xref: /openbsd-src/lib/libcrypto/sha/sha512.c (revision 521ba2f2ab0e0e89d1776559874b3ecc227442fc)
1 /* $OpenBSD: sha512.c,v 1.40 2023/07/02 14:57:58 jsing Exp $ */
2 /* ====================================================================
3  * Copyright (c) 1998-2011 The OpenSSL Project.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  *
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in
14  *    the documentation and/or other materials provided with the
15  *    distribution.
16  *
17  * 3. All advertising materials mentioning features or use of this
18  *    software must display the following acknowledgment:
19  *    "This product includes software developed by the OpenSSL Project
20  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21  *
22  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23  *    endorse or promote products derived from this software without
24  *    prior written permission. For written permission, please contact
25  *    openssl-core@openssl.org.
26  *
27  * 5. Products derived from this software may not be called "OpenSSL"
28  *    nor may "OpenSSL" appear in their names without prior written
29  *    permission of the OpenSSL Project.
30  *
31  * 6. Redistributions of any form whatsoever must retain the following
32  *    acknowledgment:
33  *    "This product includes software developed by the OpenSSL Project
34  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35  *
36  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
40  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47  * OF THE POSSIBILITY OF SUCH DAMAGE.
48  * ====================================================================
49  *
50  * This product includes cryptographic software written by Eric Young
51  * (eay@cryptsoft.com).  This product includes software written by Tim
52  * Hudson (tjh@cryptsoft.com).
53  */
54 
55 #include <endian.h>
56 #include <stdlib.h>
57 #include <string.h>
58 
59 #include <openssl/opensslconf.h>
60 
61 #include <openssl/crypto.h>
62 #include <openssl/sha.h>
63 
64 #include "crypto_internal.h"
65 #include "sha_internal.h"
66 
67 #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA512)
68 
69 /* Ensure that SHA_LONG64 and uint64_t are equivalent. */
70 CTASSERT(sizeof(SHA_LONG64) == sizeof(uint64_t));
71 
72 #ifdef SHA512_ASM
73 void sha512_block_data_order(SHA512_CTX *ctx, const void *in, size_t num);
74 #endif
75 
76 #ifndef SHA512_ASM
77 static const SHA_LONG64 K512[80] = {
78 	U64(0x428a2f98d728ae22), U64(0x7137449123ef65cd),
79 	U64(0xb5c0fbcfec4d3b2f), U64(0xe9b5dba58189dbbc),
80 	U64(0x3956c25bf348b538), U64(0x59f111f1b605d019),
81 	U64(0x923f82a4af194f9b), U64(0xab1c5ed5da6d8118),
82 	U64(0xd807aa98a3030242), U64(0x12835b0145706fbe),
83 	U64(0x243185be4ee4b28c), U64(0x550c7dc3d5ffb4e2),
84 	U64(0x72be5d74f27b896f), U64(0x80deb1fe3b1696b1),
85 	U64(0x9bdc06a725c71235), U64(0xc19bf174cf692694),
86 	U64(0xe49b69c19ef14ad2), U64(0xefbe4786384f25e3),
87 	U64(0x0fc19dc68b8cd5b5), U64(0x240ca1cc77ac9c65),
88 	U64(0x2de92c6f592b0275), U64(0x4a7484aa6ea6e483),
89 	U64(0x5cb0a9dcbd41fbd4), U64(0x76f988da831153b5),
90 	U64(0x983e5152ee66dfab), U64(0xa831c66d2db43210),
91 	U64(0xb00327c898fb213f), U64(0xbf597fc7beef0ee4),
92 	U64(0xc6e00bf33da88fc2), U64(0xd5a79147930aa725),
93 	U64(0x06ca6351e003826f), U64(0x142929670a0e6e70),
94 	U64(0x27b70a8546d22ffc), U64(0x2e1b21385c26c926),
95 	U64(0x4d2c6dfc5ac42aed), U64(0x53380d139d95b3df),
96 	U64(0x650a73548baf63de), U64(0x766a0abb3c77b2a8),
97 	U64(0x81c2c92e47edaee6), U64(0x92722c851482353b),
98 	U64(0xa2bfe8a14cf10364), U64(0xa81a664bbc423001),
99 	U64(0xc24b8b70d0f89791), U64(0xc76c51a30654be30),
100 	U64(0xd192e819d6ef5218), U64(0xd69906245565a910),
101 	U64(0xf40e35855771202a), U64(0x106aa07032bbd1b8),
102 	U64(0x19a4c116b8d2d0c8), U64(0x1e376c085141ab53),
103 	U64(0x2748774cdf8eeb99), U64(0x34b0bcb5e19b48a8),
104 	U64(0x391c0cb3c5c95a63), U64(0x4ed8aa4ae3418acb),
105 	U64(0x5b9cca4f7763e373), U64(0x682e6ff3d6b2b8a3),
106 	U64(0x748f82ee5defb2fc), U64(0x78a5636f43172f60),
107 	U64(0x84c87814a1f0ab72), U64(0x8cc702081a6439ec),
108 	U64(0x90befffa23631e28), U64(0xa4506cebde82bde9),
109 	U64(0xbef9a3f7b2c67915), U64(0xc67178f2e372532b),
110 	U64(0xca273eceea26619c), U64(0xd186b8c721c0c207),
111 	U64(0xeada7dd6cde0eb1e), U64(0xf57d4f7fee6ed178),
112 	U64(0x06f067aa72176fba), U64(0x0a637dc5a2c898a6),
113 	U64(0x113f9804bef90dae), U64(0x1b710b35131c471b),
114 	U64(0x28db77f523047d84), U64(0x32caab7b40c72493),
115 	U64(0x3c9ebe0a15c9bebc), U64(0x431d67c49c100d4c),
116 	U64(0x4cc5d4becb3e42b6), U64(0x597f299cfc657e2a),
117 	U64(0x5fcb6fab3ad6faec), U64(0x6c44198c4a475817),
118 };
119 
120 static inline SHA_LONG64
121 Sigma0(SHA_LONG64 x)
122 {
123 	return crypto_ror_u64(x, 28) ^ crypto_ror_u64(x, 34) ^
124 	    crypto_ror_u64(x, 39);
125 }
126 
127 static inline SHA_LONG64
128 Sigma1(SHA_LONG64 x)
129 {
130 	return crypto_ror_u64(x, 14) ^ crypto_ror_u64(x, 18) ^
131 	    crypto_ror_u64(x, 41);
132 }
133 
134 static inline SHA_LONG64
135 sigma0(SHA_LONG64 x)
136 {
137 	return crypto_ror_u64(x, 1) ^ crypto_ror_u64(x, 8) ^ (x >> 7);
138 }
139 
140 static inline SHA_LONG64
141 sigma1(SHA_LONG64 x)
142 {
143 	return crypto_ror_u64(x, 19) ^ crypto_ror_u64(x, 61) ^ (x >> 6);
144 }
145 
146 static inline SHA_LONG64
147 Ch(SHA_LONG64 x, SHA_LONG64 y, SHA_LONG64 z)
148 {
149 	return (x & y) ^ (~x & z);
150 }
151 
152 static inline SHA_LONG64
153 Maj(SHA_LONG64 x, SHA_LONG64 y, SHA_LONG64 z)
154 {
155 	return (x & y) ^ (x & z) ^ (y & z);
156 }
157 
158 static inline void
159 sha512_msg_schedule_update(SHA_LONG64 *W0, SHA_LONG64 W1,
160     SHA_LONG64 W9, SHA_LONG64 W14)
161 {
162 	*W0 = sigma1(W14) + W9 + sigma0(W1) + *W0;
163 }
164 
165 static inline void
166 sha512_round(SHA_LONG64 *a, SHA_LONG64 *b, SHA_LONG64 *c, SHA_LONG64 *d,
167     SHA_LONG64 *e, SHA_LONG64 *f, SHA_LONG64 *g, SHA_LONG64 *h,
168     SHA_LONG64 Kt, SHA_LONG64 Wt)
169 {
170 	SHA_LONG64 T1, T2;
171 
172 	T1 = *h + Sigma1(*e) + Ch(*e, *f, *g) + Kt + Wt;
173 	T2 = Sigma0(*a) + Maj(*a, *b, *c);
174 
175 	*h = *g;
176 	*g = *f;
177 	*f = *e;
178 	*e = *d + T1;
179 	*d = *c;
180 	*c = *b;
181 	*b = *a;
182 	*a = T1 + T2;
183 }
184 
185 static void
186 sha512_block_data_order(SHA512_CTX *ctx, const void *_in, size_t num)
187 {
188 	const uint8_t *in = _in;
189 	const SHA_LONG64 *in64;
190 	SHA_LONG64 a, b, c, d, e, f, g, h;
191 	SHA_LONG64 X[16];
192 	int i;
193 
194 	while (num--) {
195 		a = ctx->h[0];
196 		b = ctx->h[1];
197 		c = ctx->h[2];
198 		d = ctx->h[3];
199 		e = ctx->h[4];
200 		f = ctx->h[5];
201 		g = ctx->h[6];
202 		h = ctx->h[7];
203 
204 		if ((size_t)in % sizeof(SHA_LONG64) == 0) {
205 			/* Input is 64 bit aligned. */
206 			in64 = (const SHA_LONG64 *)in;
207 			X[0] = be64toh(in64[0]);
208 			X[1] = be64toh(in64[1]);
209 			X[2] = be64toh(in64[2]);
210 			X[3] = be64toh(in64[3]);
211 			X[4] = be64toh(in64[4]);
212 			X[5] = be64toh(in64[5]);
213 			X[6] = be64toh(in64[6]);
214 			X[7] = be64toh(in64[7]);
215 			X[8] = be64toh(in64[8]);
216 			X[9] = be64toh(in64[9]);
217 			X[10] = be64toh(in64[10]);
218 			X[11] = be64toh(in64[11]);
219 			X[12] = be64toh(in64[12]);
220 			X[13] = be64toh(in64[13]);
221 			X[14] = be64toh(in64[14]);
222 			X[15] = be64toh(in64[15]);
223 		} else {
224 			/* Input is not 64 bit aligned. */
225 			X[0] = crypto_load_be64toh(&in[0 * 8]);
226 			X[1] = crypto_load_be64toh(&in[1 * 8]);
227 			X[2] = crypto_load_be64toh(&in[2 * 8]);
228 			X[3] = crypto_load_be64toh(&in[3 * 8]);
229 			X[4] = crypto_load_be64toh(&in[4 * 8]);
230 			X[5] = crypto_load_be64toh(&in[5 * 8]);
231 			X[6] = crypto_load_be64toh(&in[6 * 8]);
232 			X[7] = crypto_load_be64toh(&in[7 * 8]);
233 			X[8] = crypto_load_be64toh(&in[8 * 8]);
234 			X[9] = crypto_load_be64toh(&in[9 * 8]);
235 			X[10] = crypto_load_be64toh(&in[10 * 8]);
236 			X[11] = crypto_load_be64toh(&in[11 * 8]);
237 			X[12] = crypto_load_be64toh(&in[12 * 8]);
238 			X[13] = crypto_load_be64toh(&in[13 * 8]);
239 			X[14] = crypto_load_be64toh(&in[14 * 8]);
240 			X[15] = crypto_load_be64toh(&in[15 * 8]);
241 		}
242 		in += SHA512_CBLOCK;
243 
244 		sha512_round(&a, &b, &c, &d, &e, &f, &g, &h, K512[0], X[0]);
245 		sha512_round(&a, &b, &c, &d, &e, &f, &g, &h, K512[1], X[1]);
246 		sha512_round(&a, &b, &c, &d, &e, &f, &g, &h, K512[2], X[2]);
247 		sha512_round(&a, &b, &c, &d, &e, &f, &g, &h, K512[3], X[3]);
248 		sha512_round(&a, &b, &c, &d, &e, &f, &g, &h, K512[4], X[4]);
249 		sha512_round(&a, &b, &c, &d, &e, &f, &g, &h, K512[5], X[5]);
250 		sha512_round(&a, &b, &c, &d, &e, &f, &g, &h, K512[6], X[6]);
251 		sha512_round(&a, &b, &c, &d, &e, &f, &g, &h, K512[7], X[7]);
252 		sha512_round(&a, &b, &c, &d, &e, &f, &g, &h, K512[8], X[8]);
253 		sha512_round(&a, &b, &c, &d, &e, &f, &g, &h, K512[9], X[9]);
254 		sha512_round(&a, &b, &c, &d, &e, &f, &g, &h, K512[10], X[10]);
255 		sha512_round(&a, &b, &c, &d, &e, &f, &g, &h, K512[11], X[11]);
256 		sha512_round(&a, &b, &c, &d, &e, &f, &g, &h, K512[12], X[12]);
257 		sha512_round(&a, &b, &c, &d, &e, &f, &g, &h, K512[13], X[13]);
258 		sha512_round(&a, &b, &c, &d, &e, &f, &g, &h, K512[14], X[14]);
259 		sha512_round(&a, &b, &c, &d, &e, &f, &g, &h, K512[15], X[15]);
260 
261 		for (i = 16; i < 80; i += 16) {
262 			sha512_msg_schedule_update(&X[0], X[1], X[9], X[14]);
263 			sha512_msg_schedule_update(&X[1], X[2], X[10], X[15]);
264 			sha512_msg_schedule_update(&X[2], X[3], X[11], X[0]);
265 			sha512_msg_schedule_update(&X[3], X[4], X[12], X[1]);
266 			sha512_msg_schedule_update(&X[4], X[5], X[13], X[2]);
267 			sha512_msg_schedule_update(&X[5], X[6], X[14], X[3]);
268 			sha512_msg_schedule_update(&X[6], X[7], X[15], X[4]);
269 			sha512_msg_schedule_update(&X[7], X[8], X[0], X[5]);
270 			sha512_msg_schedule_update(&X[8], X[9], X[1], X[6]);
271 			sha512_msg_schedule_update(&X[9], X[10], X[2], X[7]);
272 			sha512_msg_schedule_update(&X[10], X[11], X[3], X[8]);
273 			sha512_msg_schedule_update(&X[11], X[12], X[4], X[9]);
274 			sha512_msg_schedule_update(&X[12], X[13], X[5], X[10]);
275 			sha512_msg_schedule_update(&X[13], X[14], X[6], X[11]);
276 			sha512_msg_schedule_update(&X[14], X[15], X[7], X[12]);
277 			sha512_msg_schedule_update(&X[15], X[0], X[8], X[13]);
278 
279 			sha512_round(&a, &b, &c, &d, &e, &f, &g, &h, K512[i + 0], X[0]);
280 			sha512_round(&a, &b, &c, &d, &e, &f, &g, &h, K512[i + 1], X[1]);
281 			sha512_round(&a, &b, &c, &d, &e, &f, &g, &h, K512[i + 2], X[2]);
282 			sha512_round(&a, &b, &c, &d, &e, &f, &g, &h, K512[i + 3], X[3]);
283 			sha512_round(&a, &b, &c, &d, &e, &f, &g, &h, K512[i + 4], X[4]);
284 			sha512_round(&a, &b, &c, &d, &e, &f, &g, &h, K512[i + 5], X[5]);
285 			sha512_round(&a, &b, &c, &d, &e, &f, &g, &h, K512[i + 6], X[6]);
286 			sha512_round(&a, &b, &c, &d, &e, &f, &g, &h, K512[i + 7], X[7]);
287 			sha512_round(&a, &b, &c, &d, &e, &f, &g, &h, K512[i + 8], X[8]);
288 			sha512_round(&a, &b, &c, &d, &e, &f, &g, &h, K512[i + 9], X[9]);
289 			sha512_round(&a, &b, &c, &d, &e, &f, &g, &h, K512[i + 10], X[10]);
290 			sha512_round(&a, &b, &c, &d, &e, &f, &g, &h, K512[i + 11], X[11]);
291 			sha512_round(&a, &b, &c, &d, &e, &f, &g, &h, K512[i + 12], X[12]);
292 			sha512_round(&a, &b, &c, &d, &e, &f, &g, &h, K512[i + 13], X[13]);
293 			sha512_round(&a, &b, &c, &d, &e, &f, &g, &h, K512[i + 14], X[14]);
294 			sha512_round(&a, &b, &c, &d, &e, &f, &g, &h, K512[i + 15], X[15]);
295 		}
296 
297 		ctx->h[0] += a;
298 		ctx->h[1] += b;
299 		ctx->h[2] += c;
300 		ctx->h[3] += d;
301 		ctx->h[4] += e;
302 		ctx->h[5] += f;
303 		ctx->h[6] += g;
304 		ctx->h[7] += h;
305 	}
306 }
307 
308 #endif /* SHA512_ASM */
309 
310 int
311 SHA384_Init(SHA512_CTX *c)
312 {
313 	memset(c, 0, sizeof(*c));
314 
315 	c->h[0] = U64(0xcbbb9d5dc1059ed8);
316 	c->h[1] = U64(0x629a292a367cd507);
317 	c->h[2] = U64(0x9159015a3070dd17);
318 	c->h[3] = U64(0x152fecd8f70e5939);
319 	c->h[4] = U64(0x67332667ffc00b31);
320 	c->h[5] = U64(0x8eb44a8768581511);
321 	c->h[6] = U64(0xdb0c2e0d64f98fa7);
322 	c->h[7] = U64(0x47b5481dbefa4fa4);
323 
324 	c->md_len = SHA384_DIGEST_LENGTH;
325 
326 	return 1;
327 }
328 
329 int
330 SHA384_Update(SHA512_CTX *c, const void *data, size_t len)
331 {
332 	return SHA512_Update(c, data, len);
333 }
334 
335 int
336 SHA384_Final(unsigned char *md, SHA512_CTX *c)
337 {
338 	return SHA512_Final(md, c);
339 }
340 
341 unsigned char *
342 SHA384(const unsigned char *d, size_t n, unsigned char *md)
343 {
344 	SHA512_CTX c;
345 	static unsigned char m[SHA384_DIGEST_LENGTH];
346 
347 	if (md == NULL)
348 		md = m;
349 
350 	SHA384_Init(&c);
351 	SHA512_Update(&c, d, n);
352 	SHA512_Final(md, &c);
353 
354 	explicit_bzero(&c, sizeof(c));
355 
356 	return (md);
357 }
358 
359 int
360 SHA512_Init(SHA512_CTX *c)
361 {
362 	memset(c, 0, sizeof(*c));
363 
364 	c->h[0] = U64(0x6a09e667f3bcc908);
365 	c->h[1] = U64(0xbb67ae8584caa73b);
366 	c->h[2] = U64(0x3c6ef372fe94f82b);
367 	c->h[3] = U64(0xa54ff53a5f1d36f1);
368 	c->h[4] = U64(0x510e527fade682d1);
369 	c->h[5] = U64(0x9b05688c2b3e6c1f);
370 	c->h[6] = U64(0x1f83d9abfb41bd6b);
371 	c->h[7] = U64(0x5be0cd19137e2179);
372 
373 	c->md_len = SHA512_DIGEST_LENGTH;
374 
375 	return 1;
376 }
377 
378 void
379 SHA512_Transform(SHA512_CTX *c, const unsigned char *data)
380 {
381 	sha512_block_data_order(c, data, 1);
382 }
383 
384 int
385 SHA512_Update(SHA512_CTX *c, const void *_data, size_t len)
386 {
387 	const unsigned char *data = _data;
388 	unsigned char *p = c->u.p;
389 	SHA_LONG64 l;
390 
391 	if (len == 0)
392 		return 1;
393 
394 	l = (c->Nl + (((SHA_LONG64)len) << 3))&U64(0xffffffffffffffff);
395 	if (l < c->Nl)
396 		c->Nh++;
397 	if (sizeof(len) >= 8)
398 		c->Nh += (((SHA_LONG64)len) >> 61);
399 	c->Nl = l;
400 
401 	if (c->num != 0) {
402 		size_t n = sizeof(c->u) - c->num;
403 
404 		if (len < n) {
405 			memcpy(p + c->num, data, len);
406 			c->num += (unsigned int)len;
407 			return 1;
408 		} else{
409 			memcpy(p + c->num, data, n);
410 			c->num = 0;
411 			len -= n;
412 			data += n;
413 			sha512_block_data_order(c, p, 1);
414 		}
415 	}
416 
417 	if (len >= sizeof(c->u)) {
418 		sha512_block_data_order(c, data, len/sizeof(c->u));
419 		data += len;
420 		len %= sizeof(c->u);
421 		data -= len;
422 	}
423 
424 	if (len != 0) {
425 		memcpy(p, data, len);
426 		c->num = (int)len;
427 	}
428 
429 	return 1;
430 }
431 
432 int
433 SHA512_Final(unsigned char *md, SHA512_CTX *c)
434 {
435 	unsigned char *p = (unsigned char *)c->u.p;
436 	size_t n = c->num;
437 
438 	p[n]=0x80;	/* There always is a room for one */
439 	n++;
440 	if (n > (sizeof(c->u) - 16)) {
441 		memset(p + n, 0, sizeof(c->u) - n);
442 		n = 0;
443 		sha512_block_data_order(c, p, 1);
444 	}
445 
446 	memset(p + n, 0, sizeof(c->u) - 16 - n);
447 	c->u.d[SHA_LBLOCK - 2] = htobe64(c->Nh);
448 	c->u.d[SHA_LBLOCK - 1] = htobe64(c->Nl);
449 
450 	sha512_block_data_order(c, p, 1);
451 
452 	if (md == NULL)
453 		return 0;
454 
455 	/* Let compiler decide if it's appropriate to unroll... */
456 	switch (c->md_len) {
457 	case SHA512_224_DIGEST_LENGTH:
458 		for (n = 0; n < SHA512_224_DIGEST_LENGTH/8; n++) {
459 			crypto_store_htobe64(md, c->h[n]);
460 			md += 8;
461 		}
462 		crypto_store_htobe32(md, c->h[n] >> 32);
463 		break;
464 	case SHA512_256_DIGEST_LENGTH:
465 		for (n = 0; n < SHA512_256_DIGEST_LENGTH/8; n++) {
466 			crypto_store_htobe64(md, c->h[n]);
467 			md += 8;
468 		}
469 		break;
470 	case SHA384_DIGEST_LENGTH:
471 		for (n = 0; n < SHA384_DIGEST_LENGTH/8; n++) {
472 			crypto_store_htobe64(md, c->h[n]);
473 			md += 8;
474 		}
475 		break;
476 	case SHA512_DIGEST_LENGTH:
477 		for (n = 0; n < SHA512_DIGEST_LENGTH/8; n++) {
478 			crypto_store_htobe64(md, c->h[n]);
479 			md += 8;
480 		}
481 		break;
482 	default:
483 		return 0;
484 	}
485 
486 	return 1;
487 }
488 
489 unsigned char *
490 SHA512(const unsigned char *d, size_t n, unsigned char *md)
491 {
492 	SHA512_CTX c;
493 	static unsigned char m[SHA512_DIGEST_LENGTH];
494 
495 	if (md == NULL)
496 		md = m;
497 
498 	SHA512_Init(&c);
499 	SHA512_Update(&c, d, n);
500 	SHA512_Final(md, &c);
501 
502 	explicit_bzero(&c, sizeof(c));
503 
504 	return (md);
505 }
506 
507 int
508 SHA512_224_Init(SHA512_CTX *c)
509 {
510 	memset(c, 0, sizeof(*c));
511 
512 	/* FIPS 180-4 section 5.3.6.1. */
513 	c->h[0] = U64(0x8c3d37c819544da2);
514 	c->h[1] = U64(0x73e1996689dcd4d6);
515 	c->h[2] = U64(0x1dfab7ae32ff9c82);
516 	c->h[3] = U64(0x679dd514582f9fcf);
517 	c->h[4] = U64(0x0f6d2b697bd44da8);
518 	c->h[5] = U64(0x77e36f7304c48942);
519 	c->h[6] = U64(0x3f9d85a86a1d36c8);
520 	c->h[7] = U64(0x1112e6ad91d692a1);
521 
522 	c->md_len = SHA512_224_DIGEST_LENGTH;
523 
524 	return 1;
525 }
526 
527 int
528 SHA512_224_Update(SHA512_CTX *c, const void *data, size_t len)
529 {
530 	return SHA512_Update(c, data, len);
531 }
532 
533 int
534 SHA512_224_Final(unsigned char *md, SHA512_CTX *c)
535 {
536 	return SHA512_Final(md, c);
537 }
538 
539 int
540 SHA512_256_Init(SHA512_CTX *c)
541 {
542 	memset(c, 0, sizeof(*c));
543 
544 	/* FIPS 180-4 section 5.3.6.2. */
545 	c->h[0] = U64(0x22312194fc2bf72c);
546 	c->h[1] = U64(0x9f555fa3c84c64c2);
547 	c->h[2] = U64(0x2393b86b6f53b151);
548 	c->h[3] = U64(0x963877195940eabd);
549 	c->h[4] = U64(0x96283ee2a88effe3);
550 	c->h[5] = U64(0xbe5e1e2553863992);
551 	c->h[6] = U64(0x2b0199fc2c85b8aa);
552 	c->h[7] = U64(0x0eb72ddc81c52ca2);
553 
554 	c->md_len = SHA512_256_DIGEST_LENGTH;
555 
556 	return 1;
557 }
558 
559 int
560 SHA512_256_Update(SHA512_CTX *c, const void *data, size_t len)
561 {
562 	return SHA512_Update(c, data, len);
563 }
564 
565 int
566 SHA512_256_Final(unsigned char *md, SHA512_CTX *c)
567 {
568 	return SHA512_Final(md, c);
569 }
570 
571 #endif /* !OPENSSL_NO_SHA512 */
572