1 /* $OpenBSD: kvm_proc.c,v 1.37 2009/01/21 22:18:00 miod Exp $ */ 2 /* $NetBSD: kvm_proc.c,v 1.30 1999/03/24 05:50:50 mrg Exp $ */ 3 /*- 4 * Copyright (c) 1998 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Charles M. Hannum. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 /*- 32 * Copyright (c) 1994, 1995 Charles M. Hannum. All rights reserved. 33 * Copyright (c) 1989, 1992, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * This code is derived from software developed by the Computer Systems 37 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 38 * BG 91-66 and contributed to Berkeley. 39 * 40 * Redistribution and use in source and binary forms, with or without 41 * modification, are permitted provided that the following conditions 42 * are met: 43 * 1. Redistributions of source code must retain the above copyright 44 * notice, this list of conditions and the following disclaimer. 45 * 2. Redistributions in binary form must reproduce the above copyright 46 * notice, this list of conditions and the following disclaimer in the 47 * documentation and/or other materials provided with the distribution. 48 * 3. Neither the name of the University nor the names of its contributors 49 * may be used to endorse or promote products derived from this software 50 * without specific prior written permission. 51 * 52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 62 * SUCH DAMAGE. 63 */ 64 65 #if defined(LIBC_SCCS) && !defined(lint) 66 #if 0 67 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 68 #else 69 static char *rcsid = "$OpenBSD: kvm_proc.c,v 1.37 2009/01/21 22:18:00 miod Exp $"; 70 #endif 71 #endif /* LIBC_SCCS and not lint */ 72 73 /* 74 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 75 * users of this code, so we've factored it out into a separate module. 76 * Thus, we keep this grunge out of the other kvm applications (i.e., 77 * most other applications are interested only in open/close/read/nlist). 78 */ 79 80 #define __need_process 81 #include <sys/param.h> 82 #include <sys/user.h> 83 #include <sys/proc.h> 84 #include <sys/exec.h> 85 #include <sys/stat.h> 86 #include <sys/ioctl.h> 87 #include <sys/tty.h> 88 #include <stdlib.h> 89 #include <string.h> 90 #include <unistd.h> 91 #include <nlist.h> 92 #include <kvm.h> 93 94 #include <uvm/uvm_extern.h> 95 #include <uvm/uvm_amap.h> 96 #include <machine/vmparam.h> 97 #include <machine/pmap.h> 98 99 #include <sys/sysctl.h> 100 101 #include <limits.h> 102 #include <db.h> 103 #include <paths.h> 104 105 #include "kvm_private.h" 106 107 /* 108 * Common info from kinfo_proc and kinfo_proc2 used by helper routines. 109 */ 110 struct miniproc { 111 struct vmspace *p_vmspace; 112 char p_stat; 113 struct proc *p_paddr; 114 pid_t p_pid; 115 }; 116 117 /* 118 * Convert from struct proc and kinfo_proc{,2} to miniproc. 119 */ 120 #define PTOMINI(kp, p) \ 121 do { \ 122 (p)->p_stat = (kp)->p_stat; \ 123 (p)->p_pid = (kp)->p_pid; \ 124 (p)->p_paddr = NULL; \ 125 (p)->p_vmspace = (kp)->p_vmspace; \ 126 } while (/*CONSTCOND*/0); 127 128 #define KPTOMINI(kp, p) \ 129 do { \ 130 (p)->p_stat = (kp)->kp_proc.p_stat; \ 131 (p)->p_pid = (kp)->kp_proc.p_pid; \ 132 (p)->p_paddr = (kp)->kp_eproc.e_paddr; \ 133 (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \ 134 } while (/*CONSTCOND*/0); 135 136 #define KP2TOMINI(kp, p) \ 137 do { \ 138 (p)->p_stat = (kp)->p_stat; \ 139 (p)->p_pid = (kp)->p_pid; \ 140 (p)->p_paddr = (void *)(long)(kp)->p_paddr; \ 141 (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \ 142 } while (/*CONSTCOND*/0); 143 144 145 #define PTRTOINT64(foo) ((u_int64_t)(u_long)(foo)) 146 147 #define KREAD(kd, addr, obj) \ 148 (kvm_read(kd, addr, (void *)(obj), sizeof(*obj)) != sizeof(*obj)) 149 150 ssize_t kvm_uread(kvm_t *, const struct proc *, u_long, char *, size_t); 151 152 static char *_kvm_ureadm(kvm_t *, const struct miniproc *, u_long, u_long *); 153 static ssize_t kvm_ureadm(kvm_t *, const struct miniproc *, u_long, char *, size_t); 154 155 static char **kvm_argv(kvm_t *, const struct miniproc *, u_long, int, int); 156 157 static int kvm_deadprocs(kvm_t *, int, int, u_long, u_long, int); 158 static char **kvm_doargv(kvm_t *, const struct miniproc *, int, 159 void (*)(struct ps_strings *, u_long *, int *)); 160 static int kvm_proclist(kvm_t *, int, int, struct proc *, 161 struct kinfo_proc *, int); 162 static int proc_verify(kvm_t *, const struct miniproc *); 163 static void ps_str_a(struct ps_strings *, u_long *, int *); 164 static void ps_str_e(struct ps_strings *, u_long *, int *); 165 166 static char * 167 _kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long va, u_long *cnt) 168 { 169 u_long addr, head, offset, slot; 170 struct vm_anon *anonp, anon; 171 struct vm_map_entry vme; 172 struct vm_amap amap; 173 struct vm_page pg; 174 175 if (kd->swapspc == 0) { 176 kd->swapspc = _kvm_malloc(kd, kd->nbpg); 177 if (kd->swapspc == 0) 178 return (0); 179 } 180 181 /* 182 * Look through the address map for the memory object 183 * that corresponds to the given virtual address. 184 * The header just has the entire valid range. 185 */ 186 head = (u_long)&p->p_vmspace->vm_map.header; 187 addr = head; 188 while (1) { 189 if (KREAD(kd, addr, &vme)) 190 return (0); 191 192 if (va >= vme.start && va < vme.end && 193 vme.aref.ar_amap != NULL) 194 break; 195 196 addr = (u_long)vme.next; 197 if (addr == head) 198 return (0); 199 } 200 201 /* 202 * we found the map entry, now to find the object... 203 */ 204 if (vme.aref.ar_amap == NULL) 205 return (NULL); 206 207 addr = (u_long)vme.aref.ar_amap; 208 if (KREAD(kd, addr, &amap)) 209 return (NULL); 210 211 offset = va - vme.start; 212 slot = offset / kd->nbpg + vme.aref.ar_pageoff; 213 /* sanity-check slot number */ 214 if (slot > amap.am_nslot) 215 return (NULL); 216 217 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp); 218 if (KREAD(kd, addr, &anonp)) 219 return (NULL); 220 221 addr = (u_long)anonp; 222 if (KREAD(kd, addr, &anon)) 223 return (NULL); 224 225 addr = (u_long)anon.an_page; 226 if (addr) { 227 if (KREAD(kd, addr, &pg)) 228 return (NULL); 229 230 if (_kvm_pread(kd, kd->pmfd, (void *)kd->swapspc, 231 (size_t)kd->nbpg, (off_t)pg.phys_addr) != kd->nbpg) 232 return (NULL); 233 } else { 234 if (kd->swfd == -1 || 235 _kvm_pread(kd, kd->swfd, (void *)kd->swapspc, 236 (size_t)kd->nbpg, 237 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg) 238 return (NULL); 239 } 240 241 /* Found the page. */ 242 offset %= kd->nbpg; 243 *cnt = kd->nbpg - offset; 244 return (&kd->swapspc[offset]); 245 } 246 247 char * 248 _kvm_uread(kvm_t *kd, const struct proc *p, u_long va, u_long *cnt) 249 { 250 struct miniproc mp; 251 252 PTOMINI(p, &mp); 253 return (_kvm_ureadm(kd, &mp, va, cnt)); 254 } 255 256 /* 257 * Read proc's from memory file into buffer bp, which has space to hold 258 * at most maxcnt procs. 259 */ 260 static int 261 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p, 262 struct kinfo_proc *bp, int maxcnt) 263 { 264 struct session sess; 265 struct eproc eproc; 266 struct proc proc; 267 struct process process; 268 struct pgrp pgrp; 269 struct tty tty; 270 int cnt = 0; 271 272 for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) { 273 if (KREAD(kd, (u_long)p, &proc)) { 274 _kvm_err(kd, kd->program, "can't read proc at %x", p); 275 return (-1); 276 } 277 if (KREAD(kd, (u_long)proc.p_p, &process)) { 278 _kvm_err(kd, kd->program, "can't read process at %x", proc.p_p); 279 return (-1); 280 } 281 if (KREAD(kd, (u_long)process.ps_cred, &eproc.e_pcred) == 0) 282 KREAD(kd, (u_long)eproc.e_pcred.pc_ucred, 283 &eproc.e_ucred); 284 285 switch (what) { 286 case KERN_PROC_PID: 287 if (proc.p_pid != (pid_t)arg) 288 continue; 289 break; 290 291 case KERN_PROC_UID: 292 if (eproc.e_ucred.cr_uid != (uid_t)arg) 293 continue; 294 break; 295 296 case KERN_PROC_RUID: 297 if (eproc.e_pcred.p_ruid != (uid_t)arg) 298 continue; 299 break; 300 301 case KERN_PROC_ALL: 302 if (proc.p_flag & P_SYSTEM) 303 continue; 304 break; 305 } 306 /* 307 * We're going to add another proc to the set. If this 308 * will overflow the buffer, assume the reason is because 309 * nprocs (or the proc list) is corrupt and declare an error. 310 */ 311 if (cnt >= maxcnt) { 312 _kvm_err(kd, kd->program, "nprocs corrupt"); 313 return (-1); 314 } 315 /* 316 * gather eproc 317 */ 318 eproc.e_paddr = p; 319 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 320 _kvm_err(kd, kd->program, "can't read pgrp at %x", 321 proc.p_pgrp); 322 return (-1); 323 } 324 eproc.e_sess = pgrp.pg_session; 325 eproc.e_pgid = pgrp.pg_id; 326 eproc.e_jobc = pgrp.pg_jobc; 327 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 328 _kvm_err(kd, kd->program, "can't read session at %x", 329 pgrp.pg_session); 330 return (-1); 331 } 332 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 333 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 334 _kvm_err(kd, kd->program, 335 "can't read tty at %x", sess.s_ttyp); 336 return (-1); 337 } 338 eproc.e_tdev = tty.t_dev; 339 eproc.e_tsess = tty.t_session; 340 if (tty.t_pgrp != NULL) { 341 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 342 _kvm_err(kd, kd->program, 343 "can't read tpgrp at &x", 344 tty.t_pgrp); 345 return (-1); 346 } 347 eproc.e_tpgid = pgrp.pg_id; 348 } else 349 eproc.e_tpgid = -1; 350 } else 351 eproc.e_tdev = NODEV; 352 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0; 353 if (sess.s_leader == p) 354 eproc.e_flag |= EPROC_SLEADER; 355 if (proc.p_wmesg) 356 (void)kvm_read(kd, (u_long)proc.p_wmesg, 357 eproc.e_wmesg, WMESGLEN); 358 359 (void)kvm_read(kd, (u_long)proc.p_vmspace, 360 &eproc.e_vm, sizeof(eproc.e_vm)); 361 362 eproc.e_xsize = eproc.e_xrssize = 0; 363 eproc.e_xccount = eproc.e_xswrss = 0; 364 365 switch (what) { 366 case KERN_PROC_PGRP: 367 if (eproc.e_pgid != (pid_t)arg) 368 continue; 369 break; 370 371 case KERN_PROC_TTY: 372 if ((proc.p_flag & P_CONTROLT) == 0 || 373 eproc.e_tdev != (dev_t)arg) 374 continue; 375 break; 376 } 377 bcopy(&proc, &bp->kp_proc, sizeof(proc)); 378 bcopy(&eproc, &bp->kp_eproc, sizeof(eproc)); 379 ++bp; 380 ++cnt; 381 } 382 return (cnt); 383 } 384 385 /* 386 * Build proc info array by reading in proc list from a crash dump. 387 * Return number of procs read. maxcnt is the max we will read. 388 */ 389 static int 390 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc, 391 u_long a_zombproc, int maxcnt) 392 { 393 struct kinfo_proc *bp = kd->procbase; 394 struct proc *p; 395 int acnt, zcnt; 396 397 if (KREAD(kd, a_allproc, &p)) { 398 _kvm_err(kd, kd->program, "cannot read allproc"); 399 return (-1); 400 } 401 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 402 if (acnt < 0) 403 return (acnt); 404 405 if (KREAD(kd, a_zombproc, &p)) { 406 _kvm_err(kd, kd->program, "cannot read zombproc"); 407 return (-1); 408 } 409 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 410 if (zcnt < 0) 411 zcnt = 0; 412 413 return (acnt + zcnt); 414 } 415 416 struct kinfo_proc2 * 417 kvm_getproc2(kvm_t *kd, int op, int arg, size_t esize, int *cnt) 418 { 419 int mib[6], st, nprocs; 420 struct user user; 421 size_t size; 422 423 if ((ssize_t)esize < 0) 424 return (NULL); 425 426 if (kd->procbase2 != NULL) { 427 free(kd->procbase2); 428 /* 429 * Clear this pointer in case this call fails. Otherwise, 430 * kvm_close() will free it again. 431 */ 432 kd->procbase2 = 0; 433 } 434 435 if (ISALIVE(kd)) { 436 size = 0; 437 mib[0] = CTL_KERN; 438 mib[1] = KERN_PROC2; 439 mib[2] = op; 440 mib[3] = arg; 441 mib[4] = esize; 442 mib[5] = 0; 443 st = sysctl(mib, 6, NULL, &size, NULL, 0); 444 if (st == -1) { 445 _kvm_syserr(kd, kd->program, "kvm_getproc2"); 446 return (NULL); 447 } 448 449 mib[5] = size / esize; 450 kd->procbase2 = _kvm_malloc(kd, size); 451 if (kd->procbase2 == 0) 452 return (NULL); 453 st = sysctl(mib, 6, kd->procbase2, &size, NULL, 0); 454 if (st == -1) { 455 _kvm_syserr(kd, kd->program, "kvm_getproc2"); 456 return (NULL); 457 } 458 nprocs = size / esize; 459 } else { 460 struct kinfo_proc2 kp2, *kp2p; 461 struct kinfo_proc *kp; 462 char *kp2c; 463 int i; 464 465 kp = kvm_getprocs(kd, op, arg, &nprocs); 466 if (kp == NULL) 467 return (NULL); 468 469 kd->procbase2 = _kvm_malloc(kd, nprocs * esize); 470 kp2c = (char *)kd->procbase2; 471 kp2p = &kp2; 472 for (i = 0; i < nprocs; i++, kp++) { 473 memset(kp2p, 0, sizeof(kp2)); 474 kp2p->p_paddr = PTRTOINT64(kp->kp_eproc.e_paddr); 475 476 kp2p->p_addr = PTRTOINT64(kp->kp_proc.p_addr); 477 kp2p->p_fd = PTRTOINT64(kp->kp_proc.p_fd); 478 kp2p->p_stats = PTRTOINT64(kp->kp_proc.p_stats); 479 kp2p->p_limit = PTRTOINT64(kp->kp_eproc.e_limit); 480 kp2p->p_vmspace = PTRTOINT64(kp->kp_proc.p_vmspace); 481 kp2p->p_sigacts = PTRTOINT64(kp->kp_proc.p_sigacts); 482 kp2p->p_sess = PTRTOINT64(kp->kp_eproc.e_sess); 483 kp2p->p_tsess = 0; 484 kp2p->p_ru = PTRTOINT64(kp->kp_proc.p_ru); 485 486 kp2p->p_eflag = 0; 487 kp2p->p_exitsig = kp->kp_proc.p_exitsig; 488 kp2p->p_flag = kp->kp_proc.p_flag; 489 490 kp2p->p_pid = kp->kp_proc.p_pid; 491 492 kp2p->p_ppid = kp->kp_eproc.e_ppid; 493 #if 0 494 kp2p->p_sid = kp->kp_eproc.e_sid; 495 #else 496 kp2p->p_sid = -1; /* XXX */ 497 #endif 498 kp2p->p__pgid = kp->kp_eproc.e_pgid; 499 500 kp2p->p_tpgid = -1; 501 502 kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid; 503 kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid; 504 kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid; 505 kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid; 506 507 memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups, 508 MIN(sizeof(kp2p->p_groups), 509 sizeof(kp->kp_eproc.e_ucred.cr_groups))); 510 kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups; 511 512 kp2p->p_jobc = kp->kp_eproc.e_jobc; 513 kp2p->p_tdev = kp->kp_eproc.e_tdev; 514 kp2p->p_tpgid = kp->kp_eproc.e_tpgid; 515 kp2p->p_tsess = PTRTOINT64(kp->kp_eproc.e_tsess); 516 517 kp2p->p_estcpu = kp->kp_proc.p_estcpu; 518 kp2p->p_rtime_sec = kp->kp_proc.p_estcpu; 519 kp2p->p_rtime_usec = kp->kp_proc.p_estcpu; 520 kp2p->p_cpticks = kp->kp_proc.p_cpticks; 521 kp2p->p_pctcpu = kp->kp_proc.p_pctcpu; 522 kp2p->p_swtime = kp->kp_proc.p_swtime; 523 kp2p->p_slptime = kp->kp_proc.p_slptime; 524 kp2p->p_schedflags = 0; 525 526 kp2p->p_uticks = kp->kp_proc.p_uticks; 527 kp2p->p_sticks = kp->kp_proc.p_sticks; 528 kp2p->p_iticks = kp->kp_proc.p_iticks; 529 530 kp2p->p_tracep = PTRTOINT64(kp->kp_proc.p_tracep); 531 kp2p->p_traceflag = kp->kp_proc.p_traceflag; 532 533 kp2p->p_holdcnt = 1; 534 535 kp2p->p_siglist = kp->kp_proc.p_siglist; 536 kp2p->p_sigmask = kp->kp_proc.p_sigmask; 537 kp2p->p_sigignore = kp->kp_proc.p_sigignore; 538 kp2p->p_sigcatch = kp->kp_proc.p_sigcatch; 539 540 kp2p->p_stat = kp->kp_proc.p_stat; 541 kp2p->p_priority = kp->kp_proc.p_priority; 542 kp2p->p_usrpri = kp->kp_proc.p_usrpri; 543 kp2p->p_nice = kp->kp_proc.p_nice; 544 545 kp2p->p_xstat = kp->kp_proc.p_xstat; 546 kp2p->p_acflag = kp->kp_proc.p_acflag; 547 548 strncpy(kp2p->p_comm, kp->kp_proc.p_comm, 549 MIN(sizeof(kp2p->p_comm), sizeof(kp->kp_proc.p_comm))); 550 551 strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg, 552 sizeof(kp2p->p_wmesg)); 553 kp2p->p_wchan = PTRTOINT64(kp->kp_proc.p_wchan); 554 555 strncpy(kp2p->p_login, kp->kp_eproc.e_login, 556 sizeof(kp2p->p_login)); 557 558 kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize; 559 kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize; 560 kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize; 561 kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize; 562 563 kp2p->p_eflag = kp->kp_eproc.e_flag; 564 565 if (P_ZOMBIE(&kp->kp_proc) || kp->kp_proc.p_addr == NULL || 566 KREAD(kd, (u_long)kp->kp_proc.p_addr, &user)) { 567 kp2p->p_uvalid = 0; 568 } else { 569 kp2p->p_uvalid = 1; 570 571 kp2p->p_ustart_sec = user.u_stats.p_start.tv_sec; 572 kp2p->p_ustart_usec = user.u_stats.p_start.tv_usec; 573 574 kp2p->p_uutime_sec = user.u_stats.p_ru.ru_utime.tv_sec; 575 kp2p->p_uutime_usec = user.u_stats.p_ru.ru_utime.tv_usec; 576 kp2p->p_ustime_sec = user.u_stats.p_ru.ru_stime.tv_sec; 577 kp2p->p_ustime_usec = user.u_stats.p_ru.ru_stime.tv_usec; 578 579 kp2p->p_uru_maxrss = user.u_stats.p_ru.ru_maxrss; 580 kp2p->p_uru_ixrss = user.u_stats.p_ru.ru_ixrss; 581 kp2p->p_uru_idrss = user.u_stats.p_ru.ru_idrss; 582 kp2p->p_uru_isrss = user.u_stats.p_ru.ru_isrss; 583 kp2p->p_uru_minflt = user.u_stats.p_ru.ru_minflt; 584 kp2p->p_uru_majflt = user.u_stats.p_ru.ru_majflt; 585 kp2p->p_uru_nswap = user.u_stats.p_ru.ru_nswap; 586 kp2p->p_uru_inblock = user.u_stats.p_ru.ru_inblock; 587 kp2p->p_uru_oublock = user.u_stats.p_ru.ru_oublock; 588 kp2p->p_uru_msgsnd = user.u_stats.p_ru.ru_msgsnd; 589 kp2p->p_uru_msgrcv = user.u_stats.p_ru.ru_msgrcv; 590 kp2p->p_uru_nsignals = user.u_stats.p_ru.ru_nsignals; 591 kp2p->p_uru_nvcsw = user.u_stats.p_ru.ru_nvcsw; 592 kp2p->p_uru_nivcsw = user.u_stats.p_ru.ru_nivcsw; 593 594 kp2p->p_uctime_sec = 595 user.u_stats.p_cru.ru_utime.tv_sec + 596 user.u_stats.p_cru.ru_stime.tv_sec; 597 kp2p->p_uctime_usec = 598 user.u_stats.p_cru.ru_utime.tv_usec + 599 user.u_stats.p_cru.ru_stime.tv_usec; 600 } 601 602 memcpy(kp2c, &kp2, esize); 603 kp2c += esize; 604 } 605 606 free(kd->procbase); 607 } 608 *cnt = nprocs; 609 return (kd->procbase2); 610 } 611 612 struct kinfo_proc * 613 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt) 614 { 615 int mib[4], st, nprocs; 616 size_t size; 617 618 if (kd->procbase != 0) { 619 free((void *)kd->procbase); 620 /* 621 * Clear this pointer in case this call fails. Otherwise, 622 * kvm_close() will free it again. 623 */ 624 kd->procbase = 0; 625 } 626 if (ISALIVE(kd)) { 627 size = 0; 628 mib[0] = CTL_KERN; 629 mib[1] = KERN_PROC; 630 mib[2] = op; 631 mib[3] = arg; 632 st = sysctl(mib, 4, NULL, &size, NULL, 0); 633 if (st == -1) { 634 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 635 return (0); 636 } 637 kd->procbase = _kvm_malloc(kd, size); 638 if (kd->procbase == 0) 639 return (0); 640 st = sysctl(mib, 4, kd->procbase, &size, NULL, 0); 641 if (st == -1) { 642 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 643 return (0); 644 } 645 if (size % sizeof(struct kinfo_proc) != 0) { 646 _kvm_err(kd, kd->program, 647 "proc size mismatch (%d total, %d chunks)", 648 size, sizeof(struct kinfo_proc)); 649 return (0); 650 } 651 nprocs = size / sizeof(struct kinfo_proc); 652 } else { 653 struct nlist nl[4], *p; 654 655 memset(nl, 0, sizeof(nl)); 656 nl[0].n_name = "_nprocs"; 657 nl[1].n_name = "_allproc"; 658 nl[2].n_name = "_zombproc"; 659 nl[3].n_name = NULL; 660 661 if (kvm_nlist(kd, nl) != 0) { 662 for (p = nl; p->n_type != 0; ++p) 663 ; 664 _kvm_err(kd, kd->program, 665 "%s: no such symbol", p->n_name); 666 return (0); 667 } 668 if (KREAD(kd, nl[0].n_value, &nprocs)) { 669 _kvm_err(kd, kd->program, "can't read nprocs"); 670 return (0); 671 } 672 size = nprocs * sizeof(struct kinfo_proc); 673 kd->procbase = _kvm_malloc(kd, size); 674 if (kd->procbase == 0) 675 return (0); 676 677 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 678 nl[2].n_value, nprocs); 679 #ifdef notdef 680 size = nprocs * sizeof(struct kinfo_proc); 681 (void)realloc(kd->procbase, size); 682 #endif 683 } 684 *cnt = nprocs; 685 return (kd->procbase); 686 } 687 688 void 689 _kvm_freeprocs(kvm_t *kd) 690 { 691 if (kd->procbase) { 692 free(kd->procbase); 693 kd->procbase = 0; 694 } 695 } 696 697 void * 698 _kvm_realloc(kvm_t *kd, void *p, size_t n) 699 { 700 void *np = (void *)realloc(p, n); 701 702 if (np == 0) 703 _kvm_err(kd, kd->program, "out of memory"); 704 return (np); 705 } 706 707 /* 708 * Read in an argument vector from the user address space of process p. 709 * addr if the user-space base address of narg null-terminated contiguous 710 * strings. This is used to read in both the command arguments and 711 * environment strings. Read at most maxcnt characters of strings. 712 */ 713 static char ** 714 kvm_argv(kvm_t *kd, const struct miniproc *p, u_long addr, int narg, 715 int maxcnt) 716 { 717 char *np, *cp, *ep, *ap, **argv; 718 u_long oaddr = -1; 719 int len, cc; 720 721 /* 722 * Check that there aren't an unreasonable number of agruments, 723 * and that the address is in user space. 724 */ 725 if (narg > ARG_MAX || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS) 726 return (0); 727 728 if (kd->argv == 0) { 729 /* 730 * Try to avoid reallocs. 731 */ 732 kd->argc = MAX(narg + 1, 32); 733 kd->argv = _kvm_malloc(kd, kd->argc * 734 sizeof(*kd->argv)); 735 if (kd->argv == 0) 736 return (0); 737 } else if (narg + 1 > kd->argc) { 738 kd->argc = MAX(2 * kd->argc, narg + 1); 739 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 740 sizeof(*kd->argv)); 741 if (kd->argv == 0) 742 return (0); 743 } 744 if (kd->argspc == 0) { 745 kd->argspc = _kvm_malloc(kd, kd->nbpg); 746 if (kd->argspc == 0) 747 return (0); 748 kd->arglen = kd->nbpg; 749 } 750 if (kd->argbuf == 0) { 751 kd->argbuf = _kvm_malloc(kd, kd->nbpg); 752 if (kd->argbuf == 0) 753 return (0); 754 } 755 cc = sizeof(char *) * narg; 756 if (kvm_ureadm(kd, p, addr, (char *)kd->argv, cc) != cc) 757 return (0); 758 ap = np = kd->argspc; 759 argv = kd->argv; 760 len = 0; 761 762 /* 763 * Loop over pages, filling in the argument vector. 764 */ 765 while (argv < kd->argv + narg && *argv != 0) { 766 addr = (u_long)*argv & ~(kd->nbpg - 1); 767 if (addr != oaddr) { 768 if (kvm_ureadm(kd, p, addr, kd->argbuf, kd->nbpg) != 769 kd->nbpg) 770 return (0); 771 oaddr = addr; 772 } 773 addr = (u_long)*argv & (kd->nbpg - 1); 774 cp = kd->argbuf + addr; 775 cc = kd->nbpg - addr; 776 if (maxcnt > 0 && cc > maxcnt - len) 777 cc = maxcnt - len; 778 ep = memchr(cp, '\0', cc); 779 if (ep != 0) 780 cc = ep - cp + 1; 781 if (len + cc > kd->arglen) { 782 int off; 783 char **pp; 784 char *op = kd->argspc; 785 786 kd->arglen *= 2; 787 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 788 kd->arglen); 789 if (kd->argspc == 0) 790 return (0); 791 /* 792 * Adjust argv pointers in case realloc moved 793 * the string space. 794 */ 795 off = kd->argspc - op; 796 for (pp = kd->argv; pp < argv; pp++) 797 *pp += off; 798 ap += off; 799 np += off; 800 } 801 memcpy(np, cp, cc); 802 np += cc; 803 len += cc; 804 if (ep != 0) { 805 *argv++ = ap; 806 ap = np; 807 } else 808 *argv += cc; 809 if (maxcnt > 0 && len >= maxcnt) { 810 /* 811 * We're stopping prematurely. Terminate the 812 * current string. 813 */ 814 if (ep == 0) { 815 *np = '\0'; 816 *argv++ = ap; 817 } 818 break; 819 } 820 } 821 /* Make sure argv is terminated. */ 822 *argv = 0; 823 return (kd->argv); 824 } 825 826 static void 827 ps_str_a(struct ps_strings *p, u_long *addr, int *n) 828 { 829 *addr = (u_long)p->ps_argvstr; 830 *n = p->ps_nargvstr; 831 } 832 833 static void 834 ps_str_e(struct ps_strings *p, u_long *addr, int *n) 835 { 836 *addr = (u_long)p->ps_envstr; 837 *n = p->ps_nenvstr; 838 } 839 840 /* 841 * Determine if the proc indicated by p is still active. 842 * This test is not 100% foolproof in theory, but chances of 843 * being wrong are very low. 844 */ 845 static int 846 proc_verify(kvm_t *kd, const struct miniproc *p) 847 { 848 struct proc kernproc; 849 850 /* 851 * Just read in the whole proc. It's not that big relative 852 * to the cost of the read system call. 853 */ 854 if (kvm_read(kd, (u_long)p->p_paddr, &kernproc, sizeof(kernproc)) != 855 sizeof(kernproc)) 856 return (0); 857 return (p->p_pid == kernproc.p_pid && 858 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB)); 859 } 860 861 static char ** 862 kvm_doargv(kvm_t *kd, const struct miniproc *p, int nchr, 863 void (*info)(struct ps_strings *, u_long *, int *)) 864 { 865 static struct ps_strings *ps; 866 struct ps_strings arginfo; 867 u_long addr; 868 char **ap; 869 int cnt; 870 871 if (ps == NULL) { 872 struct _ps_strings _ps; 873 int mib[2]; 874 size_t len; 875 876 mib[0] = CTL_VM; 877 mib[1] = VM_PSSTRINGS; 878 len = sizeof(_ps); 879 sysctl(mib, 2, &_ps, &len, NULL, 0); 880 ps = (struct ps_strings *)_ps.val; 881 } 882 883 /* 884 * Pointers are stored at the top of the user stack. 885 */ 886 if (p->p_stat == SZOMB || 887 kvm_ureadm(kd, p, (u_long)ps, (char *)&arginfo, 888 sizeof(arginfo)) != sizeof(arginfo)) 889 return (0); 890 891 (*info)(&arginfo, &addr, &cnt); 892 if (cnt == 0) 893 return (0); 894 ap = kvm_argv(kd, p, addr, cnt, nchr); 895 /* 896 * For live kernels, make sure this process didn't go away. 897 */ 898 if (ap != 0 && ISALIVE(kd) && !proc_verify(kd, p)) 899 ap = 0; 900 return (ap); 901 } 902 903 static char ** 904 kvm_arg_sysctl(kvm_t *kd, pid_t pid, int nchr, int env) 905 { 906 size_t len, orglen; 907 int mib[4], ret; 908 char *buf; 909 910 orglen = env ? kd->nbpg : 8 * kd->nbpg; /* XXX - should be ARG_MAX */ 911 if (kd->argbuf == NULL && 912 (kd->argbuf = _kvm_malloc(kd, orglen)) == NULL) 913 return (NULL); 914 915 again: 916 mib[0] = CTL_KERN; 917 mib[1] = KERN_PROC_ARGS; 918 mib[2] = (int)pid; 919 mib[3] = env ? KERN_PROC_ENV : KERN_PROC_ARGV; 920 921 len = orglen; 922 ret = (sysctl(mib, 4, kd->argbuf, &len, NULL, 0) < 0); 923 if (ret && errno == ENOMEM) { 924 orglen *= 2; 925 buf = _kvm_realloc(kd, kd->argbuf, orglen); 926 if (buf == NULL) 927 return (NULL); 928 kd->argbuf = buf; 929 goto again; 930 } 931 932 if (ret) { 933 free(kd->argbuf); 934 kd->argbuf = NULL; 935 _kvm_syserr(kd, kd->program, "kvm_arg_sysctl"); 936 return (NULL); 937 } 938 #if 0 939 for (argv = (char **)kd->argbuf; *argv != NULL; argv++) 940 if (strlen(*argv) > nchr) 941 *argv[nchr] = '\0'; 942 #endif 943 944 return (char **)(kd->argbuf); 945 } 946 947 /* 948 * Get the command args. This code is now machine independent. 949 */ 950 char ** 951 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr) 952 { 953 struct miniproc p; 954 955 if (ISALIVE(kd)) 956 return (kvm_arg_sysctl(kd, kp->kp_proc.p_pid, nchr, 0)); 957 KPTOMINI(kp, &p); 958 return (kvm_doargv(kd, &p, nchr, ps_str_a)); 959 } 960 961 char ** 962 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr) 963 { 964 struct miniproc p; 965 966 if (ISALIVE(kd)) 967 return (kvm_arg_sysctl(kd, kp->kp_proc.p_pid, nchr, 1)); 968 KPTOMINI(kp, &p); 969 return (kvm_doargv(kd, &p, nchr, ps_str_e)); 970 } 971 972 char ** 973 kvm_getargv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr) 974 { 975 struct miniproc p; 976 977 if (ISALIVE(kd)) 978 return (kvm_arg_sysctl(kd, kp->p_pid, nchr, 0)); 979 KP2TOMINI(kp, &p); 980 return (kvm_doargv(kd, &p, nchr, ps_str_a)); 981 } 982 983 char ** 984 kvm_getenvv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr) 985 { 986 struct miniproc p; 987 988 if (ISALIVE(kd)) 989 return (kvm_arg_sysctl(kd, kp->p_pid, nchr, 1)); 990 KP2TOMINI(kp, &p); 991 return (kvm_doargv(kd, &p, nchr, ps_str_e)); 992 } 993 994 /* 995 * Read from user space. The user context is given by p. 996 */ 997 static ssize_t 998 kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long uva, char *buf, 999 size_t len) 1000 { 1001 char *cp = buf; 1002 1003 while (len > 0) { 1004 u_long cnt; 1005 size_t cc; 1006 char *dp; 1007 1008 dp = _kvm_ureadm(kd, p, uva, &cnt); 1009 if (dp == 0) { 1010 _kvm_err(kd, 0, "invalid address (%lx)", uva); 1011 return (0); 1012 } 1013 cc = (size_t)MIN(cnt, len); 1014 bcopy(dp, cp, cc); 1015 cp += cc; 1016 uva += cc; 1017 len -= cc; 1018 } 1019 return (ssize_t)(cp - buf); 1020 } 1021 1022 ssize_t 1023 kvm_uread(kvm_t *kd, const struct proc *p, u_long uva, char *buf, 1024 size_t len) 1025 { 1026 struct miniproc mp; 1027 1028 PTOMINI(p, &mp); 1029 return (kvm_ureadm(kd, &mp, uva, buf, len)); 1030 } 1031