xref: /openbsd-src/lib/libm/src/b_exp__D.c (revision a28daedfc357b214be5c701aa8ba8adb29a7f1c2)
1 /*	$OpenBSD: b_exp__D.c,v 1.4 2009/04/05 02:12:43 martynas Exp $	*/
2 /*
3  * Copyright (c) 1985, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of the University nor the names of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #ifndef lint
32 static char sccsid[] = "@(#)exp.c	8.1 (Berkeley) 6/4/93";
33 #endif /* not lint */
34 
35 /* EXP(X)
36  * RETURN THE EXPONENTIAL OF X
37  * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS)
38  * CODED IN C BY K.C. NG, 1/19/85;
39  * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85, 6/14/86.
40  *
41  * Required system supported functions:
42  *	scalb(x,n)
43  *	copysign(x,y)
44  *	finite(x)
45  *
46  * Method:
47  *	1. Argument Reduction: given the input x, find r and integer k such
48  *	   that
49  *	                   x = k*ln2 + r,  |r| <= 0.5*ln2 .
50  *	   r will be represented as r := z+c for better accuracy.
51  *
52  *	2. Compute exp(r) by
53  *
54  *		exp(r) = 1 + r + r*R1/(2-R1),
55  *	   where
56  *		R1 = x - x^2*(p1+x^2*(p2+x^2*(p3+x^2*(p4+p5*x^2)))).
57  *
58  *	3. exp(x) = 2^k * exp(r) .
59  *
60  * Special cases:
61  *	exp(INF) is INF, exp(NaN) is NaN;
62  *	exp(-INF)=  0;
63  *	for finite argument, only exp(0)=1 is exact.
64  *
65  * Accuracy:
66  *	exp(x) returns the exponential of x nearly rounded. In a test run
67  *	with 1,156,000 random arguments on a VAX, the maximum observed
68  *	error was 0.869 ulps (units in the last place).
69  */
70 
71 #include "math.h"
72 #include "math_private.h"
73 
74 static const double p1 = 0x1.555555555553ep-3;
75 static const double p2 = -0x1.6c16c16bebd93p-9;
76 static const double p3 = 0x1.1566aaf25de2cp-14;
77 static const double p4 = -0x1.bbd41c5d26bf1p-20;
78 static const double p5 = 0x1.6376972bea4d0p-25;
79 static const double ln2hi = 0x1.62e42fee00000p-1;
80 static const double ln2lo = 0x1.a39ef35793c76p-33;
81 static const double lnhuge = 0x1.6602b15b7ecf2p9;
82 static const double lntiny = -0x1.77af8ebeae354p9;
83 static const double invln2 = 0x1.71547652b82fep0;
84 
85 /* returns exp(r = x + c) for |c| < |x| with no overlap.  */
86 
87 double
88 __exp__D(double x, double c)
89 {
90 	double z, hi, lo;
91 	int k;
92 
93 	if (isnan(x))	/* x is NaN */
94 		return(x);
95 	if ( x <= lnhuge ) {
96 		if ( x >= lntiny ) {
97 
98 		    /* argument reduction : x --> x - k*ln2 */
99 			z = invln2*x;
100 			k = z + copysign(.5, x);
101 
102 		    /* express (x+c)-k*ln2 as hi-lo and let x=hi-lo rounded */
103 
104 			hi=(x-k*ln2hi);			/* Exact. */
105 			x= hi - (lo = k*ln2lo-c);
106 		    /* return 2^k*[1+x+x*c/(2+c)]  */
107 			z=x*x;
108 			c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
109 			c = (x*c)/(2.0-c);
110 
111 			return  scalb(1.+(hi-(lo - c)), k);
112 		}
113 		/* end of x > lntiny */
114 
115 		else
116 		     /* exp(-big#) underflows to zero */
117 		     if(finite(x))  return(scalb(1.0,-5000));
118 
119 		     /* exp(-INF) is zero */
120 		     else return(0.0);
121 	}
122 	/* end of x < lnhuge */
123 
124 	else
125 	/* exp(INF) is INF, exp(+big#) overflows to INF */
126 	    return( finite(x) ?  scalb(1.0,5000)  : x);
127 }
128