1 /* $OpenBSD: kvm_proc.c,v 1.12 2001/12/13 08:16:00 hugh Exp $ */ 2 /* $NetBSD: kvm_proc.c,v 1.30 1999/03/24 05:50:50 mrg Exp $ */ 3 /*- 4 * Copyright (c) 1998 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Charles M. Hannum. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 /*- 39 * Copyright (c) 1994, 1995 Charles M. Hannum. All rights reserved. 40 * Copyright (c) 1989, 1992, 1993 41 * The Regents of the University of California. All rights reserved. 42 * 43 * This code is derived from software developed by the Computer Systems 44 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 45 * BG 91-66 and contributed to Berkeley. 46 * 47 * Redistribution and use in source and binary forms, with or without 48 * modification, are permitted provided that the following conditions 49 * are met: 50 * 1. Redistributions of source code must retain the above copyright 51 * notice, this list of conditions and the following disclaimer. 52 * 2. Redistributions in binary form must reproduce the above copyright 53 * notice, this list of conditions and the following disclaimer in the 54 * documentation and/or other materials provided with the distribution. 55 * 3. All advertising materials mentioning features or use of this software 56 * must display the following acknowledgement: 57 * This product includes software developed by the University of 58 * California, Berkeley and its contributors. 59 * 4. Neither the name of the University nor the names of its contributors 60 * may be used to endorse or promote products derived from this software 61 * without specific prior written permission. 62 * 63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 73 * SUCH DAMAGE. 74 */ 75 76 #if defined(LIBC_SCCS) && !defined(lint) 77 #if 0 78 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 79 #else 80 static char *rcsid = "$OpenBSD: kvm_proc.c,v 1.12 2001/12/13 08:16:00 hugh Exp $"; 81 #endif 82 #endif /* LIBC_SCCS and not lint */ 83 84 /* 85 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 86 * users of this code, so we've factored it out into a separate module. 87 * Thus, we keep this grunge out of the other kvm applications (i.e., 88 * most other applications are interested only in open/close/read/nlist). 89 */ 90 91 #include <sys/param.h> 92 #include <sys/user.h> 93 #include <sys/proc.h> 94 #include <sys/exec.h> 95 #include <sys/stat.h> 96 #include <sys/ioctl.h> 97 #include <sys/tty.h> 98 #include <stdlib.h> 99 #include <string.h> 100 #include <unistd.h> 101 #include <nlist.h> 102 #include <kvm.h> 103 104 #include <uvm/uvm_extern.h> 105 #include <uvm/uvm_amap.h> 106 #include <machine/vmparam.h> 107 #include <machine/pmap.h> 108 109 #include <sys/sysctl.h> 110 111 #include <limits.h> 112 #include <db.h> 113 #include <paths.h> 114 115 #include "kvm_private.h" 116 117 #define KREAD(kd, addr, obj) \ 118 (kvm_read(kd, addr, (void *)(obj), sizeof(*obj)) != sizeof(*obj)) 119 120 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *, 121 size_t)); 122 123 static char **kvm_argv __P((kvm_t *, const struct proc *, u_long, int, 124 int)); 125 static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int)); 126 static char **kvm_doargv __P((kvm_t *, const struct kinfo_proc *, int, 127 void (*)(struct ps_strings *, u_long *, int *))); 128 static int kvm_proclist __P((kvm_t *, int, int, struct proc *, 129 struct kinfo_proc *, int)); 130 static int proc_verify __P((kvm_t *, u_long, const struct proc *)); 131 static void ps_str_a __P((struct ps_strings *, u_long *, int *)); 132 static void ps_str_e __P((struct ps_strings *, u_long *, int *)); 133 134 char * 135 _kvm_uread(kd, p, va, cnt) 136 kvm_t *kd; 137 const struct proc *p; 138 u_long va; 139 u_long *cnt; 140 { 141 u_long addr, head; 142 u_long offset; 143 struct vm_map_entry vme; 144 struct vm_amap amap; 145 struct vm_anon *anonp, anon; 146 struct vm_page pg; 147 u_long slot; 148 149 if (kd->swapspc == 0) { 150 kd->swapspc = (char *)_kvm_malloc(kd, kd->nbpg); 151 if (kd->swapspc == 0) 152 return (0); 153 } 154 155 /* 156 * Look through the address map for the memory object 157 * that corresponds to the given virtual address. 158 * The header just has the entire valid range. 159 */ 160 head = (u_long)&p->p_vmspace->vm_map.header; 161 addr = head; 162 while (1) { 163 if (KREAD(kd, addr, &vme)) 164 return (0); 165 166 if (va >= vme.start && va < vme.end && 167 vme.aref.ar_amap != NULL) 168 break; 169 170 addr = (u_long)vme.next; 171 if (addr == head) 172 return (0); 173 } 174 175 /* 176 * we found the map entry, now to find the object... 177 */ 178 if (vme.aref.ar_amap == NULL) 179 return NULL; 180 181 addr = (u_long)vme.aref.ar_amap; 182 if (KREAD(kd, addr, &amap)) 183 return NULL; 184 185 offset = va - vme.start; 186 slot = offset / kd->nbpg + vme.aref.ar_pageoff; 187 /* sanity-check slot number */ 188 if (slot > amap.am_nslot) 189 return NULL; 190 191 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp); 192 if (KREAD(kd, addr, &anonp)) 193 return NULL; 194 195 addr = (u_long)anonp; 196 if (KREAD(kd, addr, &anon)) 197 return NULL; 198 199 addr = (u_long)anon.u.an_page; 200 if (addr) { 201 if (KREAD(kd, addr, &pg)) 202 return NULL; 203 204 if (_kvm_pread(kd, kd->pmfd, (void *)kd->swapspc, (size_t)kd->nbpg, (off_t)pg.phys_addr) != kd->nbpg) { 205 return NULL; 206 } 207 } else { 208 if (_kvm_pread(kd, kd->swfd, (void *)kd->swapspc, (size_t)kd->nbpg, (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg) { 209 return NULL; 210 } 211 } 212 213 /* Found the page. */ 214 offset %= kd->nbpg; 215 *cnt = kd->nbpg - offset; 216 return (&kd->swapspc[offset]); 217 } 218 219 /* 220 * Read proc's from memory file into buffer bp, which has space to hold 221 * at most maxcnt procs. 222 */ 223 static int 224 kvm_proclist(kd, what, arg, p, bp, maxcnt) 225 kvm_t *kd; 226 int what, arg; 227 struct proc *p; 228 struct kinfo_proc *bp; 229 int maxcnt; 230 { 231 int cnt = 0; 232 struct eproc eproc; 233 struct pgrp pgrp; 234 struct session sess; 235 struct tty tty; 236 struct proc proc; 237 238 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) { 239 if (KREAD(kd, (u_long)p, &proc)) { 240 _kvm_err(kd, kd->program, "can't read proc at %x", p); 241 return (-1); 242 } 243 if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0) 244 KREAD(kd, (u_long)eproc.e_pcred.pc_ucred, 245 &eproc.e_ucred); 246 247 switch(what) { 248 249 case KERN_PROC_PID: 250 if (proc.p_pid != (pid_t)arg) 251 continue; 252 break; 253 254 case KERN_PROC_UID: 255 if (eproc.e_ucred.cr_uid != (uid_t)arg) 256 continue; 257 break; 258 259 case KERN_PROC_RUID: 260 if (eproc.e_pcred.p_ruid != (uid_t)arg) 261 continue; 262 break; 263 264 case KERN_PROC_ALL: 265 if (proc.p_flag & P_SYSTEM) 266 continue; 267 break; 268 } 269 /* 270 * We're going to add another proc to the set. If this 271 * will overflow the buffer, assume the reason is because 272 * nprocs (or the proc list) is corrupt and declare an error. 273 */ 274 if (cnt >= maxcnt) { 275 _kvm_err(kd, kd->program, "nprocs corrupt"); 276 return (-1); 277 } 278 /* 279 * gather eproc 280 */ 281 eproc.e_paddr = p; 282 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 283 _kvm_err(kd, kd->program, "can't read pgrp at %x", 284 proc.p_pgrp); 285 return (-1); 286 } 287 eproc.e_sess = pgrp.pg_session; 288 eproc.e_pgid = pgrp.pg_id; 289 eproc.e_jobc = pgrp.pg_jobc; 290 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 291 _kvm_err(kd, kd->program, "can't read session at %x", 292 pgrp.pg_session); 293 return (-1); 294 } 295 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 296 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 297 _kvm_err(kd, kd->program, 298 "can't read tty at %x", sess.s_ttyp); 299 return (-1); 300 } 301 eproc.e_tdev = tty.t_dev; 302 eproc.e_tsess = tty.t_session; 303 if (tty.t_pgrp != NULL) { 304 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 305 _kvm_err(kd, kd->program, 306 "can't read tpgrp at &x", 307 tty.t_pgrp); 308 return (-1); 309 } 310 eproc.e_tpgid = pgrp.pg_id; 311 } else 312 eproc.e_tpgid = -1; 313 } else 314 eproc.e_tdev = NODEV; 315 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0; 316 if (sess.s_leader == p) 317 eproc.e_flag |= EPROC_SLEADER; 318 if (proc.p_wmesg) 319 (void)kvm_read(kd, (u_long)proc.p_wmesg, 320 eproc.e_wmesg, WMESGLEN); 321 322 (void)kvm_read(kd, (u_long)proc.p_vmspace, 323 &eproc.e_vm, sizeof(eproc.e_vm)); 324 325 eproc.e_xsize = eproc.e_xrssize = 0; 326 eproc.e_xccount = eproc.e_xswrss = 0; 327 328 switch (what) { 329 330 case KERN_PROC_PGRP: 331 if (eproc.e_pgid != (pid_t)arg) 332 continue; 333 break; 334 335 case KERN_PROC_TTY: 336 if ((proc.p_flag & P_CONTROLT) == 0 || 337 eproc.e_tdev != (dev_t)arg) 338 continue; 339 break; 340 } 341 bcopy(&proc, &bp->kp_proc, sizeof(proc)); 342 bcopy(&eproc, &bp->kp_eproc, sizeof(eproc)); 343 ++bp; 344 ++cnt; 345 } 346 return (cnt); 347 } 348 349 /* 350 * Build proc info array by reading in proc list from a crash dump. 351 * Return number of procs read. maxcnt is the max we will read. 352 */ 353 static int 354 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) 355 kvm_t *kd; 356 int what, arg; 357 u_long a_allproc; 358 u_long a_zombproc; 359 int maxcnt; 360 { 361 struct kinfo_proc *bp = kd->procbase; 362 int acnt, zcnt; 363 struct proc *p; 364 365 if (KREAD(kd, a_allproc, &p)) { 366 _kvm_err(kd, kd->program, "cannot read allproc"); 367 return (-1); 368 } 369 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 370 if (acnt < 0) 371 return (acnt); 372 373 if (KREAD(kd, a_zombproc, &p)) { 374 _kvm_err(kd, kd->program, "cannot read zombproc"); 375 return (-1); 376 } 377 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 378 if (zcnt < 0) 379 zcnt = 0; 380 381 return (acnt + zcnt); 382 } 383 384 struct kinfo_proc * 385 kvm_getprocs(kd, op, arg, cnt) 386 kvm_t *kd; 387 int op, arg; 388 int *cnt; 389 { 390 size_t size; 391 int mib[4], st, nprocs; 392 393 if (kd->procbase != 0) { 394 free((void *)kd->procbase); 395 /* 396 * Clear this pointer in case this call fails. Otherwise, 397 * kvm_close() will free it again. 398 */ 399 kd->procbase = 0; 400 } 401 if (ISALIVE(kd)) { 402 size = 0; 403 mib[0] = CTL_KERN; 404 mib[1] = KERN_PROC; 405 mib[2] = op; 406 mib[3] = arg; 407 st = sysctl(mib, 4, NULL, &size, NULL, 0); 408 if (st == -1) { 409 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 410 return (0); 411 } 412 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 413 if (kd->procbase == 0) 414 return (0); 415 st = sysctl(mib, 4, kd->procbase, &size, NULL, 0); 416 if (st == -1) { 417 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 418 return (0); 419 } 420 if (size % sizeof(struct kinfo_proc) != 0) { 421 _kvm_err(kd, kd->program, 422 "proc size mismatch (%d total, %d chunks)", 423 size, sizeof(struct kinfo_proc)); 424 return (0); 425 } 426 nprocs = size / sizeof(struct kinfo_proc); 427 } else { 428 struct nlist nl[4], *p; 429 430 nl[0].n_name = "_nprocs"; 431 nl[1].n_name = "_allproc"; 432 nl[2].n_name = "_zombproc"; 433 nl[3].n_name = 0; 434 435 if (kvm_nlist(kd, nl) != 0) { 436 for (p = nl; p->n_type != 0; ++p) 437 ; 438 _kvm_err(kd, kd->program, 439 "%s: no such symbol", p->n_name); 440 return (0); 441 } 442 if (KREAD(kd, nl[0].n_value, &nprocs)) { 443 _kvm_err(kd, kd->program, "can't read nprocs"); 444 return (0); 445 } 446 size = nprocs * sizeof(struct kinfo_proc); 447 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 448 if (kd->procbase == 0) 449 return (0); 450 451 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 452 nl[2].n_value, nprocs); 453 #ifdef notdef 454 size = nprocs * sizeof(struct kinfo_proc); 455 (void)realloc(kd->procbase, size); 456 #endif 457 } 458 *cnt = nprocs; 459 return (kd->procbase); 460 } 461 462 void 463 _kvm_freeprocs(kd) 464 kvm_t *kd; 465 { 466 if (kd->procbase) { 467 free(kd->procbase); 468 kd->procbase = 0; 469 } 470 } 471 472 void * 473 _kvm_realloc(kd, p, n) 474 kvm_t *kd; 475 void *p; 476 size_t n; 477 { 478 void *np = (void *)realloc(p, n); 479 480 if (np == 0) 481 _kvm_err(kd, kd->program, "out of memory"); 482 return (np); 483 } 484 485 #ifndef MAX 486 #define MAX(a, b) ((a) > (b) ? (a) : (b)) 487 #endif 488 489 /* 490 * Read in an argument vector from the user address space of process p. 491 * addr if the user-space base address of narg null-terminated contiguous 492 * strings. This is used to read in both the command arguments and 493 * environment strings. Read at most maxcnt characters of strings. 494 */ 495 static char ** 496 kvm_argv(kd, p, addr, narg, maxcnt) 497 kvm_t *kd; 498 const struct proc *p; 499 u_long addr; 500 int narg; 501 int maxcnt; 502 { 503 char *np, *cp, *ep, *ap; 504 u_long oaddr = -1; 505 int len, cc; 506 char **argv; 507 508 /* 509 * Check that there aren't an unreasonable number of agruments, 510 * and that the address is in user space. 511 */ 512 if (narg > ARG_MAX || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS) 513 return (0); 514 515 if (kd->argv == 0) { 516 /* 517 * Try to avoid reallocs. 518 */ 519 kd->argc = MAX(narg + 1, 32); 520 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 521 sizeof(*kd->argv)); 522 if (kd->argv == 0) 523 return (0); 524 } else if (narg + 1 > kd->argc) { 525 kd->argc = MAX(2 * kd->argc, narg + 1); 526 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 527 sizeof(*kd->argv)); 528 if (kd->argv == 0) 529 return (0); 530 } 531 if (kd->argspc == 0) { 532 kd->argspc = (char *)_kvm_malloc(kd, kd->nbpg); 533 if (kd->argspc == 0) 534 return (0); 535 kd->arglen = kd->nbpg; 536 } 537 if (kd->argbuf == 0) { 538 kd->argbuf = (char *)_kvm_malloc(kd, kd->nbpg); 539 if (kd->argbuf == 0) 540 return (0); 541 } 542 cc = sizeof(char *) * narg; 543 if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc) 544 return (0); 545 ap = np = kd->argspc; 546 argv = kd->argv; 547 len = 0; 548 /* 549 * Loop over pages, filling in the argument vector. 550 */ 551 while (argv < kd->argv + narg && *argv != 0) { 552 addr = (u_long)*argv & ~(kd->nbpg - 1); 553 if (addr != oaddr) { 554 if (kvm_uread(kd, p, addr, kd->argbuf, kd->nbpg) != 555 kd->nbpg) 556 return (0); 557 oaddr = addr; 558 } 559 addr = (u_long)*argv & (kd->nbpg - 1); 560 cp = kd->argbuf + addr; 561 cc = kd->nbpg - addr; 562 if (maxcnt > 0 && cc > maxcnt - len) 563 cc = maxcnt - len;; 564 ep = memchr(cp, '\0', cc); 565 if (ep != 0) 566 cc = ep - cp + 1; 567 if (len + cc > kd->arglen) { 568 int off; 569 char **pp; 570 char *op = kd->argspc; 571 572 kd->arglen *= 2; 573 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 574 kd->arglen); 575 if (kd->argspc == 0) 576 return (0); 577 /* 578 * Adjust argv pointers in case realloc moved 579 * the string space. 580 */ 581 off = kd->argspc - op; 582 for (pp = kd->argv; pp < argv; pp++) 583 *pp += off; 584 ap += off; 585 np += off; 586 } 587 memcpy(np, cp, cc); 588 np += cc; 589 len += cc; 590 if (ep != 0) { 591 *argv++ = ap; 592 ap = np; 593 } else 594 *argv += cc; 595 if (maxcnt > 0 && len >= maxcnt) { 596 /* 597 * We're stopping prematurely. Terminate the 598 * current string. 599 */ 600 if (ep == 0) { 601 *np = '\0'; 602 *argv++ = ap; 603 } 604 break; 605 } 606 } 607 /* Make sure argv is terminated. */ 608 *argv = 0; 609 return (kd->argv); 610 } 611 612 static void 613 ps_str_a(p, addr, n) 614 struct ps_strings *p; 615 u_long *addr; 616 int *n; 617 { 618 *addr = (u_long)p->ps_argvstr; 619 *n = p->ps_nargvstr; 620 } 621 622 static void 623 ps_str_e(p, addr, n) 624 struct ps_strings *p; 625 u_long *addr; 626 int *n; 627 { 628 *addr = (u_long)p->ps_envstr; 629 *n = p->ps_nenvstr; 630 } 631 632 /* 633 * Determine if the proc indicated by p is still active. 634 * This test is not 100% foolproof in theory, but chances of 635 * being wrong are very low. 636 */ 637 static int 638 proc_verify(kd, kernp, p) 639 kvm_t *kd; 640 u_long kernp; 641 const struct proc *p; 642 { 643 struct proc kernproc; 644 645 /* 646 * Just read in the whole proc. It's not that big relative 647 * to the cost of the read system call. 648 */ 649 if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) != 650 sizeof(kernproc)) 651 return (0); 652 return (p->p_pid == kernproc.p_pid && 653 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB)); 654 } 655 656 static char ** 657 kvm_doargv(kd, kp, nchr, info) 658 kvm_t *kd; 659 const struct kinfo_proc *kp; 660 int nchr; 661 void (*info)(struct ps_strings *, u_long *, int *); 662 { 663 const struct proc *p = &kp->kp_proc; 664 char **ap; 665 u_long addr; 666 int cnt; 667 struct ps_strings arginfo; 668 static struct ps_strings *ps; 669 670 if (ps == NULL) { 671 struct _ps_strings _ps; 672 int mib[2]; 673 size_t len; 674 675 mib[0] = CTL_VM; 676 mib[1] = VM_PSSTRINGS; 677 len = sizeof(_ps); 678 sysctl(mib, 2, &_ps, &len, NULL, 0); 679 ps = (struct ps_strings *)_ps.val; 680 } 681 682 /* 683 * Pointers are stored at the top of the user stack. 684 */ 685 if (p->p_stat == SZOMB || 686 kvm_uread(kd, p, (u_long)ps, (char *)&arginfo, 687 sizeof(arginfo)) != sizeof(arginfo)) 688 return (0); 689 690 (*info)(&arginfo, &addr, &cnt); 691 if (cnt == 0) 692 return (0); 693 ap = kvm_argv(kd, p, addr, cnt, nchr); 694 /* 695 * For live kernels, make sure this process didn't go away. 696 */ 697 if (ap != 0 && ISALIVE(kd) && 698 !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p)) 699 ap = 0; 700 return (ap); 701 } 702 703 /* 704 * Get the command args. This code is now machine independent. 705 */ 706 char ** 707 kvm_getargv(kd, kp, nchr) 708 kvm_t *kd; 709 const struct kinfo_proc *kp; 710 int nchr; 711 { 712 return (kvm_doargv(kd, kp, nchr, ps_str_a)); 713 } 714 715 char ** 716 kvm_getenvv(kd, kp, nchr) 717 kvm_t *kd; 718 const struct kinfo_proc *kp; 719 int nchr; 720 { 721 return (kvm_doargv(kd, kp, nchr, ps_str_e)); 722 } 723 724 /* 725 * Read from user space. The user context is given by p. 726 */ 727 ssize_t 728 kvm_uread(kd, p, uva, buf, len) 729 kvm_t *kd; 730 const struct proc *p; 731 u_long uva; 732 char *buf; 733 size_t len; 734 { 735 char *cp; 736 737 cp = buf; 738 while (len > 0) { 739 int cc; 740 char *dp; 741 u_long cnt; 742 743 dp = _kvm_uread(kd, p, uva, &cnt); 744 if (dp == 0) { 745 _kvm_err(kd, 0, "invalid address (%lx)", uva); 746 return (0); 747 } 748 cc = MIN(cnt, len); 749 bcopy(dp, cp, cc); 750 751 cp += cc; 752 uva += cc; 753 len -= cc; 754 } 755 return (ssize_t)(cp - buf); 756 } 757