1 /* $OpenBSD: e_aes.c,v 1.25 2014/07/12 19:31:03 miod Exp $ */ 2 /* ==================================================================== 3 * Copyright (c) 2001-2011 The OpenSSL Project. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in 14 * the documentation and/or other materials provided with the 15 * distribution. 16 * 17 * 3. All advertising materials mentioning features or use of this 18 * software must display the following acknowledgment: 19 * "This product includes software developed by the OpenSSL Project 20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" 21 * 22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to 23 * endorse or promote products derived from this software without 24 * prior written permission. For written permission, please contact 25 * openssl-core@openssl.org. 26 * 27 * 5. Products derived from this software may not be called "OpenSSL" 28 * nor may "OpenSSL" appear in their names without prior written 29 * permission of the OpenSSL Project. 30 * 31 * 6. Redistributions of any form whatsoever must retain the following 32 * acknowledgment: 33 * "This product includes software developed by the OpenSSL Project 34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)" 35 * 36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY 37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR 40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 47 * OF THE POSSIBILITY OF SUCH DAMAGE. 48 * ==================================================================== 49 * 50 */ 51 52 #include <assert.h> 53 #include <string.h> 54 55 #include <openssl/opensslconf.h> 56 57 #ifndef OPENSSL_NO_AES 58 #include <openssl/aes.h> 59 #include <openssl/err.h> 60 #include <openssl/evp.h> 61 #include <openssl/rand.h> 62 63 #include "evp_locl.h" 64 #include "modes_lcl.h" 65 66 typedef struct { 67 AES_KEY ks; 68 block128_f block; 69 union { 70 cbc128_f cbc; 71 ctr128_f ctr; 72 } stream; 73 } EVP_AES_KEY; 74 75 typedef struct { 76 AES_KEY ks; /* AES key schedule to use */ 77 int key_set; /* Set if key initialised */ 78 int iv_set; /* Set if an iv is set */ 79 GCM128_CONTEXT gcm; 80 unsigned char *iv; /* Temporary IV store */ 81 int ivlen; /* IV length */ 82 int taglen; 83 int iv_gen; /* It is OK to generate IVs */ 84 int tls_aad_len; /* TLS AAD length */ 85 ctr128_f ctr; 86 } EVP_AES_GCM_CTX; 87 88 typedef struct { 89 AES_KEY ks1, ks2; /* AES key schedules to use */ 90 XTS128_CONTEXT xts; 91 void (*stream)(const unsigned char *in, unsigned char *out, 92 size_t length, const AES_KEY *key1, const AES_KEY *key2, 93 const unsigned char iv[16]); 94 } EVP_AES_XTS_CTX; 95 96 typedef struct { 97 AES_KEY ks; /* AES key schedule to use */ 98 int key_set; /* Set if key initialised */ 99 int iv_set; /* Set if an iv is set */ 100 int tag_set; /* Set if tag is valid */ 101 int len_set; /* Set if message length set */ 102 int L, M; /* L and M parameters from RFC3610 */ 103 CCM128_CONTEXT ccm; 104 ccm128_f str; 105 } EVP_AES_CCM_CTX; 106 107 #define MAXBITCHUNK ((size_t)1<<(sizeof(size_t)*8-4)) 108 109 #ifdef VPAES_ASM 110 int vpaes_set_encrypt_key(const unsigned char *userKey, int bits, 111 AES_KEY *key); 112 int vpaes_set_decrypt_key(const unsigned char *userKey, int bits, 113 AES_KEY *key); 114 115 void vpaes_encrypt(const unsigned char *in, unsigned char *out, 116 const AES_KEY *key); 117 void vpaes_decrypt(const unsigned char *in, unsigned char *out, 118 const AES_KEY *key); 119 120 void vpaes_cbc_encrypt(const unsigned char *in, unsigned char *out, 121 size_t length, const AES_KEY *key, unsigned char *ivec, int enc); 122 #endif 123 #ifdef BSAES_ASM 124 void bsaes_cbc_encrypt(const unsigned char *in, unsigned char *out, 125 size_t length, const AES_KEY *key, unsigned char ivec[16], int enc); 126 void bsaes_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out, 127 size_t len, const AES_KEY *key, const unsigned char ivec[16]); 128 void bsaes_xts_encrypt(const unsigned char *inp, unsigned char *out, 129 size_t len, const AES_KEY *key1, const AES_KEY *key2, 130 const unsigned char iv[16]); 131 void bsaes_xts_decrypt(const unsigned char *inp, unsigned char *out, 132 size_t len, const AES_KEY *key1, const AES_KEY *key2, 133 const unsigned char iv[16]); 134 #endif 135 #ifdef AES_CTR_ASM 136 void AES_ctr32_encrypt(const unsigned char *in, unsigned char *out, 137 size_t blocks, const AES_KEY *key, 138 const unsigned char ivec[AES_BLOCK_SIZE]); 139 #endif 140 #ifdef AES_XTS_ASM 141 void AES_xts_encrypt(const char *inp, char *out, size_t len, 142 const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]); 143 void AES_xts_decrypt(const char *inp, char *out, size_t len, 144 const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]); 145 #endif 146 147 #if defined(AES_ASM) && !defined(I386_ONLY) && ( \ 148 ((defined(__i386) || defined(__i386__) || \ 149 defined(_M_IX86)) && defined(OPENSSL_IA32_SSE2))|| \ 150 defined(__x86_64) || defined(__x86_64__) || \ 151 defined(_M_AMD64) || defined(_M_X64) || \ 152 defined(__INTEL__) ) 153 154 extern unsigned int OPENSSL_ia32cap_P[2]; 155 156 #ifdef VPAES_ASM 157 #define VPAES_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(41-32))) 158 #endif 159 #ifdef BSAES_ASM 160 #define BSAES_CAPABLE VPAES_CAPABLE 161 #endif 162 /* 163 * AES-NI section 164 */ 165 #define AESNI_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(57-32))) 166 167 int aesni_set_encrypt_key(const unsigned char *userKey, int bits, 168 AES_KEY *key); 169 int aesni_set_decrypt_key(const unsigned char *userKey, int bits, 170 AES_KEY *key); 171 172 void aesni_encrypt(const unsigned char *in, unsigned char *out, 173 const AES_KEY *key); 174 void aesni_decrypt(const unsigned char *in, unsigned char *out, 175 const AES_KEY *key); 176 177 void aesni_ecb_encrypt(const unsigned char *in, unsigned char *out, 178 size_t length, const AES_KEY *key, int enc); 179 void aesni_cbc_encrypt(const unsigned char *in, unsigned char *out, 180 size_t length, const AES_KEY *key, unsigned char *ivec, int enc); 181 182 void aesni_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out, 183 size_t blocks, const void *key, const unsigned char *ivec); 184 185 void aesni_xts_encrypt(const unsigned char *in, unsigned char *out, 186 size_t length, const AES_KEY *key1, const AES_KEY *key2, 187 const unsigned char iv[16]); 188 189 void aesni_xts_decrypt(const unsigned char *in, unsigned char *out, 190 size_t length, const AES_KEY *key1, const AES_KEY *key2, 191 const unsigned char iv[16]); 192 193 void aesni_ccm64_encrypt_blocks (const unsigned char *in, unsigned char *out, 194 size_t blocks, const void *key, const unsigned char ivec[16], 195 unsigned char cmac[16]); 196 197 void aesni_ccm64_decrypt_blocks (const unsigned char *in, unsigned char *out, 198 size_t blocks, const void *key, const unsigned char ivec[16], 199 unsigned char cmac[16]); 200 201 static int 202 aesni_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, 203 const unsigned char *iv, int enc) 204 { 205 int ret, mode; 206 EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; 207 208 mode = ctx->cipher->flags & EVP_CIPH_MODE; 209 if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && 210 !enc) { 211 ret = aesni_set_decrypt_key(key, ctx->key_len * 8, 212 ctx->cipher_data); 213 dat->block = (block128_f)aesni_decrypt; 214 dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? 215 (cbc128_f)aesni_cbc_encrypt : NULL; 216 } else { 217 ret = aesni_set_encrypt_key(key, ctx->key_len * 8, 218 ctx->cipher_data); 219 dat->block = (block128_f)aesni_encrypt; 220 if (mode == EVP_CIPH_CBC_MODE) 221 dat->stream.cbc = (cbc128_f)aesni_cbc_encrypt; 222 else if (mode == EVP_CIPH_CTR_MODE) 223 dat->stream.ctr = (ctr128_f)aesni_ctr32_encrypt_blocks; 224 else 225 dat->stream.cbc = NULL; 226 } 227 228 if (ret < 0) { 229 EVPerr(EVP_F_AESNI_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED); 230 return 0; 231 } 232 233 return 1; 234 } 235 236 static int 237 aesni_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, 238 const unsigned char *in, size_t len) 239 { 240 aesni_cbc_encrypt(in, out, len, ctx->cipher_data, ctx->iv, 241 ctx->encrypt); 242 243 return 1; 244 } 245 246 static int 247 aesni_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, 248 const unsigned char *in, size_t len) 249 { 250 size_t bl = ctx->cipher->block_size; 251 252 if (len < bl) 253 return 1; 254 255 aesni_ecb_encrypt(in, out, len, ctx->cipher_data, ctx->encrypt); 256 257 return 1; 258 } 259 260 #define aesni_ofb_cipher aes_ofb_cipher 261 static int aesni_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, 262 const unsigned char *in, size_t len); 263 264 #define aesni_cfb_cipher aes_cfb_cipher 265 static int aesni_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, 266 const unsigned char *in, size_t len); 267 268 #define aesni_cfb8_cipher aes_cfb8_cipher 269 static int aesni_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, 270 const unsigned char *in, size_t len); 271 272 #define aesni_cfb1_cipher aes_cfb1_cipher 273 static int aesni_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, 274 const unsigned char *in, size_t len); 275 276 #define aesni_ctr_cipher aes_ctr_cipher 277 static int aesni_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, 278 const unsigned char *in, size_t len); 279 280 static int 281 aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, 282 const unsigned char *iv, int enc) 283 { 284 EVP_AES_GCM_CTX *gctx = ctx->cipher_data; 285 286 if (!iv && !key) 287 return 1; 288 if (key) { 289 aesni_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks); 290 CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, 291 (block128_f)aesni_encrypt); 292 gctx->ctr = (ctr128_f)aesni_ctr32_encrypt_blocks; 293 /* If we have an iv can set it directly, otherwise use 294 * saved IV. 295 */ 296 if (iv == NULL && gctx->iv_set) 297 iv = gctx->iv; 298 if (iv) { 299 CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); 300 gctx->iv_set = 1; 301 } 302 gctx->key_set = 1; 303 } else { 304 /* If key set use IV, otherwise copy */ 305 if (gctx->key_set) 306 CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); 307 else 308 memcpy(gctx->iv, iv, gctx->ivlen); 309 gctx->iv_set = 1; 310 gctx->iv_gen = 0; 311 } 312 return 1; 313 } 314 315 #define aesni_gcm_cipher aes_gcm_cipher 316 static int aesni_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, 317 const unsigned char *in, size_t len); 318 319 static int 320 aesni_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, 321 const unsigned char *iv, int enc) 322 { 323 EVP_AES_XTS_CTX *xctx = ctx->cipher_data; 324 325 if (!iv && !key) 326 return 1; 327 328 if (key) { 329 /* key_len is two AES keys */ 330 if (enc) { 331 aesni_set_encrypt_key(key, ctx->key_len * 4, 332 &xctx->ks1); 333 xctx->xts.block1 = (block128_f)aesni_encrypt; 334 xctx->stream = aesni_xts_encrypt; 335 } else { 336 aesni_set_decrypt_key(key, ctx->key_len * 4, 337 &xctx->ks1); 338 xctx->xts.block1 = (block128_f)aesni_decrypt; 339 xctx->stream = aesni_xts_decrypt; 340 } 341 342 aesni_set_encrypt_key(key + ctx->key_len / 2, 343 ctx->key_len * 4, &xctx->ks2); 344 xctx->xts.block2 = (block128_f)aesni_encrypt; 345 346 xctx->xts.key1 = &xctx->ks1; 347 } 348 349 if (iv) { 350 xctx->xts.key2 = &xctx->ks2; 351 memcpy(ctx->iv, iv, 16); 352 } 353 354 return 1; 355 } 356 357 #define aesni_xts_cipher aes_xts_cipher 358 static int aesni_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, 359 const unsigned char *in, size_t len); 360 361 static int 362 aesni_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, 363 const unsigned char *iv, int enc) 364 { 365 EVP_AES_CCM_CTX *cctx = ctx->cipher_data; 366 367 if (!iv && !key) 368 return 1; 369 if (key) { 370 aesni_set_encrypt_key(key, ctx->key_len * 8, &cctx->ks); 371 CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, 372 &cctx->ks, (block128_f)aesni_encrypt); 373 cctx->str = enc ? (ccm128_f)aesni_ccm64_encrypt_blocks : 374 (ccm128_f)aesni_ccm64_decrypt_blocks; 375 cctx->key_set = 1; 376 } 377 if (iv) { 378 memcpy(ctx->iv, iv, 15 - cctx->L); 379 cctx->iv_set = 1; 380 } 381 return 1; 382 } 383 384 #define aesni_ccm_cipher aes_ccm_cipher 385 static int aesni_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, 386 const unsigned char *in, size_t len); 387 388 #define BLOCK_CIPHER_generic(n,keylen,blocksize,ivlen,nmode,mode,MODE,fl) \ 389 static const EVP_CIPHER aesni_##keylen##_##mode = { \ 390 .nid = n##_##keylen##_##nmode, \ 391 .block_size = blocksize, \ 392 .key_len = keylen / 8, \ 393 .iv_len = ivlen, \ 394 .flags = fl | EVP_CIPH_##MODE##_MODE, \ 395 .init = aesni_init_key, \ 396 .do_cipher = aesni_##mode##_cipher, \ 397 .ctx_size = sizeof(EVP_AES_KEY) \ 398 }; \ 399 static const EVP_CIPHER aes_##keylen##_##mode = { \ 400 .nid = n##_##keylen##_##nmode, \ 401 .block_size = blocksize, \ 402 .key_len = keylen / 8, \ 403 .iv_len = ivlen, \ 404 .flags = fl | EVP_CIPH_##MODE##_MODE, \ 405 .init = aes_init_key, \ 406 .do_cipher = aes_##mode##_cipher, \ 407 .ctx_size = sizeof(EVP_AES_KEY) \ 408 }; \ 409 const EVP_CIPHER * \ 410 EVP_aes_##keylen##_##mode(void) \ 411 { \ 412 return AESNI_CAPABLE ? \ 413 &aesni_##keylen##_##mode : &aes_##keylen##_##mode; \ 414 } 415 416 #define BLOCK_CIPHER_custom(n,keylen,blocksize,ivlen,mode,MODE,fl) \ 417 static const EVP_CIPHER aesni_##keylen##_##mode = { \ 418 .nid = n##_##keylen##_##mode, \ 419 .block_size = blocksize, \ 420 .key_len = \ 421 (EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE ? 2 : 1) * \ 422 keylen / 8, \ 423 .iv_len = ivlen, \ 424 .flags = fl | EVP_CIPH_##MODE##_MODE, \ 425 .init = aesni_##mode##_init_key, \ 426 .do_cipher = aesni_##mode##_cipher, \ 427 .cleanup = aes_##mode##_cleanup, \ 428 .ctx_size = sizeof(EVP_AES_##MODE##_CTX), \ 429 .ctrl = aes_##mode##_ctrl \ 430 }; \ 431 static const EVP_CIPHER aes_##keylen##_##mode = { \ 432 .nid = n##_##keylen##_##mode, \ 433 .block_size = blocksize, \ 434 .key_len = \ 435 (EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE ? 2 : 1) * \ 436 keylen / 8, \ 437 .iv_len = ivlen, \ 438 .flags = fl | EVP_CIPH_##MODE##_MODE, \ 439 .init = aes_##mode##_init_key, \ 440 .do_cipher = aes_##mode##_cipher, \ 441 .cleanup = aes_##mode##_cleanup, \ 442 .ctx_size = sizeof(EVP_AES_##MODE##_CTX), \ 443 .ctrl = aes_##mode##_ctrl \ 444 }; \ 445 const EVP_CIPHER * \ 446 EVP_aes_##keylen##_##mode(void) \ 447 { \ 448 return AESNI_CAPABLE ? \ 449 &aesni_##keylen##_##mode : &aes_##keylen##_##mode; \ 450 } 451 452 #else 453 454 #define BLOCK_CIPHER_generic(n,keylen,blocksize,ivlen,nmode,mode,MODE,fl) \ 455 static const EVP_CIPHER aes_##keylen##_##mode = { \ 456 .nid = n##_##keylen##_##nmode, \ 457 .block_size = blocksize, \ 458 .key_len = keylen / 8, \ 459 .iv_len = ivlen, \ 460 .flags = fl | EVP_CIPH_##MODE##_MODE, \ 461 .init = aes_init_key, \ 462 .do_cipher = aes_##mode##_cipher, \ 463 .ctx_size = sizeof(EVP_AES_KEY) \ 464 }; \ 465 const EVP_CIPHER * \ 466 EVP_aes_##keylen##_##mode(void) \ 467 { \ 468 return &aes_##keylen##_##mode; \ 469 } 470 471 #define BLOCK_CIPHER_custom(n,keylen,blocksize,ivlen,mode,MODE,fl) \ 472 static const EVP_CIPHER aes_##keylen##_##mode = { \ 473 .nid = n##_##keylen##_##mode, \ 474 .block_size = blocksize, \ 475 .key_len = \ 476 (EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE ? 2 : 1) * \ 477 keylen / 8, \ 478 .iv_len = ivlen, \ 479 .flags = fl | EVP_CIPH_##MODE##_MODE, \ 480 .init = aes_##mode##_init_key, \ 481 .do_cipher = aes_##mode##_cipher, \ 482 .cleanup = aes_##mode##_cleanup, \ 483 .ctx_size = sizeof(EVP_AES_##MODE##_CTX), \ 484 .ctrl = aes_##mode##_ctrl \ 485 }; \ 486 const EVP_CIPHER * \ 487 EVP_aes_##keylen##_##mode(void) \ 488 { \ 489 return &aes_##keylen##_##mode; \ 490 } 491 492 #endif 493 494 #define BLOCK_CIPHER_generic_pack(nid,keylen,flags) \ 495 BLOCK_CIPHER_generic(nid,keylen,16,16,cbc,cbc,CBC,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ 496 BLOCK_CIPHER_generic(nid,keylen,16,0,ecb,ecb,ECB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ 497 BLOCK_CIPHER_generic(nid,keylen,1,16,ofb128,ofb,OFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ 498 BLOCK_CIPHER_generic(nid,keylen,1,16,cfb128,cfb,CFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ 499 BLOCK_CIPHER_generic(nid,keylen,1,16,cfb1,cfb1,CFB,flags) \ 500 BLOCK_CIPHER_generic(nid,keylen,1,16,cfb8,cfb8,CFB,flags) \ 501 BLOCK_CIPHER_generic(nid,keylen,1,16,ctr,ctr,CTR,flags) 502 503 static int 504 aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, 505 const unsigned char *iv, int enc) 506 { 507 int ret, mode; 508 EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; 509 510 mode = ctx->cipher->flags & EVP_CIPH_MODE; 511 if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && 512 !enc) 513 #ifdef BSAES_CAPABLE 514 if (BSAES_CAPABLE && mode == EVP_CIPH_CBC_MODE) { 515 ret = AES_set_decrypt_key(key, ctx->key_len * 8, 516 &dat->ks); 517 dat->block = (block128_f)AES_decrypt; 518 dat->stream.cbc = (cbc128_f)bsaes_cbc_encrypt; 519 } else 520 #endif 521 #ifdef VPAES_CAPABLE 522 if (VPAES_CAPABLE) { 523 ret = vpaes_set_decrypt_key(key, ctx->key_len * 8, 524 &dat->ks); 525 dat->block = (block128_f)vpaes_decrypt; 526 dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? 527 (cbc128_f)vpaes_cbc_encrypt : NULL; 528 } else 529 #endif 530 { 531 ret = AES_set_decrypt_key(key, ctx->key_len * 8, 532 &dat->ks); 533 dat->block = (block128_f)AES_decrypt; 534 dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? 535 (cbc128_f)AES_cbc_encrypt : NULL; 536 } else 537 #ifdef BSAES_CAPABLE 538 if (BSAES_CAPABLE && mode == EVP_CIPH_CTR_MODE) { 539 ret = AES_set_encrypt_key(key, ctx->key_len * 8, 540 &dat->ks); 541 dat->block = (block128_f)AES_encrypt; 542 dat->stream.ctr = (ctr128_f)bsaes_ctr32_encrypt_blocks; 543 } else 544 #endif 545 #ifdef VPAES_CAPABLE 546 if (VPAES_CAPABLE) { 547 ret = vpaes_set_encrypt_key(key, ctx->key_len * 8, 548 &dat->ks); 549 dat->block = (block128_f)vpaes_encrypt; 550 dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? 551 (cbc128_f)vpaes_cbc_encrypt : NULL; 552 } else 553 #endif 554 { 555 ret = AES_set_encrypt_key(key, ctx->key_len * 8, 556 &dat->ks); 557 dat->block = (block128_f)AES_encrypt; 558 dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? 559 (cbc128_f)AES_cbc_encrypt : NULL; 560 #ifdef AES_CTR_ASM 561 if (mode == EVP_CIPH_CTR_MODE) 562 dat->stream.ctr = (ctr128_f)AES_ctr32_encrypt; 563 #endif 564 } 565 566 if (ret < 0) { 567 EVPerr(EVP_F_AES_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED); 568 return 0; 569 } 570 571 return 1; 572 } 573 574 static int 575 aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, 576 const unsigned char *in, size_t len) 577 { 578 EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; 579 580 if (dat->stream.cbc) 581 (*dat->stream.cbc)(in, out, len, &dat->ks, ctx->iv, 582 ctx->encrypt); 583 else if (ctx->encrypt) 584 CRYPTO_cbc128_encrypt(in, out, len, &dat->ks, ctx->iv, 585 dat->block); 586 else 587 CRYPTO_cbc128_decrypt(in, out, len, &dat->ks, ctx->iv, 588 dat->block); 589 590 return 1; 591 } 592 593 static int 594 aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, 595 const unsigned char *in, size_t len) 596 { 597 size_t bl = ctx->cipher->block_size; 598 size_t i; 599 EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; 600 601 if (len < bl) 602 return 1; 603 604 for (i = 0, len -= bl; i <= len; i += bl) 605 (*dat->block)(in + i, out + i, &dat->ks); 606 607 return 1; 608 } 609 610 static int 611 aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, 612 const unsigned char *in, size_t len) 613 { 614 EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; 615 616 CRYPTO_ofb128_encrypt(in, out, len, &dat->ks, ctx->iv, &ctx->num, 617 dat->block); 618 return 1; 619 } 620 621 static int 622 aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, 623 const unsigned char *in, size_t len) 624 { 625 EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; 626 627 CRYPTO_cfb128_encrypt(in, out, len, &dat->ks, ctx->iv, &ctx->num, 628 ctx->encrypt, dat->block); 629 return 1; 630 } 631 632 static int 633 aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, 634 const unsigned char *in, size_t len) 635 { 636 EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; 637 638 CRYPTO_cfb128_8_encrypt(in, out, len, &dat->ks, ctx->iv, &ctx->num, 639 ctx->encrypt, dat->block); 640 return 1; 641 } 642 643 static int 644 aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, 645 const unsigned char *in, size_t len) 646 { 647 EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; 648 649 if (ctx->flags&EVP_CIPH_FLAG_LENGTH_BITS) { 650 CRYPTO_cfb128_1_encrypt(in, out, len, &dat->ks, ctx->iv, 651 &ctx->num, ctx->encrypt, dat->block); 652 return 1; 653 } 654 655 while (len >= MAXBITCHUNK) { 656 CRYPTO_cfb128_1_encrypt(in, out, MAXBITCHUNK*8, &dat->ks, 657 ctx->iv, &ctx->num, ctx->encrypt, dat->block); 658 len -= MAXBITCHUNK; 659 } 660 if (len) 661 CRYPTO_cfb128_1_encrypt(in, out, len*8, &dat->ks, 662 ctx->iv, &ctx->num, ctx->encrypt, dat->block); 663 664 return 1; 665 } 666 667 static int aes_ctr_cipher (EVP_CIPHER_CTX *ctx, unsigned char *out, 668 const unsigned char *in, size_t len) 669 { 670 unsigned int num = ctx->num; 671 EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; 672 673 if (dat->stream.ctr) 674 CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks, 675 ctx->iv, ctx->buf, &num, dat->stream.ctr); 676 else 677 CRYPTO_ctr128_encrypt(in, out, len, &dat->ks, 678 ctx->iv, ctx->buf, &num, dat->block); 679 ctx->num = (size_t)num; 680 return 1; 681 } 682 683 BLOCK_CIPHER_generic_pack(NID_aes, 128, EVP_CIPH_FLAG_FIPS) 684 BLOCK_CIPHER_generic_pack(NID_aes, 192, EVP_CIPH_FLAG_FIPS) 685 BLOCK_CIPHER_generic_pack(NID_aes, 256, EVP_CIPH_FLAG_FIPS) 686 687 static int 688 aes_gcm_cleanup(EVP_CIPHER_CTX *c) 689 { 690 EVP_AES_GCM_CTX *gctx = c->cipher_data; 691 692 if (gctx->iv != c->iv) 693 free(gctx->iv); 694 OPENSSL_cleanse(gctx, sizeof(*gctx)); 695 return 1; 696 } 697 698 /* increment counter (64-bit int) by 1 */ 699 static void 700 ctr64_inc(unsigned char *counter) 701 { 702 int n = 8; 703 unsigned char c; 704 705 do { 706 --n; 707 c = counter[n]; 708 ++c; 709 counter[n] = c; 710 if (c) 711 return; 712 } while (n); 713 } 714 715 static int 716 aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) 717 { 718 EVP_AES_GCM_CTX *gctx = c->cipher_data; 719 720 switch (type) { 721 case EVP_CTRL_INIT: 722 gctx->key_set = 0; 723 gctx->iv_set = 0; 724 gctx->ivlen = c->cipher->iv_len; 725 gctx->iv = c->iv; 726 gctx->taglen = -1; 727 gctx->iv_gen = 0; 728 gctx->tls_aad_len = -1; 729 return 1; 730 731 case EVP_CTRL_GCM_SET_IVLEN: 732 if (arg <= 0) 733 return 0; 734 /* Allocate memory for IV if needed */ 735 if ((arg > EVP_MAX_IV_LENGTH) && (arg > gctx->ivlen)) { 736 if (gctx->iv != c->iv) 737 free(gctx->iv); 738 gctx->iv = malloc(arg); 739 if (!gctx->iv) 740 return 0; 741 } 742 gctx->ivlen = arg; 743 return 1; 744 745 case EVP_CTRL_GCM_SET_TAG: 746 if (arg <= 0 || arg > 16 || c->encrypt) 747 return 0; 748 memcpy(c->buf, ptr, arg); 749 gctx->taglen = arg; 750 return 1; 751 752 case EVP_CTRL_GCM_GET_TAG: 753 if (arg <= 0 || arg > 16 || !c->encrypt || gctx->taglen < 0) 754 return 0; 755 memcpy(ptr, c->buf, arg); 756 return 1; 757 758 case EVP_CTRL_GCM_SET_IV_FIXED: 759 /* Special case: -1 length restores whole IV */ 760 if (arg == -1) { 761 memcpy(gctx->iv, ptr, gctx->ivlen); 762 gctx->iv_gen = 1; 763 return 1; 764 } 765 /* Fixed field must be at least 4 bytes and invocation field 766 * at least 8. 767 */ 768 if ((arg < 4) || (gctx->ivlen - arg) < 8) 769 return 0; 770 if (arg) 771 memcpy(gctx->iv, ptr, arg); 772 if (c->encrypt && 773 RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0) 774 return 0; 775 gctx->iv_gen = 1; 776 return 1; 777 778 case EVP_CTRL_GCM_IV_GEN: 779 if (gctx->iv_gen == 0 || gctx->key_set == 0) 780 return 0; 781 CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen); 782 if (arg <= 0 || arg > gctx->ivlen) 783 arg = gctx->ivlen; 784 memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg); 785 /* Invocation field will be at least 8 bytes in size and 786 * so no need to check wrap around or increment more than 787 * last 8 bytes. 788 */ 789 ctr64_inc(gctx->iv + gctx->ivlen - 8); 790 gctx->iv_set = 1; 791 return 1; 792 793 case EVP_CTRL_GCM_SET_IV_INV: 794 if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt) 795 return 0; 796 memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg); 797 CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen); 798 gctx->iv_set = 1; 799 return 1; 800 801 case EVP_CTRL_AEAD_TLS1_AAD: 802 /* Save the AAD for later use */ 803 if (arg != 13) 804 return 0; 805 memcpy(c->buf, ptr, arg); 806 gctx->tls_aad_len = arg; 807 { 808 unsigned int len = c->buf[arg - 2] << 8 | 809 c->buf[arg - 1]; 810 811 /* Correct length for explicit IV */ 812 len -= EVP_GCM_TLS_EXPLICIT_IV_LEN; 813 814 /* If decrypting correct for tag too */ 815 if (!c->encrypt) 816 len -= EVP_GCM_TLS_TAG_LEN; 817 c->buf[arg - 2] = len >> 8; 818 c->buf[arg - 1] = len & 0xff; 819 } 820 /* Extra padding: tag appended to record */ 821 return EVP_GCM_TLS_TAG_LEN; 822 823 case EVP_CTRL_COPY: 824 { 825 EVP_CIPHER_CTX *out = ptr; 826 EVP_AES_GCM_CTX *gctx_out = out->cipher_data; 827 828 if (gctx->gcm.key) { 829 if (gctx->gcm.key != &gctx->ks) 830 return 0; 831 gctx_out->gcm.key = &gctx_out->ks; 832 } 833 if (gctx->iv == c->iv) 834 gctx_out->iv = out->iv; 835 else { 836 gctx_out->iv = malloc(gctx->ivlen); 837 if (!gctx_out->iv) 838 return 0; 839 memcpy(gctx_out->iv, gctx->iv, gctx->ivlen); 840 } 841 return 1; 842 } 843 844 default: 845 return -1; 846 847 } 848 } 849 850 static ctr128_f 851 aes_gcm_set_key(AES_KEY *aes_key, GCM128_CONTEXT *gcm_ctx, 852 const unsigned char *key, size_t key_len) 853 { 854 #ifdef BSAES_CAPABLE 855 if (BSAES_CAPABLE) { 856 AES_set_encrypt_key(key, key_len * 8, aes_key); 857 CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)AES_encrypt); 858 return (ctr128_f)bsaes_ctr32_encrypt_blocks; 859 } else 860 #endif 861 #ifdef VPAES_CAPABLE 862 if (VPAES_CAPABLE) { 863 vpaes_set_encrypt_key(key, key_len * 8, aes_key); 864 CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)vpaes_encrypt); 865 return NULL; 866 } else 867 #endif 868 (void)0; /* terminate potentially open 'else' */ 869 870 AES_set_encrypt_key(key, key_len * 8, aes_key); 871 CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)AES_encrypt); 872 #ifdef AES_CTR_ASM 873 return (ctr128_f)AES_ctr32_encrypt; 874 #else 875 return NULL; 876 #endif 877 } 878 879 static int 880 aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, 881 const unsigned char *iv, int enc) 882 { 883 EVP_AES_GCM_CTX *gctx = ctx->cipher_data; 884 885 if (!iv && !key) 886 return 1; 887 if (key) { 888 gctx->ctr = aes_gcm_set_key(&gctx->ks, &gctx->gcm, 889 key, ctx->key_len); 890 891 /* If we have an iv can set it directly, otherwise use 892 * saved IV. 893 */ 894 if (iv == NULL && gctx->iv_set) 895 iv = gctx->iv; 896 if (iv) { 897 CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); 898 gctx->iv_set = 1; 899 } 900 gctx->key_set = 1; 901 } else { 902 /* If key set use IV, otherwise copy */ 903 if (gctx->key_set) 904 CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); 905 else 906 memcpy(gctx->iv, iv, gctx->ivlen); 907 gctx->iv_set = 1; 908 gctx->iv_gen = 0; 909 } 910 return 1; 911 } 912 913 /* Handle TLS GCM packet format. This consists of the last portion of the IV 914 * followed by the payload and finally the tag. On encrypt generate IV, 915 * encrypt payload and write the tag. On verify retrieve IV, decrypt payload 916 * and verify tag. 917 */ 918 919 static int 920 aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, 921 const unsigned char *in, size_t len) 922 { 923 EVP_AES_GCM_CTX *gctx = ctx->cipher_data; 924 int rv = -1; 925 926 /* Encrypt/decrypt must be performed in place */ 927 if (out != in || 928 len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN)) 929 return -1; 930 931 /* Set IV from start of buffer or generate IV and write to start 932 * of buffer. 933 */ 934 if (EVP_CIPHER_CTX_ctrl(ctx, ctx->encrypt ? 935 EVP_CTRL_GCM_IV_GEN : EVP_CTRL_GCM_SET_IV_INV, 936 EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0) 937 goto err; 938 939 /* Use saved AAD */ 940 if (CRYPTO_gcm128_aad(&gctx->gcm, ctx->buf, gctx->tls_aad_len)) 941 goto err; 942 943 /* Fix buffer and length to point to payload */ 944 in += EVP_GCM_TLS_EXPLICIT_IV_LEN; 945 out += EVP_GCM_TLS_EXPLICIT_IV_LEN; 946 len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; 947 if (ctx->encrypt) { 948 /* Encrypt payload */ 949 if (gctx->ctr) { 950 if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, in, out, 951 len, gctx->ctr)) 952 goto err; 953 } else { 954 if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, len)) 955 goto err; 956 } 957 out += len; 958 959 /* Finally write tag */ 960 CRYPTO_gcm128_tag(&gctx->gcm, out, EVP_GCM_TLS_TAG_LEN); 961 rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; 962 } else { 963 /* Decrypt */ 964 if (gctx->ctr) { 965 if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, in, out, 966 len, gctx->ctr)) 967 goto err; 968 } else { 969 if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, len)) 970 goto err; 971 } 972 /* Retrieve tag */ 973 CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, EVP_GCM_TLS_TAG_LEN); 974 975 /* If tag mismatch wipe buffer */ 976 if (memcmp(ctx->buf, in + len, EVP_GCM_TLS_TAG_LEN)) { 977 OPENSSL_cleanse(out, len); 978 goto err; 979 } 980 rv = len; 981 } 982 983 err: 984 gctx->iv_set = 0; 985 gctx->tls_aad_len = -1; 986 return rv; 987 } 988 989 static int 990 aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, 991 const unsigned char *in, size_t len) 992 { 993 EVP_AES_GCM_CTX *gctx = ctx->cipher_data; 994 995 /* If not set up, return error */ 996 if (!gctx->key_set) 997 return -1; 998 999 if (gctx->tls_aad_len >= 0) 1000 return aes_gcm_tls_cipher(ctx, out, in, len); 1001 1002 if (!gctx->iv_set) 1003 return -1; 1004 1005 if (in) { 1006 if (out == NULL) { 1007 if (CRYPTO_gcm128_aad(&gctx->gcm, in, len)) 1008 return -1; 1009 } else if (ctx->encrypt) { 1010 if (gctx->ctr) { 1011 if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, 1012 in, out, len, gctx->ctr)) 1013 return -1; 1014 } else { 1015 if (CRYPTO_gcm128_encrypt(&gctx->gcm, 1016 in, out, len)) 1017 return -1; 1018 } 1019 } else { 1020 if (gctx->ctr) { 1021 if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, 1022 in, out, len, gctx->ctr)) 1023 return -1; 1024 } else { 1025 if (CRYPTO_gcm128_decrypt(&gctx->gcm, 1026 in, out, len)) 1027 return -1; 1028 } 1029 } 1030 return len; 1031 } else { 1032 if (!ctx->encrypt) { 1033 if (gctx->taglen < 0) 1034 return -1; 1035 if (CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf, 1036 gctx->taglen) != 0) 1037 return -1; 1038 gctx->iv_set = 0; 1039 return 0; 1040 } 1041 CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16); 1042 gctx->taglen = 16; 1043 1044 /* Don't reuse the IV */ 1045 gctx->iv_set = 0; 1046 return 0; 1047 } 1048 1049 } 1050 1051 #define CUSTOM_FLAGS \ 1052 ( EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV | \ 1053 EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | \ 1054 EVP_CIPH_CTRL_INIT | EVP_CIPH_CUSTOM_COPY ) 1055 1056 BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, gcm, GCM, 1057 EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_AEAD_CIPHER|CUSTOM_FLAGS) 1058 BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, gcm, GCM, 1059 EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_AEAD_CIPHER|CUSTOM_FLAGS) 1060 BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, gcm, GCM, 1061 EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_AEAD_CIPHER|CUSTOM_FLAGS) 1062 1063 static int 1064 aes_xts_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) 1065 { 1066 EVP_AES_XTS_CTX *xctx = c->cipher_data; 1067 1068 switch (type) { 1069 case EVP_CTRL_INIT: 1070 /* 1071 * key1 and key2 are used as an indicator both key and IV 1072 * are set 1073 */ 1074 xctx->xts.key1 = NULL; 1075 xctx->xts.key2 = NULL; 1076 return 1; 1077 1078 case EVP_CTRL_COPY: 1079 { 1080 EVP_CIPHER_CTX *out = ptr; 1081 EVP_AES_XTS_CTX *xctx_out = out->cipher_data; 1082 1083 if (xctx->xts.key1) { 1084 if (xctx->xts.key1 != &xctx->ks1) 1085 return 0; 1086 xctx_out->xts.key1 = &xctx_out->ks1; 1087 } 1088 if (xctx->xts.key2) { 1089 if (xctx->xts.key2 != &xctx->ks2) 1090 return 0; 1091 xctx_out->xts.key2 = &xctx_out->ks2; 1092 } 1093 return 1; 1094 } 1095 } 1096 return -1; 1097 } 1098 1099 static int 1100 aes_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, 1101 const unsigned char *iv, int enc) 1102 { 1103 EVP_AES_XTS_CTX *xctx = ctx->cipher_data; 1104 1105 if (!iv && !key) 1106 return 1; 1107 1108 if (key) do { 1109 #ifdef AES_XTS_ASM 1110 xctx->stream = enc ? AES_xts_encrypt : AES_xts_decrypt; 1111 #else 1112 xctx->stream = NULL; 1113 #endif 1114 /* key_len is two AES keys */ 1115 #ifdef BSAES_CAPABLE 1116 if (BSAES_CAPABLE) 1117 xctx->stream = enc ? bsaes_xts_encrypt : 1118 bsaes_xts_decrypt; 1119 else 1120 #endif 1121 #ifdef VPAES_CAPABLE 1122 if (VPAES_CAPABLE) { 1123 if (enc) { 1124 vpaes_set_encrypt_key(key, ctx->key_len * 4, 1125 &xctx->ks1); 1126 xctx->xts.block1 = (block128_f)vpaes_encrypt; 1127 } else { 1128 vpaes_set_decrypt_key(key, ctx->key_len * 4, 1129 &xctx->ks1); 1130 xctx->xts.block1 = (block128_f)vpaes_decrypt; 1131 } 1132 1133 vpaes_set_encrypt_key(key + ctx->key_len / 2, 1134 ctx->key_len * 4, &xctx->ks2); 1135 xctx->xts.block2 = (block128_f)vpaes_encrypt; 1136 1137 xctx->xts.key1 = &xctx->ks1; 1138 break; 1139 } else 1140 #endif 1141 (void)0; /* terminate potentially open 'else' */ 1142 1143 if (enc) { 1144 AES_set_encrypt_key(key, ctx->key_len * 4, &xctx->ks1); 1145 xctx->xts.block1 = (block128_f)AES_encrypt; 1146 } else { 1147 AES_set_decrypt_key(key, ctx->key_len * 4, &xctx->ks1); 1148 xctx->xts.block1 = (block128_f)AES_decrypt; 1149 } 1150 1151 AES_set_encrypt_key(key + ctx->key_len / 2, 1152 ctx->key_len * 4, &xctx->ks2); 1153 xctx->xts.block2 = (block128_f)AES_encrypt; 1154 1155 xctx->xts.key1 = &xctx->ks1; 1156 } while (0); 1157 1158 if (iv) { 1159 xctx->xts.key2 = &xctx->ks2; 1160 memcpy(ctx->iv, iv, 16); 1161 } 1162 1163 return 1; 1164 } 1165 1166 static int 1167 aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, 1168 const unsigned char *in, size_t len) 1169 { 1170 EVP_AES_XTS_CTX *xctx = ctx->cipher_data; 1171 1172 if (!xctx->xts.key1 || !xctx->xts.key2) 1173 return 0; 1174 if (!out || !in || len < AES_BLOCK_SIZE) 1175 return 0; 1176 1177 if (xctx->stream) 1178 (*xctx->stream)(in, out, len, xctx->xts.key1, xctx->xts.key2, 1179 ctx->iv); 1180 else if (CRYPTO_xts128_encrypt(&xctx->xts, ctx->iv, in, out, len, 1181 ctx->encrypt)) 1182 return 0; 1183 return 1; 1184 } 1185 1186 #define aes_xts_cleanup NULL 1187 1188 #define XTS_FLAGS \ 1189 ( EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV | \ 1190 EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT | EVP_CIPH_CUSTOM_COPY ) 1191 1192 BLOCK_CIPHER_custom(NID_aes, 128, 1, 16, xts, XTS, EVP_CIPH_FLAG_FIPS|XTS_FLAGS) 1193 BLOCK_CIPHER_custom(NID_aes, 256, 1, 16, xts, XTS, EVP_CIPH_FLAG_FIPS|XTS_FLAGS) 1194 1195 static int 1196 aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) 1197 { 1198 EVP_AES_CCM_CTX *cctx = c->cipher_data; 1199 1200 switch (type) { 1201 case EVP_CTRL_INIT: 1202 cctx->key_set = 0; 1203 cctx->iv_set = 0; 1204 cctx->L = 8; 1205 cctx->M = 12; 1206 cctx->tag_set = 0; 1207 cctx->len_set = 0; 1208 return 1; 1209 1210 case EVP_CTRL_CCM_SET_IVLEN: 1211 arg = 15 - arg; 1212 1213 case EVP_CTRL_CCM_SET_L: 1214 if (arg < 2 || arg > 8) 1215 return 0; 1216 cctx->L = arg; 1217 return 1; 1218 1219 case EVP_CTRL_CCM_SET_TAG: 1220 if ((arg & 1) || arg < 4 || arg > 16) 1221 return 0; 1222 if ((c->encrypt && ptr) || (!c->encrypt && !ptr)) 1223 return 0; 1224 if (ptr) { 1225 cctx->tag_set = 1; 1226 memcpy(c->buf, ptr, arg); 1227 } 1228 cctx->M = arg; 1229 return 1; 1230 1231 case EVP_CTRL_CCM_GET_TAG: 1232 if (!c->encrypt || !cctx->tag_set) 1233 return 0; 1234 if (!CRYPTO_ccm128_tag(&cctx->ccm, ptr, (size_t)arg)) 1235 return 0; 1236 cctx->tag_set = 0; 1237 cctx->iv_set = 0; 1238 cctx->len_set = 0; 1239 return 1; 1240 1241 case EVP_CTRL_COPY: 1242 { 1243 EVP_CIPHER_CTX *out = ptr; 1244 EVP_AES_CCM_CTX *cctx_out = out->cipher_data; 1245 1246 if (cctx->ccm.key) { 1247 if (cctx->ccm.key != &cctx->ks) 1248 return 0; 1249 cctx_out->ccm.key = &cctx_out->ks; 1250 } 1251 return 1; 1252 } 1253 1254 default: 1255 return -1; 1256 } 1257 } 1258 1259 static int 1260 aes_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, 1261 const unsigned char *iv, int enc) 1262 { 1263 EVP_AES_CCM_CTX *cctx = ctx->cipher_data; 1264 1265 if (!iv && !key) 1266 return 1; 1267 if (key) do { 1268 #ifdef VPAES_CAPABLE 1269 if (VPAES_CAPABLE) { 1270 vpaes_set_encrypt_key(key, ctx->key_len*8, &cctx->ks); 1271 CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, 1272 &cctx->ks, (block128_f)vpaes_encrypt); 1273 cctx->str = NULL; 1274 cctx->key_set = 1; 1275 break; 1276 } 1277 #endif 1278 AES_set_encrypt_key(key, ctx->key_len * 8, &cctx->ks); 1279 CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, 1280 &cctx->ks, (block128_f)AES_encrypt); 1281 cctx->str = NULL; 1282 cctx->key_set = 1; 1283 } while (0); 1284 if (iv) { 1285 memcpy(ctx->iv, iv, 15 - cctx->L); 1286 cctx->iv_set = 1; 1287 } 1288 return 1; 1289 } 1290 1291 static int 1292 aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, 1293 const unsigned char *in, size_t len) 1294 { 1295 EVP_AES_CCM_CTX *cctx = ctx->cipher_data; 1296 CCM128_CONTEXT *ccm = &cctx->ccm; 1297 1298 /* If not set up, return error */ 1299 if (!cctx->iv_set && !cctx->key_set) 1300 return -1; 1301 if (!ctx->encrypt && !cctx->tag_set) 1302 return -1; 1303 1304 if (!out) { 1305 if (!in) { 1306 if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L, 1307 len)) 1308 return -1; 1309 cctx->len_set = 1; 1310 return len; 1311 } 1312 /* If have AAD need message length */ 1313 if (!cctx->len_set && len) 1314 return -1; 1315 CRYPTO_ccm128_aad(ccm, in, len); 1316 return len; 1317 } 1318 /* EVP_*Final() doesn't return any data */ 1319 if (!in) 1320 return 0; 1321 /* If not set length yet do it */ 1322 if (!cctx->len_set) { 1323 if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L, len)) 1324 return -1; 1325 cctx->len_set = 1; 1326 } 1327 if (ctx->encrypt) { 1328 if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len, 1329 cctx->str) : CRYPTO_ccm128_encrypt(ccm, in, out, len)) 1330 return -1; 1331 cctx->tag_set = 1; 1332 return len; 1333 } else { 1334 int rv = -1; 1335 if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len, 1336 cctx->str) : !CRYPTO_ccm128_decrypt(ccm, in, out, len)) { 1337 unsigned char tag[16]; 1338 if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) { 1339 if (!memcmp(tag, ctx->buf, cctx->M)) 1340 rv = len; 1341 } 1342 } 1343 if (rv == -1) 1344 OPENSSL_cleanse(out, len); 1345 cctx->iv_set = 0; 1346 cctx->tag_set = 0; 1347 cctx->len_set = 0; 1348 return rv; 1349 } 1350 1351 } 1352 1353 #define aes_ccm_cleanup NULL 1354 1355 BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, ccm, CCM, 1356 EVP_CIPH_FLAG_FIPS|CUSTOM_FLAGS) 1357 BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, ccm, CCM, 1358 EVP_CIPH_FLAG_FIPS|CUSTOM_FLAGS) 1359 BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, ccm, CCM, 1360 EVP_CIPH_FLAG_FIPS|CUSTOM_FLAGS) 1361 1362 #define EVP_AEAD_AES_GCM_TAG_LEN 16 1363 1364 struct aead_aes_gcm_ctx { 1365 union { 1366 double align; 1367 AES_KEY ks; 1368 } ks; 1369 GCM128_CONTEXT gcm; 1370 ctr128_f ctr; 1371 unsigned char tag_len; 1372 }; 1373 1374 static int 1375 aead_aes_gcm_init(EVP_AEAD_CTX *ctx, const unsigned char *key, size_t key_len, 1376 size_t tag_len) 1377 { 1378 struct aead_aes_gcm_ctx *gcm_ctx; 1379 const size_t key_bits = key_len * 8; 1380 1381 /* EVP_AEAD_CTX_init should catch this. */ 1382 if (key_bits != 128 && key_bits != 256) { 1383 EVPerr(EVP_F_AEAD_AES_GCM_INIT, EVP_R_BAD_KEY_LENGTH); 1384 return 0; 1385 } 1386 1387 if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) 1388 tag_len = EVP_AEAD_AES_GCM_TAG_LEN; 1389 1390 if (tag_len > EVP_AEAD_AES_GCM_TAG_LEN) { 1391 EVPerr(EVP_F_AEAD_AES_GCM_INIT, EVP_R_TAG_TOO_LARGE); 1392 return 0; 1393 } 1394 1395 gcm_ctx = malloc(sizeof(struct aead_aes_gcm_ctx)); 1396 if (gcm_ctx == NULL) 1397 return 0; 1398 1399 #ifdef AESNI_CAPABLE 1400 if (AESNI_CAPABLE) { 1401 aesni_set_encrypt_key(key, key_bits, &gcm_ctx->ks.ks); 1402 CRYPTO_gcm128_init(&gcm_ctx->gcm, &gcm_ctx->ks.ks, 1403 (block128_f)aesni_encrypt); 1404 gcm_ctx->ctr = (ctr128_f) aesni_ctr32_encrypt_blocks; 1405 } else 1406 #endif 1407 { 1408 gcm_ctx->ctr = aes_gcm_set_key(&gcm_ctx->ks.ks, &gcm_ctx->gcm, 1409 key, key_len); 1410 } 1411 gcm_ctx->tag_len = tag_len; 1412 ctx->aead_state = gcm_ctx; 1413 1414 return 1; 1415 } 1416 1417 static void 1418 aead_aes_gcm_cleanup(EVP_AEAD_CTX *ctx) 1419 { 1420 struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state; 1421 1422 OPENSSL_cleanse(gcm_ctx, sizeof(*gcm_ctx)); 1423 free(gcm_ctx); 1424 } 1425 1426 static int 1427 aead_aes_gcm_seal(const EVP_AEAD_CTX *ctx, unsigned char *out, size_t *out_len, 1428 size_t max_out_len, const unsigned char *nonce, size_t nonce_len, 1429 const unsigned char *in, size_t in_len, const unsigned char *ad, 1430 size_t ad_len) 1431 { 1432 const struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state; 1433 GCM128_CONTEXT gcm; 1434 size_t bulk = 0; 1435 1436 if (max_out_len < in_len + gcm_ctx->tag_len) { 1437 EVPerr(EVP_F_AEAD_AES_GCM_SEAL, EVP_R_BUFFER_TOO_SMALL); 1438 return 0; 1439 } 1440 1441 memcpy(&gcm, &gcm_ctx->gcm, sizeof(gcm)); 1442 CRYPTO_gcm128_setiv(&gcm, nonce, nonce_len); 1443 1444 if (ad_len > 0 && CRYPTO_gcm128_aad(&gcm, ad, ad_len)) 1445 return 0; 1446 1447 if (gcm_ctx->ctr) { 1448 if (CRYPTO_gcm128_encrypt_ctr32(&gcm, in + bulk, out + bulk, 1449 in_len - bulk, gcm_ctx->ctr)) 1450 return 0; 1451 } else { 1452 if (CRYPTO_gcm128_encrypt(&gcm, in + bulk, out + bulk, 1453 in_len - bulk)) 1454 return 0; 1455 } 1456 1457 CRYPTO_gcm128_tag(&gcm, out + in_len, gcm_ctx->tag_len); 1458 *out_len = in_len + gcm_ctx->tag_len; 1459 1460 return 1; 1461 } 1462 1463 static int 1464 aead_aes_gcm_open(const EVP_AEAD_CTX *ctx, unsigned char *out, size_t *out_len, 1465 size_t max_out_len, const unsigned char *nonce, size_t nonce_len, 1466 const unsigned char *in, size_t in_len, const unsigned char *ad, 1467 size_t ad_len) 1468 { 1469 const struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state; 1470 unsigned char tag[EVP_AEAD_AES_GCM_TAG_LEN]; 1471 GCM128_CONTEXT gcm; 1472 size_t plaintext_len; 1473 size_t bulk = 0; 1474 1475 if (in_len < gcm_ctx->tag_len) { 1476 EVPerr(EVP_F_AEAD_AES_GCM_OPEN, EVP_R_BAD_DECRYPT); 1477 return 0; 1478 } 1479 1480 plaintext_len = in_len - gcm_ctx->tag_len; 1481 1482 if (max_out_len < plaintext_len) { 1483 EVPerr(EVP_F_AEAD_AES_GCM_OPEN, EVP_R_BUFFER_TOO_SMALL); 1484 return 0; 1485 } 1486 1487 memcpy(&gcm, &gcm_ctx->gcm, sizeof(gcm)); 1488 CRYPTO_gcm128_setiv(&gcm, nonce, nonce_len); 1489 1490 if (CRYPTO_gcm128_aad(&gcm, ad, ad_len)) 1491 return 0; 1492 1493 if (gcm_ctx->ctr) { 1494 if (CRYPTO_gcm128_decrypt_ctr32(&gcm, in + bulk, out + bulk, 1495 in_len - bulk - gcm_ctx->tag_len, gcm_ctx->ctr)) 1496 return 0; 1497 } else { 1498 if (CRYPTO_gcm128_decrypt(&gcm, in + bulk, out + bulk, 1499 in_len - bulk - gcm_ctx->tag_len)) 1500 return 0; 1501 } 1502 1503 CRYPTO_gcm128_tag(&gcm, tag, gcm_ctx->tag_len); 1504 if (CRYPTO_memcmp(tag, in + plaintext_len, gcm_ctx->tag_len) != 0) { 1505 EVPerr(EVP_F_AEAD_AES_GCM_OPEN, EVP_R_BAD_DECRYPT); 1506 return 0; 1507 } 1508 1509 *out_len = plaintext_len; 1510 1511 return 1; 1512 } 1513 1514 static const EVP_AEAD aead_aes_128_gcm = { 1515 .key_len = 16, 1516 .nonce_len = 12, 1517 .overhead = EVP_AEAD_AES_GCM_TAG_LEN, 1518 .max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN, 1519 1520 .init = aead_aes_gcm_init, 1521 .cleanup = aead_aes_gcm_cleanup, 1522 .seal = aead_aes_gcm_seal, 1523 .open = aead_aes_gcm_open, 1524 }; 1525 1526 static const EVP_AEAD aead_aes_256_gcm = { 1527 .key_len = 32, 1528 .nonce_len = 12, 1529 .overhead = EVP_AEAD_AES_GCM_TAG_LEN, 1530 .max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN, 1531 1532 .init = aead_aes_gcm_init, 1533 .cleanup = aead_aes_gcm_cleanup, 1534 .seal = aead_aes_gcm_seal, 1535 .open = aead_aes_gcm_open, 1536 }; 1537 1538 const EVP_AEAD * 1539 EVP_aead_aes_128_gcm(void) 1540 { 1541 return &aead_aes_128_gcm; 1542 } 1543 1544 const EVP_AEAD * 1545 EVP_aead_aes_256_gcm(void) 1546 { 1547 return &aead_aes_256_gcm; 1548 } 1549 1550 #endif 1551