xref: /openbsd-src/lib/libm/man/atan2.3 (revision a28daedfc357b214be5c701aa8ba8adb29a7f1c2)
1.\"	$OpenBSD: atan2.3,v 1.12 2008/12/12 00:10:26 martynas Exp $
2.\" Copyright (c) 1991 The Regents of the University of California.
3.\" All rights reserved.
4.\"
5.\" Redistribution and use in source and binary forms, with or without
6.\" modification, are permitted provided that the following conditions
7.\" are met:
8.\" 1. Redistributions of source code must retain the above copyright
9.\"    notice, this list of conditions and the following disclaimer.
10.\" 2. Redistributions in binary form must reproduce the above copyright
11.\"    notice, this list of conditions and the following disclaimer in the
12.\"    documentation and/or other materials provided with the distribution.
13.\" 3. Neither the name of the University nor the names of its contributors
14.\"    may be used to endorse or promote products derived from this software
15.\"    without specific prior written permission.
16.\"
17.\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20.\" ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27.\" SUCH DAMAGE.
28.\"
29.\"     from: @(#)atan2.3	5.1 (Berkeley) 5/2/91
30.\"
31.Dd $Mdocdate: December 12 2008 $
32.Dt ATAN2 3
33.Os
34.Sh NAME
35.Nm atan2 ,
36.Nm atan2f ,
37.Nm atan2l
38.Nd arc tangent functions of two variables
39.Sh SYNOPSIS
40.Fd #include <math.h>
41.Ft double
42.Fn atan2 "double y" "double x"
43.Ft float
44.Fn atan2f "float y" "float x"
45.Ft long double
46.Fn atan2l "long double y" "long double x"
47.Sh DESCRIPTION
48The
49.Fn atan2
50function computes the principal value of the arc tangent of
51.Ar y/ Ns Ar x ,
52using the signs of both arguments to determine the quadrant of
53the return value.
54The
55.Fn atan2f
56function is a single precision version of
57.Fn atan2 .
58The
59.Fn atan2l
60function is an extended precision version of
61.Fn atan2 .
62.Sh RETURN VALUES
63The
64.Fn atan2 ,
65.Fn atan2f
66and
67.Fn atan2l
68functions, if successful,
69return the arc tangent of
70.Ar y/ Ns Ar x
71in the range
72.Bk -words
73.Bq \&- Ns \*(Pi , \&+ Ns \*(Pi
74.Ek
75radians.
76If both
77.Ar x
78and
79.Ar y
80are zero, the global variable
81.Va errno
82is set to
83.Er EDOM .
84On the
85.Tn VAX :
86.Bl -column atan_(y,x)_:=____  sign(y)_(Pi_atan2(Xy_xX))___
87.It Fn atan2 y x No := Ta
88.Fn atan y/x Ta
89if
90.Ar x
91> 0,
92.It Ta sign( Ns Ar y Ns )*(\*(Pi -
93.Fn atan "\\*(Bay/x\\*(Ba" ) Ta
94if
95.Ar x
96< 0,
97.It Ta
98.No 0 Ta
99if
100.Ar x
101=
102.Ar y
103= 0, or
104.It Ta
105.Pf sign( Ar y Ns )*\\*(Pi/2 Ta
106if
107.Ar x
108= 0,
109.Ar y
110!= 0.
111.El
112.Sh NOTES
113The function
114.Fn atan2
115defines "if x > 0,"
116.Fn atan2 0 0
117= 0 on a
118.Tn VAX
119despite that previously
120.Fn atan2 0 0
121may have generated an error message.
122The reasons for assigning a value to
123.Fn atan2 0 0
124are these:
125.Bl -enum -offset indent
126.It
127Programs that test arguments to avoid computing
128.Fn atan2 0 0
129must be indifferent to its value.
130Programs that require it to be invalid are vulnerable
131to diverse reactions to that invalidity on diverse computer systems.
132.It
133The
134.Fn atan2
135function is used mostly to convert from rectangular (x,y)
136to polar
137.if n\
138(r,theta)
139.if t\
140(r,\(*h)
141coordinates that must satisfy x =
142.if n\
143r\(**cos theta
144.if t\
145r\(**cos\(*h
146and y =
147.if n\
148r\(**sin theta.
149.if t\
150r\(**sin\(*h.
151These equations are satisfied when (x=0,y=0)
152is mapped to
153.if n \
154(r=0,theta=0)
155.if t \
156(r=0,\(*h=0)
157on a VAX.  In general, conversions to polar coordinates
158should be computed thus:
159.Bd -unfilled -offset indent
160.if n \{\
161r	:= hypot(x,y);  ... := sqrt(x\(**x+y\(**y)
162theta	:= atan2(y,x).
163.\}
164.if t \{\
165r	:= hypot(x,y);  ... := \(sr(x\u\s82\s10\d+y\u\s82\s10\d)
166\(*h	:= atan2(y,x).
167.\}
168.Ed
169.It
170The foregoing formulas need not be altered to cope in a
171reasonable way with signed zeros and infinities
172on a machine that conforms to
173.Tn IEEE 754 ;
174the versions of
175.Xr hypot 3
176and
177.Fn atan2
178provided for
179such a machine are designed to handle all cases.
180That is why
181.Fn atan2 \(+-0 \-0
182= \(+-\*(Pi
183for instance.
184In general the formulas above are equivalent to these:
185.Bd -unfilled -offset indent
186.if n \
187r := sqrt(x\(**x+y\(**y); if r = 0 then x := copysign(1,x);
188.if t \
189r := \(sr(x\(**x+y\(**y);\0\0if r = 0 then x := copysign(1,x);
190.Ed
191.El
192.Sh SEE ALSO
193.Xr acos 3 ,
194.Xr asin 3 ,
195.Xr atan 3 ,
196.Xr cos 3 ,
197.Xr cosh 3 ,
198.Xr math 3 ,
199.Xr sin 3 ,
200.Xr sinh 3 ,
201.Xr tan 3 ,
202.Xr tanh 3
203.Sh STANDARDS
204The
205.Fn atan2
206function conforms to
207.St -ansiC .
208