xref: /openbsd-src/lib/libcrypto/ec/ec_mult.c (revision ff0e7be1ebbcc809ea8ad2b6dafe215824da9e46)
1 /* $OpenBSD: ec_mult.c,v 1.29 2023/04/11 18:58:20 jsing Exp $ */
2 /*
3  * Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project.
4  */
5 /* ====================================================================
6  * Copyright (c) 1998-2007 The OpenSSL Project.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  *
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  *
20  * 3. All advertising materials mentioning features or use of this
21  *    software must display the following acknowledgment:
22  *    "This product includes software developed by the OpenSSL Project
23  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24  *
25  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26  *    endorse or promote products derived from this software without
27  *    prior written permission. For written permission, please contact
28  *    openssl-core@openssl.org.
29  *
30  * 5. Products derived from this software may not be called "OpenSSL"
31  *    nor may "OpenSSL" appear in their names without prior written
32  *    permission of the OpenSSL Project.
33  *
34  * 6. Redistributions of any form whatsoever must retain the following
35  *    acknowledgment:
36  *    "This product includes software developed by the OpenSSL Project
37  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38  *
39  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
43  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50  * OF THE POSSIBILITY OF SUCH DAMAGE.
51  * ====================================================================
52  *
53  * This product includes cryptographic software written by Eric Young
54  * (eay@cryptsoft.com).  This product includes software written by Tim
55  * Hudson (tjh@cryptsoft.com).
56  *
57  */
58 /* ====================================================================
59  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
60  * Portions of this software developed by SUN MICROSYSTEMS, INC.,
61  * and contributed to the OpenSSL project.
62  */
63 
64 #include <string.h>
65 
66 #include <openssl/err.h>
67 
68 #include "ec_local.h"
69 
70 
71 /*
72  * This file implements the wNAF-based interleaving multi-exponentation method
73  * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>);
74  * for multiplication with precomputation, we use wNAF splitting
75  * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp>).
76  */
77 
78 
79 
80 
81 /* structure for precomputed multiples of the generator */
82 typedef struct ec_pre_comp_st {
83 	const EC_GROUP *group;	/* parent EC_GROUP object */
84 	size_t blocksize;	/* block size for wNAF splitting */
85 	size_t numblocks;	/* max. number of blocks for which we have
86 				 * precomputation */
87 	size_t w;		/* window size */
88 	EC_POINT **points;	/* array with pre-calculated multiples of
89 				 * generator: 'num' pointers to EC_POINT
90 				 * objects followed by a NULL */
91 	size_t num;		/* numblocks * 2^(w-1) */
92 	int references;
93 } EC_PRE_COMP;
94 
95 /* functions to manage EC_PRE_COMP within the EC_GROUP extra_data framework */
96 static void *ec_pre_comp_dup(void *);
97 static void ec_pre_comp_free(void *);
98 static void ec_pre_comp_clear_free(void *);
99 
100 static EC_PRE_COMP *
101 ec_pre_comp_new(const EC_GROUP *group)
102 {
103 	EC_PRE_COMP *ret = NULL;
104 
105 	if (!group)
106 		return NULL;
107 
108 	ret = malloc(sizeof(EC_PRE_COMP));
109 	if (!ret) {
110 		ECerror(ERR_R_MALLOC_FAILURE);
111 		return ret;
112 	}
113 	ret->group = group;
114 	ret->blocksize = 8;	/* default */
115 	ret->numblocks = 0;
116 	ret->w = 4;		/* default */
117 	ret->points = NULL;
118 	ret->num = 0;
119 	ret->references = 1;
120 	return ret;
121 }
122 
123 static void *
124 ec_pre_comp_dup(void *src_)
125 {
126 	EC_PRE_COMP *src = src_;
127 
128 	/* no need to actually copy, these objects never change! */
129 
130 	CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP);
131 
132 	return src_;
133 }
134 
135 static void
136 ec_pre_comp_free(void *pre_)
137 {
138 	int i;
139 	EC_PRE_COMP *pre = pre_;
140 
141 	if (!pre)
142 		return;
143 
144 	i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
145 	if (i > 0)
146 		return;
147 
148 	if (pre->points) {
149 		EC_POINT **p;
150 
151 		for (p = pre->points; *p != NULL; p++)
152 			EC_POINT_free(*p);
153 		free(pre->points);
154 	}
155 	free(pre);
156 }
157 
158 static void
159 ec_pre_comp_clear_free(void *pre_)
160 {
161 	int i;
162 	EC_PRE_COMP *pre = pre_;
163 
164 	if (!pre)
165 		return;
166 
167 	i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
168 	if (i > 0)
169 		return;
170 
171 	if (pre->points) {
172 		EC_POINT **p;
173 
174 		for (p = pre->points; *p != NULL; p++) {
175 			EC_POINT_free(*p);
176 			explicit_bzero(p, sizeof *p);
177 		}
178 		free(pre->points);
179 	}
180 	freezero(pre, sizeof *pre);
181 }
182 
183 
184 
185 
186 /* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
187  * This is an array  r[]  of values that are either zero or odd with an
188  * absolute value less than  2^w  satisfying
189  *     scalar = \sum_j r[j]*2^j
190  * where at most one of any  w+1  consecutive digits is non-zero
191  * with the exception that the most significant digit may be only
192  * w-1 zeros away from that next non-zero digit.
193  */
194 static signed char *
195 compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len)
196 {
197 	int window_val;
198 	int ok = 0;
199 	signed char *r = NULL;
200 	int sign = 1;
201 	int bit, next_bit, mask;
202 	size_t len = 0, j;
203 
204 	if (BN_is_zero(scalar)) {
205 		r = malloc(1);
206 		if (!r) {
207 			ECerror(ERR_R_MALLOC_FAILURE);
208 			goto err;
209 		}
210 		r[0] = 0;
211 		*ret_len = 1;
212 		return r;
213 	}
214 	if (w <= 0 || w > 7) {
215 		/* 'signed char' can represent integers with
216 		 * absolute values less than 2^7 */
217 		ECerror(ERR_R_INTERNAL_ERROR);
218 		goto err;
219 	}
220 	bit = 1 << w;		/* at most 128 */
221 	next_bit = bit << 1;	/* at most 256 */
222 	mask = next_bit - 1;	/* at most 255 */
223 
224 	if (BN_is_negative(scalar)) {
225 		sign = -1;
226 	}
227 	if (scalar->d == NULL || scalar->top == 0) {
228 		ECerror(ERR_R_INTERNAL_ERROR);
229 		goto err;
230 	}
231 	len = BN_num_bits(scalar);
232 	r = malloc(len + 1);	/* modified wNAF may be one digit longer than
233 				 * binary representation (*ret_len will be
234 				 * set to the actual length, i.e. at most
235 				 * BN_num_bits(scalar) + 1) */
236 	if (r == NULL) {
237 		ECerror(ERR_R_MALLOC_FAILURE);
238 		goto err;
239 	}
240 	window_val = scalar->d[0] & mask;
241 	j = 0;
242 	while ((window_val != 0) || (j + w + 1 < len)) {
243 		/* if j+w+1 >= len, window_val will not increase */
244 		int digit = 0;
245 
246 		/* 0 <= window_val <= 2^(w+1) */
247 		if (window_val & 1) {
248 			/* 0 < window_val < 2^(w+1) */
249 			if (window_val & bit) {
250 				digit = window_val - next_bit;	/* -2^w < digit < 0 */
251 
252 #if 1				/* modified wNAF */
253 				if (j + w + 1 >= len) {
254 					/*
255 					 * special case for generating
256 					 * modified wNAFs: no new bits will
257 					 * be added into window_val, so using
258 					 * a positive digit here will
259 					 * decrease the total length of the
260 					 * representation
261 					 */
262 
263 					digit = window_val & (mask >> 1);	/* 0 < digit < 2^w */
264 				}
265 #endif
266 			} else {
267 				digit = window_val;	/* 0 < digit < 2^w */
268 			}
269 
270 			if (digit <= -bit || digit >= bit || !(digit & 1)) {
271 				ECerror(ERR_R_INTERNAL_ERROR);
272 				goto err;
273 			}
274 			window_val -= digit;
275 
276 			/*
277 			 * now window_val is 0 or 2^(w+1) in standard wNAF
278 			 * generation; for modified window NAFs, it may also
279 			 * be 2^w
280 			 */
281 			if (window_val != 0 && window_val != next_bit && window_val != bit) {
282 				ECerror(ERR_R_INTERNAL_ERROR);
283 				goto err;
284 			}
285 		}
286 		r[j++] = sign * digit;
287 
288 		window_val >>= 1;
289 		window_val += bit * BN_is_bit_set(scalar, j + w);
290 
291 		if (window_val > next_bit) {
292 			ECerror(ERR_R_INTERNAL_ERROR);
293 			goto err;
294 		}
295 	}
296 
297 	if (j > len + 1) {
298 		ECerror(ERR_R_INTERNAL_ERROR);
299 		goto err;
300 	}
301 	len = j;
302 	ok = 1;
303 
304  err:
305 	if (!ok) {
306 		free(r);
307 		r = NULL;
308 	}
309 	if (ok)
310 		*ret_len = len;
311 	return r;
312 }
313 
314 
315 /* TODO: table should be optimised for the wNAF-based implementation,
316  *       sometimes smaller windows will give better performance
317  *       (thus the boundaries should be increased)
318  */
319 #define EC_window_bits_for_scalar_size(b) \
320 		((size_t) \
321 		 ((b) >= 2000 ? 6 : \
322 		  (b) >=  800 ? 5 : \
323 		  (b) >=  300 ? 4 : \
324 		  (b) >=   70 ? 3 : \
325 		  (b) >=   20 ? 2 : \
326 		  1))
327 
328 /* Compute
329  *      \sum scalars[i]*points[i],
330  * also including
331  *      scalar*generator
332  * in the addition if scalar != NULL
333  */
334 int
335 ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
336     size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx)
337 {
338 	const EC_POINT *generator = NULL;
339 	EC_POINT *tmp = NULL;
340 	size_t totalnum;
341 	size_t blocksize = 0, numblocks = 0;	/* for wNAF splitting */
342 	size_t pre_points_per_block = 0;
343 	size_t i, j;
344 	int k;
345 	int r_is_inverted = 0;
346 	int r_is_at_infinity = 1;
347 	size_t *wsize = NULL;	/* individual window sizes */
348 	signed char **wNAF = NULL;	/* individual wNAFs */
349 	signed char *tmp_wNAF = NULL;
350 	size_t *wNAF_len = NULL;
351 	size_t max_len = 0;
352 	size_t num_val;
353 	EC_POINT **val = NULL;	/* precomputation */
354 	EC_POINT **v;
355 	EC_POINT ***val_sub = NULL;	/* pointers to sub-arrays of 'val' or
356 					 * 'pre_comp->points' */
357 	const EC_PRE_COMP *pre_comp = NULL;
358 	int num_scalar = 0;	/* flag: will be set to 1 if 'scalar' must be
359 				 * treated like other scalars, i.e.
360 				 * precomputation is not available */
361 	int ret = 0;
362 
363 	if (group->meth != r->meth) {
364 		ECerror(EC_R_INCOMPATIBLE_OBJECTS);
365 		return 0;
366 	}
367 	if ((scalar == NULL) && (num == 0)) {
368 		return EC_POINT_set_to_infinity(group, r);
369 	}
370 	for (i = 0; i < num; i++) {
371 		if (group->meth != points[i]->meth) {
372 			ECerror(EC_R_INCOMPATIBLE_OBJECTS);
373 			return 0;
374 		}
375 	}
376 
377 	if (scalar != NULL) {
378 		generator = EC_GROUP_get0_generator(group);
379 		if (generator == NULL) {
380 			ECerror(EC_R_UNDEFINED_GENERATOR);
381 			goto err;
382 		}
383 		/* look if we can use precomputed multiples of generator */
384 
385 		pre_comp = EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free);
386 
387 		if (pre_comp && pre_comp->numblocks &&
388 		    (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) == 0)) {
389 			blocksize = pre_comp->blocksize;
390 
391 			/*
392 			 * determine maximum number of blocks that wNAF
393 			 * splitting may yield (NB: maximum wNAF length is
394 			 * bit length plus one)
395 			 */
396 			numblocks = (BN_num_bits(scalar) / blocksize) + 1;
397 
398 			/*
399 			 * we cannot use more blocks than we have
400 			 * precomputation for
401 			 */
402 			if (numblocks > pre_comp->numblocks)
403 				numblocks = pre_comp->numblocks;
404 
405 			pre_points_per_block = (size_t) 1 << (pre_comp->w - 1);
406 
407 			/* check that pre_comp looks sane */
408 			if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) {
409 				ECerror(ERR_R_INTERNAL_ERROR);
410 				goto err;
411 			}
412 		} else {
413 			/* can't use precomputation */
414 			pre_comp = NULL;
415 			numblocks = 1;
416 			num_scalar = 1;	/* treat 'scalar' like 'num'-th
417 					 * element of 'scalars' */
418 		}
419 	}
420 	totalnum = num + numblocks;
421 
422 	/* includes space for pivot */
423 	wNAF = reallocarray(NULL, (totalnum + 1), sizeof wNAF[0]);
424 	if (wNAF == NULL) {
425 		ECerror(ERR_R_MALLOC_FAILURE);
426 		goto err;
427 	}
428 
429 	wNAF[0] = NULL;		/* preliminary pivot */
430 
431 	wsize = reallocarray(NULL, totalnum, sizeof wsize[0]);
432 	wNAF_len = reallocarray(NULL, totalnum, sizeof wNAF_len[0]);
433 	val_sub = reallocarray(NULL, totalnum, sizeof val_sub[0]);
434 
435 	if (wsize == NULL || wNAF_len == NULL || val_sub == NULL) {
436 		ECerror(ERR_R_MALLOC_FAILURE);
437 		goto err;
438 	}
439 
440 	/* num_val will be the total number of temporarily precomputed points */
441 	num_val = 0;
442 
443 	for (i = 0; i < num + num_scalar; i++) {
444 		size_t bits;
445 
446 		bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
447 		wsize[i] = EC_window_bits_for_scalar_size(bits);
448 		num_val += (size_t) 1 << (wsize[i] - 1);
449 		wNAF[i + 1] = NULL;	/* make sure we always have a pivot */
450 		wNAF[i] = compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], &wNAF_len[i]);
451 		if (wNAF[i] == NULL)
452 			goto err;
453 		if (wNAF_len[i] > max_len)
454 			max_len = wNAF_len[i];
455 	}
456 
457 	if (numblocks) {
458 		/* we go here iff scalar != NULL */
459 
460 		if (pre_comp == NULL) {
461 			if (num_scalar != 1) {
462 				ECerror(ERR_R_INTERNAL_ERROR);
463 				goto err;
464 			}
465 			/* we have already generated a wNAF for 'scalar' */
466 		} else {
467 			size_t tmp_len = 0;
468 
469 			if (num_scalar != 0) {
470 				ECerror(ERR_R_INTERNAL_ERROR);
471 				goto err;
472 			}
473 			/*
474 			 * use the window size for which we have
475 			 * precomputation
476 			 */
477 			wsize[num] = pre_comp->w;
478 			tmp_wNAF = compute_wNAF(scalar, wsize[num], &tmp_len);
479 			if (tmp_wNAF == NULL)
480 				goto err;
481 
482 			if (tmp_len <= max_len) {
483 				/*
484 				 * One of the other wNAFs is at least as long
485 				 * as the wNAF belonging to the generator, so
486 				 * wNAF splitting will not buy us anything.
487 				 */
488 
489 				numblocks = 1;
490 				totalnum = num + 1;	/* don't use wNAF
491 							 * splitting */
492 				wNAF[num] = tmp_wNAF;
493 				tmp_wNAF = NULL;
494 				wNAF[num + 1] = NULL;
495 				wNAF_len[num] = tmp_len;
496 				if (tmp_len > max_len)
497 					max_len = tmp_len;
498 				/*
499 				 * pre_comp->points starts with the points
500 				 * that we need here:
501 				 */
502 				val_sub[num] = pre_comp->points;
503 			} else {
504 				/*
505 				 * don't include tmp_wNAF directly into wNAF
506 				 * array - use wNAF splitting and include the
507 				 * blocks
508 				 */
509 
510 				signed char *pp;
511 				EC_POINT **tmp_points;
512 
513 				if (tmp_len < numblocks * blocksize) {
514 					/*
515 					 * possibly we can do with fewer
516 					 * blocks than estimated
517 					 */
518 					numblocks = (tmp_len + blocksize - 1) / blocksize;
519 					if (numblocks > pre_comp->numblocks) {
520 						ECerror(ERR_R_INTERNAL_ERROR);
521 						goto err;
522 					}
523 					totalnum = num + numblocks;
524 				}
525 				/* split wNAF in 'numblocks' parts */
526 				pp = tmp_wNAF;
527 				tmp_points = pre_comp->points;
528 
529 				for (i = num; i < totalnum; i++) {
530 					if (i < totalnum - 1) {
531 						wNAF_len[i] = blocksize;
532 						if (tmp_len < blocksize) {
533 							ECerror(ERR_R_INTERNAL_ERROR);
534 							goto err;
535 						}
536 						tmp_len -= blocksize;
537 					} else
538 						/*
539 						 * last block gets whatever
540 						 * is left (this could be
541 						 * more or less than
542 						 * 'blocksize'!)
543 						 */
544 						wNAF_len[i] = tmp_len;
545 
546 					wNAF[i + 1] = NULL;
547 					wNAF[i] = malloc(wNAF_len[i]);
548 					if (wNAF[i] == NULL) {
549 						ECerror(ERR_R_MALLOC_FAILURE);
550 						goto err;
551 					}
552 					memcpy(wNAF[i], pp, wNAF_len[i]);
553 					if (wNAF_len[i] > max_len)
554 						max_len = wNAF_len[i];
555 
556 					if (*tmp_points == NULL) {
557 						ECerror(ERR_R_INTERNAL_ERROR);
558 						goto err;
559 					}
560 					val_sub[i] = tmp_points;
561 					tmp_points += pre_points_per_block;
562 					pp += blocksize;
563 				}
564 			}
565 		}
566 	}
567 	/*
568 	 * All points we precompute now go into a single array 'val'.
569 	 * 'val_sub[i]' is a pointer to the subarray for the i-th point, or
570 	 * to a subarray of 'pre_comp->points' if we already have
571 	 * precomputation.
572 	 */
573 	val = reallocarray(NULL, (num_val + 1), sizeof val[0]);
574 	if (val == NULL) {
575 		ECerror(ERR_R_MALLOC_FAILURE);
576 		goto err;
577 	}
578 	val[num_val] = NULL;	/* pivot element */
579 
580 	/* allocate points for precomputation */
581 	v = val;
582 	for (i = 0; i < num + num_scalar; i++) {
583 		val_sub[i] = v;
584 		for (j = 0; j < ((size_t) 1 << (wsize[i] - 1)); j++) {
585 			*v = EC_POINT_new(group);
586 			if (*v == NULL)
587 				goto err;
588 			v++;
589 		}
590 	}
591 	if (!(v == val + num_val)) {
592 		ECerror(ERR_R_INTERNAL_ERROR);
593 		goto err;
594 	}
595 	if (!(tmp = EC_POINT_new(group)))
596 		goto err;
597 
598 	/*
599 	 * prepare precomputed values: val_sub[i][0] :=     points[i]
600 	 * val_sub[i][1] := 3 * points[i] val_sub[i][2] := 5 * points[i] ...
601 	 */
602 	for (i = 0; i < num + num_scalar; i++) {
603 		if (i < num) {
604 			if (!EC_POINT_copy(val_sub[i][0], points[i]))
605 				goto err;
606 		} else {
607 			if (!EC_POINT_copy(val_sub[i][0], generator))
608 				goto err;
609 		}
610 
611 		if (wsize[i] > 1) {
612 			if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx))
613 				goto err;
614 			for (j = 1; j < ((size_t) 1 << (wsize[i] - 1)); j++) {
615 				if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx))
616 					goto err;
617 			}
618 		}
619 	}
620 
621 	if (!EC_POINTs_make_affine(group, num_val, val, ctx))
622 		goto err;
623 
624 	r_is_at_infinity = 1;
625 
626 	for (k = max_len - 1; k >= 0; k--) {
627 		if (!r_is_at_infinity) {
628 			if (!EC_POINT_dbl(group, r, r, ctx))
629 				goto err;
630 		}
631 		for (i = 0; i < totalnum; i++) {
632 			if (wNAF_len[i] > (size_t) k) {
633 				int digit = wNAF[i][k];
634 				int is_neg;
635 
636 				if (digit) {
637 					is_neg = digit < 0;
638 
639 					if (is_neg)
640 						digit = -digit;
641 
642 					if (is_neg != r_is_inverted) {
643 						if (!r_is_at_infinity) {
644 							if (!EC_POINT_invert(group, r, ctx))
645 								goto err;
646 						}
647 						r_is_inverted = !r_is_inverted;
648 					}
649 					/* digit > 0 */
650 
651 					if (r_is_at_infinity) {
652 						if (!EC_POINT_copy(r, val_sub[i][digit >> 1]))
653 							goto err;
654 						r_is_at_infinity = 0;
655 					} else {
656 						if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx))
657 							goto err;
658 					}
659 				}
660 			}
661 		}
662 	}
663 
664 	if (r_is_at_infinity) {
665 		if (!EC_POINT_set_to_infinity(group, r))
666 			goto err;
667 	} else {
668 		if (r_is_inverted)
669 			if (!EC_POINT_invert(group, r, ctx))
670 				goto err;
671 	}
672 
673 	ret = 1;
674 
675  err:
676 	EC_POINT_free(tmp);
677 	free(wsize);
678 	free(wNAF_len);
679 	free(tmp_wNAF);
680 	if (wNAF != NULL) {
681 		signed char **w;
682 
683 		for (w = wNAF; *w != NULL; w++)
684 			free(*w);
685 
686 		free(wNAF);
687 	}
688 	if (val != NULL) {
689 		for (v = val; *v != NULL; v++)
690 			EC_POINT_free(*v);
691 		free(val);
692 	}
693 	free(val_sub);
694 	return ret;
695 }
696 
697 
698 /* ec_wNAF_precompute_mult()
699  * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
700  * for use with wNAF splitting as implemented in ec_wNAF_mul().
701  *
702  * 'pre_comp->points' is an array of multiples of the generator
703  * of the following form:
704  * points[0] =     generator;
705  * points[1] = 3 * generator;
706  * ...
707  * points[2^(w-1)-1] =     (2^(w-1)-1) * generator;
708  * points[2^(w-1)]   =     2^blocksize * generator;
709  * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
710  * ...
711  * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) *  2^(blocksize*(numblocks-2)) * generator
712  * points[2^(w-1)*(numblocks-1)]   =              2^(blocksize*(numblocks-1)) * generator
713  * ...
714  * points[2^(w-1)*numblocks-1]     = (2^(w-1)) *  2^(blocksize*(numblocks-1)) * generator
715  * points[2^(w-1)*numblocks]       = NULL
716  */
717 int
718 ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
719 {
720 	const EC_POINT *generator;
721 	EC_POINT *tmp_point = NULL, *base = NULL, **var;
722 	BIGNUM *order;
723 	size_t i, bits, w, pre_points_per_block, blocksize, numblocks,
724 	 num;
725 	EC_POINT **points = NULL;
726 	EC_PRE_COMP *pre_comp;
727 	int ret = 0;
728 
729 	/* if there is an old EC_PRE_COMP object, throw it away */
730 	EC_EX_DATA_free_data(&group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free);
731 
732 	if ((pre_comp = ec_pre_comp_new(group)) == NULL)
733 		return 0;
734 
735 	generator = EC_GROUP_get0_generator(group);
736 	if (generator == NULL) {
737 		ECerror(EC_R_UNDEFINED_GENERATOR);
738 		goto err;
739 	}
740 
741 	BN_CTX_start(ctx);
742 
743 	if ((order = BN_CTX_get(ctx)) == NULL)
744 		goto err;
745 
746 	if (!EC_GROUP_get_order(group, order, ctx))
747 		goto err;
748 	if (BN_is_zero(order)) {
749 		ECerror(EC_R_UNKNOWN_ORDER);
750 		goto err;
751 	}
752 	bits = BN_num_bits(order);
753 	/*
754 	 * The following parameters mean we precompute (approximately) one
755 	 * point per bit.
756 	 *
757 	 * TBD: The combination  8, 4  is perfect for 160 bits; for other bit
758 	 * lengths, other parameter combinations might provide better
759 	 * efficiency.
760 	 */
761 	blocksize = 8;
762 	w = 4;
763 	if (EC_window_bits_for_scalar_size(bits) > w) {
764 		/* let's not make the window too small ... */
765 		w = EC_window_bits_for_scalar_size(bits);
766 	}
767 	numblocks = (bits + blocksize - 1) / blocksize;	/* max. number of blocks
768 							 * to use for wNAF
769 							 * splitting */
770 
771 	pre_points_per_block = (size_t) 1 << (w - 1);
772 	num = pre_points_per_block * numblocks;	/* number of points to
773 						 * compute and store */
774 
775 	points = reallocarray(NULL, (num + 1), sizeof(EC_POINT *));
776 	if (!points) {
777 		ECerror(ERR_R_MALLOC_FAILURE);
778 		goto err;
779 	}
780 	var = points;
781 	var[num] = NULL;	/* pivot */
782 	for (i = 0; i < num; i++) {
783 		if ((var[i] = EC_POINT_new(group)) == NULL) {
784 			ECerror(ERR_R_MALLOC_FAILURE);
785 			goto err;
786 		}
787 	}
788 
789 	if (!(tmp_point = EC_POINT_new(group)) || !(base = EC_POINT_new(group))) {
790 		ECerror(ERR_R_MALLOC_FAILURE);
791 		goto err;
792 	}
793 	if (!EC_POINT_copy(base, generator))
794 		goto err;
795 
796 	/* do the precomputation */
797 	for (i = 0; i < numblocks; i++) {
798 		size_t j;
799 
800 		if (!EC_POINT_dbl(group, tmp_point, base, ctx))
801 			goto err;
802 
803 		if (!EC_POINT_copy(*var++, base))
804 			goto err;
805 
806 		for (j = 1; j < pre_points_per_block; j++, var++) {
807 			/* calculate odd multiples of the current base point */
808 			if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
809 				goto err;
810 		}
811 
812 		if (i < numblocks - 1) {
813 			/*
814 			 * get the next base (multiply current one by
815 			 * 2^blocksize)
816 			 */
817 			size_t k;
818 
819 			if (blocksize <= 2) {
820 				ECerror(ERR_R_INTERNAL_ERROR);
821 				goto err;
822 			}
823 			if (!EC_POINT_dbl(group, base, tmp_point, ctx))
824 				goto err;
825 			for (k = 2; k < blocksize; k++) {
826 				if (!EC_POINT_dbl(group, base, base, ctx))
827 					goto err;
828 			}
829 		}
830 	}
831 
832 	if (!EC_POINTs_make_affine(group, num, points, ctx))
833 		goto err;
834 
835 	pre_comp->group = group;
836 	pre_comp->blocksize = blocksize;
837 	pre_comp->numblocks = numblocks;
838 	pre_comp->w = w;
839 	pre_comp->points = points;
840 	points = NULL;
841 	pre_comp->num = num;
842 
843 	if (!EC_EX_DATA_set_data(&group->extra_data, pre_comp,
844 		ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free))
845 		goto err;
846 	pre_comp = NULL;
847 
848 	ret = 1;
849 
850  err:
851 	BN_CTX_end(ctx);
852 	ec_pre_comp_free(pre_comp);
853 	if (points) {
854 		EC_POINT **p;
855 
856 		for (p = points; *p != NULL; p++)
857 			EC_POINT_free(*p);
858 		free(points);
859 	}
860 	EC_POINT_free(tmp_point);
861 	EC_POINT_free(base);
862 	return ret;
863 }
864 
865 
866 int
867 ec_wNAF_have_precompute_mult(const EC_GROUP *group)
868 {
869 	if (EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free) != NULL)
870 		return 1;
871 	else
872 		return 0;
873 }
874