xref: /openbsd-src/lib/libcrypto/modes/ccm128.c (revision e5157e49389faebcb42b7237d55fbf096d9c2523)
1 /* $OpenBSD: ccm128.c,v 1.3 2014/06/12 15:49:30 deraadt Exp $ */
2 /* ====================================================================
3  * Copyright (c) 2011 The OpenSSL Project.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  *
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in
14  *    the documentation and/or other materials provided with the
15  *    distribution.
16  *
17  * 3. All advertising materials mentioning features or use of this
18  *    software must display the following acknowledgment:
19  *    "This product includes software developed by the OpenSSL Project
20  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21  *
22  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23  *    endorse or promote products derived from this software without
24  *    prior written permission. For written permission, please contact
25  *    openssl-core@openssl.org.
26  *
27  * 5. Products derived from this software may not be called "OpenSSL"
28  *    nor may "OpenSSL" appear in their names without prior written
29  *    permission of the OpenSSL Project.
30  *
31  * 6. Redistributions of any form whatsoever must retain the following
32  *    acknowledgment:
33  *    "This product includes software developed by the OpenSSL Project
34  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35  *
36  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
40  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47  * OF THE POSSIBILITY OF SUCH DAMAGE.
48  * ====================================================================
49  */
50 
51 #include <openssl/crypto.h>
52 #include "modes_lcl.h"
53 #include <string.h>
54 
55 #ifndef MODES_DEBUG
56 # ifndef NDEBUG
57 #  define NDEBUG
58 # endif
59 #endif
60 #include <assert.h>
61 
62 /* First you setup M and L parameters and pass the key schedule.
63  * This is called once per session setup... */
64 void CRYPTO_ccm128_init(CCM128_CONTEXT *ctx,
65 	unsigned int M,unsigned int L,void *key,block128_f block)
66 {
67 	memset(ctx->nonce.c,0,sizeof(ctx->nonce.c));
68 	ctx->nonce.c[0] = ((u8)(L-1)&7) | (u8)(((M-2)/2)&7)<<3;
69 	ctx->blocks = 0;
70 	ctx->block = block;
71 	ctx->key = key;
72 }
73 
74 /* !!! Following interfaces are to be called *once* per packet !!! */
75 
76 /* Then you setup per-message nonce and pass the length of the message */
77 int CRYPTO_ccm128_setiv(CCM128_CONTEXT *ctx,
78 	const unsigned char *nonce,size_t nlen,size_t mlen)
79 {
80 	unsigned int L = ctx->nonce.c[0]&7;	/* the L parameter */
81 
82 	if (nlen<(14-L)) return -1;		/* nonce is too short */
83 
84 	if (sizeof(mlen)==8 && L>=3) {
85 		ctx->nonce.c[8]  = (u8)(mlen>>(56%(sizeof(mlen)*8)));
86 		ctx->nonce.c[9]  = (u8)(mlen>>(48%(sizeof(mlen)*8)));
87 		ctx->nonce.c[10] = (u8)(mlen>>(40%(sizeof(mlen)*8)));
88 		ctx->nonce.c[11] = (u8)(mlen>>(32%(sizeof(mlen)*8)));
89 	}
90 	else
91 		ctx->nonce.u[1] = 0;
92 
93 	ctx->nonce.c[12] = (u8)(mlen>>24);
94 	ctx->nonce.c[13] = (u8)(mlen>>16);
95 	ctx->nonce.c[14] = (u8)(mlen>>8);
96 	ctx->nonce.c[15] = (u8)mlen;
97 
98 	ctx->nonce.c[0] &= ~0x40;	/* clear Adata flag */
99 	memcpy(&ctx->nonce.c[1],nonce,14-L);
100 
101 	return 0;
102 }
103 
104 /* Then you pass additional authentication data, this is optional */
105 void CRYPTO_ccm128_aad(CCM128_CONTEXT *ctx,
106 	const unsigned char *aad,size_t alen)
107 {	unsigned int i;
108 	block128_f block = ctx->block;
109 
110 	if (alen==0) return;
111 
112 	ctx->nonce.c[0] |= 0x40;	/* set Adata flag */
113 	(*block)(ctx->nonce.c,ctx->cmac.c,ctx->key),
114 	ctx->blocks++;
115 
116 	if (alen<(0x10000-0x100)) {
117 		ctx->cmac.c[0] ^= (u8)(alen>>8);
118 		ctx->cmac.c[1] ^= (u8)alen;
119 		i=2;
120 	}
121 	else if (sizeof(alen)==8 && alen>=(size_t)1<<(32%(sizeof(alen)*8))) {
122 		ctx->cmac.c[0] ^= 0xFF;
123 		ctx->cmac.c[1] ^= 0xFF;
124 		ctx->cmac.c[2] ^= (u8)(alen>>(56%(sizeof(alen)*8)));
125 		ctx->cmac.c[3] ^= (u8)(alen>>(48%(sizeof(alen)*8)));
126 		ctx->cmac.c[4] ^= (u8)(alen>>(40%(sizeof(alen)*8)));
127 		ctx->cmac.c[5] ^= (u8)(alen>>(32%(sizeof(alen)*8)));
128 		ctx->cmac.c[6] ^= (u8)(alen>>24);
129 		ctx->cmac.c[7] ^= (u8)(alen>>16);
130 		ctx->cmac.c[8] ^= (u8)(alen>>8);
131 		ctx->cmac.c[9] ^= (u8)alen;
132 		i=10;
133 	}
134 	else {
135 		ctx->cmac.c[0] ^= 0xFF;
136 		ctx->cmac.c[1] ^= 0xFE;
137 		ctx->cmac.c[2] ^= (u8)(alen>>24);
138 		ctx->cmac.c[3] ^= (u8)(alen>>16);
139 		ctx->cmac.c[4] ^= (u8)(alen>>8);
140 		ctx->cmac.c[5] ^= (u8)alen;
141 		i=6;
142 	}
143 
144 	do {
145 		for(;i<16 && alen;++i,++aad,--alen)
146 			ctx->cmac.c[i] ^= *aad;
147 		(*block)(ctx->cmac.c,ctx->cmac.c,ctx->key),
148 		ctx->blocks++;
149 		i=0;
150 	} while (alen);
151 }
152 
153 /* Finally you encrypt or decrypt the message */
154 
155 /* counter part of nonce may not be larger than L*8 bits,
156  * L is not larger than 8, therefore 64-bit counter... */
157 static void ctr64_inc(unsigned char *counter) {
158 	unsigned int n=8;
159 	u8  c;
160 
161 	counter += 8;
162 	do {
163 		--n;
164 		c = counter[n];
165 		++c;
166 		counter[n] = c;
167 		if (c) return;
168 	} while (n);
169 }
170 
171 int CRYPTO_ccm128_encrypt(CCM128_CONTEXT *ctx,
172 	const unsigned char *inp, unsigned char *out,
173 	size_t len)
174 {
175 	size_t		n;
176 	unsigned int	i,L;
177 	unsigned char	flags0	= ctx->nonce.c[0];
178 	block128_f	block	= ctx->block;
179 	void *		key	= ctx->key;
180 	union { u64 u[2]; u8 c[16]; } scratch;
181 
182 	if (!(flags0&0x40))
183 		(*block)(ctx->nonce.c,ctx->cmac.c,key),
184 		ctx->blocks++;
185 
186 	ctx->nonce.c[0] = L = flags0&7;
187 	for (n=0,i=15-L;i<15;++i) {
188 		n |= ctx->nonce.c[i];
189 		ctx->nonce.c[i]=0;
190 		n <<= 8;
191 	}
192 	n |= ctx->nonce.c[15];	/* reconstructed length */
193 	ctx->nonce.c[15]=1;
194 
195 	if (n!=len) return -1;	/* length mismatch */
196 
197 	ctx->blocks += ((len+15)>>3)|1;
198 	if (ctx->blocks > (U64(1)<<61))	return -2; /* too much data */
199 
200 	while (len>=16) {
201 #ifdef __STRICT_ALIGNMENT
202 		union { u64 u[2]; u8 c[16]; } temp;
203 
204 		memcpy (temp.c,inp,16);
205 		ctx->cmac.u[0] ^= temp.u[0];
206 		ctx->cmac.u[1] ^= temp.u[1];
207 #else
208 		ctx->cmac.u[0] ^= ((u64*)inp)[0];
209 		ctx->cmac.u[1] ^= ((u64*)inp)[1];
210 #endif
211 		(*block)(ctx->cmac.c,ctx->cmac.c,key);
212 		(*block)(ctx->nonce.c,scratch.c,key);
213 		ctr64_inc(ctx->nonce.c);
214 #ifdef __STRICT_ALIGNMENT
215 		temp.u[0] ^= scratch.u[0];
216 		temp.u[1] ^= scratch.u[1];
217 		memcpy(out,temp.c,16);
218 #else
219 		((u64*)out)[0] = scratch.u[0]^((u64*)inp)[0];
220 		((u64*)out)[1] = scratch.u[1]^((u64*)inp)[1];
221 #endif
222 		inp += 16;
223 		out += 16;
224 		len -= 16;
225 	}
226 
227 	if (len) {
228 		for (i=0; i<len; ++i) ctx->cmac.c[i] ^= inp[i];
229 		(*block)(ctx->cmac.c,ctx->cmac.c,key);
230 		(*block)(ctx->nonce.c,scratch.c,key);
231 		for (i=0; i<len; ++i) out[i] = scratch.c[i]^inp[i];
232 	}
233 
234 	for (i=15-L;i<16;++i)
235 		ctx->nonce.c[i]=0;
236 
237 	(*block)(ctx->nonce.c,scratch.c,key);
238 	ctx->cmac.u[0] ^= scratch.u[0];
239 	ctx->cmac.u[1] ^= scratch.u[1];
240 
241 	ctx->nonce.c[0] = flags0;
242 
243 	return 0;
244 }
245 
246 int CRYPTO_ccm128_decrypt(CCM128_CONTEXT *ctx,
247 	const unsigned char *inp, unsigned char *out,
248 	size_t len)
249 {
250 	size_t		n;
251 	unsigned int	i,L;
252 	unsigned char	flags0	= ctx->nonce.c[0];
253 	block128_f	block	= ctx->block;
254 	void *		key	= ctx->key;
255 	union { u64 u[2]; u8 c[16]; } scratch;
256 
257 	if (!(flags0&0x40))
258 		(*block)(ctx->nonce.c,ctx->cmac.c,key);
259 
260 	ctx->nonce.c[0] = L = flags0&7;
261 	for (n=0,i=15-L;i<15;++i) {
262 		n |= ctx->nonce.c[i];
263 		ctx->nonce.c[i]=0;
264 		n <<= 8;
265 	}
266 	n |= ctx->nonce.c[15];	/* reconstructed length */
267 	ctx->nonce.c[15]=1;
268 
269 	if (n!=len) return -1;
270 
271 	while (len>=16) {
272 #ifdef __STRICT_ALIGNMENT
273 		union { u64 u[2]; u8 c[16]; } temp;
274 #endif
275 		(*block)(ctx->nonce.c,scratch.c,key);
276 		ctr64_inc(ctx->nonce.c);
277 #ifdef __STRICT_ALIGNMENT
278 		memcpy (temp.c,inp,16);
279 		ctx->cmac.u[0] ^= (scratch.u[0] ^= temp.u[0]);
280 		ctx->cmac.u[1] ^= (scratch.u[1] ^= temp.u[1]);
281 		memcpy (out,scratch.c,16);
282 #else
283 		ctx->cmac.u[0] ^= (((u64*)out)[0] = scratch.u[0]^((u64*)inp)[0]);
284 		ctx->cmac.u[1] ^= (((u64*)out)[1] = scratch.u[1]^((u64*)inp)[1]);
285 #endif
286 		(*block)(ctx->cmac.c,ctx->cmac.c,key);
287 
288 		inp += 16;
289 		out += 16;
290 		len -= 16;
291 	}
292 
293 	if (len) {
294 		(*block)(ctx->nonce.c,scratch.c,key);
295 		for (i=0; i<len; ++i)
296 			ctx->cmac.c[i] ^= (out[i] = scratch.c[i]^inp[i]);
297 		(*block)(ctx->cmac.c,ctx->cmac.c,key);
298 	}
299 
300 	for (i=15-L;i<16;++i)
301 		ctx->nonce.c[i]=0;
302 
303 	(*block)(ctx->nonce.c,scratch.c,key);
304 	ctx->cmac.u[0] ^= scratch.u[0];
305 	ctx->cmac.u[1] ^= scratch.u[1];
306 
307 	ctx->nonce.c[0] = flags0;
308 
309 	return 0;
310 }
311 
312 static void ctr64_add (unsigned char *counter,size_t inc)
313 {	size_t n=8, val=0;
314 
315 	counter += 8;
316 	do {
317 		--n;
318 		val += counter[n] + (inc&0xff);
319 		counter[n] = (unsigned char)val;
320 		val >>= 8;	/* carry bit */
321 		inc >>= 8;
322 	} while(n && (inc || val));
323 }
324 
325 int CRYPTO_ccm128_encrypt_ccm64(CCM128_CONTEXT *ctx,
326 	const unsigned char *inp, unsigned char *out,
327 	size_t len,ccm128_f stream)
328 {
329 	size_t		n;
330 	unsigned int	i,L;
331 	unsigned char	flags0	= ctx->nonce.c[0];
332 	block128_f	block	= ctx->block;
333 	void *		key	= ctx->key;
334 	union { u64 u[2]; u8 c[16]; } scratch;
335 
336 	if (!(flags0&0x40))
337 		(*block)(ctx->nonce.c,ctx->cmac.c,key),
338 		ctx->blocks++;
339 
340 	ctx->nonce.c[0] = L = flags0&7;
341 	for (n=0,i=15-L;i<15;++i) {
342 		n |= ctx->nonce.c[i];
343 		ctx->nonce.c[i]=0;
344 		n <<= 8;
345 	}
346 	n |= ctx->nonce.c[15];	/* reconstructed length */
347 	ctx->nonce.c[15]=1;
348 
349 	if (n!=len) return -1;	/* length mismatch */
350 
351 	ctx->blocks += ((len+15)>>3)|1;
352 	if (ctx->blocks > (U64(1)<<61))	return -2; /* too much data */
353 
354 	if ((n=len/16)) {
355 		(*stream)(inp,out,n,key,ctx->nonce.c,ctx->cmac.c);
356 		n   *= 16;
357 		inp += n;
358 		out += n;
359 		len -= n;
360 		if (len) ctr64_add(ctx->nonce.c,n/16);
361 	}
362 
363 	if (len) {
364 		for (i=0; i<len; ++i) ctx->cmac.c[i] ^= inp[i];
365 		(*block)(ctx->cmac.c,ctx->cmac.c,key);
366 		(*block)(ctx->nonce.c,scratch.c,key);
367 		for (i=0; i<len; ++i) out[i] = scratch.c[i]^inp[i];
368 	}
369 
370 	for (i=15-L;i<16;++i)
371 		ctx->nonce.c[i]=0;
372 
373 	(*block)(ctx->nonce.c,scratch.c,key);
374 	ctx->cmac.u[0] ^= scratch.u[0];
375 	ctx->cmac.u[1] ^= scratch.u[1];
376 
377 	ctx->nonce.c[0] = flags0;
378 
379 	return 0;
380 }
381 
382 int CRYPTO_ccm128_decrypt_ccm64(CCM128_CONTEXT *ctx,
383 	const unsigned char *inp, unsigned char *out,
384 	size_t len,ccm128_f stream)
385 {
386 	size_t		n;
387 	unsigned int	i,L;
388 	unsigned char	flags0	= ctx->nonce.c[0];
389 	block128_f	block	= ctx->block;
390 	void *		key	= ctx->key;
391 	union { u64 u[2]; u8 c[16]; } scratch;
392 
393 	if (!(flags0&0x40))
394 		(*block)(ctx->nonce.c,ctx->cmac.c,key);
395 
396 	ctx->nonce.c[0] = L = flags0&7;
397 	for (n=0,i=15-L;i<15;++i) {
398 		n |= ctx->nonce.c[i];
399 		ctx->nonce.c[i]=0;
400 		n <<= 8;
401 	}
402 	n |= ctx->nonce.c[15];	/* reconstructed length */
403 	ctx->nonce.c[15]=1;
404 
405 	if (n!=len) return -1;
406 
407 	if ((n=len/16)) {
408 		(*stream)(inp,out,n,key,ctx->nonce.c,ctx->cmac.c);
409 		n   *= 16;
410 		inp += n;
411 		out += n;
412 		len -= n;
413 		if (len) ctr64_add(ctx->nonce.c,n/16);
414 	}
415 
416 	if (len) {
417 		(*block)(ctx->nonce.c,scratch.c,key);
418 		for (i=0; i<len; ++i)
419 			ctx->cmac.c[i] ^= (out[i] = scratch.c[i]^inp[i]);
420 		(*block)(ctx->cmac.c,ctx->cmac.c,key);
421 	}
422 
423 	for (i=15-L;i<16;++i)
424 		ctx->nonce.c[i]=0;
425 
426 	(*block)(ctx->nonce.c,scratch.c,key);
427 	ctx->cmac.u[0] ^= scratch.u[0];
428 	ctx->cmac.u[1] ^= scratch.u[1];
429 
430 	ctx->nonce.c[0] = flags0;
431 
432 	return 0;
433 }
434 
435 size_t CRYPTO_ccm128_tag(CCM128_CONTEXT *ctx,unsigned char *tag,size_t len)
436 {	unsigned int M = (ctx->nonce.c[0]>>3)&7;	/* the M parameter */
437 
438 	M *= 2; M += 2;
439 	if (len<M)	return 0;
440 	memcpy(tag,ctx->cmac.c,M);
441 	return M;
442 }
443