xref: /openbsd-src/lib/libkvm/kvm_proc.c (revision 43003dfe3ad45d1698bed8a37f2b0f5b14f20d4f)
1 /*	$OpenBSD: kvm_proc.c,v 1.38 2009/06/20 20:20:43 millert Exp $	*/
2 /*	$NetBSD: kvm_proc.c,v 1.30 1999/03/24 05:50:50 mrg Exp $	*/
3 /*-
4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 /*-
32  * Copyright (c) 1994, 1995 Charles M. Hannum.  All rights reserved.
33  * Copyright (c) 1989, 1992, 1993
34  *	The Regents of the University of California.  All rights reserved.
35  *
36  * This code is derived from software developed by the Computer Systems
37  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
38  * BG 91-66 and contributed to Berkeley.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. Neither the name of the University nor the names of its contributors
49  *    may be used to endorse or promote products derived from this software
50  *    without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62  * SUCH DAMAGE.
63  */
64 
65 #if defined(LIBC_SCCS) && !defined(lint)
66 #if 0
67 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
68 #else
69 static char *rcsid = "$OpenBSD: kvm_proc.c,v 1.38 2009/06/20 20:20:43 millert Exp $";
70 #endif
71 #endif /* LIBC_SCCS and not lint */
72 
73 /*
74  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
75  * users of this code, so we've factored it out into a separate module.
76  * Thus, we keep this grunge out of the other kvm applications (i.e.,
77  * most other applications are interested only in open/close/read/nlist).
78  */
79 
80 #define __need_process
81 #include <sys/param.h>
82 #include <sys/user.h>
83 #include <sys/proc.h>
84 #include <sys/exec.h>
85 #include <sys/stat.h>
86 #include <sys/ioctl.h>
87 #include <sys/tty.h>
88 #include <stdlib.h>
89 #include <string.h>
90 #include <unistd.h>
91 #include <nlist.h>
92 #include <kvm.h>
93 
94 #include <uvm/uvm_extern.h>
95 #include <uvm/uvm_amap.h>
96 #include <machine/vmparam.h>
97 #include <machine/pmap.h>
98 
99 #include <sys/sysctl.h>
100 
101 #include <limits.h>
102 #include <db.h>
103 #include <paths.h>
104 
105 #include "kvm_private.h"
106 
107 /*
108  * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
109  */
110 struct miniproc {
111 	struct	vmspace *p_vmspace;
112 	char	p_stat;
113 	struct	proc *p_paddr;
114 	pid_t	p_pid;
115 };
116 
117 /*
118  * Convert from struct proc and kinfo_proc{,2} to miniproc.
119  */
120 #define PTOMINI(kp, p) \
121 	do { \
122 		(p)->p_stat = (kp)->p_stat; \
123 		(p)->p_pid = (kp)->p_pid; \
124 		(p)->p_paddr = NULL; \
125 		(p)->p_vmspace = (kp)->p_vmspace; \
126 	} while (/*CONSTCOND*/0);
127 
128 #define KPTOMINI(kp, p) \
129 	do { \
130 		(p)->p_stat = (kp)->kp_proc.p_stat; \
131 		(p)->p_pid = (kp)->kp_proc.p_pid; \
132 		(p)->p_paddr = (kp)->kp_eproc.e_paddr; \
133 		(p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
134 	} while (/*CONSTCOND*/0);
135 
136 #define KP2TOMINI(kp, p) \
137 	do { \
138 		(p)->p_stat = (kp)->p_stat; \
139 		(p)->p_pid = (kp)->p_pid; \
140 		(p)->p_paddr = (void *)(long)(kp)->p_paddr; \
141 		(p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
142 	} while (/*CONSTCOND*/0);
143 
144 
145 #define	PTRTOINT64(foo)	((u_int64_t)(u_long)(foo))
146 
147 ssize_t		kvm_uread(kvm_t *, const struct proc *, u_long, char *, size_t);
148 
149 static char	*_kvm_ureadm(kvm_t *, const struct miniproc *, u_long, u_long *);
150 static ssize_t	kvm_ureadm(kvm_t *, const struct miniproc *, u_long, char *, size_t);
151 
152 static char	**kvm_argv(kvm_t *, const struct miniproc *, u_long, int, int);
153 
154 static int	kvm_deadprocs(kvm_t *, int, int, u_long, u_long, int);
155 static char	**kvm_doargv(kvm_t *, const struct miniproc *, int,
156 		    void (*)(struct ps_strings *, u_long *, int *));
157 static int	kvm_proclist(kvm_t *, int, int, struct proc *,
158 		    struct kinfo_proc *, int);
159 static int	proc_verify(kvm_t *, const struct miniproc *);
160 static void	ps_str_a(struct ps_strings *, u_long *, int *);
161 static void	ps_str_e(struct ps_strings *, u_long *, int *);
162 
163 static char *
164 _kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long va, u_long *cnt)
165 {
166 	u_long addr, head, offset, slot;
167 	struct vm_anon *anonp, anon;
168 	struct vm_map_entry vme;
169 	struct vm_amap amap;
170 	struct vm_page pg;
171 
172 	if (kd->swapspc == 0) {
173 		kd->swapspc = _kvm_malloc(kd, kd->nbpg);
174 		if (kd->swapspc == 0)
175 			return (0);
176 	}
177 
178 	/*
179 	 * Look through the address map for the memory object
180 	 * that corresponds to the given virtual address.
181 	 * The header just has the entire valid range.
182 	 */
183 	head = (u_long)&p->p_vmspace->vm_map.header;
184 	addr = head;
185 	while (1) {
186 		if (KREAD(kd, addr, &vme))
187 			return (0);
188 
189 		if (va >= vme.start && va < vme.end &&
190 		    vme.aref.ar_amap != NULL)
191 			break;
192 
193 		addr = (u_long)vme.next;
194 		if (addr == head)
195 			return (0);
196 	}
197 
198 	/*
199 	 * we found the map entry, now to find the object...
200 	 */
201 	if (vme.aref.ar_amap == NULL)
202 		return (NULL);
203 
204 	addr = (u_long)vme.aref.ar_amap;
205 	if (KREAD(kd, addr, &amap))
206 		return (NULL);
207 
208 	offset = va - vme.start;
209 	slot = offset / kd->nbpg + vme.aref.ar_pageoff;
210 	/* sanity-check slot number */
211 	if (slot > amap.am_nslot)
212 		return (NULL);
213 
214 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
215 	if (KREAD(kd, addr, &anonp))
216 		return (NULL);
217 
218 	addr = (u_long)anonp;
219 	if (KREAD(kd, addr, &anon))
220 		return (NULL);
221 
222 	addr = (u_long)anon.an_page;
223 	if (addr) {
224 		if (KREAD(kd, addr, &pg))
225 			return (NULL);
226 
227 		if (_kvm_pread(kd, kd->pmfd, (void *)kd->swapspc,
228 		    (size_t)kd->nbpg, (off_t)pg.phys_addr) != kd->nbpg)
229 			return (NULL);
230 	} else {
231 		if (kd->swfd == -1 ||
232 		    _kvm_pread(kd, kd->swfd, (void *)kd->swapspc,
233 		    (size_t)kd->nbpg,
234 		    (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
235 			return (NULL);
236 	}
237 
238 	/* Found the page. */
239 	offset %= kd->nbpg;
240 	*cnt = kd->nbpg - offset;
241 	return (&kd->swapspc[offset]);
242 }
243 
244 char *
245 _kvm_uread(kvm_t *kd, const struct proc *p, u_long va, u_long *cnt)
246 {
247 	struct miniproc mp;
248 
249 	PTOMINI(p, &mp);
250 	return (_kvm_ureadm(kd, &mp, va, cnt));
251 }
252 
253 /*
254  * Read proc's from memory file into buffer bp, which has space to hold
255  * at most maxcnt procs.
256  */
257 static int
258 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p,
259     struct kinfo_proc *bp, int maxcnt)
260 {
261 	struct session sess;
262 	struct eproc eproc;
263 	struct proc proc;
264 	struct process process;
265 	struct pgrp pgrp;
266 	struct tty tty;
267 	int cnt = 0;
268 
269 	for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
270 		if (KREAD(kd, (u_long)p, &proc)) {
271 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
272 			return (-1);
273 		}
274 		if (KREAD(kd, (u_long)proc.p_p, &process)) {
275 			_kvm_err(kd, kd->program, "can't read process at %x", proc.p_p);
276 			return (-1);
277 		}
278 		if (KREAD(kd, (u_long)process.ps_cred, &eproc.e_pcred) == 0)
279 			KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
280 			    &eproc.e_ucred);
281 
282 		switch (what) {
283 		case KERN_PROC_PID:
284 			if (proc.p_pid != (pid_t)arg)
285 				continue;
286 			break;
287 
288 		case KERN_PROC_UID:
289 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
290 				continue;
291 			break;
292 
293 		case KERN_PROC_RUID:
294 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
295 				continue;
296 			break;
297 
298 		case KERN_PROC_ALL:
299 			if (proc.p_flag & P_SYSTEM)
300 				continue;
301 			break;
302 		}
303 		/*
304 		 * We're going to add another proc to the set.  If this
305 		 * will overflow the buffer, assume the reason is because
306 		 * nprocs (or the proc list) is corrupt and declare an error.
307 		 */
308 		if (cnt >= maxcnt) {
309 			_kvm_err(kd, kd->program, "nprocs corrupt");
310 			return (-1);
311 		}
312 		/*
313 		 * gather eproc
314 		 */
315 		eproc.e_paddr = p;
316 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
317 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
318 			    proc.p_pgrp);
319 			return (-1);
320 		}
321 		eproc.e_sess = pgrp.pg_session;
322 		eproc.e_pgid = pgrp.pg_id;
323 		eproc.e_jobc = pgrp.pg_jobc;
324 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
325 			_kvm_err(kd, kd->program, "can't read session at %x",
326 			    pgrp.pg_session);
327 			return (-1);
328 		}
329 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
330 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
331 				_kvm_err(kd, kd->program,
332 				    "can't read tty at %x", sess.s_ttyp);
333 				return (-1);
334 			}
335 			eproc.e_tdev = tty.t_dev;
336 			eproc.e_tsess = tty.t_session;
337 			if (tty.t_pgrp != NULL) {
338 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
339 					_kvm_err(kd, kd->program,
340 					    "can't read tpgrp at &x",
341 					    tty.t_pgrp);
342 					return (-1);
343 				}
344 				eproc.e_tpgid = pgrp.pg_id;
345 			} else
346 				eproc.e_tpgid = -1;
347 		} else
348 			eproc.e_tdev = NODEV;
349 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
350 		if (sess.s_leader == p)
351 			eproc.e_flag |= EPROC_SLEADER;
352 		if (proc.p_wmesg)
353 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
354 			    eproc.e_wmesg, WMESGLEN);
355 
356 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
357 		    &eproc.e_vm, sizeof(eproc.e_vm));
358 
359 		eproc.e_xsize = eproc.e_xrssize = 0;
360 		eproc.e_xccount = eproc.e_xswrss = 0;
361 
362 		switch (what) {
363 		case KERN_PROC_PGRP:
364 			if (eproc.e_pgid != (pid_t)arg)
365 				continue;
366 			break;
367 
368 		case KERN_PROC_TTY:
369 			if ((proc.p_flag & P_CONTROLT) == 0 ||
370 			    eproc.e_tdev != (dev_t)arg)
371 				continue;
372 			break;
373 		}
374 		bcopy(&proc, &bp->kp_proc, sizeof(proc));
375 		bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
376 		++bp;
377 		++cnt;
378 	}
379 	return (cnt);
380 }
381 
382 /*
383  * Build proc info array by reading in proc list from a crash dump.
384  * Return number of procs read.  maxcnt is the max we will read.
385  */
386 static int
387 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc,
388     u_long a_zombproc, int maxcnt)
389 {
390 	struct kinfo_proc *bp = kd->procbase;
391 	struct proc *p;
392 	int acnt, zcnt;
393 
394 	if (KREAD(kd, a_allproc, &p)) {
395 		_kvm_err(kd, kd->program, "cannot read allproc");
396 		return (-1);
397 	}
398 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
399 	if (acnt < 0)
400 		return (acnt);
401 
402 	if (KREAD(kd, a_zombproc, &p)) {
403 		_kvm_err(kd, kd->program, "cannot read zombproc");
404 		return (-1);
405 	}
406 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
407 	if (zcnt < 0)
408 		zcnt = 0;
409 
410 	return (acnt + zcnt);
411 }
412 
413 struct kinfo_proc2 *
414 kvm_getproc2(kvm_t *kd, int op, int arg, size_t esize, int *cnt)
415 {
416 	int mib[6], st, nprocs;
417 	struct user user;
418 	size_t size;
419 
420 	if ((ssize_t)esize < 0)
421 		return (NULL);
422 
423 	if (kd->procbase2 != NULL) {
424 		free(kd->procbase2);
425 		/*
426 		 * Clear this pointer in case this call fails.  Otherwise,
427 		 * kvm_close() will free it again.
428 		 */
429 		kd->procbase2 = 0;
430 	}
431 
432 	if (ISALIVE(kd)) {
433 		size = 0;
434 		mib[0] = CTL_KERN;
435 		mib[1] = KERN_PROC2;
436 		mib[2] = op;
437 		mib[3] = arg;
438 		mib[4] = esize;
439 		mib[5] = 0;
440 		st = sysctl(mib, 6, NULL, &size, NULL, 0);
441 		if (st == -1) {
442 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
443 			return (NULL);
444 		}
445 
446 		mib[5] = size / esize;
447 		kd->procbase2 = _kvm_malloc(kd, size);
448 		if (kd->procbase2 == 0)
449 			return (NULL);
450 		st = sysctl(mib, 6, kd->procbase2, &size, NULL, 0);
451 		if (st == -1) {
452 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
453 			return (NULL);
454 		}
455 		nprocs = size / esize;
456 	} else {
457 		struct kinfo_proc2 kp2, *kp2p;
458 		struct kinfo_proc *kp;
459 		char *kp2c;
460 		int i;
461 
462 		kp = kvm_getprocs(kd, op, arg, &nprocs);
463 		if (kp == NULL)
464 			return (NULL);
465 
466 		kd->procbase2 = _kvm_malloc(kd, nprocs * esize);
467 		kp2c = (char *)kd->procbase2;
468 		kp2p = &kp2;
469 		for (i = 0; i < nprocs; i++, kp++) {
470 			memset(kp2p, 0, sizeof(kp2));
471 			kp2p->p_paddr = PTRTOINT64(kp->kp_eproc.e_paddr);
472 
473 			kp2p->p_addr = PTRTOINT64(kp->kp_proc.p_addr);
474 			kp2p->p_fd = PTRTOINT64(kp->kp_proc.p_fd);
475 			kp2p->p_stats = PTRTOINT64(kp->kp_proc.p_stats);
476 			kp2p->p_limit = PTRTOINT64(kp->kp_eproc.e_limit);
477 			kp2p->p_vmspace = PTRTOINT64(kp->kp_proc.p_vmspace);
478 			kp2p->p_sigacts = PTRTOINT64(kp->kp_proc.p_sigacts);
479 			kp2p->p_sess = PTRTOINT64(kp->kp_eproc.e_sess);
480 			kp2p->p_tsess = 0;
481 			kp2p->p_ru = PTRTOINT64(kp->kp_proc.p_ru);
482 
483 			kp2p->p_eflag = 0;
484 			kp2p->p_exitsig = kp->kp_proc.p_exitsig;
485 			kp2p->p_flag = kp->kp_proc.p_flag;
486 
487 			kp2p->p_pid = kp->kp_proc.p_pid;
488 
489 			kp2p->p_ppid = kp->kp_eproc.e_ppid;
490 #if 0
491 			kp2p->p_sid = kp->kp_eproc.e_sid;
492 #else
493 			kp2p->p_sid = -1; /* XXX */
494 #endif
495 			kp2p->p__pgid = kp->kp_eproc.e_pgid;
496 
497 			kp2p->p_tpgid = -1;
498 
499 			kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
500 			kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
501 			kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
502 			kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
503 
504 			memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
505 			    MIN(sizeof(kp2p->p_groups),
506 			    sizeof(kp->kp_eproc.e_ucred.cr_groups)));
507 			kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
508 
509 			kp2p->p_jobc = kp->kp_eproc.e_jobc;
510 			kp2p->p_tdev = kp->kp_eproc.e_tdev;
511 			kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
512 			kp2p->p_tsess = PTRTOINT64(kp->kp_eproc.e_tsess);
513 
514 			kp2p->p_estcpu = kp->kp_proc.p_estcpu;
515 			kp2p->p_rtime_sec = kp->kp_proc.p_estcpu;
516 			kp2p->p_rtime_usec = kp->kp_proc.p_estcpu;
517 			kp2p->p_cpticks = kp->kp_proc.p_cpticks;
518 			kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
519 			kp2p->p_swtime = kp->kp_proc.p_swtime;
520 			kp2p->p_slptime = kp->kp_proc.p_slptime;
521 			kp2p->p_schedflags = 0;
522 
523 			kp2p->p_uticks = kp->kp_proc.p_uticks;
524 			kp2p->p_sticks = kp->kp_proc.p_sticks;
525 			kp2p->p_iticks = kp->kp_proc.p_iticks;
526 
527 			kp2p->p_tracep = PTRTOINT64(kp->kp_proc.p_tracep);
528 			kp2p->p_traceflag = kp->kp_proc.p_traceflag;
529 
530 			kp2p->p_holdcnt = 1;
531 
532 			kp2p->p_siglist = kp->kp_proc.p_siglist;
533 			kp2p->p_sigmask = kp->kp_proc.p_sigmask;
534 			kp2p->p_sigignore = kp->kp_proc.p_sigignore;
535 			kp2p->p_sigcatch = kp->kp_proc.p_sigcatch;
536 
537 			kp2p->p_stat = kp->kp_proc.p_stat;
538 			kp2p->p_priority = kp->kp_proc.p_priority;
539 			kp2p->p_usrpri = kp->kp_proc.p_usrpri;
540 			kp2p->p_nice = kp->kp_proc.p_nice;
541 
542 			kp2p->p_xstat = kp->kp_proc.p_xstat;
543 			kp2p->p_acflag = kp->kp_proc.p_acflag;
544 
545 			strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
546 			    MIN(sizeof(kp2p->p_comm), sizeof(kp->kp_proc.p_comm)));
547 
548 			strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
549 			    sizeof(kp2p->p_wmesg));
550 			kp2p->p_wchan = PTRTOINT64(kp->kp_proc.p_wchan);
551 
552 			strncpy(kp2p->p_login, kp->kp_eproc.e_login,
553 			    sizeof(kp2p->p_login));
554 
555 			kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
556 			kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
557 			kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
558 			kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
559 
560 			kp2p->p_eflag = kp->kp_eproc.e_flag;
561 
562 			if (P_ZOMBIE(&kp->kp_proc) || kp->kp_proc.p_addr == NULL ||
563 			    KREAD(kd, (u_long)kp->kp_proc.p_addr, &user)) {
564 				kp2p->p_uvalid = 0;
565 			} else {
566 				kp2p->p_uvalid = 1;
567 
568 				kp2p->p_ustart_sec = user.u_stats.p_start.tv_sec;
569 				kp2p->p_ustart_usec = user.u_stats.p_start.tv_usec;
570 
571 				kp2p->p_uutime_sec = user.u_stats.p_ru.ru_utime.tv_sec;
572 				kp2p->p_uutime_usec = user.u_stats.p_ru.ru_utime.tv_usec;
573 				kp2p->p_ustime_sec = user.u_stats.p_ru.ru_stime.tv_sec;
574 				kp2p->p_ustime_usec = user.u_stats.p_ru.ru_stime.tv_usec;
575 
576 				kp2p->p_uru_maxrss = user.u_stats.p_ru.ru_maxrss;
577 				kp2p->p_uru_ixrss = user.u_stats.p_ru.ru_ixrss;
578 				kp2p->p_uru_idrss = user.u_stats.p_ru.ru_idrss;
579 				kp2p->p_uru_isrss = user.u_stats.p_ru.ru_isrss;
580 				kp2p->p_uru_minflt = user.u_stats.p_ru.ru_minflt;
581 				kp2p->p_uru_majflt = user.u_stats.p_ru.ru_majflt;
582 				kp2p->p_uru_nswap = user.u_stats.p_ru.ru_nswap;
583 				kp2p->p_uru_inblock = user.u_stats.p_ru.ru_inblock;
584 				kp2p->p_uru_oublock = user.u_stats.p_ru.ru_oublock;
585 				kp2p->p_uru_msgsnd = user.u_stats.p_ru.ru_msgsnd;
586 				kp2p->p_uru_msgrcv = user.u_stats.p_ru.ru_msgrcv;
587 				kp2p->p_uru_nsignals = user.u_stats.p_ru.ru_nsignals;
588 				kp2p->p_uru_nvcsw = user.u_stats.p_ru.ru_nvcsw;
589 				kp2p->p_uru_nivcsw = user.u_stats.p_ru.ru_nivcsw;
590 
591 				kp2p->p_uctime_sec =
592 				    user.u_stats.p_cru.ru_utime.tv_sec +
593 				    user.u_stats.p_cru.ru_stime.tv_sec;
594 				kp2p->p_uctime_usec =
595 				    user.u_stats.p_cru.ru_utime.tv_usec +
596 				    user.u_stats.p_cru.ru_stime.tv_usec;
597 			}
598 
599 			memcpy(kp2c, &kp2, esize);
600 			kp2c += esize;
601 		}
602 
603 		free(kd->procbase);
604 	}
605 	*cnt = nprocs;
606 	return (kd->procbase2);
607 }
608 
609 struct kinfo_proc *
610 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt)
611 {
612 	int mib[4], st, nprocs;
613 	size_t size;
614 
615 	if (kd->procbase != 0) {
616 		free((void *)kd->procbase);
617 		/*
618 		 * Clear this pointer in case this call fails.  Otherwise,
619 		 * kvm_close() will free it again.
620 		 */
621 		kd->procbase = 0;
622 	}
623 	if (ISALIVE(kd)) {
624 		size = 0;
625 		mib[0] = CTL_KERN;
626 		mib[1] = KERN_PROC;
627 		mib[2] = op;
628 		mib[3] = arg;
629 		st = sysctl(mib, 4, NULL, &size, NULL, 0);
630 		if (st == -1) {
631 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
632 			return (0);
633 		}
634 		kd->procbase = _kvm_malloc(kd, size);
635 		if (kd->procbase == 0)
636 			return (0);
637 		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
638 		if (st == -1) {
639 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
640 			return (0);
641 		}
642 		if (size % sizeof(struct kinfo_proc) != 0) {
643 			_kvm_err(kd, kd->program,
644 			    "proc size mismatch (%d total, %d chunks)",
645 			    size, sizeof(struct kinfo_proc));
646 			return (0);
647 		}
648 		nprocs = size / sizeof(struct kinfo_proc);
649 	} else {
650 		struct nlist nl[4], *p;
651 
652 		memset(nl, 0, sizeof(nl));
653 		nl[0].n_name = "_nprocs";
654 		nl[1].n_name = "_allproc";
655 		nl[2].n_name = "_zombproc";
656 		nl[3].n_name = NULL;
657 
658 		if (kvm_nlist(kd, nl) != 0) {
659 			for (p = nl; p->n_type != 0; ++p)
660 				;
661 			_kvm_err(kd, kd->program,
662 			    "%s: no such symbol", p->n_name);
663 			return (0);
664 		}
665 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
666 			_kvm_err(kd, kd->program, "can't read nprocs");
667 			return (0);
668 		}
669 		size = nprocs * sizeof(struct kinfo_proc);
670 		kd->procbase = _kvm_malloc(kd, size);
671 		if (kd->procbase == 0)
672 			return (0);
673 
674 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
675 		    nl[2].n_value, nprocs);
676 #ifdef notdef
677 		size = nprocs * sizeof(struct kinfo_proc);
678 		(void)realloc(kd->procbase, size);
679 #endif
680 	}
681 	*cnt = nprocs;
682 	return (kd->procbase);
683 }
684 
685 void
686 _kvm_freeprocs(kvm_t *kd)
687 {
688 	if (kd->procbase) {
689 		free(kd->procbase);
690 		kd->procbase = 0;
691 	}
692 }
693 
694 void *
695 _kvm_realloc(kvm_t *kd, void *p, size_t n)
696 {
697 	void *np = (void *)realloc(p, n);
698 
699 	if (np == 0)
700 		_kvm_err(kd, kd->program, "out of memory");
701 	return (np);
702 }
703 
704 /*
705  * Read in an argument vector from the user address space of process p.
706  * addr if the user-space base address of narg null-terminated contiguous
707  * strings.  This is used to read in both the command arguments and
708  * environment strings.  Read at most maxcnt characters of strings.
709  */
710 static char **
711 kvm_argv(kvm_t *kd, const struct miniproc *p, u_long addr, int narg,
712     int maxcnt)
713 {
714 	char *np, *cp, *ep, *ap, **argv;
715 	u_long oaddr = -1;
716 	int len, cc;
717 
718 	/*
719 	 * Check that there aren't an unreasonable number of agruments,
720 	 * and that the address is in user space.
721 	 */
722 	if (narg > ARG_MAX || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
723 		return (0);
724 
725 	if (kd->argv == 0) {
726 		/*
727 		 * Try to avoid reallocs.
728 		 */
729 		kd->argc = MAX(narg + 1, 32);
730 		kd->argv = _kvm_malloc(kd, kd->argc *
731 		    sizeof(*kd->argv));
732 		if (kd->argv == 0)
733 			return (0);
734 	} else if (narg + 1 > kd->argc) {
735 		kd->argc = MAX(2 * kd->argc, narg + 1);
736 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
737 		    sizeof(*kd->argv));
738 		if (kd->argv == 0)
739 			return (0);
740 	}
741 	if (kd->argspc == 0) {
742 		kd->argspc = _kvm_malloc(kd, kd->nbpg);
743 		if (kd->argspc == 0)
744 			return (0);
745 		kd->arglen = kd->nbpg;
746 	}
747 	if (kd->argbuf == 0) {
748 		kd->argbuf = _kvm_malloc(kd, kd->nbpg);
749 		if (kd->argbuf == 0)
750 			return (0);
751 	}
752 	cc = sizeof(char *) * narg;
753 	if (kvm_ureadm(kd, p, addr, (char *)kd->argv, cc) != cc)
754 		return (0);
755 	ap = np = kd->argspc;
756 	argv = kd->argv;
757 	len = 0;
758 
759 	/*
760 	 * Loop over pages, filling in the argument vector.
761 	 */
762 	while (argv < kd->argv + narg && *argv != 0) {
763 		addr = (u_long)*argv & ~(kd->nbpg - 1);
764 		if (addr != oaddr) {
765 			if (kvm_ureadm(kd, p, addr, kd->argbuf, kd->nbpg) !=
766 			    kd->nbpg)
767 				return (0);
768 			oaddr = addr;
769 		}
770 		addr = (u_long)*argv & (kd->nbpg - 1);
771 		cp = kd->argbuf + addr;
772 		cc = kd->nbpg - addr;
773 		if (maxcnt > 0 && cc > maxcnt - len)
774 			cc = maxcnt - len;
775 		ep = memchr(cp, '\0', cc);
776 		if (ep != 0)
777 			cc = ep - cp + 1;
778 		if (len + cc > kd->arglen) {
779 			int off;
780 			char **pp;
781 			char *op = kd->argspc;
782 
783 			kd->arglen *= 2;
784 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
785 			    kd->arglen);
786 			if (kd->argspc == 0)
787 				return (0);
788 			/*
789 			 * Adjust argv pointers in case realloc moved
790 			 * the string space.
791 			 */
792 			off = kd->argspc - op;
793 			for (pp = kd->argv; pp < argv; pp++)
794 				*pp += off;
795 			ap += off;
796 			np += off;
797 		}
798 		memcpy(np, cp, cc);
799 		np += cc;
800 		len += cc;
801 		if (ep != 0) {
802 			*argv++ = ap;
803 			ap = np;
804 		} else
805 			*argv += cc;
806 		if (maxcnt > 0 && len >= maxcnt) {
807 			/*
808 			 * We're stopping prematurely.  Terminate the
809 			 * current string.
810 			 */
811 			if (ep == 0) {
812 				*np = '\0';
813 				*argv++ = ap;
814 			}
815 			break;
816 		}
817 	}
818 	/* Make sure argv is terminated. */
819 	*argv = 0;
820 	return (kd->argv);
821 }
822 
823 static void
824 ps_str_a(struct ps_strings *p, u_long *addr, int *n)
825 {
826 	*addr = (u_long)p->ps_argvstr;
827 	*n = p->ps_nargvstr;
828 }
829 
830 static void
831 ps_str_e(struct ps_strings *p, u_long *addr, int *n)
832 {
833 	*addr = (u_long)p->ps_envstr;
834 	*n = p->ps_nenvstr;
835 }
836 
837 /*
838  * Determine if the proc indicated by p is still active.
839  * This test is not 100% foolproof in theory, but chances of
840  * being wrong are very low.
841  */
842 static int
843 proc_verify(kvm_t *kd, const struct miniproc *p)
844 {
845 	struct proc kernproc;
846 
847 	/*
848 	 * Just read in the whole proc.  It's not that big relative
849 	 * to the cost of the read system call.
850 	 */
851 	if (kvm_read(kd, (u_long)p->p_paddr, &kernproc, sizeof(kernproc)) !=
852 	    sizeof(kernproc))
853 		return (0);
854 	return (p->p_pid == kernproc.p_pid &&
855 	    (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
856 }
857 
858 static char **
859 kvm_doargv(kvm_t *kd, const struct miniproc *p, int nchr,
860     void (*info)(struct ps_strings *, u_long *, int *))
861 {
862 	static struct ps_strings *ps;
863 	struct ps_strings arginfo;
864 	u_long addr;
865 	char **ap;
866 	int cnt;
867 
868 	if (ps == NULL) {
869 		struct _ps_strings _ps;
870 		int mib[2];
871 		size_t len;
872 
873 		mib[0] = CTL_VM;
874 		mib[1] = VM_PSSTRINGS;
875 		len = sizeof(_ps);
876 		sysctl(mib, 2, &_ps, &len, NULL, 0);
877 		ps = (struct ps_strings *)_ps.val;
878 	}
879 
880 	/*
881 	 * Pointers are stored at the top of the user stack.
882 	 */
883 	if (p->p_stat == SZOMB ||
884 	    kvm_ureadm(kd, p, (u_long)ps, (char *)&arginfo,
885 	    sizeof(arginfo)) != sizeof(arginfo))
886 		return (0);
887 
888 	(*info)(&arginfo, &addr, &cnt);
889 	if (cnt == 0)
890 		return (0);
891 	ap = kvm_argv(kd, p, addr, cnt, nchr);
892 	/*
893 	 * For live kernels, make sure this process didn't go away.
894 	 */
895 	if (ap != 0 && ISALIVE(kd) && !proc_verify(kd, p))
896 		ap = 0;
897 	return (ap);
898 }
899 
900 static char **
901 kvm_arg_sysctl(kvm_t *kd, pid_t pid, int nchr, int env)
902 {
903 	size_t len, orglen;
904 	int mib[4], ret;
905 	char *buf;
906 
907 	orglen = env ? kd->nbpg : 8 * kd->nbpg;	/* XXX - should be ARG_MAX */
908 	if (kd->argbuf == NULL &&
909 	    (kd->argbuf = _kvm_malloc(kd, orglen)) == NULL)
910 		return (NULL);
911 
912 again:
913 	mib[0] = CTL_KERN;
914 	mib[1] = KERN_PROC_ARGS;
915 	mib[2] = (int)pid;
916 	mib[3] = env ? KERN_PROC_ENV : KERN_PROC_ARGV;
917 
918 	len = orglen;
919 	ret = (sysctl(mib, 4, kd->argbuf, &len, NULL, 0) < 0);
920 	if (ret && errno == ENOMEM) {
921 		orglen *= 2;
922 		buf = _kvm_realloc(kd, kd->argbuf, orglen);
923 		if (buf == NULL)
924 			return (NULL);
925 		kd->argbuf = buf;
926 		goto again;
927 	}
928 
929 	if (ret) {
930 		free(kd->argbuf);
931 		kd->argbuf = NULL;
932 		_kvm_syserr(kd, kd->program, "kvm_arg_sysctl");
933 		return (NULL);
934 	}
935 #if 0
936 	for (argv = (char **)kd->argbuf; *argv != NULL; argv++)
937 		if (strlen(*argv) > nchr)
938 			*argv[nchr] = '\0';
939 #endif
940 
941 	return (char **)(kd->argbuf);
942 }
943 
944 /*
945  * Get the command args.  This code is now machine independent.
946  */
947 char **
948 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
949 {
950 	struct miniproc p;
951 
952 	if (ISALIVE(kd))
953 		return (kvm_arg_sysctl(kd, kp->kp_proc.p_pid, nchr, 0));
954 	KPTOMINI(kp, &p);
955 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
956 }
957 
958 char **
959 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
960 {
961 	struct miniproc p;
962 
963 	if (ISALIVE(kd))
964 		return (kvm_arg_sysctl(kd, kp->kp_proc.p_pid, nchr, 1));
965 	KPTOMINI(kp, &p);
966 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
967 }
968 
969 char **
970 kvm_getargv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
971 {
972 	struct miniproc p;
973 
974 	if (ISALIVE(kd))
975 		return (kvm_arg_sysctl(kd, kp->p_pid, nchr, 0));
976 	KP2TOMINI(kp, &p);
977 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
978 }
979 
980 char **
981 kvm_getenvv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
982 {
983 	struct miniproc p;
984 
985 	if (ISALIVE(kd))
986 		return (kvm_arg_sysctl(kd, kp->p_pid, nchr, 1));
987 	KP2TOMINI(kp, &p);
988 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
989 }
990 
991 /*
992  * Read from user space.  The user context is given by p.
993  */
994 static ssize_t
995 kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long uva, char *buf,
996     size_t len)
997 {
998 	char *cp = buf;
999 
1000 	while (len > 0) {
1001 		u_long cnt;
1002 		size_t cc;
1003 		char *dp;
1004 
1005 		dp = _kvm_ureadm(kd, p, uva, &cnt);
1006 		if (dp == 0) {
1007 			_kvm_err(kd, 0, "invalid address (%lx)", uva);
1008 			return (0);
1009 		}
1010 		cc = (size_t)MIN(cnt, len);
1011 		bcopy(dp, cp, cc);
1012 		cp += cc;
1013 		uva += cc;
1014 		len -= cc;
1015 	}
1016 	return (ssize_t)(cp - buf);
1017 }
1018 
1019 ssize_t
1020 kvm_uread(kvm_t *kd, const struct proc *p, u_long uva, char *buf,
1021     size_t len)
1022 {
1023 	struct miniproc mp;
1024 
1025 	PTOMINI(p, &mp);
1026 	return (kvm_ureadm(kd, &mp, uva, buf, len));
1027 }
1028