xref: /openbsd-src/lib/libkvm/kvm_proc.c (revision 66ad965f4873a0970dea06fb53c307b8385e5a94)
1 /*	$OpenBSD: kvm_proc.c,v 1.35 2007/10/10 15:53:51 art Exp $	*/
2 /*	$NetBSD: kvm_proc.c,v 1.30 1999/03/24 05:50:50 mrg Exp $	*/
3 /*-
4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 /*-
39  * Copyright (c) 1994, 1995 Charles M. Hannum.  All rights reserved.
40  * Copyright (c) 1989, 1992, 1993
41  *	The Regents of the University of California.  All rights reserved.
42  *
43  * This code is derived from software developed by the Computer Systems
44  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
45  * BG 91-66 and contributed to Berkeley.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  */
71 
72 #if defined(LIBC_SCCS) && !defined(lint)
73 #if 0
74 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
75 #else
76 static char *rcsid = "$OpenBSD: kvm_proc.c,v 1.35 2007/10/10 15:53:51 art Exp $";
77 #endif
78 #endif /* LIBC_SCCS and not lint */
79 
80 /*
81  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
82  * users of this code, so we've factored it out into a separate module.
83  * Thus, we keep this grunge out of the other kvm applications (i.e.,
84  * most other applications are interested only in open/close/read/nlist).
85  */
86 
87 #define __need_process
88 #include <sys/param.h>
89 #include <sys/user.h>
90 #include <sys/proc.h>
91 #include <sys/exec.h>
92 #include <sys/stat.h>
93 #include <sys/ioctl.h>
94 #include <sys/tty.h>
95 #include <stdlib.h>
96 #include <string.h>
97 #include <unistd.h>
98 #include <nlist.h>
99 #include <kvm.h>
100 
101 #include <uvm/uvm_extern.h>
102 #include <uvm/uvm_amap.h>
103 #include <machine/vmparam.h>
104 #include <machine/pmap.h>
105 
106 #include <sys/sysctl.h>
107 
108 #include <limits.h>
109 #include <db.h>
110 #include <paths.h>
111 
112 #include "kvm_private.h"
113 
114 /*
115  * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
116  */
117 struct miniproc {
118 	struct	vmspace *p_vmspace;
119 	char	p_stat;
120 	struct	proc *p_paddr;
121 	pid_t	p_pid;
122 };
123 
124 /*
125  * Convert from struct proc and kinfo_proc{,2} to miniproc.
126  */
127 #define PTOMINI(kp, p) \
128 	do { \
129 		(p)->p_stat = (kp)->p_stat; \
130 		(p)->p_pid = (kp)->p_pid; \
131 		(p)->p_paddr = NULL; \
132 		(p)->p_vmspace = (kp)->p_vmspace; \
133 	} while (/*CONSTCOND*/0);
134 
135 #define KPTOMINI(kp, p) \
136 	do { \
137 		(p)->p_stat = (kp)->kp_proc.p_stat; \
138 		(p)->p_pid = (kp)->kp_proc.p_pid; \
139 		(p)->p_paddr = (kp)->kp_eproc.e_paddr; \
140 		(p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
141 	} while (/*CONSTCOND*/0);
142 
143 #define KP2TOMINI(kp, p) \
144 	do { \
145 		(p)->p_stat = (kp)->p_stat; \
146 		(p)->p_pid = (kp)->p_pid; \
147 		(p)->p_paddr = (void *)(long)(kp)->p_paddr; \
148 		(p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
149 	} while (/*CONSTCOND*/0);
150 
151 
152 #define	PTRTOINT64(foo)	((u_int64_t)(u_long)(foo))
153 
154 #define KREAD(kd, addr, obj) \
155 	(kvm_read(kd, addr, (void *)(obj), sizeof(*obj)) != sizeof(*obj))
156 
157 ssize_t		kvm_uread(kvm_t *, const struct proc *, u_long, char *, size_t);
158 
159 static char	*_kvm_ureadm(kvm_t *, const struct miniproc *, u_long, u_long *);
160 static ssize_t	kvm_ureadm(kvm_t *, const struct miniproc *, u_long, char *, size_t);
161 
162 static char	**kvm_argv(kvm_t *, const struct miniproc *, u_long, int, int);
163 
164 static int	kvm_deadprocs(kvm_t *, int, int, u_long, u_long, int);
165 static char	**kvm_doargv(kvm_t *, const struct miniproc *, int,
166 		    void (*)(struct ps_strings *, u_long *, int *));
167 static int	kvm_proclist(kvm_t *, int, int, struct proc *,
168 		    struct kinfo_proc *, int);
169 static int	proc_verify(kvm_t *, const struct miniproc *);
170 static void	ps_str_a(struct ps_strings *, u_long *, int *);
171 static void	ps_str_e(struct ps_strings *, u_long *, int *);
172 
173 static char *
174 _kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long va, u_long *cnt)
175 {
176 	u_long addr, head, offset, slot;
177 	struct vm_anon *anonp, anon;
178 	struct vm_map_entry vme;
179 	struct vm_amap amap;
180 	struct vm_page pg;
181 
182 	if (kd->swapspc == 0) {
183 		kd->swapspc = _kvm_malloc(kd, kd->nbpg);
184 		if (kd->swapspc == 0)
185 			return (0);
186 	}
187 
188 	/*
189 	 * Look through the address map for the memory object
190 	 * that corresponds to the given virtual address.
191 	 * The header just has the entire valid range.
192 	 */
193 	head = (u_long)&p->p_vmspace->vm_map.header;
194 	addr = head;
195 	while (1) {
196 		if (KREAD(kd, addr, &vme))
197 			return (0);
198 
199 		if (va >= vme.start && va < vme.end &&
200 		    vme.aref.ar_amap != NULL)
201 			break;
202 
203 		addr = (u_long)vme.next;
204 		if (addr == head)
205 			return (0);
206 	}
207 
208 	/*
209 	 * we found the map entry, now to find the object...
210 	 */
211 	if (vme.aref.ar_amap == NULL)
212 		return (NULL);
213 
214 	addr = (u_long)vme.aref.ar_amap;
215 	if (KREAD(kd, addr, &amap))
216 		return (NULL);
217 
218 	offset = va - vme.start;
219 	slot = offset / kd->nbpg + vme.aref.ar_pageoff;
220 	/* sanity-check slot number */
221 	if (slot > amap.am_nslot)
222 		return (NULL);
223 
224 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
225 	if (KREAD(kd, addr, &anonp))
226 		return (NULL);
227 
228 	addr = (u_long)anonp;
229 	if (KREAD(kd, addr, &anon))
230 		return (NULL);
231 
232 	addr = (u_long)anon.an_page;
233 	if (addr) {
234 		if (KREAD(kd, addr, &pg))
235 			return (NULL);
236 
237 		if (_kvm_pread(kd, kd->pmfd, (void *)kd->swapspc,
238 		    (size_t)kd->nbpg, (off_t)pg.phys_addr) != kd->nbpg)
239 			return (NULL);
240 	} else {
241 		if (_kvm_pread(kd, kd->swfd, (void *)kd->swapspc,
242 		    (size_t)kd->nbpg,
243 		    (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
244 			return (NULL);
245 	}
246 
247 	/* Found the page. */
248 	offset %= kd->nbpg;
249 	*cnt = kd->nbpg - offset;
250 	return (&kd->swapspc[offset]);
251 }
252 
253 char *
254 _kvm_uread(kvm_t *kd, const struct proc *p, u_long va, u_long *cnt)
255 {
256 	struct miniproc mp;
257 
258 	PTOMINI(p, &mp);
259 	return (_kvm_ureadm(kd, &mp, va, cnt));
260 }
261 
262 /*
263  * Read proc's from memory file into buffer bp, which has space to hold
264  * at most maxcnt procs.
265  */
266 static int
267 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p,
268     struct kinfo_proc *bp, int maxcnt)
269 {
270 	struct session sess;
271 	struct eproc eproc;
272 	struct proc proc;
273 	struct process process;
274 	struct pgrp pgrp;
275 	struct tty tty;
276 	int cnt = 0;
277 
278 	for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
279 		if (KREAD(kd, (u_long)p, &proc)) {
280 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
281 			return (-1);
282 		}
283 		if (KREAD(kd, (u_long)proc.p_p, &process)) {
284 			_kvm_err(kd, kd->program, "can't read process at %x", proc.p_p);
285 			return (-1);
286 		}
287 		if (KREAD(kd, (u_long)process.ps_cred, &eproc.e_pcred) == 0)
288 			KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
289 			    &eproc.e_ucred);
290 
291 		switch (what) {
292 		case KERN_PROC_PID:
293 			if (proc.p_pid != (pid_t)arg)
294 				continue;
295 			break;
296 
297 		case KERN_PROC_UID:
298 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
299 				continue;
300 			break;
301 
302 		case KERN_PROC_RUID:
303 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
304 				continue;
305 			break;
306 
307 		case KERN_PROC_ALL:
308 			if (proc.p_flag & P_SYSTEM)
309 				continue;
310 			break;
311 		}
312 		/*
313 		 * We're going to add another proc to the set.  If this
314 		 * will overflow the buffer, assume the reason is because
315 		 * nprocs (or the proc list) is corrupt and declare an error.
316 		 */
317 		if (cnt >= maxcnt) {
318 			_kvm_err(kd, kd->program, "nprocs corrupt");
319 			return (-1);
320 		}
321 		/*
322 		 * gather eproc
323 		 */
324 		eproc.e_paddr = p;
325 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
326 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
327 			    proc.p_pgrp);
328 			return (-1);
329 		}
330 		eproc.e_sess = pgrp.pg_session;
331 		eproc.e_pgid = pgrp.pg_id;
332 		eproc.e_jobc = pgrp.pg_jobc;
333 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
334 			_kvm_err(kd, kd->program, "can't read session at %x",
335 			    pgrp.pg_session);
336 			return (-1);
337 		}
338 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
339 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
340 				_kvm_err(kd, kd->program,
341 				    "can't read tty at %x", sess.s_ttyp);
342 				return (-1);
343 			}
344 			eproc.e_tdev = tty.t_dev;
345 			eproc.e_tsess = tty.t_session;
346 			if (tty.t_pgrp != NULL) {
347 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
348 					_kvm_err(kd, kd->program,
349 					    "can't read tpgrp at &x",
350 					    tty.t_pgrp);
351 					return (-1);
352 				}
353 				eproc.e_tpgid = pgrp.pg_id;
354 			} else
355 				eproc.e_tpgid = -1;
356 		} else
357 			eproc.e_tdev = NODEV;
358 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
359 		if (sess.s_leader == p)
360 			eproc.e_flag |= EPROC_SLEADER;
361 		if (proc.p_wmesg)
362 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
363 			    eproc.e_wmesg, WMESGLEN);
364 
365 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
366 		    &eproc.e_vm, sizeof(eproc.e_vm));
367 
368 		eproc.e_xsize = eproc.e_xrssize = 0;
369 		eproc.e_xccount = eproc.e_xswrss = 0;
370 
371 		switch (what) {
372 		case KERN_PROC_PGRP:
373 			if (eproc.e_pgid != (pid_t)arg)
374 				continue;
375 			break;
376 
377 		case KERN_PROC_TTY:
378 			if ((proc.p_flag & P_CONTROLT) == 0 ||
379 			    eproc.e_tdev != (dev_t)arg)
380 				continue;
381 			break;
382 		}
383 		bcopy(&proc, &bp->kp_proc, sizeof(proc));
384 		bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
385 		++bp;
386 		++cnt;
387 	}
388 	return (cnt);
389 }
390 
391 /*
392  * Build proc info array by reading in proc list from a crash dump.
393  * Return number of procs read.  maxcnt is the max we will read.
394  */
395 static int
396 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc,
397     u_long a_zombproc, int maxcnt)
398 {
399 	struct kinfo_proc *bp = kd->procbase;
400 	struct proc *p;
401 	int acnt, zcnt;
402 
403 	if (KREAD(kd, a_allproc, &p)) {
404 		_kvm_err(kd, kd->program, "cannot read allproc");
405 		return (-1);
406 	}
407 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
408 	if (acnt < 0)
409 		return (acnt);
410 
411 	if (KREAD(kd, a_zombproc, &p)) {
412 		_kvm_err(kd, kd->program, "cannot read zombproc");
413 		return (-1);
414 	}
415 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
416 	if (zcnt < 0)
417 		zcnt = 0;
418 
419 	return (acnt + zcnt);
420 }
421 
422 struct kinfo_proc2 *
423 kvm_getproc2(kvm_t *kd, int op, int arg, size_t esize, int *cnt)
424 {
425 	int mib[6], st, nprocs;
426 	struct user user;
427 	size_t size;
428 
429 	if ((ssize_t)esize < 0)
430 		return (NULL);
431 
432 	if (kd->procbase2 != NULL) {
433 		free(kd->procbase2);
434 		/*
435 		 * Clear this pointer in case this call fails.  Otherwise,
436 		 * kvm_close() will free it again.
437 		 */
438 		kd->procbase2 = 0;
439 	}
440 
441 	if (ISALIVE(kd)) {
442 		size = 0;
443 		mib[0] = CTL_KERN;
444 		mib[1] = KERN_PROC2;
445 		mib[2] = op;
446 		mib[3] = arg;
447 		mib[4] = esize;
448 		mib[5] = 0;
449 		st = sysctl(mib, 6, NULL, &size, NULL, 0);
450 		if (st == -1) {
451 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
452 			return (NULL);
453 		}
454 
455 		mib[5] = size / esize;
456 		kd->procbase2 = _kvm_malloc(kd, size);
457 		if (kd->procbase2 == 0)
458 			return (NULL);
459 		st = sysctl(mib, 6, kd->procbase2, &size, NULL, 0);
460 		if (st == -1) {
461 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
462 			return (NULL);
463 		}
464 		nprocs = size / esize;
465 	} else {
466 		struct kinfo_proc2 kp2, *kp2p;
467 		struct kinfo_proc *kp;
468 		char *kp2c;
469 		int i;
470 
471 		kp = kvm_getprocs(kd, op, arg, &nprocs);
472 		if (kp == NULL)
473 			return (NULL);
474 
475 		kd->procbase2 = _kvm_malloc(kd, nprocs * esize);
476 		kp2c = (char *)kd->procbase2;
477 		kp2p = &kp2;
478 		for (i = 0; i < nprocs; i++, kp++) {
479 			memset(kp2p, 0, sizeof(kp2));
480 			kp2p->p_paddr = PTRTOINT64(kp->kp_eproc.e_paddr);
481 
482 			kp2p->p_addr = PTRTOINT64(kp->kp_proc.p_addr);
483 			kp2p->p_fd = PTRTOINT64(kp->kp_proc.p_fd);
484 			kp2p->p_stats = PTRTOINT64(kp->kp_proc.p_stats);
485 			kp2p->p_limit = PTRTOINT64(kp->kp_eproc.e_limit);
486 			kp2p->p_vmspace = PTRTOINT64(kp->kp_proc.p_vmspace);
487 			kp2p->p_sigacts = PTRTOINT64(kp->kp_proc.p_sigacts);
488 			kp2p->p_sess = PTRTOINT64(kp->kp_eproc.e_sess);
489 			kp2p->p_tsess = 0;
490 			kp2p->p_ru = PTRTOINT64(kp->kp_proc.p_ru);
491 
492 			kp2p->p_eflag = 0;
493 			kp2p->p_exitsig = kp->kp_proc.p_exitsig;
494 			kp2p->p_flag = kp->kp_proc.p_flag;
495 
496 			kp2p->p_pid = kp->kp_proc.p_pid;
497 
498 			kp2p->p_ppid = kp->kp_eproc.e_ppid;
499 #if 0
500 			kp2p->p_sid = kp->kp_eproc.e_sid;
501 #else
502 			kp2p->p_sid = -1; /* XXX */
503 #endif
504 			kp2p->p__pgid = kp->kp_eproc.e_pgid;
505 
506 			kp2p->p_tpgid = -1;
507 
508 			kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
509 			kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
510 			kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
511 			kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
512 
513 			memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
514 			    MIN(sizeof(kp2p->p_groups),
515 			    sizeof(kp->kp_eproc.e_ucred.cr_groups)));
516 			kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
517 
518 			kp2p->p_jobc = kp->kp_eproc.e_jobc;
519 			kp2p->p_tdev = kp->kp_eproc.e_tdev;
520 			kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
521 			kp2p->p_tsess = PTRTOINT64(kp->kp_eproc.e_tsess);
522 
523 			kp2p->p_estcpu = kp->kp_proc.p_estcpu;
524 			kp2p->p_rtime_sec = kp->kp_proc.p_estcpu;
525 			kp2p->p_rtime_usec = kp->kp_proc.p_estcpu;
526 			kp2p->p_cpticks = kp->kp_proc.p_cpticks;
527 			kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
528 			kp2p->p_swtime = kp->kp_proc.p_swtime;
529 			kp2p->p_slptime = kp->kp_proc.p_slptime;
530 			kp2p->p_schedflags = 0;
531 
532 			kp2p->p_uticks = kp->kp_proc.p_uticks;
533 			kp2p->p_sticks = kp->kp_proc.p_sticks;
534 			kp2p->p_iticks = kp->kp_proc.p_iticks;
535 
536 			kp2p->p_tracep = PTRTOINT64(kp->kp_proc.p_tracep);
537 			kp2p->p_traceflag = kp->kp_proc.p_traceflag;
538 
539 			kp2p->p_holdcnt = 1;
540 
541 			kp2p->p_siglist = kp->kp_proc.p_siglist;
542 			kp2p->p_sigmask = kp->kp_proc.p_sigmask;
543 			kp2p->p_sigignore = kp->kp_proc.p_sigignore;
544 			kp2p->p_sigcatch = kp->kp_proc.p_sigcatch;
545 
546 			kp2p->p_stat = kp->kp_proc.p_stat;
547 			kp2p->p_priority = kp->kp_proc.p_priority;
548 			kp2p->p_usrpri = kp->kp_proc.p_usrpri;
549 			kp2p->p_nice = kp->kp_proc.p_nice;
550 
551 			kp2p->p_xstat = kp->kp_proc.p_xstat;
552 			kp2p->p_acflag = kp->kp_proc.p_acflag;
553 
554 			strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
555 			    MIN(sizeof(kp2p->p_comm), sizeof(kp->kp_proc.p_comm)));
556 
557 			strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
558 			    sizeof(kp2p->p_wmesg));
559 			kp2p->p_wchan = PTRTOINT64(kp->kp_proc.p_wchan);
560 
561 			strncpy(kp2p->p_login, kp->kp_eproc.e_login,
562 			    sizeof(kp2p->p_login));
563 
564 			kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
565 			kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
566 			kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
567 			kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
568 
569 			kp2p->p_eflag = kp->kp_eproc.e_flag;
570 
571 			if (P_ZOMBIE(&kp->kp_proc) || kp->kp_proc.p_addr == NULL ||
572 			    KREAD(kd, (u_long)kp->kp_proc.p_addr, &user)) {
573 				kp2p->p_uvalid = 0;
574 			} else {
575 				kp2p->p_uvalid = 1;
576 
577 				kp2p->p_ustart_sec = user.u_stats.p_start.tv_sec;
578 				kp2p->p_ustart_usec = user.u_stats.p_start.tv_usec;
579 
580 				kp2p->p_uutime_sec = user.u_stats.p_ru.ru_utime.tv_sec;
581 				kp2p->p_uutime_usec = user.u_stats.p_ru.ru_utime.tv_usec;
582 				kp2p->p_ustime_sec = user.u_stats.p_ru.ru_stime.tv_sec;
583 				kp2p->p_ustime_usec = user.u_stats.p_ru.ru_stime.tv_usec;
584 
585 				kp2p->p_uru_maxrss = user.u_stats.p_ru.ru_maxrss;
586 				kp2p->p_uru_ixrss = user.u_stats.p_ru.ru_ixrss;
587 				kp2p->p_uru_idrss = user.u_stats.p_ru.ru_idrss;
588 				kp2p->p_uru_isrss = user.u_stats.p_ru.ru_isrss;
589 				kp2p->p_uru_minflt = user.u_stats.p_ru.ru_minflt;
590 				kp2p->p_uru_majflt = user.u_stats.p_ru.ru_majflt;
591 				kp2p->p_uru_nswap = user.u_stats.p_ru.ru_nswap;
592 				kp2p->p_uru_inblock = user.u_stats.p_ru.ru_inblock;
593 				kp2p->p_uru_oublock = user.u_stats.p_ru.ru_oublock;
594 				kp2p->p_uru_msgsnd = user.u_stats.p_ru.ru_msgsnd;
595 				kp2p->p_uru_msgrcv = user.u_stats.p_ru.ru_msgrcv;
596 				kp2p->p_uru_nsignals = user.u_stats.p_ru.ru_nsignals;
597 				kp2p->p_uru_nvcsw = user.u_stats.p_ru.ru_nvcsw;
598 				kp2p->p_uru_nivcsw = user.u_stats.p_ru.ru_nivcsw;
599 
600 				kp2p->p_uctime_sec =
601 				    user.u_stats.p_cru.ru_utime.tv_sec +
602 				    user.u_stats.p_cru.ru_stime.tv_sec;
603 				kp2p->p_uctime_usec =
604 				    user.u_stats.p_cru.ru_utime.tv_usec +
605 				    user.u_stats.p_cru.ru_stime.tv_usec;
606 			}
607 
608 			memcpy(kp2c, &kp2, esize);
609 			kp2c += esize;
610 		}
611 
612 		free(kd->procbase);
613 	}
614 	*cnt = nprocs;
615 	return (kd->procbase2);
616 }
617 
618 struct kinfo_proc *
619 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt)
620 {
621 	int mib[4], st, nprocs;
622 	size_t size;
623 
624 	if (kd->procbase != 0) {
625 		free((void *)kd->procbase);
626 		/*
627 		 * Clear this pointer in case this call fails.  Otherwise,
628 		 * kvm_close() will free it again.
629 		 */
630 		kd->procbase = 0;
631 	}
632 	if (ISALIVE(kd)) {
633 		size = 0;
634 		mib[0] = CTL_KERN;
635 		mib[1] = KERN_PROC;
636 		mib[2] = op;
637 		mib[3] = arg;
638 		st = sysctl(mib, 4, NULL, &size, NULL, 0);
639 		if (st == -1) {
640 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
641 			return (0);
642 		}
643 		kd->procbase = _kvm_malloc(kd, size);
644 		if (kd->procbase == 0)
645 			return (0);
646 		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
647 		if (st == -1) {
648 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
649 			return (0);
650 		}
651 		if (size % sizeof(struct kinfo_proc) != 0) {
652 			_kvm_err(kd, kd->program,
653 			    "proc size mismatch (%d total, %d chunks)",
654 			    size, sizeof(struct kinfo_proc));
655 			return (0);
656 		}
657 		nprocs = size / sizeof(struct kinfo_proc);
658 	} else {
659 		struct nlist nl[4], *p;
660 
661 		memset(nl, 0, sizeof(nl));
662 		nl[0].n_name = "_nprocs";
663 		nl[1].n_name = "_allproc";
664 		nl[2].n_name = "_zombproc";
665 		nl[3].n_name = NULL;
666 
667 		if (kvm_nlist(kd, nl) != 0) {
668 			for (p = nl; p->n_type != 0; ++p)
669 				;
670 			_kvm_err(kd, kd->program,
671 			    "%s: no such symbol", p->n_name);
672 			return (0);
673 		}
674 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
675 			_kvm_err(kd, kd->program, "can't read nprocs");
676 			return (0);
677 		}
678 		size = nprocs * sizeof(struct kinfo_proc);
679 		kd->procbase = _kvm_malloc(kd, size);
680 		if (kd->procbase == 0)
681 			return (0);
682 
683 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
684 		    nl[2].n_value, nprocs);
685 #ifdef notdef
686 		size = nprocs * sizeof(struct kinfo_proc);
687 		(void)realloc(kd->procbase, size);
688 #endif
689 	}
690 	*cnt = nprocs;
691 	return (kd->procbase);
692 }
693 
694 void
695 _kvm_freeprocs(kvm_t *kd)
696 {
697 	if (kd->procbase) {
698 		free(kd->procbase);
699 		kd->procbase = 0;
700 	}
701 }
702 
703 void *
704 _kvm_realloc(kvm_t *kd, void *p, size_t n)
705 {
706 	void *np = (void *)realloc(p, n);
707 
708 	if (np == 0)
709 		_kvm_err(kd, kd->program, "out of memory");
710 	return (np);
711 }
712 
713 /*
714  * Read in an argument vector from the user address space of process p.
715  * addr if the user-space base address of narg null-terminated contiguous
716  * strings.  This is used to read in both the command arguments and
717  * environment strings.  Read at most maxcnt characters of strings.
718  */
719 static char **
720 kvm_argv(kvm_t *kd, const struct miniproc *p, u_long addr, int narg,
721     int maxcnt)
722 {
723 	char *np, *cp, *ep, *ap, **argv;
724 	u_long oaddr = -1;
725 	int len, cc;
726 
727 	/*
728 	 * Check that there aren't an unreasonable number of agruments,
729 	 * and that the address is in user space.
730 	 */
731 	if (narg > ARG_MAX || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
732 		return (0);
733 
734 	if (kd->argv == 0) {
735 		/*
736 		 * Try to avoid reallocs.
737 		 */
738 		kd->argc = MAX(narg + 1, 32);
739 		kd->argv = _kvm_malloc(kd, kd->argc *
740 		    sizeof(*kd->argv));
741 		if (kd->argv == 0)
742 			return (0);
743 	} else if (narg + 1 > kd->argc) {
744 		kd->argc = MAX(2 * kd->argc, narg + 1);
745 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
746 		    sizeof(*kd->argv));
747 		if (kd->argv == 0)
748 			return (0);
749 	}
750 	if (kd->argspc == 0) {
751 		kd->argspc = _kvm_malloc(kd, kd->nbpg);
752 		if (kd->argspc == 0)
753 			return (0);
754 		kd->arglen = kd->nbpg;
755 	}
756 	if (kd->argbuf == 0) {
757 		kd->argbuf = _kvm_malloc(kd, kd->nbpg);
758 		if (kd->argbuf == 0)
759 			return (0);
760 	}
761 	cc = sizeof(char *) * narg;
762 	if (kvm_ureadm(kd, p, addr, (char *)kd->argv, cc) != cc)
763 		return (0);
764 	ap = np = kd->argspc;
765 	argv = kd->argv;
766 	len = 0;
767 
768 	/*
769 	 * Loop over pages, filling in the argument vector.
770 	 */
771 	while (argv < kd->argv + narg && *argv != 0) {
772 		addr = (u_long)*argv & ~(kd->nbpg - 1);
773 		if (addr != oaddr) {
774 			if (kvm_ureadm(kd, p, addr, kd->argbuf, kd->nbpg) !=
775 			    kd->nbpg)
776 				return (0);
777 			oaddr = addr;
778 		}
779 		addr = (u_long)*argv & (kd->nbpg - 1);
780 		cp = kd->argbuf + addr;
781 		cc = kd->nbpg - addr;
782 		if (maxcnt > 0 && cc > maxcnt - len)
783 			cc = maxcnt - len;
784 		ep = memchr(cp, '\0', cc);
785 		if (ep != 0)
786 			cc = ep - cp + 1;
787 		if (len + cc > kd->arglen) {
788 			int off;
789 			char **pp;
790 			char *op = kd->argspc;
791 
792 			kd->arglen *= 2;
793 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
794 			    kd->arglen);
795 			if (kd->argspc == 0)
796 				return (0);
797 			/*
798 			 * Adjust argv pointers in case realloc moved
799 			 * the string space.
800 			 */
801 			off = kd->argspc - op;
802 			for (pp = kd->argv; pp < argv; pp++)
803 				*pp += off;
804 			ap += off;
805 			np += off;
806 		}
807 		memcpy(np, cp, cc);
808 		np += cc;
809 		len += cc;
810 		if (ep != 0) {
811 			*argv++ = ap;
812 			ap = np;
813 		} else
814 			*argv += cc;
815 		if (maxcnt > 0 && len >= maxcnt) {
816 			/*
817 			 * We're stopping prematurely.  Terminate the
818 			 * current string.
819 			 */
820 			if (ep == 0) {
821 				*np = '\0';
822 				*argv++ = ap;
823 			}
824 			break;
825 		}
826 	}
827 	/* Make sure argv is terminated. */
828 	*argv = 0;
829 	return (kd->argv);
830 }
831 
832 static void
833 ps_str_a(struct ps_strings *p, u_long *addr, int *n)
834 {
835 	*addr = (u_long)p->ps_argvstr;
836 	*n = p->ps_nargvstr;
837 }
838 
839 static void
840 ps_str_e(struct ps_strings *p, u_long *addr, int *n)
841 {
842 	*addr = (u_long)p->ps_envstr;
843 	*n = p->ps_nenvstr;
844 }
845 
846 /*
847  * Determine if the proc indicated by p is still active.
848  * This test is not 100% foolproof in theory, but chances of
849  * being wrong are very low.
850  */
851 static int
852 proc_verify(kvm_t *kd, const struct miniproc *p)
853 {
854 	struct proc kernproc;
855 
856 	/*
857 	 * Just read in the whole proc.  It's not that big relative
858 	 * to the cost of the read system call.
859 	 */
860 	if (kvm_read(kd, (u_long)p->p_paddr, &kernproc, sizeof(kernproc)) !=
861 	    sizeof(kernproc))
862 		return (0);
863 	return (p->p_pid == kernproc.p_pid &&
864 	    (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
865 }
866 
867 static char **
868 kvm_doargv(kvm_t *kd, const struct miniproc *p, int nchr,
869     void (*info)(struct ps_strings *, u_long *, int *))
870 {
871 	static struct ps_strings *ps;
872 	struct ps_strings arginfo;
873 	u_long addr;
874 	char **ap;
875 	int cnt;
876 
877 	if (ps == NULL) {
878 		struct _ps_strings _ps;
879 		int mib[2];
880 		size_t len;
881 
882 		mib[0] = CTL_VM;
883 		mib[1] = VM_PSSTRINGS;
884 		len = sizeof(_ps);
885 		sysctl(mib, 2, &_ps, &len, NULL, 0);
886 		ps = (struct ps_strings *)_ps.val;
887 	}
888 
889 	/*
890 	 * Pointers are stored at the top of the user stack.
891 	 */
892 	if (p->p_stat == SZOMB ||
893 	    kvm_ureadm(kd, p, (u_long)ps, (char *)&arginfo,
894 	    sizeof(arginfo)) != sizeof(arginfo))
895 		return (0);
896 
897 	(*info)(&arginfo, &addr, &cnt);
898 	if (cnt == 0)
899 		return (0);
900 	ap = kvm_argv(kd, p, addr, cnt, nchr);
901 	/*
902 	 * For live kernels, make sure this process didn't go away.
903 	 */
904 	if (ap != 0 && ISALIVE(kd) && !proc_verify(kd, p))
905 		ap = 0;
906 	return (ap);
907 }
908 
909 static char **
910 kvm_arg_sysctl(kvm_t *kd, pid_t pid, int nchr, int env)
911 {
912 	size_t len, orglen;
913 	int mib[4], ret;
914 	char *buf;
915 
916 	orglen = env ? kd->nbpg : 8 * kd->nbpg;	/* XXX - should be ARG_MAX */
917 	if (kd->argbuf == NULL &&
918 	    (kd->argbuf = _kvm_malloc(kd, orglen)) == NULL)
919 		return (NULL);
920 
921 again:
922 	mib[0] = CTL_KERN;
923 	mib[1] = KERN_PROC_ARGS;
924 	mib[2] = (int)pid;
925 	mib[3] = env ? KERN_PROC_ENV : KERN_PROC_ARGV;
926 
927 	len = orglen;
928 	ret = (sysctl(mib, 4, kd->argbuf, &len, NULL, 0) < 0);
929 	if (ret && errno == ENOMEM) {
930 		orglen *= 2;
931 		buf = _kvm_realloc(kd, kd->argbuf, orglen);
932 		if (buf == NULL)
933 			return (NULL);
934 		kd->argbuf = buf;
935 		goto again;
936 	}
937 
938 	if (ret) {
939 		free(kd->argbuf);
940 		kd->argbuf = NULL;
941 		_kvm_syserr(kd, kd->program, "kvm_arg_sysctl");
942 		return (NULL);
943 	}
944 #if 0
945 	for (argv = (char **)kd->argbuf; *argv != NULL; argv++)
946 		if (strlen(*argv) > nchr)
947 			*argv[nchr] = '\0';
948 #endif
949 
950 	return (char **)(kd->argbuf);
951 }
952 
953 /*
954  * Get the command args.  This code is now machine independent.
955  */
956 char **
957 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
958 {
959 	struct miniproc p;
960 
961 	if (ISALIVE(kd))
962 		return (kvm_arg_sysctl(kd, kp->kp_proc.p_pid, nchr, 0));
963 	KPTOMINI(kp, &p);
964 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
965 }
966 
967 char **
968 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
969 {
970 	struct miniproc p;
971 
972 	if (ISALIVE(kd))
973 		return (kvm_arg_sysctl(kd, kp->kp_proc.p_pid, nchr, 1));
974 	KPTOMINI(kp, &p);
975 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
976 }
977 
978 char **
979 kvm_getargv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
980 {
981 	struct miniproc p;
982 
983 	if (ISALIVE(kd))
984 		return (kvm_arg_sysctl(kd, kp->p_pid, nchr, 0));
985 	KP2TOMINI(kp, &p);
986 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
987 }
988 
989 char **
990 kvm_getenvv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
991 {
992 	struct miniproc p;
993 
994 	if (ISALIVE(kd))
995 		return (kvm_arg_sysctl(kd, kp->p_pid, nchr, 1));
996 	KP2TOMINI(kp, &p);
997 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
998 }
999 
1000 /*
1001  * Read from user space.  The user context is given by p.
1002  */
1003 static ssize_t
1004 kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long uva, char *buf,
1005     size_t len)
1006 {
1007 	char *cp = buf;
1008 
1009 	while (len > 0) {
1010 		u_long cnt;
1011 		size_t cc;
1012 		char *dp;
1013 
1014 		dp = _kvm_ureadm(kd, p, uva, &cnt);
1015 		if (dp == 0) {
1016 			_kvm_err(kd, 0, "invalid address (%lx)", uva);
1017 			return (0);
1018 		}
1019 		cc = (size_t)MIN(cnt, len);
1020 		bcopy(dp, cp, cc);
1021 		cp += cc;
1022 		uva += cc;
1023 		len -= cc;
1024 	}
1025 	return (ssize_t)(cp - buf);
1026 }
1027 
1028 ssize_t
1029 kvm_uread(kvm_t *kd, const struct proc *p, u_long uva, char *buf,
1030     size_t len)
1031 {
1032 	struct miniproc mp;
1033 
1034 	PTOMINI(p, &mp);
1035 	return (kvm_ureadm(kd, &mp, uva, buf, len));
1036 }
1037