00Smartynas Q5 = -9.615511549171441430850103489315371768998E4L,
8049393c00Smartynas Q6 = 3.697714952261803935521187272204485251835E3L,
8149393c00Smartynas Q7 = -8.802340681794263968892934703309274564037E1L,
8249393c00Smartynas /* Q8 = 1.000000000000000000000000000000000000000E0 */
8349393c00Smartynas /* C1 + C2 = ln 2 */
8449393c00Smartynas
8549393c00Smartynas C1 = 6.93145751953125E-1L,
8649393c00Smartynas C2 = 1.428606820309417232121458176568075500134E-6L,
8749393c00Smartynas /* ln (2^16384 * (1 - 2^-113)) */
8849393c00Smartynas maxlog = 1.1356523406294143949491931077970764891253E4L,
8949393c00Smartynas /* ln 2^-114 */
9049393c00Smartynas minarg = -7.9018778583833765273564461846232128760607E1L, big = 1e4932L;
9149393c00Smartynas
9249393c00Smartynas
9349393c00Smartynas long double
expm1l(long double x)9449393c00Smartynas expm1l(long double x)
9549393c00Smartynas {
9649393c00Smartynas long double px, qx, xx;
9749393c00Smartynas int32_t ix, sign;
9849393c00Smartynas ieee_quad_shape_type u;
9949393c00Smartynas int k;
10049393c00Smartynas
10149393c00Smartynas /* Detect infinity and NaN. */
10249393c00Smartynas u.value = x;
10349393c00Smartynas ix = u.parts32.mswhi;
10449393c00Smartynas sign = ix & 0x80000000;
10549393c00Smartynas ix &= 0x7fffffff;
10649393c00Smartynas if (ix >= 0x7fff0000)
10749393c00Smartynas {
10849393c00Smartynas /* Infinity. */
10949393c00Smartynas if (((ix & 0xffff) | u.parts32.mswlo | u.parts32.lswhi |
11049393c00Smartynas u.parts32.lswlo) == 0)
11149393c00Smartynas {
11249393c00Smartynas if (sign)
11349393c00Smartynas return -1.0L;
11449393c00Smartynas else
11549393c00Smartynas return x;
11649393c00Smartynas }
11749393c00Smartynas /* NaN. No invalid exception. */
11849393c00Smartynas return x;
11949393c00Smartynas }
12049393c00Smartynas
12149393c00Smartynas /* expm1(+- 0) = +- 0. */
12249393c00Smartynas if ((ix == 0) && (u.parts32.mswlo | u.parts32.lswhi | u.parts32.lswlo) == 0)
12349393c00Smartynas return x;
12449393c00Smartynas
12549393c00Smartynas /* Overflow. */
12649393c00Smartynas if (x > maxlog)
12749393c00Smartynas return (big * big);
12849393c00Smartynas
12949393c00Smartynas /* Minimum value. */
13049393c00Smartynas if (x < minarg)
13149393c00Smartynas return (4.0/big - 1.0L);
13249393c00Smartynas
13349393c00Smartynas /* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */
13449393c00Smartynas xx = C1 + C2; /* ln 2. */
13549393c00Smartynas px = floorl (0.5 + x / xx);
13649393c00Smartynas k = px;
13749393c00Smartynas /* remainder times ln 2 */
13849393c00Smartynas x -= px * C1;
13949393c00Smartynas x -= px * C2;
14049393c00Smartynas
14149393c00Smartynas /* Approximate exp(remainder ln 2). */
14249393c00Smartynas px = (((((((P7 * x
14349393c00Smartynas + P6) * x
14449393c00Smartynas + P5) * x + P4) * x + P3) * x + P2) * x + P1) * x + P0) * x;
14549393c00Smartynas
14649393c00Smartynas qx = (((((((x
14749393c00Smartynas + Q7) * x
14849393c00Smartynas + Q6) * x + Q5) * x + Q4) * x + Q3) * x + Q2) * x + Q1) * x + Q0;
14949393c00Smartynas
15049393c00Smartynas xx = x * x;
15149393c00Smartynas qx = x + (0.5 * xx + xx * px / qx);
15249393c00Smartynas
15349393c00Smartynas /* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2).
15449393c00Smartynas
15549393c00Smartynas We have qx = exp(remainder ln 2) - 1, so
15649393c00Smartynas exp(x) - 1 = 2^k (qx + 1) - 1
15749393c00Smartynas = 2^k qx + 2^k - 1. */
15849393c00Smartynas
15949393c00Smartynas px = ldexpl (1.0L, k);
16049393c00Smartynas x = px * qx + (px - 1.0);
16149393c00Smartynas return x;
16249393c00Smartynas }
163*2f2c0062Sguenther DEF_STD(expm1l);
164