xref: /openbsd-src/lib/libcrypto/ec/ec_mult.c (revision 8500990981f885cbe5e6a4958549cacc238b5ae6)
1 /* crypto/ec/ec_mult.c */
2 /* ====================================================================
3  * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  *
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in
14  *    the documentation and/or other materials provided with the
15  *    distribution.
16  *
17  * 3. All advertising materials mentioning features or use of this
18  *    software must display the following acknowledgment:
19  *    "This product includes software developed by the OpenSSL Project
20  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21  *
22  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23  *    endorse or promote products derived from this software without
24  *    prior written permission. For written permission, please contact
25  *    openssl-core@openssl.org.
26  *
27  * 5. Products derived from this software may not be called "OpenSSL"
28  *    nor may "OpenSSL" appear in their names without prior written
29  *    permission of the OpenSSL Project.
30  *
31  * 6. Redistributions of any form whatsoever must retain the following
32  *    acknowledgment:
33  *    "This product includes software developed by the OpenSSL Project
34  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35  *
36  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
40  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47  * OF THE POSSIBILITY OF SUCH DAMAGE.
48  * ====================================================================
49  *
50  * This product includes cryptographic software written by Eric Young
51  * (eay@cryptsoft.com).  This product includes software written by Tim
52  * Hudson (tjh@cryptsoft.com).
53  *
54  */
55 
56 #include <openssl/err.h>
57 
58 #include "ec_lcl.h"
59 
60 
61 /* TODO: optional precomputation of multiples of the generator */
62 
63 
64 
65 /*
66  * wNAF-based interleaving multi-exponentation method
67  * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>)
68  */
69 
70 
71 /* Determine the width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
72  * This is an array  r[]  of values that are either zero or odd with an
73  * absolute value less than  2^w  satisfying
74  *     scalar = \sum_j r[j]*2^j
75  * where at most one of any  w+1  consecutive digits is non-zero.
76  */
77 static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len, BN_CTX *ctx)
78 	{
79 	BIGNUM *c;
80 	int ok = 0;
81 	signed char *r = NULL;
82 	int sign = 1;
83 	int bit, next_bit, mask;
84 	size_t len = 0, j;
85 
86 	BN_CTX_start(ctx);
87 	c = BN_CTX_get(ctx);
88 	if (c == NULL) goto err;
89 
90 	if (w <= 0 || w > 7) /* 'signed char' can represent integers with absolute values less than 2^7 */
91 		{
92 		ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
93 		goto err;
94 		}
95 	bit = 1 << w; /* at most 128 */
96 	next_bit = bit << 1; /* at most 256 */
97 	mask = next_bit - 1; /* at most 255 */
98 
99 	if (!BN_copy(c, scalar)) goto err;
100 	if (c->neg)
101 		{
102 		sign = -1;
103 		c->neg = 0;
104 		}
105 
106 	len = BN_num_bits(c) + 1; /* wNAF may be one digit longer than binary representation */
107 	r = OPENSSL_malloc(len);
108 	if (r == NULL) goto err;
109 
110 	j = 0;
111 	while (!BN_is_zero(c))
112 		{
113 		int u = 0;
114 
115 		if (BN_is_odd(c))
116 			{
117 			if (c->d == NULL || c->top == 0)
118 				{
119 				ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
120 				goto err;
121 				}
122 			u = c->d[0] & mask;
123 			if (u & bit)
124 				{
125 				u -= next_bit;
126 				/* u < 0 */
127 				if (!BN_add_word(c, -u)) goto err;
128 				}
129 			else
130 				{
131 				/* u > 0 */
132 				if (!BN_sub_word(c, u)) goto err;
133 				}
134 
135 			if (u <= -bit || u >= bit || !(u & 1) || c->neg)
136 				{
137 				ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
138 				goto err;
139 				}
140 			}
141 
142 		r[j++] = sign * u;
143 
144 		if (BN_is_odd(c))
145 			{
146 			ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
147 			goto err;
148 			}
149 		if (!BN_rshift1(c, c)) goto err;
150 		}
151 
152 	if (j > len)
153 		{
154 		ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
155 		goto err;
156 		}
157 	len = j;
158 	ok = 1;
159 
160  err:
161 	BN_CTX_end(ctx);
162 	if (!ok)
163 		{
164 		OPENSSL_free(r);
165 		r = NULL;
166 		}
167 	if (ok)
168 		*ret_len = len;
169 	return r;
170 	}
171 
172 
173 /* TODO: table should be optimised for the wNAF-based implementation,
174  *       sometimes smaller windows will give better performance
175  *       (thus the boundaries should be increased)
176  */
177 #define EC_window_bits_for_scalar_size(b) \
178 		((size_t) \
179 		 ((b) >= 2000 ? 6 : \
180 		  (b) >=  800 ? 5 : \
181 		  (b) >=  300 ? 4 : \
182 		  (b) >=   70 ? 3 : \
183 		  (b) >=   20 ? 2 : \
184 		   1))
185 
186 /* Compute
187  *      \sum scalars[i]*points[i],
188  * also including
189  *      scalar*generator
190  * in the addition if scalar != NULL
191  */
192 int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
193 	size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx)
194 	{
195 	BN_CTX *new_ctx = NULL;
196 	EC_POINT *generator = NULL;
197 	EC_POINT *tmp = NULL;
198 	size_t totalnum;
199 	size_t i, j;
200 	int k;
201 	int r_is_inverted = 0;
202 	int r_is_at_infinity = 1;
203 	size_t *wsize = NULL; /* individual window sizes */
204 	signed char **wNAF = NULL; /* individual wNAFs */
205 	size_t *wNAF_len = NULL;
206 	size_t max_len = 0;
207 	size_t num_val;
208 	EC_POINT **val = NULL; /* precomputation */
209 	EC_POINT **v;
210 	EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' */
211 	int ret = 0;
212 
213 	if (group->meth != r->meth)
214 		{
215 		ECerr(EC_F_EC_POINTS_MUL, EC_R_INCOMPATIBLE_OBJECTS);
216 		return 0;
217 		}
218 
219 	if ((scalar == NULL) && (num == 0))
220 		{
221 		return EC_POINT_set_to_infinity(group, r);
222 		}
223 
224 	if (scalar != NULL)
225 		{
226 		generator = EC_GROUP_get0_generator(group);
227 		if (generator == NULL)
228 			{
229 			ECerr(EC_F_EC_POINTS_MUL, EC_R_UNDEFINED_GENERATOR);
230 			return 0;
231 			}
232 		}
233 
234 	for (i = 0; i < num; i++)
235 		{
236 		if (group->meth != points[i]->meth)
237 			{
238 			ECerr(EC_F_EC_POINTS_MUL, EC_R_INCOMPATIBLE_OBJECTS);
239 			return 0;
240 			}
241 		}
242 
243 	totalnum = num + (scalar != NULL);
244 
245 	wsize = OPENSSL_malloc(totalnum * sizeof wsize[0]);
246 	wNAF_len = OPENSSL_malloc(totalnum * sizeof wNAF_len[0]);
247 	wNAF = OPENSSL_malloc((totalnum + 1) * sizeof wNAF[0]);
248 	if (wNAF != NULL)
249 		{
250 		wNAF[0] = NULL; /* preliminary pivot */
251 		}
252 	if (wsize == NULL || wNAF_len == NULL || wNAF == NULL) goto err;
253 
254 	/* num_val := total number of points to precompute */
255 	num_val = 0;
256 	for (i = 0; i < totalnum; i++)
257 		{
258 		size_t bits;
259 
260 		bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
261 		wsize[i] = EC_window_bits_for_scalar_size(bits);
262 		num_val += 1u << (wsize[i] - 1);
263 		}
264 
265 	/* all precomputed points go into a single array 'val',
266 	 * 'val_sub[i]' is a pointer to the subarray for the i-th point */
267 	val = OPENSSL_malloc((num_val + 1) * sizeof val[0]);
268 	if (val == NULL) goto err;
269 	val[num_val] = NULL; /* pivot element */
270 
271 	val_sub = OPENSSL_malloc(totalnum * sizeof val_sub[0]);
272 	if (val_sub == NULL) goto err;
273 
274 	/* allocate points for precomputation */
275 	v = val;
276 	for (i = 0; i < totalnum; i++)
277 		{
278 		val_sub[i] = v;
279 		for (j = 0; j < (1u << (wsize[i] - 1)); j++)
280 			{
281 			*v = EC_POINT_new(group);
282 			if (*v == NULL) goto err;
283 			v++;
284 			}
285 		}
286 	if (!(v == val + num_val))
287 		{
288 		ECerr(EC_F_EC_POINTS_MUL, ERR_R_INTERNAL_ERROR);
289 		goto err;
290 		}
291 
292 	if (ctx == NULL)
293 		{
294 		ctx = new_ctx = BN_CTX_new();
295 		if (ctx == NULL)
296 			goto err;
297 		}
298 
299 	tmp = EC_POINT_new(group);
300 	if (tmp == NULL) goto err;
301 
302 	/* prepare precomputed values:
303 	 *    val_sub[i][0] :=     points[i]
304 	 *    val_sub[i][1] := 3 * points[i]
305 	 *    val_sub[i][2] := 5 * points[i]
306 	 *    ...
307 	 */
308 	for (i = 0; i < totalnum; i++)
309 		{
310 		if (i < num)
311 			{
312 			if (!EC_POINT_copy(val_sub[i][0], points[i])) goto err;
313 			}
314 		else
315 			{
316 			if (!EC_POINT_copy(val_sub[i][0], generator)) goto err;
317 			}
318 
319 		if (wsize[i] > 1)
320 			{
321 			if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) goto err;
322 			for (j = 1; j < (1u << (wsize[i] - 1)); j++)
323 				{
324 				if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) goto err;
325 				}
326 			}
327 
328 		wNAF[i + 1] = NULL; /* make sure we always have a pivot */
329 		wNAF[i] = compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], &wNAF_len[i], ctx);
330 		if (wNAF[i] == NULL) goto err;
331 		if (wNAF_len[i] > max_len)
332 			max_len = wNAF_len[i];
333 		}
334 
335 #if 1 /* optional; EC_window_bits_for_scalar_size assumes we do this step */
336 	if (!EC_POINTs_make_affine(group, num_val, val, ctx)) goto err;
337 #endif
338 
339 	r_is_at_infinity = 1;
340 
341 	for (k = max_len - 1; k >= 0; k--)
342 		{
343 		if (!r_is_at_infinity)
344 			{
345 			if (!EC_POINT_dbl(group, r, r, ctx)) goto err;
346 			}
347 
348 		for (i = 0; i < totalnum; i++)
349 			{
350 			if (wNAF_len[i] > (size_t)k)
351 				{
352 				int digit = wNAF[i][k];
353 				int is_neg;
354 
355 				if (digit)
356 					{
357 					is_neg = digit < 0;
358 
359 					if (is_neg)
360 						digit = -digit;
361 
362 					if (is_neg != r_is_inverted)
363 						{
364 						if (!r_is_at_infinity)
365 							{
366 							if (!EC_POINT_invert(group, r, ctx)) goto err;
367 							}
368 						r_is_inverted = !r_is_inverted;
369 						}
370 
371 					/* digit > 0 */
372 
373 					if (r_is_at_infinity)
374 						{
375 						if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) goto err;
376 						r_is_at_infinity = 0;
377 						}
378 					else
379 						{
380 						if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) goto err;
381 						}
382 					}
383 				}
384 			}
385 		}
386 
387 	if (r_is_at_infinity)
388 		{
389 		if (!EC_POINT_set_to_infinity(group, r)) goto err;
390 		}
391 	else
392 		{
393 		if (r_is_inverted)
394 			if (!EC_POINT_invert(group, r, ctx)) goto err;
395 		}
396 
397 	ret = 1;
398 
399  err:
400 	if (new_ctx != NULL)
401 		BN_CTX_free(new_ctx);
402 	if (tmp != NULL)
403 		EC_POINT_free(tmp);
404 	if (wsize != NULL)
405 		OPENSSL_free(wsize);
406 	if (wNAF_len != NULL)
407 		OPENSSL_free(wNAF_len);
408 	if (wNAF != NULL)
409 		{
410 		signed char **w;
411 
412 		for (w = wNAF; *w != NULL; w++)
413 			OPENSSL_free(*w);
414 
415 		OPENSSL_free(wNAF);
416 		}
417 	if (val != NULL)
418 		{
419 		for (v = val; *v != NULL; v++)
420 			EC_POINT_clear_free(*v);
421 
422 		OPENSSL_free(val);
423 		}
424 	if (val_sub != NULL)
425 		{
426 		OPENSSL_free(val_sub);
427 		}
428 	return ret;
429 	}
430 
431 
432 int EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar, const EC_POINT *point, const BIGNUM *p_scalar, BN_CTX *ctx)
433 	{
434 	const EC_POINT *points[1];
435 	const BIGNUM *scalars[1];
436 
437 	points[0] = point;
438 	scalars[0] = p_scalar;
439 
440 	return EC_POINTs_mul(group, r, g_scalar, (point != NULL && p_scalar != NULL), points, scalars, ctx);
441 	}
442 
443 
444 int EC_GROUP_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
445 	{
446 	const EC_POINT *generator;
447 	BN_CTX *new_ctx = NULL;
448 	BIGNUM *order;
449 	int ret = 0;
450 
451 	generator = EC_GROUP_get0_generator(group);
452 	if (generator == NULL)
453 		{
454 		ECerr(EC_F_EC_GROUP_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
455 		return 0;
456 		}
457 
458 	if (ctx == NULL)
459 		{
460 		ctx = new_ctx = BN_CTX_new();
461 		if (ctx == NULL)
462 			return 0;
463 		}
464 
465 	BN_CTX_start(ctx);
466 	order = BN_CTX_get(ctx);
467 	if (order == NULL) goto err;
468 
469 	if (!EC_GROUP_get_order(group, order, ctx)) return 0;
470 	if (BN_is_zero(order))
471 		{
472 		ECerr(EC_F_EC_GROUP_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
473 		goto err;
474 		}
475 
476 	/* TODO */
477 
478 	ret = 1;
479 
480  err:
481 	BN_CTX_end(ctx);
482 	if (new_ctx != NULL)
483 		BN_CTX_free(new_ctx);
484 	return ret;
485 	}
486