xref: /openbsd-src/lib/libcrypto/bn/bn_prime.c (revision 50b7afb2c2c0993b0894d4e34bf857cb13ed9c80)
1 /* $OpenBSD: bn_prime.c,v 1.11 2014/07/12 16:03:36 miod Exp $ */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3  * All rights reserved.
4  *
5  * This package is an SSL implementation written
6  * by Eric Young (eay@cryptsoft.com).
7  * The implementation was written so as to conform with Netscapes SSL.
8  *
9  * This library is free for commercial and non-commercial use as long as
10  * the following conditions are aheared to.  The following conditions
11  * apply to all code found in this distribution, be it the RC4, RSA,
12  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13  * included with this distribution is covered by the same copyright terms
14  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15  *
16  * Copyright remains Eric Young's, and as such any Copyright notices in
17  * the code are not to be removed.
18  * If this package is used in a product, Eric Young should be given attribution
19  * as the author of the parts of the library used.
20  * This can be in the form of a textual message at program startup or
21  * in documentation (online or textual) provided with the package.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 3. All advertising materials mentioning features or use of this software
32  *    must display the following acknowledgement:
33  *    "This product includes cryptographic software written by
34  *     Eric Young (eay@cryptsoft.com)"
35  *    The word 'cryptographic' can be left out if the rouines from the library
36  *    being used are not cryptographic related :-).
37  * 4. If you include any Windows specific code (or a derivative thereof) from
38  *    the apps directory (application code) you must include an acknowledgement:
39  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40  *
41  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  *
53  * The licence and distribution terms for any publically available version or
54  * derivative of this code cannot be changed.  i.e. this code cannot simply be
55  * copied and put under another distribution licence
56  * [including the GNU Public Licence.]
57  */
58 /* ====================================================================
59  * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
60  *
61  * Redistribution and use in source and binary forms, with or without
62  * modification, are permitted provided that the following conditions
63  * are met:
64  *
65  * 1. Redistributions of source code must retain the above copyright
66  *    notice, this list of conditions and the following disclaimer.
67  *
68  * 2. Redistributions in binary form must reproduce the above copyright
69  *    notice, this list of conditions and the following disclaimer in
70  *    the documentation and/or other materials provided with the
71  *    distribution.
72  *
73  * 3. All advertising materials mentioning features or use of this
74  *    software must display the following acknowledgment:
75  *    "This product includes software developed by the OpenSSL Project
76  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77  *
78  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79  *    endorse or promote products derived from this software without
80  *    prior written permission. For written permission, please contact
81  *    openssl-core@openssl.org.
82  *
83  * 5. Products derived from this software may not be called "OpenSSL"
84  *    nor may "OpenSSL" appear in their names without prior written
85  *    permission of the OpenSSL Project.
86  *
87  * 6. Redistributions of any form whatsoever must retain the following
88  *    acknowledgment:
89  *    "This product includes software developed by the OpenSSL Project
90  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91  *
92  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
96  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103  * OF THE POSSIBILITY OF SUCH DAMAGE.
104  * ====================================================================
105  *
106  * This product includes cryptographic software written by Eric Young
107  * (eay@cryptsoft.com).  This product includes software written by Tim
108  * Hudson (tjh@cryptsoft.com).
109  *
110  */
111 
112 #include <stdio.h>
113 #include <time.h>
114 
115 #include <openssl/rand.h>
116 
117 #include "bn_lcl.h"
118 
119 /* NB: these functions have been "upgraded", the deprecated versions (which are
120  * compatibility wrappers using these functions) are in bn_depr.c.
121  * - Geoff
122  */
123 
124 /* The quick sieve algorithm approach to weeding out primes is
125  * Philip Zimmermann's, as implemented in PGP.  I have had a read of
126  * his comments and implemented my own version.
127  */
128 #include "bn_prime.h"
129 
130 static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
131     const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont);
132 static int probable_prime(BIGNUM *rnd, int bits);
133 static int probable_prime_dh(BIGNUM *rnd, int bits,
134     const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx);
135 static int probable_prime_dh_safe(BIGNUM *rnd, int bits,
136     const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx);
137 
138 int
139 BN_GENCB_call(BN_GENCB *cb, int a, int b)
140 {
141 	/* No callback means continue */
142 	if (!cb)
143 		return 1;
144 	switch (cb->ver) {
145 	case 1:
146 		/* Deprecated-style callbacks */
147 		if (!cb->cb.cb_1)
148 			return 1;
149 		cb->cb.cb_1(a, b, cb->arg);
150 		return 1;
151 	case 2:
152 		/* New-style callbacks */
153 		return cb->cb.cb_2(a, b, cb);
154 	default:
155 		break;
156 	}
157 	/* Unrecognised callback type */
158 	return 0;
159 }
160 
161 int
162 BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, const BIGNUM *add,
163     const BIGNUM *rem, BN_GENCB *cb)
164 {
165 	BIGNUM *t;
166 	int found = 0;
167 	int i, j, c1 = 0;
168 	BN_CTX *ctx;
169 	int checks = BN_prime_checks_for_size(bits);
170 
171 	ctx = BN_CTX_new();
172 	if (ctx == NULL)
173 		goto err;
174 	BN_CTX_start(ctx);
175 	t = BN_CTX_get(ctx);
176 	if (!t)
177 		goto err;
178 loop:
179 	/* make a random number and set the top and bottom bits */
180 	if (add == NULL) {
181 		if (!probable_prime(ret, bits))
182 			goto err;
183 	} else {
184 		if (safe) {
185 			if (!probable_prime_dh_safe(ret, bits, add, rem, ctx))
186 				goto err;
187 		} else {
188 			if (!probable_prime_dh(ret, bits, add, rem, ctx))
189 				goto err;
190 		}
191 	}
192 	/* if (BN_mod_word(ret,(BN_ULONG)3) == 1) goto loop; */
193 	if (!BN_GENCB_call(cb, 0, c1++))
194 		/* aborted */
195 		goto err;
196 
197 	if (!safe) {
198 		i = BN_is_prime_fasttest_ex(ret, checks, ctx, 0, cb);
199 		if (i == -1)
200 			goto err;
201 		if (i == 0)
202 			goto loop;
203 	} else {
204 		/* for "safe prime" generation,
205 		 * check that (p-1)/2 is prime.
206 		 * Since a prime is odd, We just
207 		 * need to divide by 2 */
208 		if (!BN_rshift1(t, ret))
209 			goto err;
210 
211 		for (i = 0; i < checks; i++) {
212 			j = BN_is_prime_fasttest_ex(ret, 1, ctx, 0, cb);
213 			if (j == -1)
214 				goto err;
215 			if (j == 0)
216 				goto loop;
217 
218 			j = BN_is_prime_fasttest_ex(t, 1, ctx, 0, cb);
219 			if (j == -1)
220 				goto err;
221 			if (j == 0)
222 				goto loop;
223 
224 			if (!BN_GENCB_call(cb, 2, c1 - 1))
225 				goto err;
226 			/* We have a safe prime test pass */
227 		}
228 	}
229 	/* we have a prime :-) */
230 	found = 1;
231 
232 err:
233 	if (ctx != NULL) {
234 		BN_CTX_end(ctx);
235 		BN_CTX_free(ctx);
236 	}
237 	bn_check_top(ret);
238 	return found;
239 }
240 
241 int
242 BN_is_prime_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed, BN_GENCB *cb)
243 {
244 	return BN_is_prime_fasttest_ex(a, checks, ctx_passed, 0, cb);
245 }
246 
247 int
248 BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
249     int do_trial_division, BN_GENCB *cb)
250 {
251 	int i, j, ret = -1;
252 	int k;
253 	BN_CTX *ctx = NULL;
254 	BIGNUM *A1, *A1_odd, *check; /* taken from ctx */
255 	BN_MONT_CTX *mont = NULL;
256 	const BIGNUM *A = NULL;
257 
258 	if (BN_cmp(a, BN_value_one()) <= 0)
259 		return 0;
260 
261 	if (checks == BN_prime_checks)
262 		checks = BN_prime_checks_for_size(BN_num_bits(a));
263 
264 	/* first look for small factors */
265 	if (!BN_is_odd(a))
266 		/* a is even => a is prime if and only if a == 2 */
267 		return BN_is_word(a, 2);
268 	if (do_trial_division) {
269 		for (i = 1; i < NUMPRIMES; i++)
270 			if (BN_mod_word(a, primes[i]) == 0)
271 				return 0;
272 		if (!BN_GENCB_call(cb, 1, -1))
273 			goto err;
274 	}
275 
276 	if (ctx_passed != NULL)
277 		ctx = ctx_passed;
278 	else if ((ctx = BN_CTX_new()) == NULL)
279 		goto err;
280 	BN_CTX_start(ctx);
281 
282 	/* A := abs(a) */
283 	if (a->neg) {
284 		BIGNUM *t;
285 		if ((t = BN_CTX_get(ctx)) == NULL)
286 			goto err;
287 		BN_copy(t, a);
288 		t->neg = 0;
289 		A = t;
290 	} else
291 		A = a;
292 	A1 = BN_CTX_get(ctx);
293 	A1_odd = BN_CTX_get(ctx);
294 	check = BN_CTX_get(ctx);
295 	if (check == NULL)
296 		goto err;
297 
298 	/* compute A1 := A - 1 */
299 	if (!BN_copy(A1, A))
300 		goto err;
301 	if (!BN_sub_word(A1, 1))
302 		goto err;
303 	if (BN_is_zero(A1)) {
304 		ret = 0;
305 		goto err;
306 	}
307 
308 	/* write  A1  as  A1_odd * 2^k */
309 	k = 1;
310 	while (!BN_is_bit_set(A1, k))
311 		k++;
312 	if (!BN_rshift(A1_odd, A1, k))
313 		goto err;
314 
315 	/* Montgomery setup for computations mod A */
316 	mont = BN_MONT_CTX_new();
317 	if (mont == NULL)
318 		goto err;
319 	if (!BN_MONT_CTX_set(mont, A, ctx))
320 		goto err;
321 
322 	for (i = 0; i < checks; i++) {
323 		if (!BN_pseudo_rand_range(check, A1))
324 			goto err;
325 		if (!BN_add_word(check, 1))
326 			goto err;
327 		/* now 1 <= check < A */
328 
329 		j = witness(check, A, A1, A1_odd, k, ctx, mont);
330 		if (j == -1)
331 			goto err;
332 		if (j) {
333 			ret = 0;
334 			goto err;
335 		}
336 		if (!BN_GENCB_call(cb, 1, i))
337 			goto err;
338 	}
339 	ret = 1;
340 
341 err:
342 	if (ctx != NULL) {
343 		BN_CTX_end(ctx);
344 		if (ctx_passed == NULL)
345 			BN_CTX_free(ctx);
346 	}
347 	BN_MONT_CTX_free(mont);
348 
349 	return (ret);
350 }
351 
352 static int
353 witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1, const BIGNUM *a1_odd,
354     int k, BN_CTX *ctx, BN_MONT_CTX *mont)
355 {
356 	if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont))
357 		/* w := w^a1_odd mod a */
358 		return -1;
359 	if (BN_is_one(w))
360 		return 0; /* probably prime */
361 	if (BN_cmp(w, a1) == 0)
362 		return 0; /* w == -1 (mod a),  'a' is probably prime */
363 	while (--k) {
364 		if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */
365 			return -1;
366 		if (BN_is_one(w))
367 			return 1; /* 'a' is composite, otherwise a previous 'w' would
368 			           * have been == -1 (mod 'a') */
369 		if (BN_cmp(w, a1) == 0)
370 			return 0; /* w == -1 (mod a), 'a' is probably prime */
371 	}
372 	/* If we get here, 'w' is the (a-1)/2-th power of the original 'w',
373 	 * and it is neither -1 nor +1 -- so 'a' cannot be prime */
374 	bn_check_top(w);
375 	return 1;
376 }
377 
378 static int
379 probable_prime(BIGNUM *rnd, int bits)
380 {
381 	int i;
382 	prime_t mods[NUMPRIMES];
383 	BN_ULONG delta, maxdelta;
384 
385 again:
386 	if (!BN_rand(rnd, bits, 1, 1))
387 		return (0);
388 	/* we now have a random number 'rand' to test. */
389 	for (i = 1; i < NUMPRIMES; i++)
390 		mods[i] = (prime_t)BN_mod_word(rnd, (BN_ULONG)primes[i]);
391 	maxdelta = BN_MASK2 - primes[NUMPRIMES - 1];
392 	delta = 0;
393 loop:
394 	for (i = 1; i < NUMPRIMES; i++) {
395 		/* check that rnd is not a prime and also
396 		 * that gcd(rnd-1,primes) == 1 (except for 2) */
397 		if (((mods[i] + delta) % primes[i]) <= 1) {
398 			delta += 2;
399 			if (delta > maxdelta)
400 				goto again;
401 			goto loop;
402 		}
403 	}
404 	if (!BN_add_word(rnd, delta))
405 		return (0);
406 	bn_check_top(rnd);
407 	return (1);
408 }
409 
410 static int
411 probable_prime_dh(BIGNUM *rnd, int bits, const BIGNUM *add, const BIGNUM *rem,
412     BN_CTX *ctx)
413 {
414 	int i, ret = 0;
415 	BIGNUM *t1;
416 
417 	BN_CTX_start(ctx);
418 	if ((t1 = BN_CTX_get(ctx)) == NULL)
419 		goto err;
420 
421 	if (!BN_rand(rnd, bits, 0, 1))
422 		goto err;
423 
424 	/* we need ((rnd-rem) % add) == 0 */
425 
426 	if (!BN_mod(t1, rnd, add, ctx))
427 		goto err;
428 	if (!BN_sub(rnd, rnd, t1))
429 		goto err;
430 	if (rem == NULL) {
431 		if (!BN_add_word(rnd, 1))
432 			goto err;
433 	} else {
434 		if (!BN_add(rnd, rnd, rem))
435 			goto err;
436 	}
437 
438 	/* we now have a random number 'rand' to test. */
439 
440 loop:
441 	for (i = 1; i < NUMPRIMES; i++) {
442 		/* check that rnd is a prime */
443 		if (BN_mod_word(rnd, (BN_ULONG)primes[i]) <= 1) {
444 			if (!BN_add(rnd, rnd, add))
445 				goto err;
446 			goto loop;
447 		}
448 	}
449 	ret = 1;
450 
451 err:
452 	BN_CTX_end(ctx);
453 	bn_check_top(rnd);
454 	return (ret);
455 }
456 
457 static int
458 probable_prime_dh_safe(BIGNUM *p, int bits, const BIGNUM *padd,
459     const BIGNUM *rem, BN_CTX *ctx)
460 {
461 	int i, ret = 0;
462 	BIGNUM *t1, *qadd, *q;
463 
464 	bits--;
465 	BN_CTX_start(ctx);
466 	t1 = BN_CTX_get(ctx);
467 	q = BN_CTX_get(ctx);
468 	qadd = BN_CTX_get(ctx);
469 	if (qadd == NULL)
470 		goto err;
471 
472 	if (!BN_rshift1(qadd, padd))
473 		goto err;
474 
475 	if (!BN_rand(q, bits, 0, 1))
476 		goto err;
477 
478 	/* we need ((rnd-rem) % add) == 0 */
479 	if (!BN_mod(t1, q,qadd, ctx))
480 		goto err;
481 	if (!BN_sub(q, q, t1))
482 		goto err;
483 	if (rem == NULL) {
484 		if (!BN_add_word(q, 1))
485 			goto err;
486 	} else {
487 		if (!BN_rshift1(t1, rem))
488 			goto err;
489 		if (!BN_add(q, q, t1))
490 			goto err;
491 	}
492 
493 	/* we now have a random number 'rand' to test. */
494 	if (!BN_lshift1(p, q))
495 		goto err;
496 	if (!BN_add_word(p, 1))
497 		goto err;
498 
499 loop:
500 	for (i = 1; i < NUMPRIMES; i++) {
501 		/* check that p and q are prime */
502 		/* check that for p and q
503 		 * gcd(p-1,primes) == 1 (except for 2) */
504 		if ((BN_mod_word(p, (BN_ULONG)primes[i]) == 0) ||
505 		    (BN_mod_word(q, (BN_ULONG)primes[i]) == 0)) {
506 			if (!BN_add(p, p, padd))
507 				goto err;
508 			if (!BN_add(q, q, qadd))
509 				goto err;
510 			goto loop;
511 		}
512 	}
513 	ret = 1;
514 
515 err:
516 	BN_CTX_end(ctx);
517 	bn_check_top(p);
518 	return (ret);
519 }
520