xref: /openbsd-src/lib/libcrypto/evp/e_aes.c (revision 50b7afb2c2c0993b0894d4e34bf857cb13ed9c80)
1 /* $OpenBSD: e_aes.c,v 1.25 2014/07/12 19:31:03 miod Exp $ */
2 /* ====================================================================
3  * Copyright (c) 2001-2011 The OpenSSL Project.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  *
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in
14  *    the documentation and/or other materials provided with the
15  *    distribution.
16  *
17  * 3. All advertising materials mentioning features or use of this
18  *    software must display the following acknowledgment:
19  *    "This product includes software developed by the OpenSSL Project
20  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21  *
22  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23  *    endorse or promote products derived from this software without
24  *    prior written permission. For written permission, please contact
25  *    openssl-core@openssl.org.
26  *
27  * 5. Products derived from this software may not be called "OpenSSL"
28  *    nor may "OpenSSL" appear in their names without prior written
29  *    permission of the OpenSSL Project.
30  *
31  * 6. Redistributions of any form whatsoever must retain the following
32  *    acknowledgment:
33  *    "This product includes software developed by the OpenSSL Project
34  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35  *
36  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
40  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47  * OF THE POSSIBILITY OF SUCH DAMAGE.
48  * ====================================================================
49  *
50  */
51 
52 #include <assert.h>
53 #include <string.h>
54 
55 #include <openssl/opensslconf.h>
56 
57 #ifndef OPENSSL_NO_AES
58 #include <openssl/aes.h>
59 #include <openssl/err.h>
60 #include <openssl/evp.h>
61 #include <openssl/rand.h>
62 
63 #include "evp_locl.h"
64 #include "modes_lcl.h"
65 
66 typedef struct {
67 	AES_KEY ks;
68 	block128_f block;
69 	union {
70 		cbc128_f cbc;
71 		ctr128_f ctr;
72 	} stream;
73 } EVP_AES_KEY;
74 
75 typedef struct {
76 	AES_KEY ks;		/* AES key schedule to use */
77 	int key_set;		/* Set if key initialised */
78 	int iv_set;		/* Set if an iv is set */
79 	GCM128_CONTEXT gcm;
80 	unsigned char *iv;	/* Temporary IV store */
81 	int ivlen;		/* IV length */
82 	int taglen;
83 	int iv_gen;		/* It is OK to generate IVs */
84 	int tls_aad_len;	/* TLS AAD length */
85 	ctr128_f ctr;
86 } EVP_AES_GCM_CTX;
87 
88 typedef struct {
89 	AES_KEY ks1, ks2;	/* AES key schedules to use */
90 	XTS128_CONTEXT xts;
91 	void (*stream)(const unsigned char *in, unsigned char *out,
92 	    size_t length, const AES_KEY *key1, const AES_KEY *key2,
93 	    const unsigned char iv[16]);
94 } EVP_AES_XTS_CTX;
95 
96 typedef struct {
97 	AES_KEY ks;		/* AES key schedule to use */
98 	int key_set;		/* Set if key initialised */
99 	int iv_set;		/* Set if an iv is set */
100 	int tag_set;		/* Set if tag is valid */
101 	int len_set;		/* Set if message length set */
102 	int L, M;		/* L and M parameters from RFC3610 */
103 	CCM128_CONTEXT ccm;
104 	ccm128_f str;
105 } EVP_AES_CCM_CTX;
106 
107 #define MAXBITCHUNK	((size_t)1<<(sizeof(size_t)*8-4))
108 
109 #ifdef VPAES_ASM
110 int vpaes_set_encrypt_key(const unsigned char *userKey, int bits,
111     AES_KEY *key);
112 int vpaes_set_decrypt_key(const unsigned char *userKey, int bits,
113     AES_KEY *key);
114 
115 void vpaes_encrypt(const unsigned char *in, unsigned char *out,
116     const AES_KEY *key);
117 void vpaes_decrypt(const unsigned char *in, unsigned char *out,
118     const AES_KEY *key);
119 
120 void vpaes_cbc_encrypt(const unsigned char *in, unsigned char *out,
121     size_t length, const AES_KEY *key, unsigned char *ivec, int enc);
122 #endif
123 #ifdef BSAES_ASM
124 void bsaes_cbc_encrypt(const unsigned char *in, unsigned char *out,
125     size_t length, const AES_KEY *key, unsigned char ivec[16], int enc);
126 void bsaes_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out,
127     size_t len, const AES_KEY *key, const unsigned char ivec[16]);
128 void bsaes_xts_encrypt(const unsigned char *inp, unsigned char *out,
129     size_t len, const AES_KEY *key1, const AES_KEY *key2,
130     const unsigned char iv[16]);
131 void bsaes_xts_decrypt(const unsigned char *inp, unsigned char *out,
132     size_t len, const AES_KEY *key1, const AES_KEY *key2,
133     const unsigned char iv[16]);
134 #endif
135 #ifdef AES_CTR_ASM
136 void AES_ctr32_encrypt(const unsigned char *in, unsigned char *out,
137     size_t blocks, const AES_KEY *key,
138     const unsigned char ivec[AES_BLOCK_SIZE]);
139 #endif
140 #ifdef AES_XTS_ASM
141 void AES_xts_encrypt(const char *inp, char *out, size_t len,
142     const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]);
143 void AES_xts_decrypt(const char *inp, char *out, size_t len,
144     const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]);
145 #endif
146 
147 #if	defined(AES_ASM) && !defined(I386_ONLY) &&	(  \
148 	((defined(__i386)	|| defined(__i386__)	|| \
149 	  defined(_M_IX86)) && defined(OPENSSL_IA32_SSE2))|| \
150 	defined(__x86_64)	|| defined(__x86_64__)	|| \
151 	defined(_M_AMD64)	|| defined(_M_X64)	|| \
152 	defined(__INTEL__)				)
153 
154 extern unsigned int OPENSSL_ia32cap_P[2];
155 
156 #ifdef VPAES_ASM
157 #define VPAES_CAPABLE	(OPENSSL_ia32cap_P[1]&(1<<(41-32)))
158 #endif
159 #ifdef BSAES_ASM
160 #define BSAES_CAPABLE	VPAES_CAPABLE
161 #endif
162 /*
163  * AES-NI section
164  */
165 #define	AESNI_CAPABLE	(OPENSSL_ia32cap_P[1]&(1<<(57-32)))
166 
167 int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
168     AES_KEY *key);
169 int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
170     AES_KEY *key);
171 
172 void aesni_encrypt(const unsigned char *in, unsigned char *out,
173     const AES_KEY *key);
174 void aesni_decrypt(const unsigned char *in, unsigned char *out,
175     const AES_KEY *key);
176 
177 void aesni_ecb_encrypt(const unsigned char *in, unsigned char *out,
178     size_t length, const AES_KEY *key, int enc);
179 void aesni_cbc_encrypt(const unsigned char *in, unsigned char *out,
180     size_t length, const AES_KEY *key, unsigned char *ivec, int enc);
181 
182 void aesni_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out,
183     size_t blocks, const void *key, const unsigned char *ivec);
184 
185 void aesni_xts_encrypt(const unsigned char *in, unsigned char *out,
186     size_t length, const AES_KEY *key1, const AES_KEY *key2,
187     const unsigned char iv[16]);
188 
189 void aesni_xts_decrypt(const unsigned char *in, unsigned char *out,
190     size_t length, const AES_KEY *key1, const AES_KEY *key2,
191     const unsigned char iv[16]);
192 
193 void aesni_ccm64_encrypt_blocks (const unsigned char *in, unsigned char *out,
194     size_t blocks, const void *key, const unsigned char ivec[16],
195     unsigned char cmac[16]);
196 
197 void aesni_ccm64_decrypt_blocks (const unsigned char *in, unsigned char *out,
198     size_t blocks, const void *key, const unsigned char ivec[16],
199     unsigned char cmac[16]);
200 
201 static int
202 aesni_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
203     const unsigned char *iv, int enc)
204 {
205 	int ret, mode;
206 	EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
207 
208 	mode = ctx->cipher->flags & EVP_CIPH_MODE;
209 	if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) &&
210 	    !enc) {
211 		ret = aesni_set_decrypt_key(key, ctx->key_len * 8,
212 		    ctx->cipher_data);
213 		dat->block = (block128_f)aesni_decrypt;
214 		dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
215 		    (cbc128_f)aesni_cbc_encrypt : NULL;
216 	} else {
217 		ret = aesni_set_encrypt_key(key, ctx->key_len * 8,
218 		    ctx->cipher_data);
219 		dat->block = (block128_f)aesni_encrypt;
220 		if (mode == EVP_CIPH_CBC_MODE)
221 			dat->stream.cbc = (cbc128_f)aesni_cbc_encrypt;
222 		else if (mode == EVP_CIPH_CTR_MODE)
223 			dat->stream.ctr = (ctr128_f)aesni_ctr32_encrypt_blocks;
224 		else
225 			dat->stream.cbc = NULL;
226 	}
227 
228 	if (ret < 0) {
229 		EVPerr(EVP_F_AESNI_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED);
230 		return 0;
231 	}
232 
233 	return 1;
234 }
235 
236 static int
237 aesni_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
238     const unsigned char *in, size_t len)
239 {
240 	aesni_cbc_encrypt(in, out, len, ctx->cipher_data, ctx->iv,
241 	    ctx->encrypt);
242 
243 	return 1;
244 }
245 
246 static int
247 aesni_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
248     const unsigned char *in, size_t len)
249 {
250 	size_t	bl = ctx->cipher->block_size;
251 
252 	if (len < bl)
253 		return 1;
254 
255 	aesni_ecb_encrypt(in, out, len, ctx->cipher_data, ctx->encrypt);
256 
257 	return 1;
258 }
259 
260 #define aesni_ofb_cipher aes_ofb_cipher
261 static int aesni_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
262     const unsigned char *in, size_t len);
263 
264 #define aesni_cfb_cipher aes_cfb_cipher
265 static int aesni_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
266     const unsigned char *in, size_t len);
267 
268 #define aesni_cfb8_cipher aes_cfb8_cipher
269 static int aesni_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
270     const unsigned char *in, size_t len);
271 
272 #define aesni_cfb1_cipher aes_cfb1_cipher
273 static int aesni_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
274     const unsigned char *in, size_t len);
275 
276 #define aesni_ctr_cipher aes_ctr_cipher
277 static int aesni_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
278     const unsigned char *in, size_t len);
279 
280 static int
281 aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
282     const unsigned char *iv, int enc)
283 {
284 	EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
285 
286 	if (!iv && !key)
287 		return 1;
288 	if (key) {
289 		aesni_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks);
290 		CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
291 		    (block128_f)aesni_encrypt);
292 		gctx->ctr = (ctr128_f)aesni_ctr32_encrypt_blocks;
293 		/* If we have an iv can set it directly, otherwise use
294 		 * saved IV.
295 		 */
296 		if (iv == NULL && gctx->iv_set)
297 			iv = gctx->iv;
298 		if (iv) {
299 			CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
300 			gctx->iv_set = 1;
301 		}
302 		gctx->key_set = 1;
303 	} else {
304 		/* If key set use IV, otherwise copy */
305 		if (gctx->key_set)
306 			CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
307 		else
308 			memcpy(gctx->iv, iv, gctx->ivlen);
309 		gctx->iv_set = 1;
310 		gctx->iv_gen = 0;
311 	}
312 	return 1;
313 }
314 
315 #define aesni_gcm_cipher aes_gcm_cipher
316 static int aesni_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
317     const unsigned char *in, size_t len);
318 
319 static int
320 aesni_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
321     const unsigned char *iv, int enc)
322 {
323 	EVP_AES_XTS_CTX *xctx = ctx->cipher_data;
324 
325 	if (!iv && !key)
326 		return 1;
327 
328 	if (key) {
329 		/* key_len is two AES keys */
330 		if (enc) {
331 			aesni_set_encrypt_key(key, ctx->key_len * 4,
332 			    &xctx->ks1);
333 			xctx->xts.block1 = (block128_f)aesni_encrypt;
334 			xctx->stream = aesni_xts_encrypt;
335 		} else {
336 			aesni_set_decrypt_key(key, ctx->key_len * 4,
337 			    &xctx->ks1);
338 			xctx->xts.block1 = (block128_f)aesni_decrypt;
339 			xctx->stream = aesni_xts_decrypt;
340 		}
341 
342 		aesni_set_encrypt_key(key + ctx->key_len / 2,
343 		    ctx->key_len * 4, &xctx->ks2);
344 		xctx->xts.block2 = (block128_f)aesni_encrypt;
345 
346 		xctx->xts.key1 = &xctx->ks1;
347 	}
348 
349 	if (iv) {
350 		xctx->xts.key2 = &xctx->ks2;
351 		memcpy(ctx->iv, iv, 16);
352 	}
353 
354 	return 1;
355 }
356 
357 #define aesni_xts_cipher aes_xts_cipher
358 static int aesni_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
359     const unsigned char *in, size_t len);
360 
361 static int
362 aesni_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
363     const unsigned char *iv, int enc)
364 {
365 	EVP_AES_CCM_CTX *cctx = ctx->cipher_data;
366 
367 	if (!iv && !key)
368 		return 1;
369 	if (key) {
370 		aesni_set_encrypt_key(key, ctx->key_len * 8, &cctx->ks);
371 		CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
372 		    &cctx->ks, (block128_f)aesni_encrypt);
373 		cctx->str = enc ? (ccm128_f)aesni_ccm64_encrypt_blocks :
374 		    (ccm128_f)aesni_ccm64_decrypt_blocks;
375 		cctx->key_set = 1;
376 	}
377 	if (iv) {
378 		memcpy(ctx->iv, iv, 15 - cctx->L);
379 		cctx->iv_set = 1;
380 	}
381 	return 1;
382 }
383 
384 #define aesni_ccm_cipher aes_ccm_cipher
385 static int aesni_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
386     const unsigned char *in, size_t len);
387 
388 #define BLOCK_CIPHER_generic(n,keylen,blocksize,ivlen,nmode,mode,MODE,fl) \
389 static const EVP_CIPHER aesni_##keylen##_##mode = {			\
390 	.nid = n##_##keylen##_##nmode,					\
391 	.block_size = blocksize,					\
392 	.key_len = keylen / 8,						\
393 	.iv_len = ivlen, 						\
394 	.flags = fl | EVP_CIPH_##MODE##_MODE,				\
395 	.init = aesni_init_key,						\
396 	.do_cipher = aesni_##mode##_cipher,				\
397 	.ctx_size = sizeof(EVP_AES_KEY)					\
398 };									\
399 static const EVP_CIPHER aes_##keylen##_##mode = {			\
400 	.nid = n##_##keylen##_##nmode,					\
401 	.block_size = blocksize,					\
402 	.key_len = keylen / 8,						\
403 	.iv_len = ivlen, 						\
404 	.flags = fl | EVP_CIPH_##MODE##_MODE,				\
405 	.init = aes_init_key,						\
406 	.do_cipher = aes_##mode##_cipher,				\
407 	.ctx_size = sizeof(EVP_AES_KEY)					\
408 };									\
409 const EVP_CIPHER *							\
410 EVP_aes_##keylen##_##mode(void)						\
411 {									\
412 	return AESNI_CAPABLE ?						\
413 	    &aesni_##keylen##_##mode : &aes_##keylen##_##mode;		\
414 }
415 
416 #define BLOCK_CIPHER_custom(n,keylen,blocksize,ivlen,mode,MODE,fl)	\
417 static const EVP_CIPHER aesni_##keylen##_##mode = {			\
418 	.nid = n##_##keylen##_##mode,					\
419 	.block_size = blocksize,					\
420 	.key_len =							\
421 	    (EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE ? 2 : 1) *	\
422 	    keylen / 8,							\
423 	.iv_len = ivlen,						\
424 	.flags = fl | EVP_CIPH_##MODE##_MODE,				\
425 	.init = aesni_##mode##_init_key,				\
426 	.do_cipher = aesni_##mode##_cipher,				\
427 	.cleanup = aes_##mode##_cleanup,				\
428 	.ctx_size = sizeof(EVP_AES_##MODE##_CTX),			\
429 	.ctrl = aes_##mode##_ctrl					\
430 };									\
431 static const EVP_CIPHER aes_##keylen##_##mode = {			\
432 	.nid = n##_##keylen##_##mode,					\
433 	.block_size = blocksize,					\
434 	.key_len =							\
435 	    (EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE ? 2 : 1) *	\
436 	    keylen / 8,							\
437 	.iv_len = ivlen,						\
438 	.flags = fl | EVP_CIPH_##MODE##_MODE,				\
439 	.init = aes_##mode##_init_key,					\
440 	.do_cipher = aes_##mode##_cipher,				\
441 	.cleanup = aes_##mode##_cleanup,				\
442 	.ctx_size = sizeof(EVP_AES_##MODE##_CTX),			\
443 	.ctrl = aes_##mode##_ctrl					\
444 };									\
445 const EVP_CIPHER *							\
446 EVP_aes_##keylen##_##mode(void)						\
447 {									\
448 	return AESNI_CAPABLE ?						\
449 	    &aesni_##keylen##_##mode : &aes_##keylen##_##mode;		\
450 }
451 
452 #else
453 
454 #define BLOCK_CIPHER_generic(n,keylen,blocksize,ivlen,nmode,mode,MODE,fl) \
455 static const EVP_CIPHER aes_##keylen##_##mode = {			\
456 	.nid = n##_##keylen##_##nmode,					\
457 	.block_size = blocksize,					\
458 	.key_len = keylen / 8,						\
459 	.iv_len = ivlen,						\
460 	.flags = fl | EVP_CIPH_##MODE##_MODE,				\
461 	.init = aes_init_key,						\
462 	.do_cipher = aes_##mode##_cipher,				\
463 	.ctx_size = sizeof(EVP_AES_KEY)					\
464 };									\
465 const EVP_CIPHER *							\
466 EVP_aes_##keylen##_##mode(void)						\
467 {									\
468 	return &aes_##keylen##_##mode;					\
469 }
470 
471 #define BLOCK_CIPHER_custom(n,keylen,blocksize,ivlen,mode,MODE,fl)	\
472 static const EVP_CIPHER aes_##keylen##_##mode = {			\
473 	.nid = n##_##keylen##_##mode,					\
474 	.block_size = blocksize,					\
475 	.key_len =							\
476 	    (EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE ? 2 : 1) *	\
477 	    keylen / 8,							\
478 	.iv_len = ivlen,						\
479 	.flags = fl | EVP_CIPH_##MODE##_MODE,				\
480 	.init = aes_##mode##_init_key,					\
481 	.do_cipher = aes_##mode##_cipher,				\
482 	.cleanup = aes_##mode##_cleanup,				\
483 	.ctx_size = sizeof(EVP_AES_##MODE##_CTX),			\
484 	.ctrl = aes_##mode##_ctrl					\
485 };									\
486 const EVP_CIPHER *							\
487 EVP_aes_##keylen##_##mode(void)						\
488 {									\
489 	return &aes_##keylen##_##mode;					\
490 }
491 
492 #endif
493 
494 #define BLOCK_CIPHER_generic_pack(nid,keylen,flags)		\
495 	BLOCK_CIPHER_generic(nid,keylen,16,16,cbc,cbc,CBC,flags|EVP_CIPH_FLAG_DEFAULT_ASN1)	\
496 	BLOCK_CIPHER_generic(nid,keylen,16,0,ecb,ecb,ECB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1)	\
497 	BLOCK_CIPHER_generic(nid,keylen,1,16,ofb128,ofb,OFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1)	\
498 	BLOCK_CIPHER_generic(nid,keylen,1,16,cfb128,cfb,CFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1)	\
499 	BLOCK_CIPHER_generic(nid,keylen,1,16,cfb1,cfb1,CFB,flags)	\
500 	BLOCK_CIPHER_generic(nid,keylen,1,16,cfb8,cfb8,CFB,flags)	\
501 	BLOCK_CIPHER_generic(nid,keylen,1,16,ctr,ctr,CTR,flags)
502 
503 static int
504 aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
505     const unsigned char *iv, int enc)
506 {
507 	int ret, mode;
508 	EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
509 
510 	mode = ctx->cipher->flags & EVP_CIPH_MODE;
511 	if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) &&
512 	    !enc)
513 #ifdef BSAES_CAPABLE
514 		if (BSAES_CAPABLE && mode == EVP_CIPH_CBC_MODE) {
515 			ret = AES_set_decrypt_key(key, ctx->key_len * 8,
516 			    &dat->ks);
517 			dat->block = (block128_f)AES_decrypt;
518 			dat->stream.cbc = (cbc128_f)bsaes_cbc_encrypt;
519 		} else
520 #endif
521 #ifdef VPAES_CAPABLE
522 		if (VPAES_CAPABLE) {
523 			ret = vpaes_set_decrypt_key(key, ctx->key_len * 8,
524 			    &dat->ks);
525 			dat->block = (block128_f)vpaes_decrypt;
526 			dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
527 			    (cbc128_f)vpaes_cbc_encrypt : NULL;
528 		} else
529 #endif
530 		{
531 			ret = AES_set_decrypt_key(key, ctx->key_len * 8,
532 			    &dat->ks);
533 			dat->block = (block128_f)AES_decrypt;
534 			dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
535 			    (cbc128_f)AES_cbc_encrypt : NULL;
536 		} else
537 #ifdef BSAES_CAPABLE
538 		if (BSAES_CAPABLE && mode == EVP_CIPH_CTR_MODE) {
539 			ret = AES_set_encrypt_key(key, ctx->key_len * 8,
540 			    &dat->ks);
541 			dat->block = (block128_f)AES_encrypt;
542 			dat->stream.ctr = (ctr128_f)bsaes_ctr32_encrypt_blocks;
543 		} else
544 #endif
545 #ifdef VPAES_CAPABLE
546 		if (VPAES_CAPABLE) {
547 			ret = vpaes_set_encrypt_key(key, ctx->key_len * 8,
548 			    &dat->ks);
549 			dat->block = (block128_f)vpaes_encrypt;
550 			dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
551 			    (cbc128_f)vpaes_cbc_encrypt : NULL;
552 		} else
553 #endif
554 		{
555 			ret = AES_set_encrypt_key(key, ctx->key_len * 8,
556 			    &dat->ks);
557 			dat->block = (block128_f)AES_encrypt;
558 			dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
559 			    (cbc128_f)AES_cbc_encrypt : NULL;
560 #ifdef AES_CTR_ASM
561 			if (mode == EVP_CIPH_CTR_MODE)
562 				dat->stream.ctr = (ctr128_f)AES_ctr32_encrypt;
563 #endif
564 		}
565 
566 	if (ret < 0) {
567 		EVPerr(EVP_F_AES_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED);
568 		return 0;
569 	}
570 
571 	return 1;
572 }
573 
574 static int
575 aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
576     const unsigned char *in, size_t len)
577 {
578 	EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
579 
580 	if (dat->stream.cbc)
581 		(*dat->stream.cbc)(in, out, len, &dat->ks, ctx->iv,
582 		    ctx->encrypt);
583 	else if (ctx->encrypt)
584 		CRYPTO_cbc128_encrypt(in, out, len, &dat->ks, ctx->iv,
585 		    dat->block);
586 	else
587 		CRYPTO_cbc128_decrypt(in, out, len, &dat->ks, ctx->iv,
588 		    dat->block);
589 
590 	return 1;
591 }
592 
593 static int
594 aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
595     const unsigned char *in, size_t len)
596 {
597 	size_t	bl = ctx->cipher->block_size;
598 	size_t	i;
599 	EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
600 
601 	if (len < bl)
602 		return 1;
603 
604 	for (i = 0, len -= bl; i <= len; i += bl)
605 		(*dat->block)(in + i, out + i, &dat->ks);
606 
607 	return 1;
608 }
609 
610 static int
611 aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
612     const unsigned char *in, size_t len)
613 {
614 	EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
615 
616 	CRYPTO_ofb128_encrypt(in, out, len, &dat->ks, ctx->iv, &ctx->num,
617 	    dat->block);
618 	return 1;
619 }
620 
621 static int
622 aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
623     const unsigned char *in, size_t len)
624 {
625 	EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
626 
627 	CRYPTO_cfb128_encrypt(in, out, len, &dat->ks, ctx->iv, &ctx->num,
628 	    ctx->encrypt, dat->block);
629 	return 1;
630 }
631 
632 static int
633 aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
634     const unsigned char *in, size_t len)
635 {
636 	EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
637 
638 	CRYPTO_cfb128_8_encrypt(in, out, len, &dat->ks, ctx->iv, &ctx->num,
639 	    ctx->encrypt, dat->block);
640 	return 1;
641 }
642 
643 static int
644 aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
645     const unsigned char *in, size_t len)
646 {
647 	EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
648 
649 	if (ctx->flags&EVP_CIPH_FLAG_LENGTH_BITS) {
650 		CRYPTO_cfb128_1_encrypt(in, out, len, &dat->ks, ctx->iv,
651 		    &ctx->num, ctx->encrypt, dat->block);
652 		return 1;
653 	}
654 
655 	while (len >= MAXBITCHUNK) {
656 		CRYPTO_cfb128_1_encrypt(in, out, MAXBITCHUNK*8, &dat->ks,
657 		    ctx->iv, &ctx->num, ctx->encrypt, dat->block);
658 		len -= MAXBITCHUNK;
659 	}
660 	if (len)
661 		CRYPTO_cfb128_1_encrypt(in, out, len*8, &dat->ks,
662 		    ctx->iv, &ctx->num, ctx->encrypt, dat->block);
663 
664 	return 1;
665 }
666 
667 static int aes_ctr_cipher (EVP_CIPHER_CTX *ctx, unsigned char *out,
668     const unsigned char *in, size_t len)
669 {
670 	unsigned int num = ctx->num;
671 	EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
672 
673 	if (dat->stream.ctr)
674 		CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks,
675 		    ctx->iv, ctx->buf, &num, dat->stream.ctr);
676 	else
677 		CRYPTO_ctr128_encrypt(in, out, len, &dat->ks,
678 		    ctx->iv, ctx->buf, &num, dat->block);
679 	ctx->num = (size_t)num;
680 	return 1;
681 }
682 
683 BLOCK_CIPHER_generic_pack(NID_aes, 128, EVP_CIPH_FLAG_FIPS)
684 BLOCK_CIPHER_generic_pack(NID_aes, 192, EVP_CIPH_FLAG_FIPS)
685 BLOCK_CIPHER_generic_pack(NID_aes, 256, EVP_CIPH_FLAG_FIPS)
686 
687 static int
688 aes_gcm_cleanup(EVP_CIPHER_CTX *c)
689 {
690 	EVP_AES_GCM_CTX *gctx = c->cipher_data;
691 
692 	if (gctx->iv != c->iv)
693 		free(gctx->iv);
694 	OPENSSL_cleanse(gctx, sizeof(*gctx));
695 	return 1;
696 }
697 
698 /* increment counter (64-bit int) by 1 */
699 static void
700 ctr64_inc(unsigned char *counter)
701 {
702 	int n = 8;
703 	unsigned char  c;
704 
705 	do {
706 		--n;
707 		c = counter[n];
708 		++c;
709 		counter[n] = c;
710 		if (c)
711 			return;
712 	} while (n);
713 }
714 
715 static int
716 aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
717 {
718 	EVP_AES_GCM_CTX *gctx = c->cipher_data;
719 
720 	switch (type) {
721 	case EVP_CTRL_INIT:
722 		gctx->key_set = 0;
723 		gctx->iv_set = 0;
724 		gctx->ivlen = c->cipher->iv_len;
725 		gctx->iv = c->iv;
726 		gctx->taglen = -1;
727 		gctx->iv_gen = 0;
728 		gctx->tls_aad_len = -1;
729 		return 1;
730 
731 	case EVP_CTRL_GCM_SET_IVLEN:
732 		if (arg <= 0)
733 			return 0;
734 		/* Allocate memory for IV if needed */
735 		if ((arg > EVP_MAX_IV_LENGTH) && (arg > gctx->ivlen)) {
736 			if (gctx->iv != c->iv)
737 				free(gctx->iv);
738 			gctx->iv = malloc(arg);
739 			if (!gctx->iv)
740 				return 0;
741 		}
742 		gctx->ivlen = arg;
743 		return 1;
744 
745 	case EVP_CTRL_GCM_SET_TAG:
746 		if (arg <= 0 || arg > 16 || c->encrypt)
747 			return 0;
748 		memcpy(c->buf, ptr, arg);
749 		gctx->taglen = arg;
750 		return 1;
751 
752 	case EVP_CTRL_GCM_GET_TAG:
753 		if (arg <= 0 || arg > 16 || !c->encrypt || gctx->taglen < 0)
754 			return 0;
755 		memcpy(ptr, c->buf, arg);
756 		return 1;
757 
758 	case EVP_CTRL_GCM_SET_IV_FIXED:
759 		/* Special case: -1 length restores whole IV */
760 		if (arg == -1) {
761 			memcpy(gctx->iv, ptr, gctx->ivlen);
762 			gctx->iv_gen = 1;
763 			return 1;
764 		}
765 		/* Fixed field must be at least 4 bytes and invocation field
766 		 * at least 8.
767 		 */
768 		if ((arg < 4) || (gctx->ivlen - arg) < 8)
769 			return 0;
770 		if (arg)
771 			memcpy(gctx->iv, ptr, arg);
772 		if (c->encrypt &&
773 		    RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0)
774 			return 0;
775 		gctx->iv_gen = 1;
776 		return 1;
777 
778 	case EVP_CTRL_GCM_IV_GEN:
779 		if (gctx->iv_gen == 0 || gctx->key_set == 0)
780 			return 0;
781 		CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
782 		if (arg <= 0 || arg > gctx->ivlen)
783 			arg = gctx->ivlen;
784 		memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg);
785 		/* Invocation field will be at least 8 bytes in size and
786 		 * so no need to check wrap around or increment more than
787 		 * last 8 bytes.
788 		 */
789 		ctr64_inc(gctx->iv + gctx->ivlen - 8);
790 		gctx->iv_set = 1;
791 		return 1;
792 
793 	case EVP_CTRL_GCM_SET_IV_INV:
794 		if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt)
795 			return 0;
796 		memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg);
797 		CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
798 		gctx->iv_set = 1;
799 		return 1;
800 
801 	case EVP_CTRL_AEAD_TLS1_AAD:
802 		/* Save the AAD for later use */
803 		if (arg != 13)
804 			return 0;
805 		memcpy(c->buf, ptr, arg);
806 		gctx->tls_aad_len = arg;
807 		{
808 			unsigned int len = c->buf[arg - 2] << 8 |
809 			    c->buf[arg - 1];
810 
811 			/* Correct length for explicit IV */
812 			len -= EVP_GCM_TLS_EXPLICIT_IV_LEN;
813 
814 			/* If decrypting correct for tag too */
815 			if (!c->encrypt)
816 				len -= EVP_GCM_TLS_TAG_LEN;
817 			c->buf[arg - 2] = len >> 8;
818 			c->buf[arg - 1] = len & 0xff;
819 		}
820 		/* Extra padding: tag appended to record */
821 		return EVP_GCM_TLS_TAG_LEN;
822 
823 	case EVP_CTRL_COPY:
824 	    {
825 		EVP_CIPHER_CTX *out = ptr;
826 		EVP_AES_GCM_CTX *gctx_out = out->cipher_data;
827 
828 		if (gctx->gcm.key) {
829 			if (gctx->gcm.key != &gctx->ks)
830 				return 0;
831 			gctx_out->gcm.key = &gctx_out->ks;
832 		}
833 		if (gctx->iv == c->iv)
834 			gctx_out->iv = out->iv;
835 		else {
836 			gctx_out->iv = malloc(gctx->ivlen);
837 			if (!gctx_out->iv)
838 				return 0;
839 			memcpy(gctx_out->iv, gctx->iv, gctx->ivlen);
840 		}
841 		return 1;
842 	    }
843 
844 	default:
845 		return -1;
846 
847 	}
848 }
849 
850 static ctr128_f
851 aes_gcm_set_key(AES_KEY *aes_key, GCM128_CONTEXT *gcm_ctx,
852     const unsigned char *key, size_t key_len)
853 {
854 #ifdef BSAES_CAPABLE
855 	if (BSAES_CAPABLE) {
856 		AES_set_encrypt_key(key, key_len * 8, aes_key);
857 		CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)AES_encrypt);
858 		return (ctr128_f)bsaes_ctr32_encrypt_blocks;
859 	} else
860 #endif
861 #ifdef VPAES_CAPABLE
862 	if (VPAES_CAPABLE) {
863 		vpaes_set_encrypt_key(key, key_len * 8, aes_key);
864 		CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)vpaes_encrypt);
865 		return NULL;
866 	} else
867 #endif
868 		(void)0; /* terminate potentially open 'else' */
869 
870 	AES_set_encrypt_key(key, key_len * 8, aes_key);
871 	CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)AES_encrypt);
872 #ifdef AES_CTR_ASM
873 	return (ctr128_f)AES_ctr32_encrypt;
874 #else
875 	return NULL;
876 #endif
877 }
878 
879 static int
880 aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
881     const unsigned char *iv, int enc)
882 {
883 	EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
884 
885 	if (!iv && !key)
886 		return 1;
887 	if (key) {
888 		gctx->ctr = aes_gcm_set_key(&gctx->ks, &gctx->gcm,
889 		    key, ctx->key_len);
890 
891 		/* If we have an iv can set it directly, otherwise use
892 		 * saved IV.
893 		 */
894 		if (iv == NULL && gctx->iv_set)
895 			iv = gctx->iv;
896 		if (iv) {
897 			CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
898 			gctx->iv_set = 1;
899 		}
900 		gctx->key_set = 1;
901 	} else {
902 		/* If key set use IV, otherwise copy */
903 		if (gctx->key_set)
904 			CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
905 		else
906 			memcpy(gctx->iv, iv, gctx->ivlen);
907 		gctx->iv_set = 1;
908 		gctx->iv_gen = 0;
909 	}
910 	return 1;
911 }
912 
913 /* Handle TLS GCM packet format. This consists of the last portion of the IV
914  * followed by the payload and finally the tag. On encrypt generate IV,
915  * encrypt payload and write the tag. On verify retrieve IV, decrypt payload
916  * and verify tag.
917  */
918 
919 static int
920 aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
921     const unsigned char *in, size_t len)
922 {
923 	EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
924 	int rv = -1;
925 
926 	/* Encrypt/decrypt must be performed in place */
927 	if (out != in ||
928 	    len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN))
929 		return -1;
930 
931 	/* Set IV from start of buffer or generate IV and write to start
932 	 * of buffer.
933 	 */
934 	if (EVP_CIPHER_CTX_ctrl(ctx, ctx->encrypt ?
935 	    EVP_CTRL_GCM_IV_GEN : EVP_CTRL_GCM_SET_IV_INV,
936 	    EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0)
937 		goto err;
938 
939 	/* Use saved AAD */
940 	if (CRYPTO_gcm128_aad(&gctx->gcm, ctx->buf, gctx->tls_aad_len))
941 		goto err;
942 
943 	/* Fix buffer and length to point to payload */
944 	in += EVP_GCM_TLS_EXPLICIT_IV_LEN;
945 	out += EVP_GCM_TLS_EXPLICIT_IV_LEN;
946 	len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
947 	if (ctx->encrypt) {
948 		/* Encrypt payload */
949 		if (gctx->ctr) {
950 			if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, in, out,
951 			    len, gctx->ctr))
952 				goto err;
953 		} else {
954 			if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, len))
955 				goto err;
956 		}
957 		out += len;
958 
959 		/* Finally write tag */
960 		CRYPTO_gcm128_tag(&gctx->gcm, out, EVP_GCM_TLS_TAG_LEN);
961 		rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
962 	} else {
963 		/* Decrypt */
964 		if (gctx->ctr) {
965 			if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, in, out,
966 			    len, gctx->ctr))
967 				goto err;
968 		} else {
969 			if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, len))
970 				goto err;
971 		}
972 		/* Retrieve tag */
973 		CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, EVP_GCM_TLS_TAG_LEN);
974 
975 		/* If tag mismatch wipe buffer */
976 		if (memcmp(ctx->buf, in + len, EVP_GCM_TLS_TAG_LEN)) {
977 			OPENSSL_cleanse(out, len);
978 			goto err;
979 		}
980 		rv = len;
981 	}
982 
983 err:
984 	gctx->iv_set = 0;
985 	gctx->tls_aad_len = -1;
986 	return rv;
987 }
988 
989 static int
990 aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
991     const unsigned char *in, size_t len)
992 {
993 	EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
994 
995 	/* If not set up, return error */
996 	if (!gctx->key_set)
997 		return -1;
998 
999 	if (gctx->tls_aad_len >= 0)
1000 		return aes_gcm_tls_cipher(ctx, out, in, len);
1001 
1002 	if (!gctx->iv_set)
1003 		return -1;
1004 
1005 	if (in) {
1006 		if (out == NULL) {
1007 			if (CRYPTO_gcm128_aad(&gctx->gcm, in, len))
1008 				return -1;
1009 		} else if (ctx->encrypt) {
1010 			if (gctx->ctr) {
1011 				if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm,
1012 				    in, out, len, gctx->ctr))
1013 					return -1;
1014 			} else {
1015 				if (CRYPTO_gcm128_encrypt(&gctx->gcm,
1016 				    in, out, len))
1017 					return -1;
1018 			}
1019 		} else {
1020 			if (gctx->ctr) {
1021 				if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm,
1022 				    in, out, len, gctx->ctr))
1023 					return -1;
1024 			} else {
1025 				if (CRYPTO_gcm128_decrypt(&gctx->gcm,
1026 				    in, out, len))
1027 					return -1;
1028 			}
1029 		}
1030 		return len;
1031 	} else {
1032 		if (!ctx->encrypt) {
1033 			if (gctx->taglen < 0)
1034 				return -1;
1035 			if (CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf,
1036 			    gctx->taglen) != 0)
1037 				return -1;
1038 			gctx->iv_set = 0;
1039 			return 0;
1040 		}
1041 		CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16);
1042 		gctx->taglen = 16;
1043 
1044 		/* Don't reuse the IV */
1045 		gctx->iv_set = 0;
1046 		return 0;
1047 	}
1048 
1049 }
1050 
1051 #define CUSTOM_FLAGS \
1052     ( EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV | \
1053       EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | \
1054       EVP_CIPH_CTRL_INIT | EVP_CIPH_CUSTOM_COPY )
1055 
1056 BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, gcm, GCM,
1057     EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_AEAD_CIPHER|CUSTOM_FLAGS)
1058 BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, gcm, GCM,
1059     EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_AEAD_CIPHER|CUSTOM_FLAGS)
1060 BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, gcm, GCM,
1061     EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_AEAD_CIPHER|CUSTOM_FLAGS)
1062 
1063 static int
1064 aes_xts_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
1065 {
1066 	EVP_AES_XTS_CTX *xctx = c->cipher_data;
1067 
1068 	switch (type) {
1069 	case EVP_CTRL_INIT:
1070 		/*
1071 		 * key1 and key2 are used as an indicator both key and IV
1072 		 * are set
1073 		 */
1074 		xctx->xts.key1 = NULL;
1075 		xctx->xts.key2 = NULL;
1076 		return 1;
1077 
1078 	case EVP_CTRL_COPY:
1079 	    {
1080 		EVP_CIPHER_CTX *out = ptr;
1081 		EVP_AES_XTS_CTX *xctx_out = out->cipher_data;
1082 
1083 		if (xctx->xts.key1) {
1084 			if (xctx->xts.key1 != &xctx->ks1)
1085 				return 0;
1086 			xctx_out->xts.key1 = &xctx_out->ks1;
1087 		}
1088 		if (xctx->xts.key2) {
1089 			if (xctx->xts.key2 != &xctx->ks2)
1090 				return 0;
1091 			xctx_out->xts.key2 = &xctx_out->ks2;
1092 		}
1093 		return 1;
1094 	    }
1095 	}
1096 	return -1;
1097 }
1098 
1099 static int
1100 aes_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
1101     const unsigned char *iv, int enc)
1102 {
1103 	EVP_AES_XTS_CTX *xctx = ctx->cipher_data;
1104 
1105 	if (!iv && !key)
1106 		return 1;
1107 
1108 	if (key) do {
1109 #ifdef AES_XTS_ASM
1110 		xctx->stream = enc ? AES_xts_encrypt : AES_xts_decrypt;
1111 #else
1112 		xctx->stream = NULL;
1113 #endif
1114 		/* key_len is two AES keys */
1115 #ifdef BSAES_CAPABLE
1116 		if (BSAES_CAPABLE)
1117 			xctx->stream = enc ? bsaes_xts_encrypt :
1118 			    bsaes_xts_decrypt;
1119 		else
1120 #endif
1121 #ifdef VPAES_CAPABLE
1122 		if (VPAES_CAPABLE) {
1123 			if (enc) {
1124 				vpaes_set_encrypt_key(key, ctx->key_len * 4,
1125 				    &xctx->ks1);
1126 				xctx->xts.block1 = (block128_f)vpaes_encrypt;
1127 			} else {
1128 				vpaes_set_decrypt_key(key, ctx->key_len * 4,
1129 				    &xctx->ks1);
1130 				xctx->xts.block1 = (block128_f)vpaes_decrypt;
1131 			}
1132 
1133 			vpaes_set_encrypt_key(key + ctx->key_len / 2,
1134 			    ctx->key_len * 4, &xctx->ks2);
1135 			xctx->xts.block2 = (block128_f)vpaes_encrypt;
1136 
1137 			xctx->xts.key1 = &xctx->ks1;
1138 			break;
1139 		} else
1140 #endif
1141 			(void)0;	/* terminate potentially open 'else' */
1142 
1143 		if (enc) {
1144 			AES_set_encrypt_key(key, ctx->key_len * 4, &xctx->ks1);
1145 			xctx->xts.block1 = (block128_f)AES_encrypt;
1146 		} else {
1147 			AES_set_decrypt_key(key, ctx->key_len * 4, &xctx->ks1);
1148 			xctx->xts.block1 = (block128_f)AES_decrypt;
1149 		}
1150 
1151 		AES_set_encrypt_key(key + ctx->key_len / 2,
1152 		    ctx->key_len * 4, &xctx->ks2);
1153 		xctx->xts.block2 = (block128_f)AES_encrypt;
1154 
1155 		xctx->xts.key1 = &xctx->ks1;
1156 	} while (0);
1157 
1158 	if (iv) {
1159 		xctx->xts.key2 = &xctx->ks2;
1160 		memcpy(ctx->iv, iv, 16);
1161 	}
1162 
1163 	return 1;
1164 }
1165 
1166 static int
1167 aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
1168     const unsigned char *in, size_t len)
1169 {
1170 	EVP_AES_XTS_CTX *xctx = ctx->cipher_data;
1171 
1172 	if (!xctx->xts.key1 || !xctx->xts.key2)
1173 		return 0;
1174 	if (!out || !in || len < AES_BLOCK_SIZE)
1175 		return 0;
1176 
1177 	if (xctx->stream)
1178 		(*xctx->stream)(in, out, len, xctx->xts.key1, xctx->xts.key2,
1179 		    ctx->iv);
1180 	else if (CRYPTO_xts128_encrypt(&xctx->xts, ctx->iv, in, out, len,
1181 	    ctx->encrypt))
1182 		return 0;
1183 	return 1;
1184 }
1185 
1186 #define aes_xts_cleanup NULL
1187 
1188 #define XTS_FLAGS \
1189     ( EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV | \
1190       EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT | EVP_CIPH_CUSTOM_COPY )
1191 
1192 BLOCK_CIPHER_custom(NID_aes, 128, 1, 16, xts, XTS, EVP_CIPH_FLAG_FIPS|XTS_FLAGS)
1193 BLOCK_CIPHER_custom(NID_aes, 256, 1, 16, xts, XTS, EVP_CIPH_FLAG_FIPS|XTS_FLAGS)
1194 
1195 static int
1196 aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
1197 {
1198 	EVP_AES_CCM_CTX *cctx = c->cipher_data;
1199 
1200 	switch (type) {
1201 	case EVP_CTRL_INIT:
1202 		cctx->key_set = 0;
1203 		cctx->iv_set = 0;
1204 		cctx->L = 8;
1205 		cctx->M = 12;
1206 		cctx->tag_set = 0;
1207 		cctx->len_set = 0;
1208 		return 1;
1209 
1210 	case EVP_CTRL_CCM_SET_IVLEN:
1211 		arg = 15 - arg;
1212 
1213 	case EVP_CTRL_CCM_SET_L:
1214 		if (arg < 2 || arg > 8)
1215 			return 0;
1216 		cctx->L = arg;
1217 		return 1;
1218 
1219 	case EVP_CTRL_CCM_SET_TAG:
1220 		if ((arg & 1) || arg < 4 || arg > 16)
1221 			return 0;
1222 		if ((c->encrypt && ptr) || (!c->encrypt && !ptr))
1223 			return 0;
1224 		if (ptr) {
1225 			cctx->tag_set = 1;
1226 			memcpy(c->buf, ptr, arg);
1227 		}
1228 		cctx->M = arg;
1229 		return 1;
1230 
1231 	case EVP_CTRL_CCM_GET_TAG:
1232 		if (!c->encrypt || !cctx->tag_set)
1233 			return 0;
1234 		if (!CRYPTO_ccm128_tag(&cctx->ccm, ptr, (size_t)arg))
1235 			return 0;
1236 		cctx->tag_set = 0;
1237 		cctx->iv_set = 0;
1238 		cctx->len_set = 0;
1239 		return 1;
1240 
1241 	case EVP_CTRL_COPY:
1242 	    {
1243 		EVP_CIPHER_CTX *out = ptr;
1244 		EVP_AES_CCM_CTX *cctx_out = out->cipher_data;
1245 
1246 		if (cctx->ccm.key) {
1247 			if (cctx->ccm.key != &cctx->ks)
1248 				return 0;
1249 			cctx_out->ccm.key = &cctx_out->ks;
1250 		}
1251 		return 1;
1252 	    }
1253 
1254 	default:
1255 		return -1;
1256 	}
1257 }
1258 
1259 static int
1260 aes_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
1261     const unsigned char *iv, int enc)
1262 {
1263 	EVP_AES_CCM_CTX *cctx = ctx->cipher_data;
1264 
1265 	if (!iv && !key)
1266 		return 1;
1267 	if (key) do {
1268 #ifdef VPAES_CAPABLE
1269 		if (VPAES_CAPABLE) {
1270 			vpaes_set_encrypt_key(key, ctx->key_len*8, &cctx->ks);
1271 			CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
1272 			    &cctx->ks, (block128_f)vpaes_encrypt);
1273 			cctx->str = NULL;
1274 			cctx->key_set = 1;
1275 			break;
1276 		}
1277 #endif
1278 		AES_set_encrypt_key(key, ctx->key_len * 8, &cctx->ks);
1279 		CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
1280 		    &cctx->ks, (block128_f)AES_encrypt);
1281 		cctx->str = NULL;
1282 		cctx->key_set = 1;
1283 	} while (0);
1284 	if (iv) {
1285 		memcpy(ctx->iv, iv, 15 - cctx->L);
1286 		cctx->iv_set = 1;
1287 	}
1288 	return 1;
1289 }
1290 
1291 static int
1292 aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
1293     const unsigned char *in, size_t len)
1294 {
1295 	EVP_AES_CCM_CTX *cctx = ctx->cipher_data;
1296 	CCM128_CONTEXT *ccm = &cctx->ccm;
1297 
1298 	/* If not set up, return error */
1299 	if (!cctx->iv_set && !cctx->key_set)
1300 		return -1;
1301 	if (!ctx->encrypt && !cctx->tag_set)
1302 		return -1;
1303 
1304 	if (!out) {
1305 		if (!in) {
1306 			if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L,
1307 			    len))
1308 				return -1;
1309 			cctx->len_set = 1;
1310 			return len;
1311 		}
1312 		/* If have AAD need message length */
1313 		if (!cctx->len_set && len)
1314 			return -1;
1315 		CRYPTO_ccm128_aad(ccm, in, len);
1316 		return len;
1317 	}
1318 	/* EVP_*Final() doesn't return any data */
1319 	if (!in)
1320 		return 0;
1321 	/* If not set length yet do it */
1322 	if (!cctx->len_set) {
1323 		if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L, len))
1324 			return -1;
1325 		cctx->len_set = 1;
1326 	}
1327 	if (ctx->encrypt) {
1328 		if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len,
1329 		    cctx->str) : CRYPTO_ccm128_encrypt(ccm, in, out, len))
1330 			return -1;
1331 		cctx->tag_set = 1;
1332 		return len;
1333 	} else {
1334 		int rv = -1;
1335 		if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len,
1336 		    cctx->str) : !CRYPTO_ccm128_decrypt(ccm, in, out, len)) {
1337 			unsigned char tag[16];
1338 			if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) {
1339 				if (!memcmp(tag, ctx->buf, cctx->M))
1340 					rv = len;
1341 			}
1342 		}
1343 		if (rv == -1)
1344 			OPENSSL_cleanse(out, len);
1345 		cctx->iv_set = 0;
1346 		cctx->tag_set = 0;
1347 		cctx->len_set = 0;
1348 		return rv;
1349 	}
1350 
1351 }
1352 
1353 #define aes_ccm_cleanup NULL
1354 
1355 BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, ccm, CCM,
1356     EVP_CIPH_FLAG_FIPS|CUSTOM_FLAGS)
1357 BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, ccm, CCM,
1358     EVP_CIPH_FLAG_FIPS|CUSTOM_FLAGS)
1359 BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, ccm, CCM,
1360     EVP_CIPH_FLAG_FIPS|CUSTOM_FLAGS)
1361 
1362 #define EVP_AEAD_AES_GCM_TAG_LEN 16
1363 
1364 struct aead_aes_gcm_ctx {
1365 	union {
1366 		double align;
1367 		AES_KEY ks;
1368 	} ks;
1369 	GCM128_CONTEXT gcm;
1370 	ctr128_f ctr;
1371 	unsigned char tag_len;
1372 };
1373 
1374 static int
1375 aead_aes_gcm_init(EVP_AEAD_CTX *ctx, const unsigned char *key, size_t key_len,
1376     size_t tag_len)
1377 {
1378 	struct aead_aes_gcm_ctx *gcm_ctx;
1379 	const size_t key_bits = key_len * 8;
1380 
1381 	/* EVP_AEAD_CTX_init should catch this. */
1382 	if (key_bits != 128 && key_bits != 256) {
1383 		EVPerr(EVP_F_AEAD_AES_GCM_INIT, EVP_R_BAD_KEY_LENGTH);
1384 		return 0;
1385 	}
1386 
1387 	if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH)
1388 		tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
1389 
1390 	if (tag_len > EVP_AEAD_AES_GCM_TAG_LEN) {
1391 		EVPerr(EVP_F_AEAD_AES_GCM_INIT, EVP_R_TAG_TOO_LARGE);
1392 		return 0;
1393 	}
1394 
1395 	gcm_ctx = malloc(sizeof(struct aead_aes_gcm_ctx));
1396 	if (gcm_ctx == NULL)
1397 		return 0;
1398 
1399 #ifdef AESNI_CAPABLE
1400 	if (AESNI_CAPABLE) {
1401 		aesni_set_encrypt_key(key, key_bits, &gcm_ctx->ks.ks);
1402 		CRYPTO_gcm128_init(&gcm_ctx->gcm, &gcm_ctx->ks.ks,
1403 		    (block128_f)aesni_encrypt);
1404 		gcm_ctx->ctr = (ctr128_f) aesni_ctr32_encrypt_blocks;
1405 	} else
1406 #endif
1407 	{
1408 		gcm_ctx->ctr = aes_gcm_set_key(&gcm_ctx->ks.ks, &gcm_ctx->gcm,
1409 		    key, key_len);
1410 	}
1411 	gcm_ctx->tag_len = tag_len;
1412 	ctx->aead_state = gcm_ctx;
1413 
1414 	return 1;
1415 }
1416 
1417 static void
1418 aead_aes_gcm_cleanup(EVP_AEAD_CTX *ctx)
1419 {
1420 	struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state;
1421 
1422 	OPENSSL_cleanse(gcm_ctx, sizeof(*gcm_ctx));
1423 	free(gcm_ctx);
1424 }
1425 
1426 static int
1427 aead_aes_gcm_seal(const EVP_AEAD_CTX *ctx, unsigned char *out, size_t *out_len,
1428     size_t max_out_len, const unsigned char *nonce, size_t nonce_len,
1429     const unsigned char *in, size_t in_len, const unsigned char *ad,
1430     size_t ad_len)
1431 {
1432 	const struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state;
1433 	GCM128_CONTEXT gcm;
1434 	size_t bulk = 0;
1435 
1436 	if (max_out_len < in_len + gcm_ctx->tag_len) {
1437 		EVPerr(EVP_F_AEAD_AES_GCM_SEAL, EVP_R_BUFFER_TOO_SMALL);
1438 		return 0;
1439 	}
1440 
1441 	memcpy(&gcm, &gcm_ctx->gcm, sizeof(gcm));
1442 	CRYPTO_gcm128_setiv(&gcm, nonce, nonce_len);
1443 
1444 	if (ad_len > 0 && CRYPTO_gcm128_aad(&gcm, ad, ad_len))
1445 		return 0;
1446 
1447 	if (gcm_ctx->ctr) {
1448 		if (CRYPTO_gcm128_encrypt_ctr32(&gcm, in + bulk, out + bulk,
1449 		    in_len - bulk, gcm_ctx->ctr))
1450 			return 0;
1451 	} else {
1452 		if (CRYPTO_gcm128_encrypt(&gcm, in + bulk, out + bulk,
1453 		    in_len - bulk))
1454 			return 0;
1455 	}
1456 
1457 	CRYPTO_gcm128_tag(&gcm, out + in_len, gcm_ctx->tag_len);
1458 	*out_len = in_len + gcm_ctx->tag_len;
1459 
1460 	return 1;
1461 }
1462 
1463 static int
1464 aead_aes_gcm_open(const EVP_AEAD_CTX *ctx, unsigned char *out, size_t *out_len,
1465     size_t max_out_len, const unsigned char *nonce, size_t nonce_len,
1466     const unsigned char *in, size_t in_len, const unsigned char *ad,
1467     size_t ad_len)
1468 {
1469 	const struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state;
1470 	unsigned char tag[EVP_AEAD_AES_GCM_TAG_LEN];
1471 	GCM128_CONTEXT gcm;
1472 	size_t plaintext_len;
1473 	size_t bulk = 0;
1474 
1475 	if (in_len < gcm_ctx->tag_len) {
1476 		EVPerr(EVP_F_AEAD_AES_GCM_OPEN, EVP_R_BAD_DECRYPT);
1477 		return 0;
1478 	}
1479 
1480 	plaintext_len = in_len - gcm_ctx->tag_len;
1481 
1482 	if (max_out_len < plaintext_len) {
1483 		EVPerr(EVP_F_AEAD_AES_GCM_OPEN, EVP_R_BUFFER_TOO_SMALL);
1484 		return 0;
1485 	}
1486 
1487 	memcpy(&gcm, &gcm_ctx->gcm, sizeof(gcm));
1488 	CRYPTO_gcm128_setiv(&gcm, nonce, nonce_len);
1489 
1490 	if (CRYPTO_gcm128_aad(&gcm, ad, ad_len))
1491 		return 0;
1492 
1493 	if (gcm_ctx->ctr) {
1494 		if (CRYPTO_gcm128_decrypt_ctr32(&gcm, in + bulk, out + bulk,
1495 		    in_len - bulk - gcm_ctx->tag_len, gcm_ctx->ctr))
1496 			return 0;
1497 	} else {
1498 		if (CRYPTO_gcm128_decrypt(&gcm, in + bulk, out + bulk,
1499 		    in_len - bulk - gcm_ctx->tag_len))
1500 			return 0;
1501 	}
1502 
1503 	CRYPTO_gcm128_tag(&gcm, tag, gcm_ctx->tag_len);
1504 	if (CRYPTO_memcmp(tag, in + plaintext_len, gcm_ctx->tag_len) != 0) {
1505 		EVPerr(EVP_F_AEAD_AES_GCM_OPEN, EVP_R_BAD_DECRYPT);
1506 		return 0;
1507 	}
1508 
1509 	*out_len = plaintext_len;
1510 
1511 	return 1;
1512 }
1513 
1514 static const EVP_AEAD aead_aes_128_gcm = {
1515 	.key_len = 16,
1516 	.nonce_len = 12,
1517 	.overhead = EVP_AEAD_AES_GCM_TAG_LEN,
1518 	.max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN,
1519 
1520 	.init = aead_aes_gcm_init,
1521 	.cleanup = aead_aes_gcm_cleanup,
1522 	.seal = aead_aes_gcm_seal,
1523 	.open = aead_aes_gcm_open,
1524 };
1525 
1526 static const EVP_AEAD aead_aes_256_gcm = {
1527 	.key_len = 32,
1528 	.nonce_len = 12,
1529 	.overhead = EVP_AEAD_AES_GCM_TAG_LEN,
1530 	.max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN,
1531 
1532 	.init = aead_aes_gcm_init,
1533 	.cleanup = aead_aes_gcm_cleanup,
1534 	.seal = aead_aes_gcm_seal,
1535 	.open = aead_aes_gcm_open,
1536 };
1537 
1538 const EVP_AEAD *
1539 EVP_aead_aes_128_gcm(void)
1540 {
1541 	return &aead_aes_128_gcm;
1542 }
1543 
1544 const EVP_AEAD *
1545 EVP_aead_aes_256_gcm(void)
1546 {
1547 	return &aead_aes_256_gcm;
1548 }
1549 
1550 #endif
1551