1 /* $OpenBSD: kvm_proc.c,v 1.36 2008/06/26 05:42:05 ray Exp $ */ 2 /* $NetBSD: kvm_proc.c,v 1.30 1999/03/24 05:50:50 mrg Exp $ */ 3 /*- 4 * Copyright (c) 1998 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Charles M. Hannum. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 /*- 32 * Copyright (c) 1994, 1995 Charles M. Hannum. All rights reserved. 33 * Copyright (c) 1989, 1992, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * This code is derived from software developed by the Computer Systems 37 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 38 * BG 91-66 and contributed to Berkeley. 39 * 40 * Redistribution and use in source and binary forms, with or without 41 * modification, are permitted provided that the following conditions 42 * are met: 43 * 1. Redistributions of source code must retain the above copyright 44 * notice, this list of conditions and the following disclaimer. 45 * 2. Redistributions in binary form must reproduce the above copyright 46 * notice, this list of conditions and the following disclaimer in the 47 * documentation and/or other materials provided with the distribution. 48 * 3. Neither the name of the University nor the names of its contributors 49 * may be used to endorse or promote products derived from this software 50 * without specific prior written permission. 51 * 52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 62 * SUCH DAMAGE. 63 */ 64 65 #if defined(LIBC_SCCS) && !defined(lint) 66 #if 0 67 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 68 #else 69 static char *rcsid = "$OpenBSD: kvm_proc.c,v 1.36 2008/06/26 05:42:05 ray Exp $"; 70 #endif 71 #endif /* LIBC_SCCS and not lint */ 72 73 /* 74 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 75 * users of this code, so we've factored it out into a separate module. 76 * Thus, we keep this grunge out of the other kvm applications (i.e., 77 * most other applications are interested only in open/close/read/nlist). 78 */ 79 80 #define __need_process 81 #include <sys/param.h> 82 #include <sys/user.h> 83 #include <sys/proc.h> 84 #include <sys/exec.h> 85 #include <sys/stat.h> 86 #include <sys/ioctl.h> 87 #include <sys/tty.h> 88 #include <stdlib.h> 89 #include <string.h> 90 #include <unistd.h> 91 #include <nlist.h> 92 #include <kvm.h> 93 94 #include <uvm/uvm_extern.h> 95 #include <uvm/uvm_amap.h> 96 #include <machine/vmparam.h> 97 #include <machine/pmap.h> 98 99 #include <sys/sysctl.h> 100 101 #include <limits.h> 102 #include <db.h> 103 #include <paths.h> 104 105 #include "kvm_private.h" 106 107 /* 108 * Common info from kinfo_proc and kinfo_proc2 used by helper routines. 109 */ 110 struct miniproc { 111 struct vmspace *p_vmspace; 112 char p_stat; 113 struct proc *p_paddr; 114 pid_t p_pid; 115 }; 116 117 /* 118 * Convert from struct proc and kinfo_proc{,2} to miniproc. 119 */ 120 #define PTOMINI(kp, p) \ 121 do { \ 122 (p)->p_stat = (kp)->p_stat; \ 123 (p)->p_pid = (kp)->p_pid; \ 124 (p)->p_paddr = NULL; \ 125 (p)->p_vmspace = (kp)->p_vmspace; \ 126 } while (/*CONSTCOND*/0); 127 128 #define KPTOMINI(kp, p) \ 129 do { \ 130 (p)->p_stat = (kp)->kp_proc.p_stat; \ 131 (p)->p_pid = (kp)->kp_proc.p_pid; \ 132 (p)->p_paddr = (kp)->kp_eproc.e_paddr; \ 133 (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \ 134 } while (/*CONSTCOND*/0); 135 136 #define KP2TOMINI(kp, p) \ 137 do { \ 138 (p)->p_stat = (kp)->p_stat; \ 139 (p)->p_pid = (kp)->p_pid; \ 140 (p)->p_paddr = (void *)(long)(kp)->p_paddr; \ 141 (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \ 142 } while (/*CONSTCOND*/0); 143 144 145 #define PTRTOINT64(foo) ((u_int64_t)(u_long)(foo)) 146 147 #define KREAD(kd, addr, obj) \ 148 (kvm_read(kd, addr, (void *)(obj), sizeof(*obj)) != sizeof(*obj)) 149 150 ssize_t kvm_uread(kvm_t *, const struct proc *, u_long, char *, size_t); 151 152 static char *_kvm_ureadm(kvm_t *, const struct miniproc *, u_long, u_long *); 153 static ssize_t kvm_ureadm(kvm_t *, const struct miniproc *, u_long, char *, size_t); 154 155 static char **kvm_argv(kvm_t *, const struct miniproc *, u_long, int, int); 156 157 static int kvm_deadprocs(kvm_t *, int, int, u_long, u_long, int); 158 static char **kvm_doargv(kvm_t *, const struct miniproc *, int, 159 void (*)(struct ps_strings *, u_long *, int *)); 160 static int kvm_proclist(kvm_t *, int, int, struct proc *, 161 struct kinfo_proc *, int); 162 static int proc_verify(kvm_t *, const struct miniproc *); 163 static void ps_str_a(struct ps_strings *, u_long *, int *); 164 static void ps_str_e(struct ps_strings *, u_long *, int *); 165 166 static char * 167 _kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long va, u_long *cnt) 168 { 169 u_long addr, head, offset, slot; 170 struct vm_anon *anonp, anon; 171 struct vm_map_entry vme; 172 struct vm_amap amap; 173 struct vm_page pg; 174 175 if (kd->swapspc == 0) { 176 kd->swapspc = _kvm_malloc(kd, kd->nbpg); 177 if (kd->swapspc == 0) 178 return (0); 179 } 180 181 /* 182 * Look through the address map for the memory object 183 * that corresponds to the given virtual address. 184 * The header just has the entire valid range. 185 */ 186 head = (u_long)&p->p_vmspace->vm_map.header; 187 addr = head; 188 while (1) { 189 if (KREAD(kd, addr, &vme)) 190 return (0); 191 192 if (va >= vme.start && va < vme.end && 193 vme.aref.ar_amap != NULL) 194 break; 195 196 addr = (u_long)vme.next; 197 if (addr == head) 198 return (0); 199 } 200 201 /* 202 * we found the map entry, now to find the object... 203 */ 204 if (vme.aref.ar_amap == NULL) 205 return (NULL); 206 207 addr = (u_long)vme.aref.ar_amap; 208 if (KREAD(kd, addr, &amap)) 209 return (NULL); 210 211 offset = va - vme.start; 212 slot = offset / kd->nbpg + vme.aref.ar_pageoff; 213 /* sanity-check slot number */ 214 if (slot > amap.am_nslot) 215 return (NULL); 216 217 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp); 218 if (KREAD(kd, addr, &anonp)) 219 return (NULL); 220 221 addr = (u_long)anonp; 222 if (KREAD(kd, addr, &anon)) 223 return (NULL); 224 225 addr = (u_long)anon.an_page; 226 if (addr) { 227 if (KREAD(kd, addr, &pg)) 228 return (NULL); 229 230 if (_kvm_pread(kd, kd->pmfd, (void *)kd->swapspc, 231 (size_t)kd->nbpg, (off_t)pg.phys_addr) != kd->nbpg) 232 return (NULL); 233 } else { 234 if (_kvm_pread(kd, kd->swfd, (void *)kd->swapspc, 235 (size_t)kd->nbpg, 236 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg) 237 return (NULL); 238 } 239 240 /* Found the page. */ 241 offset %= kd->nbpg; 242 *cnt = kd->nbpg - offset; 243 return (&kd->swapspc[offset]); 244 } 245 246 char * 247 _kvm_uread(kvm_t *kd, const struct proc *p, u_long va, u_long *cnt) 248 { 249 struct miniproc mp; 250 251 PTOMINI(p, &mp); 252 return (_kvm_ureadm(kd, &mp, va, cnt)); 253 } 254 255 /* 256 * Read proc's from memory file into buffer bp, which has space to hold 257 * at most maxcnt procs. 258 */ 259 static int 260 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p, 261 struct kinfo_proc *bp, int maxcnt) 262 { 263 struct session sess; 264 struct eproc eproc; 265 struct proc proc; 266 struct process process; 267 struct pgrp pgrp; 268 struct tty tty; 269 int cnt = 0; 270 271 for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) { 272 if (KREAD(kd, (u_long)p, &proc)) { 273 _kvm_err(kd, kd->program, "can't read proc at %x", p); 274 return (-1); 275 } 276 if (KREAD(kd, (u_long)proc.p_p, &process)) { 277 _kvm_err(kd, kd->program, "can't read process at %x", proc.p_p); 278 return (-1); 279 } 280 if (KREAD(kd, (u_long)process.ps_cred, &eproc.e_pcred) == 0) 281 KREAD(kd, (u_long)eproc.e_pcred.pc_ucred, 282 &eproc.e_ucred); 283 284 switch (what) { 285 case KERN_PROC_PID: 286 if (proc.p_pid != (pid_t)arg) 287 continue; 288 break; 289 290 case KERN_PROC_UID: 291 if (eproc.e_ucred.cr_uid != (uid_t)arg) 292 continue; 293 break; 294 295 case KERN_PROC_RUID: 296 if (eproc.e_pcred.p_ruid != (uid_t)arg) 297 continue; 298 break; 299 300 case KERN_PROC_ALL: 301 if (proc.p_flag & P_SYSTEM) 302 continue; 303 break; 304 } 305 /* 306 * We're going to add another proc to the set. If this 307 * will overflow the buffer, assume the reason is because 308 * nprocs (or the proc list) is corrupt and declare an error. 309 */ 310 if (cnt >= maxcnt) { 311 _kvm_err(kd, kd->program, "nprocs corrupt"); 312 return (-1); 313 } 314 /* 315 * gather eproc 316 */ 317 eproc.e_paddr = p; 318 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 319 _kvm_err(kd, kd->program, "can't read pgrp at %x", 320 proc.p_pgrp); 321 return (-1); 322 } 323 eproc.e_sess = pgrp.pg_session; 324 eproc.e_pgid = pgrp.pg_id; 325 eproc.e_jobc = pgrp.pg_jobc; 326 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 327 _kvm_err(kd, kd->program, "can't read session at %x", 328 pgrp.pg_session); 329 return (-1); 330 } 331 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 332 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 333 _kvm_err(kd, kd->program, 334 "can't read tty at %x", sess.s_ttyp); 335 return (-1); 336 } 337 eproc.e_tdev = tty.t_dev; 338 eproc.e_tsess = tty.t_session; 339 if (tty.t_pgrp != NULL) { 340 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 341 _kvm_err(kd, kd->program, 342 "can't read tpgrp at &x", 343 tty.t_pgrp); 344 return (-1); 345 } 346 eproc.e_tpgid = pgrp.pg_id; 347 } else 348 eproc.e_tpgid = -1; 349 } else 350 eproc.e_tdev = NODEV; 351 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0; 352 if (sess.s_leader == p) 353 eproc.e_flag |= EPROC_SLEADER; 354 if (proc.p_wmesg) 355 (void)kvm_read(kd, (u_long)proc.p_wmesg, 356 eproc.e_wmesg, WMESGLEN); 357 358 (void)kvm_read(kd, (u_long)proc.p_vmspace, 359 &eproc.e_vm, sizeof(eproc.e_vm)); 360 361 eproc.e_xsize = eproc.e_xrssize = 0; 362 eproc.e_xccount = eproc.e_xswrss = 0; 363 364 switch (what) { 365 case KERN_PROC_PGRP: 366 if (eproc.e_pgid != (pid_t)arg) 367 continue; 368 break; 369 370 case KERN_PROC_TTY: 371 if ((proc.p_flag & P_CONTROLT) == 0 || 372 eproc.e_tdev != (dev_t)arg) 373 continue; 374 break; 375 } 376 bcopy(&proc, &bp->kp_proc, sizeof(proc)); 377 bcopy(&eproc, &bp->kp_eproc, sizeof(eproc)); 378 ++bp; 379 ++cnt; 380 } 381 return (cnt); 382 } 383 384 /* 385 * Build proc info array by reading in proc list from a crash dump. 386 * Return number of procs read. maxcnt is the max we will read. 387 */ 388 static int 389 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc, 390 u_long a_zombproc, int maxcnt) 391 { 392 struct kinfo_proc *bp = kd->procbase; 393 struct proc *p; 394 int acnt, zcnt; 395 396 if (KREAD(kd, a_allproc, &p)) { 397 _kvm_err(kd, kd->program, "cannot read allproc"); 398 return (-1); 399 } 400 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 401 if (acnt < 0) 402 return (acnt); 403 404 if (KREAD(kd, a_zombproc, &p)) { 405 _kvm_err(kd, kd->program, "cannot read zombproc"); 406 return (-1); 407 } 408 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 409 if (zcnt < 0) 410 zcnt = 0; 411 412 return (acnt + zcnt); 413 } 414 415 struct kinfo_proc2 * 416 kvm_getproc2(kvm_t *kd, int op, int arg, size_t esize, int *cnt) 417 { 418 int mib[6], st, nprocs; 419 struct user user; 420 size_t size; 421 422 if ((ssize_t)esize < 0) 423 return (NULL); 424 425 if (kd->procbase2 != NULL) { 426 free(kd->procbase2); 427 /* 428 * Clear this pointer in case this call fails. Otherwise, 429 * kvm_close() will free it again. 430 */ 431 kd->procbase2 = 0; 432 } 433 434 if (ISALIVE(kd)) { 435 size = 0; 436 mib[0] = CTL_KERN; 437 mib[1] = KERN_PROC2; 438 mib[2] = op; 439 mib[3] = arg; 440 mib[4] = esize; 441 mib[5] = 0; 442 st = sysctl(mib, 6, NULL, &size, NULL, 0); 443 if (st == -1) { 444 _kvm_syserr(kd, kd->program, "kvm_getproc2"); 445 return (NULL); 446 } 447 448 mib[5] = size / esize; 449 kd->procbase2 = _kvm_malloc(kd, size); 450 if (kd->procbase2 == 0) 451 return (NULL); 452 st = sysctl(mib, 6, kd->procbase2, &size, NULL, 0); 453 if (st == -1) { 454 _kvm_syserr(kd, kd->program, "kvm_getproc2"); 455 return (NULL); 456 } 457 nprocs = size / esize; 458 } else { 459 struct kinfo_proc2 kp2, *kp2p; 460 struct kinfo_proc *kp; 461 char *kp2c; 462 int i; 463 464 kp = kvm_getprocs(kd, op, arg, &nprocs); 465 if (kp == NULL) 466 return (NULL); 467 468 kd->procbase2 = _kvm_malloc(kd, nprocs * esize); 469 kp2c = (char *)kd->procbase2; 470 kp2p = &kp2; 471 for (i = 0; i < nprocs; i++, kp++) { 472 memset(kp2p, 0, sizeof(kp2)); 473 kp2p->p_paddr = PTRTOINT64(kp->kp_eproc.e_paddr); 474 475 kp2p->p_addr = PTRTOINT64(kp->kp_proc.p_addr); 476 kp2p->p_fd = PTRTOINT64(kp->kp_proc.p_fd); 477 kp2p->p_stats = PTRTOINT64(kp->kp_proc.p_stats); 478 kp2p->p_limit = PTRTOINT64(kp->kp_eproc.e_limit); 479 kp2p->p_vmspace = PTRTOINT64(kp->kp_proc.p_vmspace); 480 kp2p->p_sigacts = PTRTOINT64(kp->kp_proc.p_sigacts); 481 kp2p->p_sess = PTRTOINT64(kp->kp_eproc.e_sess); 482 kp2p->p_tsess = 0; 483 kp2p->p_ru = PTRTOINT64(kp->kp_proc.p_ru); 484 485 kp2p->p_eflag = 0; 486 kp2p->p_exitsig = kp->kp_proc.p_exitsig; 487 kp2p->p_flag = kp->kp_proc.p_flag; 488 489 kp2p->p_pid = kp->kp_proc.p_pid; 490 491 kp2p->p_ppid = kp->kp_eproc.e_ppid; 492 #if 0 493 kp2p->p_sid = kp->kp_eproc.e_sid; 494 #else 495 kp2p->p_sid = -1; /* XXX */ 496 #endif 497 kp2p->p__pgid = kp->kp_eproc.e_pgid; 498 499 kp2p->p_tpgid = -1; 500 501 kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid; 502 kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid; 503 kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid; 504 kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid; 505 506 memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups, 507 MIN(sizeof(kp2p->p_groups), 508 sizeof(kp->kp_eproc.e_ucred.cr_groups))); 509 kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups; 510 511 kp2p->p_jobc = kp->kp_eproc.e_jobc; 512 kp2p->p_tdev = kp->kp_eproc.e_tdev; 513 kp2p->p_tpgid = kp->kp_eproc.e_tpgid; 514 kp2p->p_tsess = PTRTOINT64(kp->kp_eproc.e_tsess); 515 516 kp2p->p_estcpu = kp->kp_proc.p_estcpu; 517 kp2p->p_rtime_sec = kp->kp_proc.p_estcpu; 518 kp2p->p_rtime_usec = kp->kp_proc.p_estcpu; 519 kp2p->p_cpticks = kp->kp_proc.p_cpticks; 520 kp2p->p_pctcpu = kp->kp_proc.p_pctcpu; 521 kp2p->p_swtime = kp->kp_proc.p_swtime; 522 kp2p->p_slptime = kp->kp_proc.p_slptime; 523 kp2p->p_schedflags = 0; 524 525 kp2p->p_uticks = kp->kp_proc.p_uticks; 526 kp2p->p_sticks = kp->kp_proc.p_sticks; 527 kp2p->p_iticks = kp->kp_proc.p_iticks; 528 529 kp2p->p_tracep = PTRTOINT64(kp->kp_proc.p_tracep); 530 kp2p->p_traceflag = kp->kp_proc.p_traceflag; 531 532 kp2p->p_holdcnt = 1; 533 534 kp2p->p_siglist = kp->kp_proc.p_siglist; 535 kp2p->p_sigmask = kp->kp_proc.p_sigmask; 536 kp2p->p_sigignore = kp->kp_proc.p_sigignore; 537 kp2p->p_sigcatch = kp->kp_proc.p_sigcatch; 538 539 kp2p->p_stat = kp->kp_proc.p_stat; 540 kp2p->p_priority = kp->kp_proc.p_priority; 541 kp2p->p_usrpri = kp->kp_proc.p_usrpri; 542 kp2p->p_nice = kp->kp_proc.p_nice; 543 544 kp2p->p_xstat = kp->kp_proc.p_xstat; 545 kp2p->p_acflag = kp->kp_proc.p_acflag; 546 547 strncpy(kp2p->p_comm, kp->kp_proc.p_comm, 548 MIN(sizeof(kp2p->p_comm), sizeof(kp->kp_proc.p_comm))); 549 550 strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg, 551 sizeof(kp2p->p_wmesg)); 552 kp2p->p_wchan = PTRTOINT64(kp->kp_proc.p_wchan); 553 554 strncpy(kp2p->p_login, kp->kp_eproc.e_login, 555 sizeof(kp2p->p_login)); 556 557 kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize; 558 kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize; 559 kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize; 560 kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize; 561 562 kp2p->p_eflag = kp->kp_eproc.e_flag; 563 564 if (P_ZOMBIE(&kp->kp_proc) || kp->kp_proc.p_addr == NULL || 565 KREAD(kd, (u_long)kp->kp_proc.p_addr, &user)) { 566 kp2p->p_uvalid = 0; 567 } else { 568 kp2p->p_uvalid = 1; 569 570 kp2p->p_ustart_sec = user.u_stats.p_start.tv_sec; 571 kp2p->p_ustart_usec = user.u_stats.p_start.tv_usec; 572 573 kp2p->p_uutime_sec = user.u_stats.p_ru.ru_utime.tv_sec; 574 kp2p->p_uutime_usec = user.u_stats.p_ru.ru_utime.tv_usec; 575 kp2p->p_ustime_sec = user.u_stats.p_ru.ru_stime.tv_sec; 576 kp2p->p_ustime_usec = user.u_stats.p_ru.ru_stime.tv_usec; 577 578 kp2p->p_uru_maxrss = user.u_stats.p_ru.ru_maxrss; 579 kp2p->p_uru_ixrss = user.u_stats.p_ru.ru_ixrss; 580 kp2p->p_uru_idrss = user.u_stats.p_ru.ru_idrss; 581 kp2p->p_uru_isrss = user.u_stats.p_ru.ru_isrss; 582 kp2p->p_uru_minflt = user.u_stats.p_ru.ru_minflt; 583 kp2p->p_uru_majflt = user.u_stats.p_ru.ru_majflt; 584 kp2p->p_uru_nswap = user.u_stats.p_ru.ru_nswap; 585 kp2p->p_uru_inblock = user.u_stats.p_ru.ru_inblock; 586 kp2p->p_uru_oublock = user.u_stats.p_ru.ru_oublock; 587 kp2p->p_uru_msgsnd = user.u_stats.p_ru.ru_msgsnd; 588 kp2p->p_uru_msgrcv = user.u_stats.p_ru.ru_msgrcv; 589 kp2p->p_uru_nsignals = user.u_stats.p_ru.ru_nsignals; 590 kp2p->p_uru_nvcsw = user.u_stats.p_ru.ru_nvcsw; 591 kp2p->p_uru_nivcsw = user.u_stats.p_ru.ru_nivcsw; 592 593 kp2p->p_uctime_sec = 594 user.u_stats.p_cru.ru_utime.tv_sec + 595 user.u_stats.p_cru.ru_stime.tv_sec; 596 kp2p->p_uctime_usec = 597 user.u_stats.p_cru.ru_utime.tv_usec + 598 user.u_stats.p_cru.ru_stime.tv_usec; 599 } 600 601 memcpy(kp2c, &kp2, esize); 602 kp2c += esize; 603 } 604 605 free(kd->procbase); 606 } 607 *cnt = nprocs; 608 return (kd->procbase2); 609 } 610 611 struct kinfo_proc * 612 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt) 613 { 614 int mib[4], st, nprocs; 615 size_t size; 616 617 if (kd->procbase != 0) { 618 free((void *)kd->procbase); 619 /* 620 * Clear this pointer in case this call fails. Otherwise, 621 * kvm_close() will free it again. 622 */ 623 kd->procbase = 0; 624 } 625 if (ISALIVE(kd)) { 626 size = 0; 627 mib[0] = CTL_KERN; 628 mib[1] = KERN_PROC; 629 mib[2] = op; 630 mib[3] = arg; 631 st = sysctl(mib, 4, NULL, &size, NULL, 0); 632 if (st == -1) { 633 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 634 return (0); 635 } 636 kd->procbase = _kvm_malloc(kd, size); 637 if (kd->procbase == 0) 638 return (0); 639 st = sysctl(mib, 4, kd->procbase, &size, NULL, 0); 640 if (st == -1) { 641 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 642 return (0); 643 } 644 if (size % sizeof(struct kinfo_proc) != 0) { 645 _kvm_err(kd, kd->program, 646 "proc size mismatch (%d total, %d chunks)", 647 size, sizeof(struct kinfo_proc)); 648 return (0); 649 } 650 nprocs = size / sizeof(struct kinfo_proc); 651 } else { 652 struct nlist nl[4], *p; 653 654 memset(nl, 0, sizeof(nl)); 655 nl[0].n_name = "_nprocs"; 656 nl[1].n_name = "_allproc"; 657 nl[2].n_name = "_zombproc"; 658 nl[3].n_name = NULL; 659 660 if (kvm_nlist(kd, nl) != 0) { 661 for (p = nl; p->n_type != 0; ++p) 662 ; 663 _kvm_err(kd, kd->program, 664 "%s: no such symbol", p->n_name); 665 return (0); 666 } 667 if (KREAD(kd, nl[0].n_value, &nprocs)) { 668 _kvm_err(kd, kd->program, "can't read nprocs"); 669 return (0); 670 } 671 size = nprocs * sizeof(struct kinfo_proc); 672 kd->procbase = _kvm_malloc(kd, size); 673 if (kd->procbase == 0) 674 return (0); 675 676 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 677 nl[2].n_value, nprocs); 678 #ifdef notdef 679 size = nprocs * sizeof(struct kinfo_proc); 680 (void)realloc(kd->procbase, size); 681 #endif 682 } 683 *cnt = nprocs; 684 return (kd->procbase); 685 } 686 687 void 688 _kvm_freeprocs(kvm_t *kd) 689 { 690 if (kd->procbase) { 691 free(kd->procbase); 692 kd->procbase = 0; 693 } 694 } 695 696 void * 697 _kvm_realloc(kvm_t *kd, void *p, size_t n) 698 { 699 void *np = (void *)realloc(p, n); 700 701 if (np == 0) 702 _kvm_err(kd, kd->program, "out of memory"); 703 return (np); 704 } 705 706 /* 707 * Read in an argument vector from the user address space of process p. 708 * addr if the user-space base address of narg null-terminated contiguous 709 * strings. This is used to read in both the command arguments and 710 * environment strings. Read at most maxcnt characters of strings. 711 */ 712 static char ** 713 kvm_argv(kvm_t *kd, const struct miniproc *p, u_long addr, int narg, 714 int maxcnt) 715 { 716 char *np, *cp, *ep, *ap, **argv; 717 u_long oaddr = -1; 718 int len, cc; 719 720 /* 721 * Check that there aren't an unreasonable number of agruments, 722 * and that the address is in user space. 723 */ 724 if (narg > ARG_MAX || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS) 725 return (0); 726 727 if (kd->argv == 0) { 728 /* 729 * Try to avoid reallocs. 730 */ 731 kd->argc = MAX(narg + 1, 32); 732 kd->argv = _kvm_malloc(kd, kd->argc * 733 sizeof(*kd->argv)); 734 if (kd->argv == 0) 735 return (0); 736 } else if (narg + 1 > kd->argc) { 737 kd->argc = MAX(2 * kd->argc, narg + 1); 738 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 739 sizeof(*kd->argv)); 740 if (kd->argv == 0) 741 return (0); 742 } 743 if (kd->argspc == 0) { 744 kd->argspc = _kvm_malloc(kd, kd->nbpg); 745 if (kd->argspc == 0) 746 return (0); 747 kd->arglen = kd->nbpg; 748 } 749 if (kd->argbuf == 0) { 750 kd->argbuf = _kvm_malloc(kd, kd->nbpg); 751 if (kd->argbuf == 0) 752 return (0); 753 } 754 cc = sizeof(char *) * narg; 755 if (kvm_ureadm(kd, p, addr, (char *)kd->argv, cc) != cc) 756 return (0); 757 ap = np = kd->argspc; 758 argv = kd->argv; 759 len = 0; 760 761 /* 762 * Loop over pages, filling in the argument vector. 763 */ 764 while (argv < kd->argv + narg && *argv != 0) { 765 addr = (u_long)*argv & ~(kd->nbpg - 1); 766 if (addr != oaddr) { 767 if (kvm_ureadm(kd, p, addr, kd->argbuf, kd->nbpg) != 768 kd->nbpg) 769 return (0); 770 oaddr = addr; 771 } 772 addr = (u_long)*argv & (kd->nbpg - 1); 773 cp = kd->argbuf + addr; 774 cc = kd->nbpg - addr; 775 if (maxcnt > 0 && cc > maxcnt - len) 776 cc = maxcnt - len; 777 ep = memchr(cp, '\0', cc); 778 if (ep != 0) 779 cc = ep - cp + 1; 780 if (len + cc > kd->arglen) { 781 int off; 782 char **pp; 783 char *op = kd->argspc; 784 785 kd->arglen *= 2; 786 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 787 kd->arglen); 788 if (kd->argspc == 0) 789 return (0); 790 /* 791 * Adjust argv pointers in case realloc moved 792 * the string space. 793 */ 794 off = kd->argspc - op; 795 for (pp = kd->argv; pp < argv; pp++) 796 *pp += off; 797 ap += off; 798 np += off; 799 } 800 memcpy(np, cp, cc); 801 np += cc; 802 len += cc; 803 if (ep != 0) { 804 *argv++ = ap; 805 ap = np; 806 } else 807 *argv += cc; 808 if (maxcnt > 0 && len >= maxcnt) { 809 /* 810 * We're stopping prematurely. Terminate the 811 * current string. 812 */ 813 if (ep == 0) { 814 *np = '\0'; 815 *argv++ = ap; 816 } 817 break; 818 } 819 } 820 /* Make sure argv is terminated. */ 821 *argv = 0; 822 return (kd->argv); 823 } 824 825 static void 826 ps_str_a(struct ps_strings *p, u_long *addr, int *n) 827 { 828 *addr = (u_long)p->ps_argvstr; 829 *n = p->ps_nargvstr; 830 } 831 832 static void 833 ps_str_e(struct ps_strings *p, u_long *addr, int *n) 834 { 835 *addr = (u_long)p->ps_envstr; 836 *n = p->ps_nenvstr; 837 } 838 839 /* 840 * Determine if the proc indicated by p is still active. 841 * This test is not 100% foolproof in theory, but chances of 842 * being wrong are very low. 843 */ 844 static int 845 proc_verify(kvm_t *kd, const struct miniproc *p) 846 { 847 struct proc kernproc; 848 849 /* 850 * Just read in the whole proc. It's not that big relative 851 * to the cost of the read system call. 852 */ 853 if (kvm_read(kd, (u_long)p->p_paddr, &kernproc, sizeof(kernproc)) != 854 sizeof(kernproc)) 855 return (0); 856 return (p->p_pid == kernproc.p_pid && 857 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB)); 858 } 859 860 static char ** 861 kvm_doargv(kvm_t *kd, const struct miniproc *p, int nchr, 862 void (*info)(struct ps_strings *, u_long *, int *)) 863 { 864 static struct ps_strings *ps; 865 struct ps_strings arginfo; 866 u_long addr; 867 char **ap; 868 int cnt; 869 870 if (ps == NULL) { 871 struct _ps_strings _ps; 872 int mib[2]; 873 size_t len; 874 875 mib[0] = CTL_VM; 876 mib[1] = VM_PSSTRINGS; 877 len = sizeof(_ps); 878 sysctl(mib, 2, &_ps, &len, NULL, 0); 879 ps = (struct ps_strings *)_ps.val; 880 } 881 882 /* 883 * Pointers are stored at the top of the user stack. 884 */ 885 if (p->p_stat == SZOMB || 886 kvm_ureadm(kd, p, (u_long)ps, (char *)&arginfo, 887 sizeof(arginfo)) != sizeof(arginfo)) 888 return (0); 889 890 (*info)(&arginfo, &addr, &cnt); 891 if (cnt == 0) 892 return (0); 893 ap = kvm_argv(kd, p, addr, cnt, nchr); 894 /* 895 * For live kernels, make sure this process didn't go away. 896 */ 897 if (ap != 0 && ISALIVE(kd) && !proc_verify(kd, p)) 898 ap = 0; 899 return (ap); 900 } 901 902 static char ** 903 kvm_arg_sysctl(kvm_t *kd, pid_t pid, int nchr, int env) 904 { 905 size_t len, orglen; 906 int mib[4], ret; 907 char *buf; 908 909 orglen = env ? kd->nbpg : 8 * kd->nbpg; /* XXX - should be ARG_MAX */ 910 if (kd->argbuf == NULL && 911 (kd->argbuf = _kvm_malloc(kd, orglen)) == NULL) 912 return (NULL); 913 914 again: 915 mib[0] = CTL_KERN; 916 mib[1] = KERN_PROC_ARGS; 917 mib[2] = (int)pid; 918 mib[3] = env ? KERN_PROC_ENV : KERN_PROC_ARGV; 919 920 len = orglen; 921 ret = (sysctl(mib, 4, kd->argbuf, &len, NULL, 0) < 0); 922 if (ret && errno == ENOMEM) { 923 orglen *= 2; 924 buf = _kvm_realloc(kd, kd->argbuf, orglen); 925 if (buf == NULL) 926 return (NULL); 927 kd->argbuf = buf; 928 goto again; 929 } 930 931 if (ret) { 932 free(kd->argbuf); 933 kd->argbuf = NULL; 934 _kvm_syserr(kd, kd->program, "kvm_arg_sysctl"); 935 return (NULL); 936 } 937 #if 0 938 for (argv = (char **)kd->argbuf; *argv != NULL; argv++) 939 if (strlen(*argv) > nchr) 940 *argv[nchr] = '\0'; 941 #endif 942 943 return (char **)(kd->argbuf); 944 } 945 946 /* 947 * Get the command args. This code is now machine independent. 948 */ 949 char ** 950 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr) 951 { 952 struct miniproc p; 953 954 if (ISALIVE(kd)) 955 return (kvm_arg_sysctl(kd, kp->kp_proc.p_pid, nchr, 0)); 956 KPTOMINI(kp, &p); 957 return (kvm_doargv(kd, &p, nchr, ps_str_a)); 958 } 959 960 char ** 961 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr) 962 { 963 struct miniproc p; 964 965 if (ISALIVE(kd)) 966 return (kvm_arg_sysctl(kd, kp->kp_proc.p_pid, nchr, 1)); 967 KPTOMINI(kp, &p); 968 return (kvm_doargv(kd, &p, nchr, ps_str_e)); 969 } 970 971 char ** 972 kvm_getargv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr) 973 { 974 struct miniproc p; 975 976 if (ISALIVE(kd)) 977 return (kvm_arg_sysctl(kd, kp->p_pid, nchr, 0)); 978 KP2TOMINI(kp, &p); 979 return (kvm_doargv(kd, &p, nchr, ps_str_a)); 980 } 981 982 char ** 983 kvm_getenvv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr) 984 { 985 struct miniproc p; 986 987 if (ISALIVE(kd)) 988 return (kvm_arg_sysctl(kd, kp->p_pid, nchr, 1)); 989 KP2TOMINI(kp, &p); 990 return (kvm_doargv(kd, &p, nchr, ps_str_e)); 991 } 992 993 /* 994 * Read from user space. The user context is given by p. 995 */ 996 static ssize_t 997 kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long uva, char *buf, 998 size_t len) 999 { 1000 char *cp = buf; 1001 1002 while (len > 0) { 1003 u_long cnt; 1004 size_t cc; 1005 char *dp; 1006 1007 dp = _kvm_ureadm(kd, p, uva, &cnt); 1008 if (dp == 0) { 1009 _kvm_err(kd, 0, "invalid address (%lx)", uva); 1010 return (0); 1011 } 1012 cc = (size_t)MIN(cnt, len); 1013 bcopy(dp, cp, cc); 1014 cp += cc; 1015 uva += cc; 1016 len -= cc; 1017 } 1018 return (ssize_t)(cp - buf); 1019 } 1020 1021 ssize_t 1022 kvm_uread(kvm_t *kd, const struct proc *p, u_long uva, char *buf, 1023 size_t len) 1024 { 1025 struct miniproc mp; 1026 1027 PTOMINI(p, &mp); 1028 return (kvm_ureadm(kd, &mp, uva, buf, len)); 1029 } 1030