xref: /openbsd-src/lib/libkvm/kvm_proc.c (revision a28daedfc357b214be5c701aa8ba8adb29a7f1c2)
1 /*	$OpenBSD: kvm_proc.c,v 1.37 2009/01/21 22:18:00 miod Exp $	*/
2 /*	$NetBSD: kvm_proc.c,v 1.30 1999/03/24 05:50:50 mrg Exp $	*/
3 /*-
4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 /*-
32  * Copyright (c) 1994, 1995 Charles M. Hannum.  All rights reserved.
33  * Copyright (c) 1989, 1992, 1993
34  *	The Regents of the University of California.  All rights reserved.
35  *
36  * This code is derived from software developed by the Computer Systems
37  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
38  * BG 91-66 and contributed to Berkeley.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. Neither the name of the University nor the names of its contributors
49  *    may be used to endorse or promote products derived from this software
50  *    without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62  * SUCH DAMAGE.
63  */
64 
65 #if defined(LIBC_SCCS) && !defined(lint)
66 #if 0
67 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
68 #else
69 static char *rcsid = "$OpenBSD: kvm_proc.c,v 1.37 2009/01/21 22:18:00 miod Exp $";
70 #endif
71 #endif /* LIBC_SCCS and not lint */
72 
73 /*
74  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
75  * users of this code, so we've factored it out into a separate module.
76  * Thus, we keep this grunge out of the other kvm applications (i.e.,
77  * most other applications are interested only in open/close/read/nlist).
78  */
79 
80 #define __need_process
81 #include <sys/param.h>
82 #include <sys/user.h>
83 #include <sys/proc.h>
84 #include <sys/exec.h>
85 #include <sys/stat.h>
86 #include <sys/ioctl.h>
87 #include <sys/tty.h>
88 #include <stdlib.h>
89 #include <string.h>
90 #include <unistd.h>
91 #include <nlist.h>
92 #include <kvm.h>
93 
94 #include <uvm/uvm_extern.h>
95 #include <uvm/uvm_amap.h>
96 #include <machine/vmparam.h>
97 #include <machine/pmap.h>
98 
99 #include <sys/sysctl.h>
100 
101 #include <limits.h>
102 #include <db.h>
103 #include <paths.h>
104 
105 #include "kvm_private.h"
106 
107 /*
108  * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
109  */
110 struct miniproc {
111 	struct	vmspace *p_vmspace;
112 	char	p_stat;
113 	struct	proc *p_paddr;
114 	pid_t	p_pid;
115 };
116 
117 /*
118  * Convert from struct proc and kinfo_proc{,2} to miniproc.
119  */
120 #define PTOMINI(kp, p) \
121 	do { \
122 		(p)->p_stat = (kp)->p_stat; \
123 		(p)->p_pid = (kp)->p_pid; \
124 		(p)->p_paddr = NULL; \
125 		(p)->p_vmspace = (kp)->p_vmspace; \
126 	} while (/*CONSTCOND*/0);
127 
128 #define KPTOMINI(kp, p) \
129 	do { \
130 		(p)->p_stat = (kp)->kp_proc.p_stat; \
131 		(p)->p_pid = (kp)->kp_proc.p_pid; \
132 		(p)->p_paddr = (kp)->kp_eproc.e_paddr; \
133 		(p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
134 	} while (/*CONSTCOND*/0);
135 
136 #define KP2TOMINI(kp, p) \
137 	do { \
138 		(p)->p_stat = (kp)->p_stat; \
139 		(p)->p_pid = (kp)->p_pid; \
140 		(p)->p_paddr = (void *)(long)(kp)->p_paddr; \
141 		(p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
142 	} while (/*CONSTCOND*/0);
143 
144 
145 #define	PTRTOINT64(foo)	((u_int64_t)(u_long)(foo))
146 
147 #define KREAD(kd, addr, obj) \
148 	(kvm_read(kd, addr, (void *)(obj), sizeof(*obj)) != sizeof(*obj))
149 
150 ssize_t		kvm_uread(kvm_t *, const struct proc *, u_long, char *, size_t);
151 
152 static char	*_kvm_ureadm(kvm_t *, const struct miniproc *, u_long, u_long *);
153 static ssize_t	kvm_ureadm(kvm_t *, const struct miniproc *, u_long, char *, size_t);
154 
155 static char	**kvm_argv(kvm_t *, const struct miniproc *, u_long, int, int);
156 
157 static int	kvm_deadprocs(kvm_t *, int, int, u_long, u_long, int);
158 static char	**kvm_doargv(kvm_t *, const struct miniproc *, int,
159 		    void (*)(struct ps_strings *, u_long *, int *));
160 static int	kvm_proclist(kvm_t *, int, int, struct proc *,
161 		    struct kinfo_proc *, int);
162 static int	proc_verify(kvm_t *, const struct miniproc *);
163 static void	ps_str_a(struct ps_strings *, u_long *, int *);
164 static void	ps_str_e(struct ps_strings *, u_long *, int *);
165 
166 static char *
167 _kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long va, u_long *cnt)
168 {
169 	u_long addr, head, offset, slot;
170 	struct vm_anon *anonp, anon;
171 	struct vm_map_entry vme;
172 	struct vm_amap amap;
173 	struct vm_page pg;
174 
175 	if (kd->swapspc == 0) {
176 		kd->swapspc = _kvm_malloc(kd, kd->nbpg);
177 		if (kd->swapspc == 0)
178 			return (0);
179 	}
180 
181 	/*
182 	 * Look through the address map for the memory object
183 	 * that corresponds to the given virtual address.
184 	 * The header just has the entire valid range.
185 	 */
186 	head = (u_long)&p->p_vmspace->vm_map.header;
187 	addr = head;
188 	while (1) {
189 		if (KREAD(kd, addr, &vme))
190 			return (0);
191 
192 		if (va >= vme.start && va < vme.end &&
193 		    vme.aref.ar_amap != NULL)
194 			break;
195 
196 		addr = (u_long)vme.next;
197 		if (addr == head)
198 			return (0);
199 	}
200 
201 	/*
202 	 * we found the map entry, now to find the object...
203 	 */
204 	if (vme.aref.ar_amap == NULL)
205 		return (NULL);
206 
207 	addr = (u_long)vme.aref.ar_amap;
208 	if (KREAD(kd, addr, &amap))
209 		return (NULL);
210 
211 	offset = va - vme.start;
212 	slot = offset / kd->nbpg + vme.aref.ar_pageoff;
213 	/* sanity-check slot number */
214 	if (slot > amap.am_nslot)
215 		return (NULL);
216 
217 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
218 	if (KREAD(kd, addr, &anonp))
219 		return (NULL);
220 
221 	addr = (u_long)anonp;
222 	if (KREAD(kd, addr, &anon))
223 		return (NULL);
224 
225 	addr = (u_long)anon.an_page;
226 	if (addr) {
227 		if (KREAD(kd, addr, &pg))
228 			return (NULL);
229 
230 		if (_kvm_pread(kd, kd->pmfd, (void *)kd->swapspc,
231 		    (size_t)kd->nbpg, (off_t)pg.phys_addr) != kd->nbpg)
232 			return (NULL);
233 	} else {
234 		if (kd->swfd == -1 ||
235 		    _kvm_pread(kd, kd->swfd, (void *)kd->swapspc,
236 		    (size_t)kd->nbpg,
237 		    (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
238 			return (NULL);
239 	}
240 
241 	/* Found the page. */
242 	offset %= kd->nbpg;
243 	*cnt = kd->nbpg - offset;
244 	return (&kd->swapspc[offset]);
245 }
246 
247 char *
248 _kvm_uread(kvm_t *kd, const struct proc *p, u_long va, u_long *cnt)
249 {
250 	struct miniproc mp;
251 
252 	PTOMINI(p, &mp);
253 	return (_kvm_ureadm(kd, &mp, va, cnt));
254 }
255 
256 /*
257  * Read proc's from memory file into buffer bp, which has space to hold
258  * at most maxcnt procs.
259  */
260 static int
261 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p,
262     struct kinfo_proc *bp, int maxcnt)
263 {
264 	struct session sess;
265 	struct eproc eproc;
266 	struct proc proc;
267 	struct process process;
268 	struct pgrp pgrp;
269 	struct tty tty;
270 	int cnt = 0;
271 
272 	for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
273 		if (KREAD(kd, (u_long)p, &proc)) {
274 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
275 			return (-1);
276 		}
277 		if (KREAD(kd, (u_long)proc.p_p, &process)) {
278 			_kvm_err(kd, kd->program, "can't read process at %x", proc.p_p);
279 			return (-1);
280 		}
281 		if (KREAD(kd, (u_long)process.ps_cred, &eproc.e_pcred) == 0)
282 			KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
283 			    &eproc.e_ucred);
284 
285 		switch (what) {
286 		case KERN_PROC_PID:
287 			if (proc.p_pid != (pid_t)arg)
288 				continue;
289 			break;
290 
291 		case KERN_PROC_UID:
292 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
293 				continue;
294 			break;
295 
296 		case KERN_PROC_RUID:
297 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
298 				continue;
299 			break;
300 
301 		case KERN_PROC_ALL:
302 			if (proc.p_flag & P_SYSTEM)
303 				continue;
304 			break;
305 		}
306 		/*
307 		 * We're going to add another proc to the set.  If this
308 		 * will overflow the buffer, assume the reason is because
309 		 * nprocs (or the proc list) is corrupt and declare an error.
310 		 */
311 		if (cnt >= maxcnt) {
312 			_kvm_err(kd, kd->program, "nprocs corrupt");
313 			return (-1);
314 		}
315 		/*
316 		 * gather eproc
317 		 */
318 		eproc.e_paddr = p;
319 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
320 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
321 			    proc.p_pgrp);
322 			return (-1);
323 		}
324 		eproc.e_sess = pgrp.pg_session;
325 		eproc.e_pgid = pgrp.pg_id;
326 		eproc.e_jobc = pgrp.pg_jobc;
327 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
328 			_kvm_err(kd, kd->program, "can't read session at %x",
329 			    pgrp.pg_session);
330 			return (-1);
331 		}
332 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
333 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
334 				_kvm_err(kd, kd->program,
335 				    "can't read tty at %x", sess.s_ttyp);
336 				return (-1);
337 			}
338 			eproc.e_tdev = tty.t_dev;
339 			eproc.e_tsess = tty.t_session;
340 			if (tty.t_pgrp != NULL) {
341 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
342 					_kvm_err(kd, kd->program,
343 					    "can't read tpgrp at &x",
344 					    tty.t_pgrp);
345 					return (-1);
346 				}
347 				eproc.e_tpgid = pgrp.pg_id;
348 			} else
349 				eproc.e_tpgid = -1;
350 		} else
351 			eproc.e_tdev = NODEV;
352 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
353 		if (sess.s_leader == p)
354 			eproc.e_flag |= EPROC_SLEADER;
355 		if (proc.p_wmesg)
356 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
357 			    eproc.e_wmesg, WMESGLEN);
358 
359 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
360 		    &eproc.e_vm, sizeof(eproc.e_vm));
361 
362 		eproc.e_xsize = eproc.e_xrssize = 0;
363 		eproc.e_xccount = eproc.e_xswrss = 0;
364 
365 		switch (what) {
366 		case KERN_PROC_PGRP:
367 			if (eproc.e_pgid != (pid_t)arg)
368 				continue;
369 			break;
370 
371 		case KERN_PROC_TTY:
372 			if ((proc.p_flag & P_CONTROLT) == 0 ||
373 			    eproc.e_tdev != (dev_t)arg)
374 				continue;
375 			break;
376 		}
377 		bcopy(&proc, &bp->kp_proc, sizeof(proc));
378 		bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
379 		++bp;
380 		++cnt;
381 	}
382 	return (cnt);
383 }
384 
385 /*
386  * Build proc info array by reading in proc list from a crash dump.
387  * Return number of procs read.  maxcnt is the max we will read.
388  */
389 static int
390 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc,
391     u_long a_zombproc, int maxcnt)
392 {
393 	struct kinfo_proc *bp = kd->procbase;
394 	struct proc *p;
395 	int acnt, zcnt;
396 
397 	if (KREAD(kd, a_allproc, &p)) {
398 		_kvm_err(kd, kd->program, "cannot read allproc");
399 		return (-1);
400 	}
401 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
402 	if (acnt < 0)
403 		return (acnt);
404 
405 	if (KREAD(kd, a_zombproc, &p)) {
406 		_kvm_err(kd, kd->program, "cannot read zombproc");
407 		return (-1);
408 	}
409 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
410 	if (zcnt < 0)
411 		zcnt = 0;
412 
413 	return (acnt + zcnt);
414 }
415 
416 struct kinfo_proc2 *
417 kvm_getproc2(kvm_t *kd, int op, int arg, size_t esize, int *cnt)
418 {
419 	int mib[6], st, nprocs;
420 	struct user user;
421 	size_t size;
422 
423 	if ((ssize_t)esize < 0)
424 		return (NULL);
425 
426 	if (kd->procbase2 != NULL) {
427 		free(kd->procbase2);
428 		/*
429 		 * Clear this pointer in case this call fails.  Otherwise,
430 		 * kvm_close() will free it again.
431 		 */
432 		kd->procbase2 = 0;
433 	}
434 
435 	if (ISALIVE(kd)) {
436 		size = 0;
437 		mib[0] = CTL_KERN;
438 		mib[1] = KERN_PROC2;
439 		mib[2] = op;
440 		mib[3] = arg;
441 		mib[4] = esize;
442 		mib[5] = 0;
443 		st = sysctl(mib, 6, NULL, &size, NULL, 0);
444 		if (st == -1) {
445 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
446 			return (NULL);
447 		}
448 
449 		mib[5] = size / esize;
450 		kd->procbase2 = _kvm_malloc(kd, size);
451 		if (kd->procbase2 == 0)
452 			return (NULL);
453 		st = sysctl(mib, 6, kd->procbase2, &size, NULL, 0);
454 		if (st == -1) {
455 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
456 			return (NULL);
457 		}
458 		nprocs = size / esize;
459 	} else {
460 		struct kinfo_proc2 kp2, *kp2p;
461 		struct kinfo_proc *kp;
462 		char *kp2c;
463 		int i;
464 
465 		kp = kvm_getprocs(kd, op, arg, &nprocs);
466 		if (kp == NULL)
467 			return (NULL);
468 
469 		kd->procbase2 = _kvm_malloc(kd, nprocs * esize);
470 		kp2c = (char *)kd->procbase2;
471 		kp2p = &kp2;
472 		for (i = 0; i < nprocs; i++, kp++) {
473 			memset(kp2p, 0, sizeof(kp2));
474 			kp2p->p_paddr = PTRTOINT64(kp->kp_eproc.e_paddr);
475 
476 			kp2p->p_addr = PTRTOINT64(kp->kp_proc.p_addr);
477 			kp2p->p_fd = PTRTOINT64(kp->kp_proc.p_fd);
478 			kp2p->p_stats = PTRTOINT64(kp->kp_proc.p_stats);
479 			kp2p->p_limit = PTRTOINT64(kp->kp_eproc.e_limit);
480 			kp2p->p_vmspace = PTRTOINT64(kp->kp_proc.p_vmspace);
481 			kp2p->p_sigacts = PTRTOINT64(kp->kp_proc.p_sigacts);
482 			kp2p->p_sess = PTRTOINT64(kp->kp_eproc.e_sess);
483 			kp2p->p_tsess = 0;
484 			kp2p->p_ru = PTRTOINT64(kp->kp_proc.p_ru);
485 
486 			kp2p->p_eflag = 0;
487 			kp2p->p_exitsig = kp->kp_proc.p_exitsig;
488 			kp2p->p_flag = kp->kp_proc.p_flag;
489 
490 			kp2p->p_pid = kp->kp_proc.p_pid;
491 
492 			kp2p->p_ppid = kp->kp_eproc.e_ppid;
493 #if 0
494 			kp2p->p_sid = kp->kp_eproc.e_sid;
495 #else
496 			kp2p->p_sid = -1; /* XXX */
497 #endif
498 			kp2p->p__pgid = kp->kp_eproc.e_pgid;
499 
500 			kp2p->p_tpgid = -1;
501 
502 			kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
503 			kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
504 			kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
505 			kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
506 
507 			memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
508 			    MIN(sizeof(kp2p->p_groups),
509 			    sizeof(kp->kp_eproc.e_ucred.cr_groups)));
510 			kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
511 
512 			kp2p->p_jobc = kp->kp_eproc.e_jobc;
513 			kp2p->p_tdev = kp->kp_eproc.e_tdev;
514 			kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
515 			kp2p->p_tsess = PTRTOINT64(kp->kp_eproc.e_tsess);
516 
517 			kp2p->p_estcpu = kp->kp_proc.p_estcpu;
518 			kp2p->p_rtime_sec = kp->kp_proc.p_estcpu;
519 			kp2p->p_rtime_usec = kp->kp_proc.p_estcpu;
520 			kp2p->p_cpticks = kp->kp_proc.p_cpticks;
521 			kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
522 			kp2p->p_swtime = kp->kp_proc.p_swtime;
523 			kp2p->p_slptime = kp->kp_proc.p_slptime;
524 			kp2p->p_schedflags = 0;
525 
526 			kp2p->p_uticks = kp->kp_proc.p_uticks;
527 			kp2p->p_sticks = kp->kp_proc.p_sticks;
528 			kp2p->p_iticks = kp->kp_proc.p_iticks;
529 
530 			kp2p->p_tracep = PTRTOINT64(kp->kp_proc.p_tracep);
531 			kp2p->p_traceflag = kp->kp_proc.p_traceflag;
532 
533 			kp2p->p_holdcnt = 1;
534 
535 			kp2p->p_siglist = kp->kp_proc.p_siglist;
536 			kp2p->p_sigmask = kp->kp_proc.p_sigmask;
537 			kp2p->p_sigignore = kp->kp_proc.p_sigignore;
538 			kp2p->p_sigcatch = kp->kp_proc.p_sigcatch;
539 
540 			kp2p->p_stat = kp->kp_proc.p_stat;
541 			kp2p->p_priority = kp->kp_proc.p_priority;
542 			kp2p->p_usrpri = kp->kp_proc.p_usrpri;
543 			kp2p->p_nice = kp->kp_proc.p_nice;
544 
545 			kp2p->p_xstat = kp->kp_proc.p_xstat;
546 			kp2p->p_acflag = kp->kp_proc.p_acflag;
547 
548 			strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
549 			    MIN(sizeof(kp2p->p_comm), sizeof(kp->kp_proc.p_comm)));
550 
551 			strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
552 			    sizeof(kp2p->p_wmesg));
553 			kp2p->p_wchan = PTRTOINT64(kp->kp_proc.p_wchan);
554 
555 			strncpy(kp2p->p_login, kp->kp_eproc.e_login,
556 			    sizeof(kp2p->p_login));
557 
558 			kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
559 			kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
560 			kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
561 			kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
562 
563 			kp2p->p_eflag = kp->kp_eproc.e_flag;
564 
565 			if (P_ZOMBIE(&kp->kp_proc) || kp->kp_proc.p_addr == NULL ||
566 			    KREAD(kd, (u_long)kp->kp_proc.p_addr, &user)) {
567 				kp2p->p_uvalid = 0;
568 			} else {
569 				kp2p->p_uvalid = 1;
570 
571 				kp2p->p_ustart_sec = user.u_stats.p_start.tv_sec;
572 				kp2p->p_ustart_usec = user.u_stats.p_start.tv_usec;
573 
574 				kp2p->p_uutime_sec = user.u_stats.p_ru.ru_utime.tv_sec;
575 				kp2p->p_uutime_usec = user.u_stats.p_ru.ru_utime.tv_usec;
576 				kp2p->p_ustime_sec = user.u_stats.p_ru.ru_stime.tv_sec;
577 				kp2p->p_ustime_usec = user.u_stats.p_ru.ru_stime.tv_usec;
578 
579 				kp2p->p_uru_maxrss = user.u_stats.p_ru.ru_maxrss;
580 				kp2p->p_uru_ixrss = user.u_stats.p_ru.ru_ixrss;
581 				kp2p->p_uru_idrss = user.u_stats.p_ru.ru_idrss;
582 				kp2p->p_uru_isrss = user.u_stats.p_ru.ru_isrss;
583 				kp2p->p_uru_minflt = user.u_stats.p_ru.ru_minflt;
584 				kp2p->p_uru_majflt = user.u_stats.p_ru.ru_majflt;
585 				kp2p->p_uru_nswap = user.u_stats.p_ru.ru_nswap;
586 				kp2p->p_uru_inblock = user.u_stats.p_ru.ru_inblock;
587 				kp2p->p_uru_oublock = user.u_stats.p_ru.ru_oublock;
588 				kp2p->p_uru_msgsnd = user.u_stats.p_ru.ru_msgsnd;
589 				kp2p->p_uru_msgrcv = user.u_stats.p_ru.ru_msgrcv;
590 				kp2p->p_uru_nsignals = user.u_stats.p_ru.ru_nsignals;
591 				kp2p->p_uru_nvcsw = user.u_stats.p_ru.ru_nvcsw;
592 				kp2p->p_uru_nivcsw = user.u_stats.p_ru.ru_nivcsw;
593 
594 				kp2p->p_uctime_sec =
595 				    user.u_stats.p_cru.ru_utime.tv_sec +
596 				    user.u_stats.p_cru.ru_stime.tv_sec;
597 				kp2p->p_uctime_usec =
598 				    user.u_stats.p_cru.ru_utime.tv_usec +
599 				    user.u_stats.p_cru.ru_stime.tv_usec;
600 			}
601 
602 			memcpy(kp2c, &kp2, esize);
603 			kp2c += esize;
604 		}
605 
606 		free(kd->procbase);
607 	}
608 	*cnt = nprocs;
609 	return (kd->procbase2);
610 }
611 
612 struct kinfo_proc *
613 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt)
614 {
615 	int mib[4], st, nprocs;
616 	size_t size;
617 
618 	if (kd->procbase != 0) {
619 		free((void *)kd->procbase);
620 		/*
621 		 * Clear this pointer in case this call fails.  Otherwise,
622 		 * kvm_close() will free it again.
623 		 */
624 		kd->procbase = 0;
625 	}
626 	if (ISALIVE(kd)) {
627 		size = 0;
628 		mib[0] = CTL_KERN;
629 		mib[1] = KERN_PROC;
630 		mib[2] = op;
631 		mib[3] = arg;
632 		st = sysctl(mib, 4, NULL, &size, NULL, 0);
633 		if (st == -1) {
634 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
635 			return (0);
636 		}
637 		kd->procbase = _kvm_malloc(kd, size);
638 		if (kd->procbase == 0)
639 			return (0);
640 		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
641 		if (st == -1) {
642 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
643 			return (0);
644 		}
645 		if (size % sizeof(struct kinfo_proc) != 0) {
646 			_kvm_err(kd, kd->program,
647 			    "proc size mismatch (%d total, %d chunks)",
648 			    size, sizeof(struct kinfo_proc));
649 			return (0);
650 		}
651 		nprocs = size / sizeof(struct kinfo_proc);
652 	} else {
653 		struct nlist nl[4], *p;
654 
655 		memset(nl, 0, sizeof(nl));
656 		nl[0].n_name = "_nprocs";
657 		nl[1].n_name = "_allproc";
658 		nl[2].n_name = "_zombproc";
659 		nl[3].n_name = NULL;
660 
661 		if (kvm_nlist(kd, nl) != 0) {
662 			for (p = nl; p->n_type != 0; ++p)
663 				;
664 			_kvm_err(kd, kd->program,
665 			    "%s: no such symbol", p->n_name);
666 			return (0);
667 		}
668 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
669 			_kvm_err(kd, kd->program, "can't read nprocs");
670 			return (0);
671 		}
672 		size = nprocs * sizeof(struct kinfo_proc);
673 		kd->procbase = _kvm_malloc(kd, size);
674 		if (kd->procbase == 0)
675 			return (0);
676 
677 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
678 		    nl[2].n_value, nprocs);
679 #ifdef notdef
680 		size = nprocs * sizeof(struct kinfo_proc);
681 		(void)realloc(kd->procbase, size);
682 #endif
683 	}
684 	*cnt = nprocs;
685 	return (kd->procbase);
686 }
687 
688 void
689 _kvm_freeprocs(kvm_t *kd)
690 {
691 	if (kd->procbase) {
692 		free(kd->procbase);
693 		kd->procbase = 0;
694 	}
695 }
696 
697 void *
698 _kvm_realloc(kvm_t *kd, void *p, size_t n)
699 {
700 	void *np = (void *)realloc(p, n);
701 
702 	if (np == 0)
703 		_kvm_err(kd, kd->program, "out of memory");
704 	return (np);
705 }
706 
707 /*
708  * Read in an argument vector from the user address space of process p.
709  * addr if the user-space base address of narg null-terminated contiguous
710  * strings.  This is used to read in both the command arguments and
711  * environment strings.  Read at most maxcnt characters of strings.
712  */
713 static char **
714 kvm_argv(kvm_t *kd, const struct miniproc *p, u_long addr, int narg,
715     int maxcnt)
716 {
717 	char *np, *cp, *ep, *ap, **argv;
718 	u_long oaddr = -1;
719 	int len, cc;
720 
721 	/*
722 	 * Check that there aren't an unreasonable number of agruments,
723 	 * and that the address is in user space.
724 	 */
725 	if (narg > ARG_MAX || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
726 		return (0);
727 
728 	if (kd->argv == 0) {
729 		/*
730 		 * Try to avoid reallocs.
731 		 */
732 		kd->argc = MAX(narg + 1, 32);
733 		kd->argv = _kvm_malloc(kd, kd->argc *
734 		    sizeof(*kd->argv));
735 		if (kd->argv == 0)
736 			return (0);
737 	} else if (narg + 1 > kd->argc) {
738 		kd->argc = MAX(2 * kd->argc, narg + 1);
739 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
740 		    sizeof(*kd->argv));
741 		if (kd->argv == 0)
742 			return (0);
743 	}
744 	if (kd->argspc == 0) {
745 		kd->argspc = _kvm_malloc(kd, kd->nbpg);
746 		if (kd->argspc == 0)
747 			return (0);
748 		kd->arglen = kd->nbpg;
749 	}
750 	if (kd->argbuf == 0) {
751 		kd->argbuf = _kvm_malloc(kd, kd->nbpg);
752 		if (kd->argbuf == 0)
753 			return (0);
754 	}
755 	cc = sizeof(char *) * narg;
756 	if (kvm_ureadm(kd, p, addr, (char *)kd->argv, cc) != cc)
757 		return (0);
758 	ap = np = kd->argspc;
759 	argv = kd->argv;
760 	len = 0;
761 
762 	/*
763 	 * Loop over pages, filling in the argument vector.
764 	 */
765 	while (argv < kd->argv + narg && *argv != 0) {
766 		addr = (u_long)*argv & ~(kd->nbpg - 1);
767 		if (addr != oaddr) {
768 			if (kvm_ureadm(kd, p, addr, kd->argbuf, kd->nbpg) !=
769 			    kd->nbpg)
770 				return (0);
771 			oaddr = addr;
772 		}
773 		addr = (u_long)*argv & (kd->nbpg - 1);
774 		cp = kd->argbuf + addr;
775 		cc = kd->nbpg - addr;
776 		if (maxcnt > 0 && cc > maxcnt - len)
777 			cc = maxcnt - len;
778 		ep = memchr(cp, '\0', cc);
779 		if (ep != 0)
780 			cc = ep - cp + 1;
781 		if (len + cc > kd->arglen) {
782 			int off;
783 			char **pp;
784 			char *op = kd->argspc;
785 
786 			kd->arglen *= 2;
787 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
788 			    kd->arglen);
789 			if (kd->argspc == 0)
790 				return (0);
791 			/*
792 			 * Adjust argv pointers in case realloc moved
793 			 * the string space.
794 			 */
795 			off = kd->argspc - op;
796 			for (pp = kd->argv; pp < argv; pp++)
797 				*pp += off;
798 			ap += off;
799 			np += off;
800 		}
801 		memcpy(np, cp, cc);
802 		np += cc;
803 		len += cc;
804 		if (ep != 0) {
805 			*argv++ = ap;
806 			ap = np;
807 		} else
808 			*argv += cc;
809 		if (maxcnt > 0 && len >= maxcnt) {
810 			/*
811 			 * We're stopping prematurely.  Terminate the
812 			 * current string.
813 			 */
814 			if (ep == 0) {
815 				*np = '\0';
816 				*argv++ = ap;
817 			}
818 			break;
819 		}
820 	}
821 	/* Make sure argv is terminated. */
822 	*argv = 0;
823 	return (kd->argv);
824 }
825 
826 static void
827 ps_str_a(struct ps_strings *p, u_long *addr, int *n)
828 {
829 	*addr = (u_long)p->ps_argvstr;
830 	*n = p->ps_nargvstr;
831 }
832 
833 static void
834 ps_str_e(struct ps_strings *p, u_long *addr, int *n)
835 {
836 	*addr = (u_long)p->ps_envstr;
837 	*n = p->ps_nenvstr;
838 }
839 
840 /*
841  * Determine if the proc indicated by p is still active.
842  * This test is not 100% foolproof in theory, but chances of
843  * being wrong are very low.
844  */
845 static int
846 proc_verify(kvm_t *kd, const struct miniproc *p)
847 {
848 	struct proc kernproc;
849 
850 	/*
851 	 * Just read in the whole proc.  It's not that big relative
852 	 * to the cost of the read system call.
853 	 */
854 	if (kvm_read(kd, (u_long)p->p_paddr, &kernproc, sizeof(kernproc)) !=
855 	    sizeof(kernproc))
856 		return (0);
857 	return (p->p_pid == kernproc.p_pid &&
858 	    (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
859 }
860 
861 static char **
862 kvm_doargv(kvm_t *kd, const struct miniproc *p, int nchr,
863     void (*info)(struct ps_strings *, u_long *, int *))
864 {
865 	static struct ps_strings *ps;
866 	struct ps_strings arginfo;
867 	u_long addr;
868 	char **ap;
869 	int cnt;
870 
871 	if (ps == NULL) {
872 		struct _ps_strings _ps;
873 		int mib[2];
874 		size_t len;
875 
876 		mib[0] = CTL_VM;
877 		mib[1] = VM_PSSTRINGS;
878 		len = sizeof(_ps);
879 		sysctl(mib, 2, &_ps, &len, NULL, 0);
880 		ps = (struct ps_strings *)_ps.val;
881 	}
882 
883 	/*
884 	 * Pointers are stored at the top of the user stack.
885 	 */
886 	if (p->p_stat == SZOMB ||
887 	    kvm_ureadm(kd, p, (u_long)ps, (char *)&arginfo,
888 	    sizeof(arginfo)) != sizeof(arginfo))
889 		return (0);
890 
891 	(*info)(&arginfo, &addr, &cnt);
892 	if (cnt == 0)
893 		return (0);
894 	ap = kvm_argv(kd, p, addr, cnt, nchr);
895 	/*
896 	 * For live kernels, make sure this process didn't go away.
897 	 */
898 	if (ap != 0 && ISALIVE(kd) && !proc_verify(kd, p))
899 		ap = 0;
900 	return (ap);
901 }
902 
903 static char **
904 kvm_arg_sysctl(kvm_t *kd, pid_t pid, int nchr, int env)
905 {
906 	size_t len, orglen;
907 	int mib[4], ret;
908 	char *buf;
909 
910 	orglen = env ? kd->nbpg : 8 * kd->nbpg;	/* XXX - should be ARG_MAX */
911 	if (kd->argbuf == NULL &&
912 	    (kd->argbuf = _kvm_malloc(kd, orglen)) == NULL)
913 		return (NULL);
914 
915 again:
916 	mib[0] = CTL_KERN;
917 	mib[1] = KERN_PROC_ARGS;
918 	mib[2] = (int)pid;
919 	mib[3] = env ? KERN_PROC_ENV : KERN_PROC_ARGV;
920 
921 	len = orglen;
922 	ret = (sysctl(mib, 4, kd->argbuf, &len, NULL, 0) < 0);
923 	if (ret && errno == ENOMEM) {
924 		orglen *= 2;
925 		buf = _kvm_realloc(kd, kd->argbuf, orglen);
926 		if (buf == NULL)
927 			return (NULL);
928 		kd->argbuf = buf;
929 		goto again;
930 	}
931 
932 	if (ret) {
933 		free(kd->argbuf);
934 		kd->argbuf = NULL;
935 		_kvm_syserr(kd, kd->program, "kvm_arg_sysctl");
936 		return (NULL);
937 	}
938 #if 0
939 	for (argv = (char **)kd->argbuf; *argv != NULL; argv++)
940 		if (strlen(*argv) > nchr)
941 			*argv[nchr] = '\0';
942 #endif
943 
944 	return (char **)(kd->argbuf);
945 }
946 
947 /*
948  * Get the command args.  This code is now machine independent.
949  */
950 char **
951 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
952 {
953 	struct miniproc p;
954 
955 	if (ISALIVE(kd))
956 		return (kvm_arg_sysctl(kd, kp->kp_proc.p_pid, nchr, 0));
957 	KPTOMINI(kp, &p);
958 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
959 }
960 
961 char **
962 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
963 {
964 	struct miniproc p;
965 
966 	if (ISALIVE(kd))
967 		return (kvm_arg_sysctl(kd, kp->kp_proc.p_pid, nchr, 1));
968 	KPTOMINI(kp, &p);
969 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
970 }
971 
972 char **
973 kvm_getargv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
974 {
975 	struct miniproc p;
976 
977 	if (ISALIVE(kd))
978 		return (kvm_arg_sysctl(kd, kp->p_pid, nchr, 0));
979 	KP2TOMINI(kp, &p);
980 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
981 }
982 
983 char **
984 kvm_getenvv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
985 {
986 	struct miniproc p;
987 
988 	if (ISALIVE(kd))
989 		return (kvm_arg_sysctl(kd, kp->p_pid, nchr, 1));
990 	KP2TOMINI(kp, &p);
991 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
992 }
993 
994 /*
995  * Read from user space.  The user context is given by p.
996  */
997 static ssize_t
998 kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long uva, char *buf,
999     size_t len)
1000 {
1001 	char *cp = buf;
1002 
1003 	while (len > 0) {
1004 		u_long cnt;
1005 		size_t cc;
1006 		char *dp;
1007 
1008 		dp = _kvm_ureadm(kd, p, uva, &cnt);
1009 		if (dp == 0) {
1010 			_kvm_err(kd, 0, "invalid address (%lx)", uva);
1011 			return (0);
1012 		}
1013 		cc = (size_t)MIN(cnt, len);
1014 		bcopy(dp, cp, cc);
1015 		cp += cc;
1016 		uva += cc;
1017 		len -= cc;
1018 	}
1019 	return (ssize_t)(cp - buf);
1020 }
1021 
1022 ssize_t
1023 kvm_uread(kvm_t *kd, const struct proc *p, u_long uva, char *buf,
1024     size_t len)
1025 {
1026 	struct miniproc mp;
1027 
1028 	PTOMINI(p, &mp);
1029 	return (kvm_ureadm(kd, &mp, uva, buf, len));
1030 }
1031