xref: /openbsd-src/lib/libcrypto/bn/bn_prime.c (revision b2ea75c1b17e1a9a339660e7ed45cd24946b230e)
1 /* crypto/bn/bn_prime.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3  * All rights reserved.
4  *
5  * This package is an SSL implementation written
6  * by Eric Young (eay@cryptsoft.com).
7  * The implementation was written so as to conform with Netscapes SSL.
8  *
9  * This library is free for commercial and non-commercial use as long as
10  * the following conditions are aheared to.  The following conditions
11  * apply to all code found in this distribution, be it the RC4, RSA,
12  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13  * included with this distribution is covered by the same copyright terms
14  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15  *
16  * Copyright remains Eric Young's, and as such any Copyright notices in
17  * the code are not to be removed.
18  * If this package is used in a product, Eric Young should be given attribution
19  * as the author of the parts of the library used.
20  * This can be in the form of a textual message at program startup or
21  * in documentation (online or textual) provided with the package.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 3. All advertising materials mentioning features or use of this software
32  *    must display the following acknowledgement:
33  *    "This product includes cryptographic software written by
34  *     Eric Young (eay@cryptsoft.com)"
35  *    The word 'cryptographic' can be left out if the rouines from the library
36  *    being used are not cryptographic related :-).
37  * 4. If you include any Windows specific code (or a derivative thereof) from
38  *    the apps directory (application code) you must include an acknowledgement:
39  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40  *
41  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  *
53  * The licence and distribution terms for any publically available version or
54  * derivative of this code cannot be changed.  i.e. this code cannot simply be
55  * copied and put under another distribution licence
56  * [including the GNU Public Licence.]
57  */
58 /* ====================================================================
59  * Copyright (c) 1998-2000 The OpenSSL Project.  All rights reserved.
60  *
61  * Redistribution and use in source and binary forms, with or without
62  * modification, are permitted provided that the following conditions
63  * are met:
64  *
65  * 1. Redistributions of source code must retain the above copyright
66  *    notice, this list of conditions and the following disclaimer.
67  *
68  * 2. Redistributions in binary form must reproduce the above copyright
69  *    notice, this list of conditions and the following disclaimer in
70  *    the documentation and/or other materials provided with the
71  *    distribution.
72  *
73  * 3. All advertising materials mentioning features or use of this
74  *    software must display the following acknowledgment:
75  *    "This product includes software developed by the OpenSSL Project
76  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77  *
78  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79  *    endorse or promote products derived from this software without
80  *    prior written permission. For written permission, please contact
81  *    openssl-core@openssl.org.
82  *
83  * 5. Products derived from this software may not be called "OpenSSL"
84  *    nor may "OpenSSL" appear in their names without prior written
85  *    permission of the OpenSSL Project.
86  *
87  * 6. Redistributions of any form whatsoever must retain the following
88  *    acknowledgment:
89  *    "This product includes software developed by the OpenSSL Project
90  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91  *
92  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
96  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103  * OF THE POSSIBILITY OF SUCH DAMAGE.
104  * ====================================================================
105  *
106  * This product includes cryptographic software written by Eric Young
107  * (eay@cryptsoft.com).  This product includes software written by Tim
108  * Hudson (tjh@cryptsoft.com).
109  *
110  */
111 
112 #include <stdio.h>
113 #include <time.h>
114 #include "cryptlib.h"
115 #include "bn_lcl.h"
116 #include <openssl/rand.h>
117 
118 /* The quick sieve algorithm approach to weeding out primes is
119  * Philip Zimmermann's, as implemented in PGP.  I have had a read of
120  * his comments and implemented my own version.
121  */
122 #include "bn_prime.h"
123 
124 static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
125 	const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont);
126 static int probable_prime(BIGNUM *rnd, int bits);
127 static int probable_prime_dh(BIGNUM *rnd, int bits,
128 	BIGNUM *add, BIGNUM *rem, BN_CTX *ctx);
129 static int probable_prime_dh_safe(BIGNUM *rnd, int bits,
130 	BIGNUM *add, BIGNUM *rem, BN_CTX *ctx);
131 
132 BIGNUM *BN_generate_prime(BIGNUM *ret, int bits, int safe, BIGNUM *add,
133 	     BIGNUM *rem, void (*callback)(int,int,void *), void *cb_arg)
134 	{
135 	BIGNUM *rnd=NULL;
136 	BIGNUM t;
137 	int found=0;
138 	int i,j,c1=0;
139 	BN_CTX *ctx;
140 	int checks = BN_prime_checks_for_size(bits);
141 
142 	ctx=BN_CTX_new();
143 	if (ctx == NULL) goto err;
144 	if (ret == NULL)
145 		{
146 		if ((rnd=BN_new()) == NULL) goto err;
147 		}
148 	else
149 		rnd=ret;
150 	BN_init(&t);
151 loop:
152 	/* make a random number and set the top and bottom bits */
153 	if (add == NULL)
154 		{
155 		if (!probable_prime(rnd,bits)) goto err;
156 		}
157 	else
158 		{
159 		if (safe)
160 			{
161 			if (!probable_prime_dh_safe(rnd,bits,add,rem,ctx))
162 				 goto err;
163 			}
164 		else
165 			{
166 			if (!probable_prime_dh(rnd,bits,add,rem,ctx))
167 				goto err;
168 			}
169 		}
170 	/* if (BN_mod_word(rnd,(BN_ULONG)3) == 1) goto loop; */
171 	if (callback != NULL) callback(0,c1++,cb_arg);
172 
173 	if (!safe)
174 		{
175 		i=BN_is_prime_fasttest(rnd,checks,callback,ctx,cb_arg,0);
176 		if (i == -1) goto err;
177 		if (i == 0) goto loop;
178 		}
179 	else
180 		{
181 		/* for "safe prime" generation,
182 		 * check that (p-1)/2 is prime.
183 		 * Since a prime is odd, We just
184 		 * need to divide by 2 */
185 		if (!BN_rshift1(&t,rnd)) goto err;
186 
187 		for (i=0; i<checks; i++)
188 			{
189 			j=BN_is_prime_fasttest(rnd,1,callback,ctx,cb_arg,0);
190 			if (j == -1) goto err;
191 			if (j == 0) goto loop;
192 
193 			j=BN_is_prime_fasttest(&t,1,callback,ctx,cb_arg,0);
194 			if (j == -1) goto err;
195 			if (j == 0) goto loop;
196 
197 			if (callback != NULL) callback(2,c1-1,cb_arg);
198 			/* We have a safe prime test pass */
199 			}
200 		}
201 	/* we have a prime :-) */
202 	found = 1;
203 err:
204 	if (!found && (ret == NULL) && (rnd != NULL)) BN_free(rnd);
205 	BN_free(&t);
206 	if (ctx != NULL) BN_CTX_free(ctx);
207 	return(found ? rnd : NULL);
208 	}
209 
210 int BN_is_prime(const BIGNUM *a, int checks, void (*callback)(int,int,void *),
211 	BN_CTX *ctx_passed, void *cb_arg)
212 	{
213 	return BN_is_prime_fasttest(a, checks, callback, ctx_passed, cb_arg, 0);
214 	}
215 
216 int BN_is_prime_fasttest(const BIGNUM *a, int checks,
217 		void (*callback)(int,int,void *),
218 		BN_CTX *ctx_passed, void *cb_arg,
219 		int do_trial_division)
220 	{
221 	int i, j, ret = -1;
222 	int k;
223 	BN_CTX *ctx = NULL;
224 	BIGNUM *A1, *A1_odd, *check; /* taken from ctx */
225 	BN_MONT_CTX *mont = NULL;
226 	const BIGNUM *A = NULL;
227 
228 	if (checks == BN_prime_checks)
229 		checks = BN_prime_checks_for_size(BN_num_bits(a));
230 
231 	/* first look for small factors */
232 	if (!BN_is_odd(a))
233 		return(0);
234 	if (do_trial_division)
235 		{
236 		for (i = 1; i < NUMPRIMES; i++)
237 			if (BN_mod_word(a, primes[i]) == 0)
238 				return 0;
239 		if (callback != NULL) callback(1, -1, cb_arg);
240 		}
241 
242 	if (ctx_passed != NULL)
243 		ctx = ctx_passed;
244 	else
245 		if ((ctx=BN_CTX_new()) == NULL)
246 			goto err;
247 	BN_CTX_start(ctx);
248 
249 	/* A := abs(a) */
250 	if (a->neg)
251 		{
252 		BIGNUM *t;
253 		if ((t = BN_CTX_get(ctx)) == NULL) goto err;
254 		BN_copy(t, a);
255 		t->neg = 0;
256 		A = t;
257 		}
258 	else
259 		A = a;
260 	A1 = BN_CTX_get(ctx);
261 	A1_odd = BN_CTX_get(ctx);
262 	check = BN_CTX_get(ctx);
263 	if (check == NULL) goto err;
264 
265 	/* compute A1 := A - 1 */
266 	if (!BN_copy(A1, A))
267 		goto err;
268 	if (!BN_sub_word(A1, 1))
269 		goto err;
270 	if (BN_is_zero(A1))
271 		{
272 		ret = 0;
273 		goto err;
274 		}
275 
276 	/* write  A1  as  A1_odd * 2^k */
277 	k = 1;
278 	while (!BN_is_bit_set(A1, k))
279 		k++;
280 	if (!BN_rshift(A1_odd, A1, k))
281 		goto err;
282 
283 	/* Montgomery setup for computations mod A */
284 	mont = BN_MONT_CTX_new();
285 	if (mont == NULL)
286 		goto err;
287 	if (!BN_MONT_CTX_set(mont, A, ctx))
288 		goto err;
289 
290 	for (i = 0; i < checks; i++)
291 		{
292 		if (!BN_pseudo_rand(check, BN_num_bits(A1), 0, 0))
293 			goto err;
294 		if (BN_cmp(check, A1) >= 0)
295 			if (!BN_sub(check, check, A1))
296 				goto err;
297 		if (!BN_add_word(check, 1))
298 			goto err;
299 		/* now 1 <= check < A */
300 
301 		j = witness(check, A, A1, A1_odd, k, ctx, mont);
302 		if (j == -1) goto err;
303 		if (j)
304 			{
305 			ret=0;
306 			goto err;
307 			}
308 		if (callback != NULL) callback(1,i,cb_arg);
309 		}
310 	ret=1;
311 err:
312 	if (ctx != NULL)
313 		{
314 		BN_CTX_end(ctx);
315 		if (ctx_passed == NULL)
316 			BN_CTX_free(ctx);
317 		}
318 	if (mont != NULL)
319 		BN_MONT_CTX_free(mont);
320 
321 	return(ret);
322 	}
323 
324 static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
325 	const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont)
326 	{
327 	if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) /* w := w^a1_odd mod a */
328 		return -1;
329 	if (BN_is_one(w))
330 		return 0; /* probably prime */
331 	if (BN_cmp(w, a1) == 0)
332 		return 0; /* w == -1 (mod a),  'a' is probably prime */
333 	while (--k)
334 		{
335 		if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */
336 			return -1;
337 		if (BN_is_one(w))
338 			return 1; /* 'a' is composite, otherwise a previous 'w' would
339 			           * have been == -1 (mod 'a') */
340 		if (BN_cmp(w, a1) == 0)
341 			return 0; /* w == -1 (mod a), 'a' is probably prime */
342 		}
343 	/* If we get here, 'w' is the (a-1)/2-th power of the original 'w',
344 	 * and it is neither -1 nor +1 -- so 'a' cannot be prime */
345 	return 1;
346 	}
347 
348 static int probable_prime(BIGNUM *rnd, int bits)
349 	{
350 	int i;
351 	BN_ULONG mods[NUMPRIMES];
352 	BN_ULONG delta,d;
353 
354 again:
355 	if (!BN_rand(rnd,bits,1,1)) return(0);
356 	/* we now have a random number 'rand' to test. */
357 	for (i=1; i<NUMPRIMES; i++)
358 		mods[i]=BN_mod_word(rnd,(BN_ULONG)primes[i]);
359 	delta=0;
360 	loop: for (i=1; i<NUMPRIMES; i++)
361 		{
362 		/* check that rnd is not a prime and also
363 		 * that gcd(rnd-1,primes) == 1 (except for 2) */
364 		if (((mods[i]+delta)%primes[i]) <= 1)
365 			{
366 			d=delta;
367 			delta+=2;
368 			/* perhaps need to check for overflow of
369 			 * delta (but delta can be up to 2^32)
370 			 * 21-May-98 eay - added overflow check */
371 			if (delta < d) goto again;
372 			goto loop;
373 			}
374 		}
375 	if (!BN_add_word(rnd,delta)) return(0);
376 	return(1);
377 	}
378 
379 static int probable_prime_dh(BIGNUM *rnd, int bits, BIGNUM *add, BIGNUM *rem,
380 	     BN_CTX *ctx)
381 	{
382 	int i,ret=0;
383 	BIGNUM *t1;
384 
385 	BN_CTX_start(ctx);
386 	if ((t1 = BN_CTX_get(ctx)) == NULL) goto err;
387 
388 	if (!BN_rand(rnd,bits,0,1)) goto err;
389 
390 	/* we need ((rnd-rem) % add) == 0 */
391 
392 	if (!BN_mod(t1,rnd,add,ctx)) goto err;
393 	if (!BN_sub(rnd,rnd,t1)) goto err;
394 	if (rem == NULL)
395 		{ if (!BN_add_word(rnd,1)) goto err; }
396 	else
397 		{ if (!BN_add(rnd,rnd,rem)) goto err; }
398 
399 	/* we now have a random number 'rand' to test. */
400 
401 	loop: for (i=1; i<NUMPRIMES; i++)
402 		{
403 		/* check that rnd is a prime */
404 		if (BN_mod_word(rnd,(BN_ULONG)primes[i]) <= 1)
405 			{
406 			if (!BN_add(rnd,rnd,add)) goto err;
407 			goto loop;
408 			}
409 		}
410 	ret=1;
411 err:
412 	BN_CTX_end(ctx);
413 	return(ret);
414 	}
415 
416 static int probable_prime_dh_safe(BIGNUM *p, int bits, BIGNUM *padd,
417 	     BIGNUM *rem, BN_CTX *ctx)
418 	{
419 	int i,ret=0;
420 	BIGNUM *t1,*qadd,*q;
421 
422 	bits--;
423 	BN_CTX_start(ctx);
424 	t1 = BN_CTX_get(ctx);
425 	q = BN_CTX_get(ctx);
426 	qadd = BN_CTX_get(ctx);
427 	if (qadd == NULL) goto err;
428 
429 	if (!BN_rshift1(qadd,padd)) goto err;
430 
431 	if (!BN_rand(q,bits,0,1)) goto err;
432 
433 	/* we need ((rnd-rem) % add) == 0 */
434 	if (!BN_mod(t1,q,qadd,ctx)) goto err;
435 	if (!BN_sub(q,q,t1)) goto err;
436 	if (rem == NULL)
437 		{ if (!BN_add_word(q,1)) goto err; }
438 	else
439 		{
440 		if (!BN_rshift1(t1,rem)) goto err;
441 		if (!BN_add(q,q,t1)) goto err;
442 		}
443 
444 	/* we now have a random number 'rand' to test. */
445 	if (!BN_lshift1(p,q)) goto err;
446 	if (!BN_add_word(p,1)) goto err;
447 
448 	loop: for (i=1; i<NUMPRIMES; i++)
449 		{
450 		/* check that p and q are prime */
451 		/* check that for p and q
452 		 * gcd(p-1,primes) == 1 (except for 2) */
453 		if (	(BN_mod_word(p,(BN_ULONG)primes[i]) == 0) ||
454 			(BN_mod_word(q,(BN_ULONG)primes[i]) == 0))
455 			{
456 			if (!BN_add(p,p,padd)) goto err;
457 			if (!BN_add(q,q,qadd)) goto err;
458 			goto loop;
459 			}
460 		}
461 	ret=1;
462 err:
463 	BN_CTX_end(ctx);
464 	return(ret);
465 	}
466