1 /* $OpenBSD: kvm_proc.c,v 1.4 1997/02/26 16:46:33 niklas Exp $ */ 2 /* $NetBSD: kvm_proc.c,v 1.16 1996/03/18 22:33:57 thorpej Exp $ */ 3 4 /*- 5 * Copyright (c) 1994, 1995 Charles M. Hannum. All rights reserved. 6 * Copyright (c) 1989, 1992, 1993 7 * The Regents of the University of California. All rights reserved. 8 * 9 * This code is derived from software developed by the Computer Systems 10 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 11 * BG 91-66 and contributed to Berkeley. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. All advertising materials mentioning features or use of this software 22 * must display the following acknowledgement: 23 * This product includes software developed by the University of 24 * California, Berkeley and its contributors. 25 * 4. Neither the name of the University nor the names of its contributors 26 * may be used to endorse or promote products derived from this software 27 * without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 39 * SUCH DAMAGE. 40 */ 41 42 #if defined(LIBC_SCCS) && !defined(lint) 43 #if 0 44 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 45 #else 46 static char *rcsid = "$OpenBSD: kvm_proc.c,v 1.4 1997/02/26 16:46:33 niklas Exp $"; 47 #endif 48 #endif /* LIBC_SCCS and not lint */ 49 50 /* 51 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 52 * users of this code, so we've factored it out into a separate module. 53 * Thus, we keep this grunge out of the other kvm applications (i.e., 54 * most other applications are interested only in open/close/read/nlist). 55 */ 56 57 #include <sys/param.h> 58 #include <sys/user.h> 59 #include <sys/proc.h> 60 #include <sys/exec.h> 61 #include <sys/stat.h> 62 #include <sys/ioctl.h> 63 #include <sys/tty.h> 64 #include <stdlib.h> 65 #include <string.h> 66 #include <unistd.h> 67 #include <nlist.h> 68 #include <kvm.h> 69 70 #include <vm/vm.h> 71 #include <vm/vm_param.h> 72 #include <vm/swap_pager.h> 73 74 #include <sys/sysctl.h> 75 76 #include <limits.h> 77 #include <db.h> 78 #include <paths.h> 79 80 #include "kvm_private.h" 81 82 #define KREAD(kd, addr, obj) \ 83 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) 84 85 int _kvm_readfromcore __P((kvm_t *, u_long, u_long)); 86 int _kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long)); 87 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *, 88 size_t)); 89 90 static char **kvm_argv __P((kvm_t *, const struct proc *, u_long, int, 91 int)); 92 static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int)); 93 static char **kvm_doargv __P((kvm_t *, const struct kinfo_proc *, int, 94 void (*)(struct ps_strings *, u_long *, int *))); 95 static int kvm_proclist __P((kvm_t *, int, int, struct proc *, 96 struct kinfo_proc *, int)); 97 static int proc_verify __P((kvm_t *, u_long, const struct proc *)); 98 static void ps_str_a __P((struct ps_strings *, u_long *, int *)); 99 static void ps_str_e __P((struct ps_strings *, u_long *, int *)); 100 101 char * 102 _kvm_uread(kd, p, va, cnt) 103 kvm_t *kd; 104 const struct proc *p; 105 u_long va; 106 u_long *cnt; 107 { 108 register u_long addr, head; 109 register u_long offset; 110 struct vm_map_entry vme; 111 struct vm_object vmo; 112 int rv; 113 114 if (kd->swapspc == 0) { 115 kd->swapspc = (char *)_kvm_malloc(kd, kd->nbpg); 116 if (kd->swapspc == 0) 117 return (0); 118 } 119 120 /* 121 * Look through the address map for the memory object 122 * that corresponds to the given virtual address. 123 * The header just has the entire valid range. 124 */ 125 head = (u_long)&p->p_vmspace->vm_map.header; 126 addr = head; 127 while (1) { 128 if (KREAD(kd, addr, &vme)) 129 return (0); 130 131 if (va >= vme.start && va < vme.end && 132 vme.object.vm_object != 0) 133 break; 134 135 addr = (u_long)vme.next; 136 if (addr == head) 137 return (0); 138 } 139 140 /* 141 * We found the right object -- follow shadow links. 142 */ 143 offset = va - vme.start + vme.offset; 144 addr = (u_long)vme.object.vm_object; 145 146 while (1) { 147 /* Try reading the page from core first. */ 148 if ((rv = _kvm_readfromcore(kd, addr, offset))) 149 break; 150 151 if (KREAD(kd, addr, &vmo)) 152 return (0); 153 154 /* If there is a pager here, see if it has the page. */ 155 if (vmo.pager != 0 && 156 (rv = _kvm_readfrompager(kd, &vmo, offset))) 157 break; 158 159 /* Move down the shadow chain. */ 160 addr = (u_long)vmo.shadow; 161 if (addr == 0) 162 return (0); 163 offset += vmo.shadow_offset; 164 } 165 166 if (rv == -1) 167 return (0); 168 169 /* Found the page. */ 170 offset %= kd->nbpg; 171 *cnt = kd->nbpg - offset; 172 return (&kd->swapspc[offset]); 173 } 174 175 #define vm_page_hash(kd, object, offset) \ 176 (((u_long)object + (u_long)(offset / kd->nbpg)) & kd->vm_page_hash_mask) 177 178 int 179 _kvm_coreinit(kd) 180 kvm_t *kd; 181 { 182 struct nlist nlist[3]; 183 184 nlist[0].n_name = "_vm_page_buckets"; 185 nlist[1].n_name = "_vm_page_hash_mask"; 186 nlist[2].n_name = 0; 187 if (kvm_nlist(kd, nlist) != 0) 188 return (-1); 189 190 if (KREAD(kd, nlist[0].n_value, &kd->vm_page_buckets) || 191 KREAD(kd, nlist[1].n_value, &kd->vm_page_hash_mask)) 192 return (-1); 193 194 return (0); 195 } 196 197 int 198 _kvm_readfromcore(kd, object, offset) 199 kvm_t *kd; 200 u_long object, offset; 201 { 202 u_long addr; 203 struct pglist bucket; 204 struct vm_page mem; 205 off_t seekpoint; 206 207 if (kd->vm_page_buckets == 0 && 208 _kvm_coreinit(kd)) 209 return (-1); 210 211 addr = (u_long)&kd->vm_page_buckets[vm_page_hash(kd, object, offset)]; 212 if (KREAD(kd, addr, &bucket)) 213 return (-1); 214 215 addr = (u_long)bucket.tqh_first; 216 offset &= ~(kd->nbpg -1); 217 while (1) { 218 if (addr == 0) 219 return (0); 220 221 if (KREAD(kd, addr, &mem)) 222 return (-1); 223 224 if ((u_long)mem.object == object && 225 (u_long)mem.offset == offset) 226 break; 227 228 addr = (u_long)mem.hashq.tqe_next; 229 } 230 231 seekpoint = mem.phys_addr; 232 233 if (lseek(kd->pmfd, seekpoint, 0) == -1) 234 return (-1); 235 if (read(kd->pmfd, kd->swapspc, kd->nbpg) != kd->nbpg) 236 return (-1); 237 238 return (1); 239 } 240 241 int 242 _kvm_readfrompager(kd, vmop, offset) 243 kvm_t *kd; 244 struct vm_object *vmop; 245 u_long offset; 246 { 247 u_long addr; 248 struct pager_struct pager; 249 struct swpager swap; 250 int ix; 251 struct swblock swb; 252 off_t seekpoint; 253 254 /* Read in the pager info and make sure it's a swap device. */ 255 addr = (u_long)vmop->pager; 256 if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP) 257 return (-1); 258 259 /* Read in the swap_pager private data. */ 260 addr = (u_long)pager.pg_data; 261 if (KREAD(kd, addr, &swap)) 262 return (-1); 263 264 /* 265 * Calculate the paging offset, and make sure it's within the 266 * bounds of the pager. 267 */ 268 offset += vmop->paging_offset; 269 ix = offset / dbtob(swap.sw_bsize); 270 #if 0 271 if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) 272 return (-1); 273 #else 274 if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) { 275 int i; 276 printf("BUG BUG BUG BUG:\n"); 277 printf("object %x offset %x pgoffset %x pager %x swpager %x\n", 278 vmop, offset - vmop->paging_offset, vmop->paging_offset, 279 vmop->pager, pager.pg_data); 280 printf("osize %x bsize %x blocks %x nblocks %x\n", 281 swap.sw_osize, swap.sw_bsize, swap.sw_blocks, 282 swap.sw_nblocks); 283 for (ix = 0; ix < swap.sw_nblocks; ix++) { 284 addr = (u_long)&swap.sw_blocks[ix]; 285 if (KREAD(kd, addr, &swb)) 286 return (0); 287 printf("sw_blocks[%d]: block %x mask %x\n", ix, 288 swb.swb_block, swb.swb_mask); 289 } 290 return (-1); 291 } 292 #endif 293 294 /* Read in the swap records. */ 295 addr = (u_long)&swap.sw_blocks[ix]; 296 if (KREAD(kd, addr, &swb)) 297 return (-1); 298 299 /* Calculate offset within pager. */ 300 offset %= dbtob(swap.sw_bsize); 301 302 /* Check that the page is actually present. */ 303 if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0) 304 return (0); 305 306 if (!ISALIVE(kd)) 307 return (-1); 308 309 /* Calculate the physical address and read the page. */ 310 seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1)); 311 312 if (lseek(kd->swfd, seekpoint, 0) == -1) 313 return (-1); 314 if (read(kd->swfd, kd->swapspc, kd->nbpg) != kd->nbpg) 315 return (-1); 316 317 return (1); 318 } 319 320 /* 321 * Read proc's from memory file into buffer bp, which has space to hold 322 * at most maxcnt procs. 323 */ 324 static int 325 kvm_proclist(kd, what, arg, p, bp, maxcnt) 326 kvm_t *kd; 327 int what, arg; 328 struct proc *p; 329 struct kinfo_proc *bp; 330 int maxcnt; 331 { 332 register int cnt = 0; 333 struct eproc eproc; 334 struct pgrp pgrp; 335 struct session sess; 336 struct tty tty; 337 struct proc proc; 338 339 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) { 340 if (KREAD(kd, (u_long)p, &proc)) { 341 _kvm_err(kd, kd->program, "can't read proc at %x", p); 342 return (-1); 343 } 344 if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0) 345 KREAD(kd, (u_long)eproc.e_pcred.pc_ucred, 346 &eproc.e_ucred); 347 348 switch(what) { 349 350 case KERN_PROC_PID: 351 if (proc.p_pid != (pid_t)arg) 352 continue; 353 break; 354 355 case KERN_PROC_UID: 356 if (eproc.e_ucred.cr_uid != (uid_t)arg) 357 continue; 358 break; 359 360 case KERN_PROC_RUID: 361 if (eproc.e_pcred.p_ruid != (uid_t)arg) 362 continue; 363 break; 364 } 365 /* 366 * We're going to add another proc to the set. If this 367 * will overflow the buffer, assume the reason is because 368 * nprocs (or the proc list) is corrupt and declare an error. 369 */ 370 if (cnt >= maxcnt) { 371 _kvm_err(kd, kd->program, "nprocs corrupt"); 372 return (-1); 373 } 374 /* 375 * gather eproc 376 */ 377 eproc.e_paddr = p; 378 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 379 _kvm_err(kd, kd->program, "can't read pgrp at %x", 380 proc.p_pgrp); 381 return (-1); 382 } 383 eproc.e_sess = pgrp.pg_session; 384 eproc.e_pgid = pgrp.pg_id; 385 eproc.e_jobc = pgrp.pg_jobc; 386 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 387 _kvm_err(kd, kd->program, "can't read session at %x", 388 pgrp.pg_session); 389 return (-1); 390 } 391 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 392 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 393 _kvm_err(kd, kd->program, 394 "can't read tty at %x", sess.s_ttyp); 395 return (-1); 396 } 397 eproc.e_tdev = tty.t_dev; 398 eproc.e_tsess = tty.t_session; 399 if (tty.t_pgrp != NULL) { 400 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 401 _kvm_err(kd, kd->program, 402 "can't read tpgrp at &x", 403 tty.t_pgrp); 404 return (-1); 405 } 406 eproc.e_tpgid = pgrp.pg_id; 407 } else 408 eproc.e_tpgid = -1; 409 } else 410 eproc.e_tdev = NODEV; 411 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0; 412 if (sess.s_leader == p) 413 eproc.e_flag |= EPROC_SLEADER; 414 if (proc.p_wmesg) 415 (void)kvm_read(kd, (u_long)proc.p_wmesg, 416 eproc.e_wmesg, WMESGLEN); 417 418 (void)kvm_read(kd, (u_long)proc.p_vmspace, 419 (char *)&eproc.e_vm, sizeof(eproc.e_vm)); 420 421 eproc.e_xsize = eproc.e_xrssize = 0; 422 eproc.e_xccount = eproc.e_xswrss = 0; 423 424 switch (what) { 425 426 case KERN_PROC_PGRP: 427 if (eproc.e_pgid != (pid_t)arg) 428 continue; 429 break; 430 431 case KERN_PROC_TTY: 432 if ((proc.p_flag & P_CONTROLT) == 0 || 433 eproc.e_tdev != (dev_t)arg) 434 continue; 435 break; 436 } 437 bcopy(&proc, &bp->kp_proc, sizeof(proc)); 438 bcopy(&eproc, &bp->kp_eproc, sizeof(eproc)); 439 ++bp; 440 ++cnt; 441 } 442 return (cnt); 443 } 444 445 /* 446 * Build proc info array by reading in proc list from a crash dump. 447 * Return number of procs read. maxcnt is the max we will read. 448 */ 449 static int 450 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) 451 kvm_t *kd; 452 int what, arg; 453 u_long a_allproc; 454 u_long a_zombproc; 455 int maxcnt; 456 { 457 register struct kinfo_proc *bp = kd->procbase; 458 register int acnt, zcnt; 459 struct proc *p; 460 461 if (KREAD(kd, a_allproc, &p)) { 462 _kvm_err(kd, kd->program, "cannot read allproc"); 463 return (-1); 464 } 465 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 466 if (acnt < 0) 467 return (acnt); 468 469 if (KREAD(kd, a_zombproc, &p)) { 470 _kvm_err(kd, kd->program, "cannot read zombproc"); 471 return (-1); 472 } 473 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 474 if (zcnt < 0) 475 zcnt = 0; 476 477 return (acnt + zcnt); 478 } 479 480 struct kinfo_proc * 481 kvm_getprocs(kd, op, arg, cnt) 482 kvm_t *kd; 483 int op, arg; 484 int *cnt; 485 { 486 size_t size; 487 int mib[4], st, nprocs; 488 489 if (kd->procbase != 0) { 490 free((void *)kd->procbase); 491 /* 492 * Clear this pointer in case this call fails. Otherwise, 493 * kvm_close() will free it again. 494 */ 495 kd->procbase = 0; 496 } 497 if (ISALIVE(kd)) { 498 size = 0; 499 mib[0] = CTL_KERN; 500 mib[1] = KERN_PROC; 501 mib[2] = op; 502 mib[3] = arg; 503 st = sysctl(mib, 4, NULL, &size, NULL, 0); 504 if (st == -1) { 505 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 506 return (0); 507 } 508 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 509 if (kd->procbase == 0) 510 return (0); 511 st = sysctl(mib, 4, kd->procbase, &size, NULL, 0); 512 if (st == -1) { 513 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 514 return (0); 515 } 516 if (size % sizeof(struct kinfo_proc) != 0) { 517 _kvm_err(kd, kd->program, 518 "proc size mismatch (%d total, %d chunks)", 519 size, sizeof(struct kinfo_proc)); 520 return (0); 521 } 522 nprocs = size / sizeof(struct kinfo_proc); 523 } else { 524 struct nlist nl[4], *p; 525 526 nl[0].n_name = "_nprocs"; 527 nl[1].n_name = "_allproc"; 528 nl[2].n_name = "_zombproc"; 529 nl[3].n_name = 0; 530 531 if (kvm_nlist(kd, nl) != 0) { 532 for (p = nl; p->n_type != 0; ++p) 533 ; 534 _kvm_err(kd, kd->program, 535 "%s: no such symbol", p->n_name); 536 return (0); 537 } 538 if (KREAD(kd, nl[0].n_value, &nprocs)) { 539 _kvm_err(kd, kd->program, "can't read nprocs"); 540 return (0); 541 } 542 size = nprocs * sizeof(struct kinfo_proc); 543 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 544 if (kd->procbase == 0) 545 return (0); 546 547 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 548 nl[2].n_value, nprocs); 549 #ifdef notdef 550 size = nprocs * sizeof(struct kinfo_proc); 551 (void)realloc(kd->procbase, size); 552 #endif 553 } 554 *cnt = nprocs; 555 return (kd->procbase); 556 } 557 558 void 559 _kvm_freeprocs(kd) 560 kvm_t *kd; 561 { 562 if (kd->procbase) { 563 free(kd->procbase); 564 kd->procbase = 0; 565 } 566 } 567 568 void * 569 _kvm_realloc(kd, p, n) 570 kvm_t *kd; 571 void *p; 572 size_t n; 573 { 574 void *np = (void *)realloc(p, n); 575 576 if (np == 0) 577 _kvm_err(kd, kd->program, "out of memory"); 578 return (np); 579 } 580 581 #ifndef MAX 582 #define MAX(a, b) ((a) > (b) ? (a) : (b)) 583 #endif 584 585 /* 586 * Read in an argument vector from the user address space of process p. 587 * addr if the user-space base address of narg null-terminated contiguous 588 * strings. This is used to read in both the command arguments and 589 * environment strings. Read at most maxcnt characters of strings. 590 */ 591 static char ** 592 kvm_argv(kd, p, addr, narg, maxcnt) 593 kvm_t *kd; 594 const struct proc *p; 595 register u_long addr; 596 register int narg; 597 register int maxcnt; 598 { 599 register char *np, *cp, *ep, *ap; 600 register u_long oaddr = -1; 601 register int len, cc; 602 register char **argv; 603 604 /* 605 * Check that there aren't an unreasonable number of agruments, 606 * and that the address is in user space. 607 */ 608 if (narg > ARG_MAX || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS) 609 return (0); 610 611 if (kd->argv == 0) { 612 /* 613 * Try to avoid reallocs. 614 */ 615 kd->argc = MAX(narg + 1, 32); 616 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 617 sizeof(*kd->argv)); 618 if (kd->argv == 0) 619 return (0); 620 } else if (narg + 1 > kd->argc) { 621 kd->argc = MAX(2 * kd->argc, narg + 1); 622 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 623 sizeof(*kd->argv)); 624 if (kd->argv == 0) 625 return (0); 626 } 627 if (kd->argspc == 0) { 628 kd->argspc = (char *)_kvm_malloc(kd, kd->nbpg); 629 if (kd->argspc == 0) 630 return (0); 631 kd->arglen = kd->nbpg; 632 } 633 if (kd->argbuf == 0) { 634 kd->argbuf = (char *)_kvm_malloc(kd, kd->nbpg); 635 if (kd->argbuf == 0) 636 return (0); 637 } 638 cc = sizeof(char *) * narg; 639 if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc) 640 return (0); 641 ap = np = kd->argspc; 642 argv = kd->argv; 643 len = 0; 644 /* 645 * Loop over pages, filling in the argument vector. 646 */ 647 while (argv < kd->argv + narg && *argv != 0) { 648 addr = (u_long)*argv & ~(kd->nbpg - 1); 649 if (addr != oaddr) { 650 if (kvm_uread(kd, p, addr, kd->argbuf, kd->nbpg) != 651 kd->nbpg) 652 return (0); 653 oaddr = addr; 654 } 655 addr = (u_long)*argv & (kd->nbpg - 1); 656 cp = kd->argbuf + addr; 657 cc = kd->nbpg - addr; 658 if (maxcnt > 0 && cc > maxcnt - len) 659 cc = maxcnt - len;; 660 ep = memchr(cp, '\0', cc); 661 if (ep != 0) 662 cc = ep - cp + 1; 663 if (len + cc > kd->arglen) { 664 register int off; 665 register char **pp; 666 register char *op = kd->argspc; 667 668 kd->arglen *= 2; 669 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 670 kd->arglen); 671 if (kd->argspc == 0) 672 return (0); 673 /* 674 * Adjust argv pointers in case realloc moved 675 * the string space. 676 */ 677 off = kd->argspc - op; 678 for (pp = kd->argv; pp < argv; pp++) 679 *pp += off; 680 ap += off; 681 np += off; 682 } 683 memcpy(np, cp, cc); 684 np += cc; 685 len += cc; 686 if (ep != 0) { 687 *argv++ = ap; 688 ap = np; 689 } else 690 *argv += cc; 691 if (maxcnt > 0 && len >= maxcnt) { 692 /* 693 * We're stopping prematurely. Terminate the 694 * current string. 695 */ 696 if (ep == 0) { 697 *np = '\0'; 698 *argv++ = ap; 699 } 700 break; 701 } 702 } 703 /* Make sure argv is terminated. */ 704 *argv = 0; 705 return (kd->argv); 706 } 707 708 static void 709 ps_str_a(p, addr, n) 710 struct ps_strings *p; 711 u_long *addr; 712 int *n; 713 { 714 *addr = (u_long)p->ps_argvstr; 715 *n = p->ps_nargvstr; 716 } 717 718 static void 719 ps_str_e(p, addr, n) 720 struct ps_strings *p; 721 u_long *addr; 722 int *n; 723 { 724 *addr = (u_long)p->ps_envstr; 725 *n = p->ps_nenvstr; 726 } 727 728 /* 729 * Determine if the proc indicated by p is still active. 730 * This test is not 100% foolproof in theory, but chances of 731 * being wrong are very low. 732 */ 733 static int 734 proc_verify(kd, kernp, p) 735 kvm_t *kd; 736 u_long kernp; 737 const struct proc *p; 738 { 739 struct proc kernproc; 740 741 /* 742 * Just read in the whole proc. It's not that big relative 743 * to the cost of the read system call. 744 */ 745 if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) != 746 sizeof(kernproc)) 747 return (0); 748 return (p->p_pid == kernproc.p_pid && 749 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB)); 750 } 751 752 static char ** 753 kvm_doargv(kd, kp, nchr, info) 754 kvm_t *kd; 755 const struct kinfo_proc *kp; 756 int nchr; 757 void (*info)(struct ps_strings *, u_long *, int *); 758 { 759 register const struct proc *p = &kp->kp_proc; 760 register char **ap; 761 u_long addr; 762 int cnt; 763 struct ps_strings arginfo; 764 static struct ps_strings *ps; 765 766 if (ps == NULL) { 767 struct _ps_strings _ps; 768 int mib[2]; 769 size_t len; 770 771 mib[0] = CTL_VM; 772 mib[1] = VM_PSSTRINGS; 773 len = sizeof(_ps); 774 sysctl(mib, 2, &_ps, &len, NULL, 0); 775 ps = (struct ps_strings *)_ps.val; 776 } 777 778 /* 779 * Pointers are stored at the top of the user stack. 780 */ 781 if (p->p_stat == SZOMB || 782 kvm_uread(kd, p, (u_long)ps, (char *)&arginfo, 783 sizeof(arginfo)) != sizeof(arginfo)) 784 return (0); 785 786 (*info)(&arginfo, &addr, &cnt); 787 if (cnt == 0) 788 return (0); 789 ap = kvm_argv(kd, p, addr, cnt, nchr); 790 /* 791 * For live kernels, make sure this process didn't go away. 792 */ 793 if (ap != 0 && ISALIVE(kd) && 794 !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p)) 795 ap = 0; 796 return (ap); 797 } 798 799 /* 800 * Get the command args. This code is now machine independent. 801 */ 802 char ** 803 kvm_getargv(kd, kp, nchr) 804 kvm_t *kd; 805 const struct kinfo_proc *kp; 806 int nchr; 807 { 808 return (kvm_doargv(kd, kp, nchr, ps_str_a)); 809 } 810 811 char ** 812 kvm_getenvv(kd, kp, nchr) 813 kvm_t *kd; 814 const struct kinfo_proc *kp; 815 int nchr; 816 { 817 return (kvm_doargv(kd, kp, nchr, ps_str_e)); 818 } 819 820 /* 821 * Read from user space. The user context is given by p. 822 */ 823 ssize_t 824 kvm_uread(kd, p, uva, buf, len) 825 kvm_t *kd; 826 register const struct proc *p; 827 register u_long uva; 828 register char *buf; 829 register size_t len; 830 { 831 register char *cp; 832 833 cp = buf; 834 while (len > 0) { 835 register int cc; 836 register char *dp; 837 u_long cnt; 838 839 dp = _kvm_uread(kd, p, uva, &cnt); 840 if (dp == 0) { 841 _kvm_err(kd, 0, "invalid address (%lx)", uva); 842 return (0); 843 } 844 cc = MIN(cnt, len); 845 bcopy(dp, cp, cc); 846 847 cp += cc; 848 uva += cc; 849 len -= cc; 850 } 851 return (ssize_t)(cp - buf); 852 } 853