xref: /openbsd-src/lib/libkvm/kvm_proc.c (revision 850e275390052b330d93020bf619a739a3c277ac)
1 /*	$OpenBSD: kvm_proc.c,v 1.36 2008/06/26 05:42:05 ray Exp $	*/
2 /*	$NetBSD: kvm_proc.c,v 1.30 1999/03/24 05:50:50 mrg Exp $	*/
3 /*-
4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 /*-
32  * Copyright (c) 1994, 1995 Charles M. Hannum.  All rights reserved.
33  * Copyright (c) 1989, 1992, 1993
34  *	The Regents of the University of California.  All rights reserved.
35  *
36  * This code is derived from software developed by the Computer Systems
37  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
38  * BG 91-66 and contributed to Berkeley.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. Neither the name of the University nor the names of its contributors
49  *    may be used to endorse or promote products derived from this software
50  *    without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62  * SUCH DAMAGE.
63  */
64 
65 #if defined(LIBC_SCCS) && !defined(lint)
66 #if 0
67 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
68 #else
69 static char *rcsid = "$OpenBSD: kvm_proc.c,v 1.36 2008/06/26 05:42:05 ray Exp $";
70 #endif
71 #endif /* LIBC_SCCS and not lint */
72 
73 /*
74  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
75  * users of this code, so we've factored it out into a separate module.
76  * Thus, we keep this grunge out of the other kvm applications (i.e.,
77  * most other applications are interested only in open/close/read/nlist).
78  */
79 
80 #define __need_process
81 #include <sys/param.h>
82 #include <sys/user.h>
83 #include <sys/proc.h>
84 #include <sys/exec.h>
85 #include <sys/stat.h>
86 #include <sys/ioctl.h>
87 #include <sys/tty.h>
88 #include <stdlib.h>
89 #include <string.h>
90 #include <unistd.h>
91 #include <nlist.h>
92 #include <kvm.h>
93 
94 #include <uvm/uvm_extern.h>
95 #include <uvm/uvm_amap.h>
96 #include <machine/vmparam.h>
97 #include <machine/pmap.h>
98 
99 #include <sys/sysctl.h>
100 
101 #include <limits.h>
102 #include <db.h>
103 #include <paths.h>
104 
105 #include "kvm_private.h"
106 
107 /*
108  * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
109  */
110 struct miniproc {
111 	struct	vmspace *p_vmspace;
112 	char	p_stat;
113 	struct	proc *p_paddr;
114 	pid_t	p_pid;
115 };
116 
117 /*
118  * Convert from struct proc and kinfo_proc{,2} to miniproc.
119  */
120 #define PTOMINI(kp, p) \
121 	do { \
122 		(p)->p_stat = (kp)->p_stat; \
123 		(p)->p_pid = (kp)->p_pid; \
124 		(p)->p_paddr = NULL; \
125 		(p)->p_vmspace = (kp)->p_vmspace; \
126 	} while (/*CONSTCOND*/0);
127 
128 #define KPTOMINI(kp, p) \
129 	do { \
130 		(p)->p_stat = (kp)->kp_proc.p_stat; \
131 		(p)->p_pid = (kp)->kp_proc.p_pid; \
132 		(p)->p_paddr = (kp)->kp_eproc.e_paddr; \
133 		(p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
134 	} while (/*CONSTCOND*/0);
135 
136 #define KP2TOMINI(kp, p) \
137 	do { \
138 		(p)->p_stat = (kp)->p_stat; \
139 		(p)->p_pid = (kp)->p_pid; \
140 		(p)->p_paddr = (void *)(long)(kp)->p_paddr; \
141 		(p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
142 	} while (/*CONSTCOND*/0);
143 
144 
145 #define	PTRTOINT64(foo)	((u_int64_t)(u_long)(foo))
146 
147 #define KREAD(kd, addr, obj) \
148 	(kvm_read(kd, addr, (void *)(obj), sizeof(*obj)) != sizeof(*obj))
149 
150 ssize_t		kvm_uread(kvm_t *, const struct proc *, u_long, char *, size_t);
151 
152 static char	*_kvm_ureadm(kvm_t *, const struct miniproc *, u_long, u_long *);
153 static ssize_t	kvm_ureadm(kvm_t *, const struct miniproc *, u_long, char *, size_t);
154 
155 static char	**kvm_argv(kvm_t *, const struct miniproc *, u_long, int, int);
156 
157 static int	kvm_deadprocs(kvm_t *, int, int, u_long, u_long, int);
158 static char	**kvm_doargv(kvm_t *, const struct miniproc *, int,
159 		    void (*)(struct ps_strings *, u_long *, int *));
160 static int	kvm_proclist(kvm_t *, int, int, struct proc *,
161 		    struct kinfo_proc *, int);
162 static int	proc_verify(kvm_t *, const struct miniproc *);
163 static void	ps_str_a(struct ps_strings *, u_long *, int *);
164 static void	ps_str_e(struct ps_strings *, u_long *, int *);
165 
166 static char *
167 _kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long va, u_long *cnt)
168 {
169 	u_long addr, head, offset, slot;
170 	struct vm_anon *anonp, anon;
171 	struct vm_map_entry vme;
172 	struct vm_amap amap;
173 	struct vm_page pg;
174 
175 	if (kd->swapspc == 0) {
176 		kd->swapspc = _kvm_malloc(kd, kd->nbpg);
177 		if (kd->swapspc == 0)
178 			return (0);
179 	}
180 
181 	/*
182 	 * Look through the address map for the memory object
183 	 * that corresponds to the given virtual address.
184 	 * The header just has the entire valid range.
185 	 */
186 	head = (u_long)&p->p_vmspace->vm_map.header;
187 	addr = head;
188 	while (1) {
189 		if (KREAD(kd, addr, &vme))
190 			return (0);
191 
192 		if (va >= vme.start && va < vme.end &&
193 		    vme.aref.ar_amap != NULL)
194 			break;
195 
196 		addr = (u_long)vme.next;
197 		if (addr == head)
198 			return (0);
199 	}
200 
201 	/*
202 	 * we found the map entry, now to find the object...
203 	 */
204 	if (vme.aref.ar_amap == NULL)
205 		return (NULL);
206 
207 	addr = (u_long)vme.aref.ar_amap;
208 	if (KREAD(kd, addr, &amap))
209 		return (NULL);
210 
211 	offset = va - vme.start;
212 	slot = offset / kd->nbpg + vme.aref.ar_pageoff;
213 	/* sanity-check slot number */
214 	if (slot > amap.am_nslot)
215 		return (NULL);
216 
217 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
218 	if (KREAD(kd, addr, &anonp))
219 		return (NULL);
220 
221 	addr = (u_long)anonp;
222 	if (KREAD(kd, addr, &anon))
223 		return (NULL);
224 
225 	addr = (u_long)anon.an_page;
226 	if (addr) {
227 		if (KREAD(kd, addr, &pg))
228 			return (NULL);
229 
230 		if (_kvm_pread(kd, kd->pmfd, (void *)kd->swapspc,
231 		    (size_t)kd->nbpg, (off_t)pg.phys_addr) != kd->nbpg)
232 			return (NULL);
233 	} else {
234 		if (_kvm_pread(kd, kd->swfd, (void *)kd->swapspc,
235 		    (size_t)kd->nbpg,
236 		    (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
237 			return (NULL);
238 	}
239 
240 	/* Found the page. */
241 	offset %= kd->nbpg;
242 	*cnt = kd->nbpg - offset;
243 	return (&kd->swapspc[offset]);
244 }
245 
246 char *
247 _kvm_uread(kvm_t *kd, const struct proc *p, u_long va, u_long *cnt)
248 {
249 	struct miniproc mp;
250 
251 	PTOMINI(p, &mp);
252 	return (_kvm_ureadm(kd, &mp, va, cnt));
253 }
254 
255 /*
256  * Read proc's from memory file into buffer bp, which has space to hold
257  * at most maxcnt procs.
258  */
259 static int
260 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p,
261     struct kinfo_proc *bp, int maxcnt)
262 {
263 	struct session sess;
264 	struct eproc eproc;
265 	struct proc proc;
266 	struct process process;
267 	struct pgrp pgrp;
268 	struct tty tty;
269 	int cnt = 0;
270 
271 	for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
272 		if (KREAD(kd, (u_long)p, &proc)) {
273 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
274 			return (-1);
275 		}
276 		if (KREAD(kd, (u_long)proc.p_p, &process)) {
277 			_kvm_err(kd, kd->program, "can't read process at %x", proc.p_p);
278 			return (-1);
279 		}
280 		if (KREAD(kd, (u_long)process.ps_cred, &eproc.e_pcred) == 0)
281 			KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
282 			    &eproc.e_ucred);
283 
284 		switch (what) {
285 		case KERN_PROC_PID:
286 			if (proc.p_pid != (pid_t)arg)
287 				continue;
288 			break;
289 
290 		case KERN_PROC_UID:
291 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
292 				continue;
293 			break;
294 
295 		case KERN_PROC_RUID:
296 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
297 				continue;
298 			break;
299 
300 		case KERN_PROC_ALL:
301 			if (proc.p_flag & P_SYSTEM)
302 				continue;
303 			break;
304 		}
305 		/*
306 		 * We're going to add another proc to the set.  If this
307 		 * will overflow the buffer, assume the reason is because
308 		 * nprocs (or the proc list) is corrupt and declare an error.
309 		 */
310 		if (cnt >= maxcnt) {
311 			_kvm_err(kd, kd->program, "nprocs corrupt");
312 			return (-1);
313 		}
314 		/*
315 		 * gather eproc
316 		 */
317 		eproc.e_paddr = p;
318 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
319 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
320 			    proc.p_pgrp);
321 			return (-1);
322 		}
323 		eproc.e_sess = pgrp.pg_session;
324 		eproc.e_pgid = pgrp.pg_id;
325 		eproc.e_jobc = pgrp.pg_jobc;
326 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
327 			_kvm_err(kd, kd->program, "can't read session at %x",
328 			    pgrp.pg_session);
329 			return (-1);
330 		}
331 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
332 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
333 				_kvm_err(kd, kd->program,
334 				    "can't read tty at %x", sess.s_ttyp);
335 				return (-1);
336 			}
337 			eproc.e_tdev = tty.t_dev;
338 			eproc.e_tsess = tty.t_session;
339 			if (tty.t_pgrp != NULL) {
340 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
341 					_kvm_err(kd, kd->program,
342 					    "can't read tpgrp at &x",
343 					    tty.t_pgrp);
344 					return (-1);
345 				}
346 				eproc.e_tpgid = pgrp.pg_id;
347 			} else
348 				eproc.e_tpgid = -1;
349 		} else
350 			eproc.e_tdev = NODEV;
351 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
352 		if (sess.s_leader == p)
353 			eproc.e_flag |= EPROC_SLEADER;
354 		if (proc.p_wmesg)
355 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
356 			    eproc.e_wmesg, WMESGLEN);
357 
358 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
359 		    &eproc.e_vm, sizeof(eproc.e_vm));
360 
361 		eproc.e_xsize = eproc.e_xrssize = 0;
362 		eproc.e_xccount = eproc.e_xswrss = 0;
363 
364 		switch (what) {
365 		case KERN_PROC_PGRP:
366 			if (eproc.e_pgid != (pid_t)arg)
367 				continue;
368 			break;
369 
370 		case KERN_PROC_TTY:
371 			if ((proc.p_flag & P_CONTROLT) == 0 ||
372 			    eproc.e_tdev != (dev_t)arg)
373 				continue;
374 			break;
375 		}
376 		bcopy(&proc, &bp->kp_proc, sizeof(proc));
377 		bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
378 		++bp;
379 		++cnt;
380 	}
381 	return (cnt);
382 }
383 
384 /*
385  * Build proc info array by reading in proc list from a crash dump.
386  * Return number of procs read.  maxcnt is the max we will read.
387  */
388 static int
389 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc,
390     u_long a_zombproc, int maxcnt)
391 {
392 	struct kinfo_proc *bp = kd->procbase;
393 	struct proc *p;
394 	int acnt, zcnt;
395 
396 	if (KREAD(kd, a_allproc, &p)) {
397 		_kvm_err(kd, kd->program, "cannot read allproc");
398 		return (-1);
399 	}
400 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
401 	if (acnt < 0)
402 		return (acnt);
403 
404 	if (KREAD(kd, a_zombproc, &p)) {
405 		_kvm_err(kd, kd->program, "cannot read zombproc");
406 		return (-1);
407 	}
408 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
409 	if (zcnt < 0)
410 		zcnt = 0;
411 
412 	return (acnt + zcnt);
413 }
414 
415 struct kinfo_proc2 *
416 kvm_getproc2(kvm_t *kd, int op, int arg, size_t esize, int *cnt)
417 {
418 	int mib[6], st, nprocs;
419 	struct user user;
420 	size_t size;
421 
422 	if ((ssize_t)esize < 0)
423 		return (NULL);
424 
425 	if (kd->procbase2 != NULL) {
426 		free(kd->procbase2);
427 		/*
428 		 * Clear this pointer in case this call fails.  Otherwise,
429 		 * kvm_close() will free it again.
430 		 */
431 		kd->procbase2 = 0;
432 	}
433 
434 	if (ISALIVE(kd)) {
435 		size = 0;
436 		mib[0] = CTL_KERN;
437 		mib[1] = KERN_PROC2;
438 		mib[2] = op;
439 		mib[3] = arg;
440 		mib[4] = esize;
441 		mib[5] = 0;
442 		st = sysctl(mib, 6, NULL, &size, NULL, 0);
443 		if (st == -1) {
444 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
445 			return (NULL);
446 		}
447 
448 		mib[5] = size / esize;
449 		kd->procbase2 = _kvm_malloc(kd, size);
450 		if (kd->procbase2 == 0)
451 			return (NULL);
452 		st = sysctl(mib, 6, kd->procbase2, &size, NULL, 0);
453 		if (st == -1) {
454 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
455 			return (NULL);
456 		}
457 		nprocs = size / esize;
458 	} else {
459 		struct kinfo_proc2 kp2, *kp2p;
460 		struct kinfo_proc *kp;
461 		char *kp2c;
462 		int i;
463 
464 		kp = kvm_getprocs(kd, op, arg, &nprocs);
465 		if (kp == NULL)
466 			return (NULL);
467 
468 		kd->procbase2 = _kvm_malloc(kd, nprocs * esize);
469 		kp2c = (char *)kd->procbase2;
470 		kp2p = &kp2;
471 		for (i = 0; i < nprocs; i++, kp++) {
472 			memset(kp2p, 0, sizeof(kp2));
473 			kp2p->p_paddr = PTRTOINT64(kp->kp_eproc.e_paddr);
474 
475 			kp2p->p_addr = PTRTOINT64(kp->kp_proc.p_addr);
476 			kp2p->p_fd = PTRTOINT64(kp->kp_proc.p_fd);
477 			kp2p->p_stats = PTRTOINT64(kp->kp_proc.p_stats);
478 			kp2p->p_limit = PTRTOINT64(kp->kp_eproc.e_limit);
479 			kp2p->p_vmspace = PTRTOINT64(kp->kp_proc.p_vmspace);
480 			kp2p->p_sigacts = PTRTOINT64(kp->kp_proc.p_sigacts);
481 			kp2p->p_sess = PTRTOINT64(kp->kp_eproc.e_sess);
482 			kp2p->p_tsess = 0;
483 			kp2p->p_ru = PTRTOINT64(kp->kp_proc.p_ru);
484 
485 			kp2p->p_eflag = 0;
486 			kp2p->p_exitsig = kp->kp_proc.p_exitsig;
487 			kp2p->p_flag = kp->kp_proc.p_flag;
488 
489 			kp2p->p_pid = kp->kp_proc.p_pid;
490 
491 			kp2p->p_ppid = kp->kp_eproc.e_ppid;
492 #if 0
493 			kp2p->p_sid = kp->kp_eproc.e_sid;
494 #else
495 			kp2p->p_sid = -1; /* XXX */
496 #endif
497 			kp2p->p__pgid = kp->kp_eproc.e_pgid;
498 
499 			kp2p->p_tpgid = -1;
500 
501 			kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
502 			kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
503 			kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
504 			kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
505 
506 			memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
507 			    MIN(sizeof(kp2p->p_groups),
508 			    sizeof(kp->kp_eproc.e_ucred.cr_groups)));
509 			kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
510 
511 			kp2p->p_jobc = kp->kp_eproc.e_jobc;
512 			kp2p->p_tdev = kp->kp_eproc.e_tdev;
513 			kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
514 			kp2p->p_tsess = PTRTOINT64(kp->kp_eproc.e_tsess);
515 
516 			kp2p->p_estcpu = kp->kp_proc.p_estcpu;
517 			kp2p->p_rtime_sec = kp->kp_proc.p_estcpu;
518 			kp2p->p_rtime_usec = kp->kp_proc.p_estcpu;
519 			kp2p->p_cpticks = kp->kp_proc.p_cpticks;
520 			kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
521 			kp2p->p_swtime = kp->kp_proc.p_swtime;
522 			kp2p->p_slptime = kp->kp_proc.p_slptime;
523 			kp2p->p_schedflags = 0;
524 
525 			kp2p->p_uticks = kp->kp_proc.p_uticks;
526 			kp2p->p_sticks = kp->kp_proc.p_sticks;
527 			kp2p->p_iticks = kp->kp_proc.p_iticks;
528 
529 			kp2p->p_tracep = PTRTOINT64(kp->kp_proc.p_tracep);
530 			kp2p->p_traceflag = kp->kp_proc.p_traceflag;
531 
532 			kp2p->p_holdcnt = 1;
533 
534 			kp2p->p_siglist = kp->kp_proc.p_siglist;
535 			kp2p->p_sigmask = kp->kp_proc.p_sigmask;
536 			kp2p->p_sigignore = kp->kp_proc.p_sigignore;
537 			kp2p->p_sigcatch = kp->kp_proc.p_sigcatch;
538 
539 			kp2p->p_stat = kp->kp_proc.p_stat;
540 			kp2p->p_priority = kp->kp_proc.p_priority;
541 			kp2p->p_usrpri = kp->kp_proc.p_usrpri;
542 			kp2p->p_nice = kp->kp_proc.p_nice;
543 
544 			kp2p->p_xstat = kp->kp_proc.p_xstat;
545 			kp2p->p_acflag = kp->kp_proc.p_acflag;
546 
547 			strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
548 			    MIN(sizeof(kp2p->p_comm), sizeof(kp->kp_proc.p_comm)));
549 
550 			strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
551 			    sizeof(kp2p->p_wmesg));
552 			kp2p->p_wchan = PTRTOINT64(kp->kp_proc.p_wchan);
553 
554 			strncpy(kp2p->p_login, kp->kp_eproc.e_login,
555 			    sizeof(kp2p->p_login));
556 
557 			kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
558 			kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
559 			kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
560 			kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
561 
562 			kp2p->p_eflag = kp->kp_eproc.e_flag;
563 
564 			if (P_ZOMBIE(&kp->kp_proc) || kp->kp_proc.p_addr == NULL ||
565 			    KREAD(kd, (u_long)kp->kp_proc.p_addr, &user)) {
566 				kp2p->p_uvalid = 0;
567 			} else {
568 				kp2p->p_uvalid = 1;
569 
570 				kp2p->p_ustart_sec = user.u_stats.p_start.tv_sec;
571 				kp2p->p_ustart_usec = user.u_stats.p_start.tv_usec;
572 
573 				kp2p->p_uutime_sec = user.u_stats.p_ru.ru_utime.tv_sec;
574 				kp2p->p_uutime_usec = user.u_stats.p_ru.ru_utime.tv_usec;
575 				kp2p->p_ustime_sec = user.u_stats.p_ru.ru_stime.tv_sec;
576 				kp2p->p_ustime_usec = user.u_stats.p_ru.ru_stime.tv_usec;
577 
578 				kp2p->p_uru_maxrss = user.u_stats.p_ru.ru_maxrss;
579 				kp2p->p_uru_ixrss = user.u_stats.p_ru.ru_ixrss;
580 				kp2p->p_uru_idrss = user.u_stats.p_ru.ru_idrss;
581 				kp2p->p_uru_isrss = user.u_stats.p_ru.ru_isrss;
582 				kp2p->p_uru_minflt = user.u_stats.p_ru.ru_minflt;
583 				kp2p->p_uru_majflt = user.u_stats.p_ru.ru_majflt;
584 				kp2p->p_uru_nswap = user.u_stats.p_ru.ru_nswap;
585 				kp2p->p_uru_inblock = user.u_stats.p_ru.ru_inblock;
586 				kp2p->p_uru_oublock = user.u_stats.p_ru.ru_oublock;
587 				kp2p->p_uru_msgsnd = user.u_stats.p_ru.ru_msgsnd;
588 				kp2p->p_uru_msgrcv = user.u_stats.p_ru.ru_msgrcv;
589 				kp2p->p_uru_nsignals = user.u_stats.p_ru.ru_nsignals;
590 				kp2p->p_uru_nvcsw = user.u_stats.p_ru.ru_nvcsw;
591 				kp2p->p_uru_nivcsw = user.u_stats.p_ru.ru_nivcsw;
592 
593 				kp2p->p_uctime_sec =
594 				    user.u_stats.p_cru.ru_utime.tv_sec +
595 				    user.u_stats.p_cru.ru_stime.tv_sec;
596 				kp2p->p_uctime_usec =
597 				    user.u_stats.p_cru.ru_utime.tv_usec +
598 				    user.u_stats.p_cru.ru_stime.tv_usec;
599 			}
600 
601 			memcpy(kp2c, &kp2, esize);
602 			kp2c += esize;
603 		}
604 
605 		free(kd->procbase);
606 	}
607 	*cnt = nprocs;
608 	return (kd->procbase2);
609 }
610 
611 struct kinfo_proc *
612 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt)
613 {
614 	int mib[4], st, nprocs;
615 	size_t size;
616 
617 	if (kd->procbase != 0) {
618 		free((void *)kd->procbase);
619 		/*
620 		 * Clear this pointer in case this call fails.  Otherwise,
621 		 * kvm_close() will free it again.
622 		 */
623 		kd->procbase = 0;
624 	}
625 	if (ISALIVE(kd)) {
626 		size = 0;
627 		mib[0] = CTL_KERN;
628 		mib[1] = KERN_PROC;
629 		mib[2] = op;
630 		mib[3] = arg;
631 		st = sysctl(mib, 4, NULL, &size, NULL, 0);
632 		if (st == -1) {
633 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
634 			return (0);
635 		}
636 		kd->procbase = _kvm_malloc(kd, size);
637 		if (kd->procbase == 0)
638 			return (0);
639 		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
640 		if (st == -1) {
641 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
642 			return (0);
643 		}
644 		if (size % sizeof(struct kinfo_proc) != 0) {
645 			_kvm_err(kd, kd->program,
646 			    "proc size mismatch (%d total, %d chunks)",
647 			    size, sizeof(struct kinfo_proc));
648 			return (0);
649 		}
650 		nprocs = size / sizeof(struct kinfo_proc);
651 	} else {
652 		struct nlist nl[4], *p;
653 
654 		memset(nl, 0, sizeof(nl));
655 		nl[0].n_name = "_nprocs";
656 		nl[1].n_name = "_allproc";
657 		nl[2].n_name = "_zombproc";
658 		nl[3].n_name = NULL;
659 
660 		if (kvm_nlist(kd, nl) != 0) {
661 			for (p = nl; p->n_type != 0; ++p)
662 				;
663 			_kvm_err(kd, kd->program,
664 			    "%s: no such symbol", p->n_name);
665 			return (0);
666 		}
667 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
668 			_kvm_err(kd, kd->program, "can't read nprocs");
669 			return (0);
670 		}
671 		size = nprocs * sizeof(struct kinfo_proc);
672 		kd->procbase = _kvm_malloc(kd, size);
673 		if (kd->procbase == 0)
674 			return (0);
675 
676 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
677 		    nl[2].n_value, nprocs);
678 #ifdef notdef
679 		size = nprocs * sizeof(struct kinfo_proc);
680 		(void)realloc(kd->procbase, size);
681 #endif
682 	}
683 	*cnt = nprocs;
684 	return (kd->procbase);
685 }
686 
687 void
688 _kvm_freeprocs(kvm_t *kd)
689 {
690 	if (kd->procbase) {
691 		free(kd->procbase);
692 		kd->procbase = 0;
693 	}
694 }
695 
696 void *
697 _kvm_realloc(kvm_t *kd, void *p, size_t n)
698 {
699 	void *np = (void *)realloc(p, n);
700 
701 	if (np == 0)
702 		_kvm_err(kd, kd->program, "out of memory");
703 	return (np);
704 }
705 
706 /*
707  * Read in an argument vector from the user address space of process p.
708  * addr if the user-space base address of narg null-terminated contiguous
709  * strings.  This is used to read in both the command arguments and
710  * environment strings.  Read at most maxcnt characters of strings.
711  */
712 static char **
713 kvm_argv(kvm_t *kd, const struct miniproc *p, u_long addr, int narg,
714     int maxcnt)
715 {
716 	char *np, *cp, *ep, *ap, **argv;
717 	u_long oaddr = -1;
718 	int len, cc;
719 
720 	/*
721 	 * Check that there aren't an unreasonable number of agruments,
722 	 * and that the address is in user space.
723 	 */
724 	if (narg > ARG_MAX || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
725 		return (0);
726 
727 	if (kd->argv == 0) {
728 		/*
729 		 * Try to avoid reallocs.
730 		 */
731 		kd->argc = MAX(narg + 1, 32);
732 		kd->argv = _kvm_malloc(kd, kd->argc *
733 		    sizeof(*kd->argv));
734 		if (kd->argv == 0)
735 			return (0);
736 	} else if (narg + 1 > kd->argc) {
737 		kd->argc = MAX(2 * kd->argc, narg + 1);
738 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
739 		    sizeof(*kd->argv));
740 		if (kd->argv == 0)
741 			return (0);
742 	}
743 	if (kd->argspc == 0) {
744 		kd->argspc = _kvm_malloc(kd, kd->nbpg);
745 		if (kd->argspc == 0)
746 			return (0);
747 		kd->arglen = kd->nbpg;
748 	}
749 	if (kd->argbuf == 0) {
750 		kd->argbuf = _kvm_malloc(kd, kd->nbpg);
751 		if (kd->argbuf == 0)
752 			return (0);
753 	}
754 	cc = sizeof(char *) * narg;
755 	if (kvm_ureadm(kd, p, addr, (char *)kd->argv, cc) != cc)
756 		return (0);
757 	ap = np = kd->argspc;
758 	argv = kd->argv;
759 	len = 0;
760 
761 	/*
762 	 * Loop over pages, filling in the argument vector.
763 	 */
764 	while (argv < kd->argv + narg && *argv != 0) {
765 		addr = (u_long)*argv & ~(kd->nbpg - 1);
766 		if (addr != oaddr) {
767 			if (kvm_ureadm(kd, p, addr, kd->argbuf, kd->nbpg) !=
768 			    kd->nbpg)
769 				return (0);
770 			oaddr = addr;
771 		}
772 		addr = (u_long)*argv & (kd->nbpg - 1);
773 		cp = kd->argbuf + addr;
774 		cc = kd->nbpg - addr;
775 		if (maxcnt > 0 && cc > maxcnt - len)
776 			cc = maxcnt - len;
777 		ep = memchr(cp, '\0', cc);
778 		if (ep != 0)
779 			cc = ep - cp + 1;
780 		if (len + cc > kd->arglen) {
781 			int off;
782 			char **pp;
783 			char *op = kd->argspc;
784 
785 			kd->arglen *= 2;
786 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
787 			    kd->arglen);
788 			if (kd->argspc == 0)
789 				return (0);
790 			/*
791 			 * Adjust argv pointers in case realloc moved
792 			 * the string space.
793 			 */
794 			off = kd->argspc - op;
795 			for (pp = kd->argv; pp < argv; pp++)
796 				*pp += off;
797 			ap += off;
798 			np += off;
799 		}
800 		memcpy(np, cp, cc);
801 		np += cc;
802 		len += cc;
803 		if (ep != 0) {
804 			*argv++ = ap;
805 			ap = np;
806 		} else
807 			*argv += cc;
808 		if (maxcnt > 0 && len >= maxcnt) {
809 			/*
810 			 * We're stopping prematurely.  Terminate the
811 			 * current string.
812 			 */
813 			if (ep == 0) {
814 				*np = '\0';
815 				*argv++ = ap;
816 			}
817 			break;
818 		}
819 	}
820 	/* Make sure argv is terminated. */
821 	*argv = 0;
822 	return (kd->argv);
823 }
824 
825 static void
826 ps_str_a(struct ps_strings *p, u_long *addr, int *n)
827 {
828 	*addr = (u_long)p->ps_argvstr;
829 	*n = p->ps_nargvstr;
830 }
831 
832 static void
833 ps_str_e(struct ps_strings *p, u_long *addr, int *n)
834 {
835 	*addr = (u_long)p->ps_envstr;
836 	*n = p->ps_nenvstr;
837 }
838 
839 /*
840  * Determine if the proc indicated by p is still active.
841  * This test is not 100% foolproof in theory, but chances of
842  * being wrong are very low.
843  */
844 static int
845 proc_verify(kvm_t *kd, const struct miniproc *p)
846 {
847 	struct proc kernproc;
848 
849 	/*
850 	 * Just read in the whole proc.  It's not that big relative
851 	 * to the cost of the read system call.
852 	 */
853 	if (kvm_read(kd, (u_long)p->p_paddr, &kernproc, sizeof(kernproc)) !=
854 	    sizeof(kernproc))
855 		return (0);
856 	return (p->p_pid == kernproc.p_pid &&
857 	    (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
858 }
859 
860 static char **
861 kvm_doargv(kvm_t *kd, const struct miniproc *p, int nchr,
862     void (*info)(struct ps_strings *, u_long *, int *))
863 {
864 	static struct ps_strings *ps;
865 	struct ps_strings arginfo;
866 	u_long addr;
867 	char **ap;
868 	int cnt;
869 
870 	if (ps == NULL) {
871 		struct _ps_strings _ps;
872 		int mib[2];
873 		size_t len;
874 
875 		mib[0] = CTL_VM;
876 		mib[1] = VM_PSSTRINGS;
877 		len = sizeof(_ps);
878 		sysctl(mib, 2, &_ps, &len, NULL, 0);
879 		ps = (struct ps_strings *)_ps.val;
880 	}
881 
882 	/*
883 	 * Pointers are stored at the top of the user stack.
884 	 */
885 	if (p->p_stat == SZOMB ||
886 	    kvm_ureadm(kd, p, (u_long)ps, (char *)&arginfo,
887 	    sizeof(arginfo)) != sizeof(arginfo))
888 		return (0);
889 
890 	(*info)(&arginfo, &addr, &cnt);
891 	if (cnt == 0)
892 		return (0);
893 	ap = kvm_argv(kd, p, addr, cnt, nchr);
894 	/*
895 	 * For live kernels, make sure this process didn't go away.
896 	 */
897 	if (ap != 0 && ISALIVE(kd) && !proc_verify(kd, p))
898 		ap = 0;
899 	return (ap);
900 }
901 
902 static char **
903 kvm_arg_sysctl(kvm_t *kd, pid_t pid, int nchr, int env)
904 {
905 	size_t len, orglen;
906 	int mib[4], ret;
907 	char *buf;
908 
909 	orglen = env ? kd->nbpg : 8 * kd->nbpg;	/* XXX - should be ARG_MAX */
910 	if (kd->argbuf == NULL &&
911 	    (kd->argbuf = _kvm_malloc(kd, orglen)) == NULL)
912 		return (NULL);
913 
914 again:
915 	mib[0] = CTL_KERN;
916 	mib[1] = KERN_PROC_ARGS;
917 	mib[2] = (int)pid;
918 	mib[3] = env ? KERN_PROC_ENV : KERN_PROC_ARGV;
919 
920 	len = orglen;
921 	ret = (sysctl(mib, 4, kd->argbuf, &len, NULL, 0) < 0);
922 	if (ret && errno == ENOMEM) {
923 		orglen *= 2;
924 		buf = _kvm_realloc(kd, kd->argbuf, orglen);
925 		if (buf == NULL)
926 			return (NULL);
927 		kd->argbuf = buf;
928 		goto again;
929 	}
930 
931 	if (ret) {
932 		free(kd->argbuf);
933 		kd->argbuf = NULL;
934 		_kvm_syserr(kd, kd->program, "kvm_arg_sysctl");
935 		return (NULL);
936 	}
937 #if 0
938 	for (argv = (char **)kd->argbuf; *argv != NULL; argv++)
939 		if (strlen(*argv) > nchr)
940 			*argv[nchr] = '\0';
941 #endif
942 
943 	return (char **)(kd->argbuf);
944 }
945 
946 /*
947  * Get the command args.  This code is now machine independent.
948  */
949 char **
950 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
951 {
952 	struct miniproc p;
953 
954 	if (ISALIVE(kd))
955 		return (kvm_arg_sysctl(kd, kp->kp_proc.p_pid, nchr, 0));
956 	KPTOMINI(kp, &p);
957 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
958 }
959 
960 char **
961 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
962 {
963 	struct miniproc p;
964 
965 	if (ISALIVE(kd))
966 		return (kvm_arg_sysctl(kd, kp->kp_proc.p_pid, nchr, 1));
967 	KPTOMINI(kp, &p);
968 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
969 }
970 
971 char **
972 kvm_getargv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
973 {
974 	struct miniproc p;
975 
976 	if (ISALIVE(kd))
977 		return (kvm_arg_sysctl(kd, kp->p_pid, nchr, 0));
978 	KP2TOMINI(kp, &p);
979 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
980 }
981 
982 char **
983 kvm_getenvv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
984 {
985 	struct miniproc p;
986 
987 	if (ISALIVE(kd))
988 		return (kvm_arg_sysctl(kd, kp->p_pid, nchr, 1));
989 	KP2TOMINI(kp, &p);
990 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
991 }
992 
993 /*
994  * Read from user space.  The user context is given by p.
995  */
996 static ssize_t
997 kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long uva, char *buf,
998     size_t len)
999 {
1000 	char *cp = buf;
1001 
1002 	while (len > 0) {
1003 		u_long cnt;
1004 		size_t cc;
1005 		char *dp;
1006 
1007 		dp = _kvm_ureadm(kd, p, uva, &cnt);
1008 		if (dp == 0) {
1009 			_kvm_err(kd, 0, "invalid address (%lx)", uva);
1010 			return (0);
1011 		}
1012 		cc = (size_t)MIN(cnt, len);
1013 		bcopy(dp, cp, cc);
1014 		cp += cc;
1015 		uva += cc;
1016 		len -= cc;
1017 	}
1018 	return (ssize_t)(cp - buf);
1019 }
1020 
1021 ssize_t
1022 kvm_uread(kvm_t *kd, const struct proc *p, u_long uva, char *buf,
1023     size_t len)
1024 {
1025 	struct miniproc mp;
1026 
1027 	PTOMINI(p, &mp);
1028 	return (kvm_ureadm(kd, &mp, uva, buf, len));
1029 }
1030