xref: /openbsd-src/lib/libc/time/localtime.c (revision c90a81c56dcebd6a1b73fe4aff9b03385b8e63b3)
1 /*	$OpenBSD: localtime.c,v 1.59 2016/09/19 12:48:21 millert Exp $ */
2 /*
3 ** This file is in the public domain, so clarified as of
4 ** 1996-06-05 by Arthur David Olson.
5 */
6 
7 /*
8 ** Leap second handling from Bradley White.
9 ** POSIX-style TZ environment variable handling from Guy Harris.
10 */
11 
12 #include <ctype.h>
13 #include <errno.h>
14 #include <fcntl.h>
15 #include <float.h>	/* for FLT_MAX and DBL_MAX */
16 #include <stdint.h>
17 #include <stdlib.h>
18 #include <string.h>
19 #include <unistd.h>
20 
21 #include "private.h"
22 #include "tzfile.h"
23 #include "thread_private.h"
24 
25 #ifndef TZ_ABBR_MAX_LEN
26 #define TZ_ABBR_MAX_LEN	16
27 #endif /* !defined TZ_ABBR_MAX_LEN */
28 
29 #ifndef TZ_ABBR_CHAR_SET
30 #define TZ_ABBR_CHAR_SET \
31 	"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
32 #endif /* !defined TZ_ABBR_CHAR_SET */
33 
34 #ifndef TZ_ABBR_ERR_CHAR
35 #define TZ_ABBR_ERR_CHAR	'_'
36 #endif /* !defined TZ_ABBR_ERR_CHAR */
37 
38 #ifndef WILDABBR
39 /*
40 ** Someone might make incorrect use of a time zone abbreviation:
41 **	1.	They might reference tzname[0] before calling tzset (explicitly
42 **		or implicitly).
43 **	2.	They might reference tzname[1] before calling tzset (explicitly
44 **		or implicitly).
45 **	3.	They might reference tzname[1] after setting to a time zone
46 **		in which Daylight Saving Time is never observed.
47 **	4.	They might reference tzname[0] after setting to a time zone
48 **		in which Standard Time is never observed.
49 **	5.	They might reference tm.TM_ZONE after calling offtime.
50 ** What's best to do in the above cases is open to debate;
51 ** for now, we just set things up so that in any of the five cases
52 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
53 ** string "tzname[0] used before set", and similarly for the other cases.
54 ** And another: initialize tzname[0] to "ERA", with an explanation in the
55 ** manual page of what this "time zone abbreviation" means (doing this so
56 ** that tzname[0] has the "normal" length of three characters).
57 */
58 #define WILDABBR	"   "
59 #endif /* !defined WILDABBR */
60 
61 static char		wildabbr[] = WILDABBR;
62 
63 static const char	gmt[] = "GMT";
64 
65 /*
66 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
67 ** We default to US rules as of 1999-08-17.
68 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
69 ** implementation dependent; for historical reasons, US rules are a
70 ** common default.
71 */
72 #ifndef TZDEFRULESTRING
73 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
74 #endif /* !defined TZDEFDST */
75 
76 struct ttinfo {				/* time type information */
77 	long		tt_gmtoff;	/* UTC offset in seconds */
78 	int		tt_isdst;	/* used to set tm_isdst */
79 	int		tt_abbrind;	/* abbreviation list index */
80 	int		tt_ttisstd;	/* TRUE if transition is std time */
81 	int		tt_ttisgmt;	/* TRUE if transition is UTC */
82 };
83 
84 struct lsinfo {				/* leap second information */
85 	time_t		ls_trans;	/* transition time */
86 	long		ls_corr;	/* correction to apply */
87 };
88 
89 #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
90 
91 #ifdef TZNAME_MAX
92 #define MY_TZNAME_MAX	TZNAME_MAX
93 #endif /* defined TZNAME_MAX */
94 #ifndef TZNAME_MAX
95 #define MY_TZNAME_MAX	255
96 #endif /* !defined TZNAME_MAX */
97 
98 struct state {
99 	int		leapcnt;
100 	int		timecnt;
101 	int		typecnt;
102 	int		charcnt;
103 	int		goback;
104 	int		goahead;
105 	time_t		ats[TZ_MAX_TIMES];
106 	unsigned char	types[TZ_MAX_TIMES];
107 	struct ttinfo	ttis[TZ_MAX_TYPES];
108 	char		chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
109 			    (2 * (MY_TZNAME_MAX + 1)))];
110 	struct lsinfo	lsis[TZ_MAX_LEAPS];
111 };
112 
113 struct rule {
114 	int		r_type;		/* type of rule--see below */
115 	int		r_day;		/* day number of rule */
116 	int		r_week;		/* week number of rule */
117 	int		r_mon;		/* month number of rule */
118 	long		r_time;		/* transition time of rule */
119 };
120 
121 #define JULIAN_DAY		0	/* Jn - Julian day */
122 #define DAY_OF_YEAR		1	/* n - day of year */
123 #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
124 
125 /*
126 ** Prototypes for static functions.
127 */
128 
129 static long		detzcode(const char * codep);
130 static time_t		detzcode64(const char * codep);
131 static int		differ_by_repeat(time_t t1, time_t t0);
132 static const char *	getzname(const char * strp);
133 static const char *	getqzname(const char * strp, const int delim);
134 static const char *	getnum(const char * strp, int * nump, int min,
135 				int max);
136 static const char *	getsecs(const char * strp, long * secsp);
137 static const char *	getoffset(const char * strp, long * offsetp);
138 static const char *	getrule(const char * strp, struct rule * rulep);
139 static void		gmtload(struct state * sp);
140 static struct tm *	gmtsub(const time_t * timep, long offset,
141 				struct tm * tmp);
142 static struct tm *	localsub(const time_t * timep, long offset,
143 				struct tm * tmp);
144 static int		increment_overflow(int * number, int delta);
145 static int		leaps_thru_end_of(int y);
146 static int		long_increment_overflow(long * number, int delta);
147 static int		long_normalize_overflow(long * tensptr,
148 				int * unitsptr, int base);
149 static int		normalize_overflow(int * tensptr, int * unitsptr,
150 				int base);
151 static void		settzname(void);
152 static time_t		time1(struct tm * tmp,
153 				struct tm * (*funcp)(const time_t *,
154 				long, struct tm *),
155 				long offset);
156 static time_t		time2(struct tm *tmp,
157 				struct tm * (*funcp)(const time_t *,
158 				long, struct tm*),
159 				long offset, int * okayp);
160 static time_t		time2sub(struct tm *tmp,
161 				struct tm * (*funcp)(const time_t *,
162 				long, struct tm*),
163 				long offset, int * okayp, int do_norm_secs);
164 static struct tm *	timesub(const time_t * timep, long offset,
165 				const struct state * sp, struct tm * tmp);
166 static int		tmcomp(const struct tm * atmp,
167 				const struct tm * btmp);
168 static time_t		transtime(time_t janfirst, int year,
169 				const struct rule * rulep, long offset);
170 static int		typesequiv(const struct state * sp, int a, int b);
171 static int		tzload(const char * name, struct state * sp,
172 				int doextend);
173 static int		tzparse(const char * name, struct state * sp,
174 				int lastditch);
175 
176 #ifdef STD_INSPIRED
177 struct tm	*offtime(const time_t *, long);
178 time_t		time2posix(time_t);
179 time_t		posix2time(time_t);
180 PROTO_DEPRECATED(offtime);
181 PROTO_DEPRECATED(time2posix);
182 PROTO_DEPRECATED(posix2time);
183 #endif
184 
185 static struct state *	lclptr;
186 static struct state *	gmtptr;
187 
188 
189 #ifndef TZ_STRLEN_MAX
190 #define TZ_STRLEN_MAX 255
191 #endif /* !defined TZ_STRLEN_MAX */
192 
193 static char		lcl_TZname[TZ_STRLEN_MAX + 1];
194 static int		lcl_is_set;
195 static int		gmt_is_set;
196 _THREAD_PRIVATE_MUTEX(lcl);
197 _THREAD_PRIVATE_MUTEX(gmt);
198 
199 char *			tzname[2] = {
200 	wildabbr,
201 	wildabbr
202 };
203 #if 0
204 DEF_WEAK(tzname);
205 #endif
206 
207 /*
208 ** Section 4.12.3 of X3.159-1989 requires that
209 **	Except for the strftime function, these functions [asctime,
210 **	ctime, gmtime, localtime] return values in one of two static
211 **	objects: a broken-down time structure and an array of char.
212 ** Thanks to Paul Eggert for noting this.
213 */
214 
215 static struct tm	tm;
216 
217 #ifdef USG_COMPAT
218 long			timezone = 0;
219 int			daylight = 0;
220 #endif /* defined USG_COMPAT */
221 
222 #ifdef ALTZONE
223 time_t			altzone = 0;
224 #endif /* defined ALTZONE */
225 
226 static long
227 detzcode(const char *codep)
228 {
229 	long	result;
230 	int	i;
231 
232 	result = (codep[0] & 0x80) ? ~0L : 0;
233 	for (i = 0; i < 4; ++i)
234 		result = (result << 8) | (codep[i] & 0xff);
235 	return result;
236 }
237 
238 static time_t
239 detzcode64(const char *codep)
240 {
241 	time_t	result;
242 	int	i;
243 
244 	result = (codep[0] & 0x80) ?  (~(int_fast64_t) 0) : 0;
245 	for (i = 0; i < 8; ++i)
246 		result = result * 256 + (codep[i] & 0xff);
247 	return result;
248 }
249 
250 static void
251 settzname(void)
252 {
253 	struct state * const	sp = lclptr;
254 	int			i;
255 
256 	tzname[0] = wildabbr;
257 	tzname[1] = wildabbr;
258 #ifdef USG_COMPAT
259 	daylight = 0;
260 	timezone = 0;
261 #endif /* defined USG_COMPAT */
262 #ifdef ALTZONE
263 	altzone = 0;
264 #endif /* defined ALTZONE */
265 	if (sp == NULL) {
266 		tzname[0] = tzname[1] = (char *)gmt;
267 		return;
268 	}
269 	/*
270 	** And to get the latest zone names into tzname. . .
271 	*/
272 	for (i = 0; i < sp->timecnt; ++i) {
273 		const struct ttinfo *ttisp = &sp->ttis[sp->types[i]];
274 
275 		tzname[ttisp->tt_isdst] = &sp->chars[ttisp->tt_abbrind];
276 #ifdef USG_COMPAT
277 		if (ttisp->tt_isdst)
278 			daylight = 1;
279 		if (!ttisp->tt_isdst)
280 			timezone = -(ttisp->tt_gmtoff);
281 #endif /* defined USG_COMPAT */
282 #ifdef ALTZONE
283 		if (ttisp->tt_isdst)
284 			altzone = -(ttisp->tt_gmtoff);
285 #endif /* defined ALTZONE */
286 	}
287 	/*
288 	** Finally, scrub the abbreviations.
289 	** First, replace bogus characters.
290 	*/
291 	for (i = 0; i < sp->charcnt; ++i) {
292 		if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
293 			sp->chars[i] = TZ_ABBR_ERR_CHAR;
294 	}
295 	/*
296 	** Second, truncate long abbreviations.
297 	*/
298 	for (i = 0; i < sp->typecnt; ++i) {
299 		const struct ttinfo *ttisp = &sp->ttis[i];
300 		char *cp = &sp->chars[ttisp->tt_abbrind];
301 
302 		if (strlen(cp) > TZ_ABBR_MAX_LEN &&
303 		    strcmp(cp, GRANDPARENTED) != 0)
304 			*(cp + TZ_ABBR_MAX_LEN) = '\0';
305 	}
306 }
307 
308 static int
309 differ_by_repeat(time_t t1, time_t t0)
310 {
311 	if (TYPE_BIT(time_t) - 1 < SECSPERREPEAT_BITS)
312 		return 0;
313 	return (int64_t)t1 - t0 == SECSPERREPEAT;
314 }
315 
316 static int
317 tzload(const char *name, struct state *sp, int doextend)
318 {
319 	const char *		p;
320 	int			i;
321 	int			fid;
322 	int			stored;
323 	int			nread;
324 	typedef union {
325 		struct tzhead	tzhead;
326 		char		buf[2 * sizeof(struct tzhead) +
327 				    2 * sizeof *sp +
328 				    4 * TZ_MAX_TIMES];
329 	} u_t;
330 	u_t *			up;
331 	char			fullname[PATH_MAX];
332 
333 	up = calloc(1, sizeof *up);
334 	if (up == NULL)
335 		return -1;
336 
337 	sp->goback = sp->goahead = FALSE;
338 	if (name != NULL && issetugid() != 0) {
339 		if ((name[0] == ':' && (strchr(name, '/') || strstr(name, ".."))) ||
340 		    name[0] == '/' || strchr(name, '.'))
341 			name = NULL;
342 	}
343 	if (name == NULL && (name = TZDEFAULT) == NULL)
344 		goto oops;
345 
346 	if (name[0] == ':')
347 		++name;
348 	if (name[0] != '/') {
349 		if ((p = TZDIR) == NULL)
350 			goto oops;
351 		if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
352 			goto oops;
353 		strlcpy(fullname, p, sizeof fullname);
354 		strlcat(fullname, "/", sizeof fullname);
355 		strlcat(fullname, name, sizeof fullname);
356 		name = fullname;
357 	}
358 	if ((fid = open(name, O_RDONLY)) == -1)
359 		goto oops;
360 
361 	nread = read(fid, up->buf, sizeof up->buf);
362 	if (close(fid) < 0 || nread <= 0)
363 		goto oops;
364 	for (stored = 4; stored <= 8; stored *= 2) {
365 		int		ttisstdcnt;
366 		int		ttisgmtcnt;
367 
368 		ttisstdcnt = (int) detzcode(up->tzhead.tzh_ttisstdcnt);
369 		ttisgmtcnt = (int) detzcode(up->tzhead.tzh_ttisgmtcnt);
370 		sp->leapcnt = (int) detzcode(up->tzhead.tzh_leapcnt);
371 		sp->timecnt = (int) detzcode(up->tzhead.tzh_timecnt);
372 		sp->typecnt = (int) detzcode(up->tzhead.tzh_typecnt);
373 		sp->charcnt = (int) detzcode(up->tzhead.tzh_charcnt);
374 		p = up->tzhead.tzh_charcnt + sizeof up->tzhead.tzh_charcnt;
375 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
376 		    sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
377 		    sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
378 		    sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
379 		    (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
380 		    (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
381 			goto oops;
382 		if (nread - (p - up->buf) <
383 		    sp->timecnt * stored +		/* ats */
384 		    sp->timecnt +			/* types */
385 		    sp->typecnt * 6 +		/* ttinfos */
386 		    sp->charcnt +			/* chars */
387 		    sp->leapcnt * (stored + 4) +	/* lsinfos */
388 		    ttisstdcnt +			/* ttisstds */
389 		    ttisgmtcnt)			/* ttisgmts */
390 			goto oops;
391 		for (i = 0; i < sp->timecnt; ++i) {
392 			sp->ats[i] = (stored == 4) ?
393 			    detzcode(p) : detzcode64(p);
394 			p += stored;
395 		}
396 		for (i = 0; i < sp->timecnt; ++i) {
397 			sp->types[i] = (unsigned char) *p++;
398 			if (sp->types[i] >= sp->typecnt)
399 				goto oops;
400 		}
401 		for (i = 0; i < sp->typecnt; ++i) {
402 			struct ttinfo *	ttisp;
403 
404 			ttisp = &sp->ttis[i];
405 			ttisp->tt_gmtoff = detzcode(p);
406 			p += 4;
407 			ttisp->tt_isdst = (unsigned char) *p++;
408 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
409 				goto oops;
410 			ttisp->tt_abbrind = (unsigned char) *p++;
411 			if (ttisp->tt_abbrind < 0 ||
412 			    ttisp->tt_abbrind > sp->charcnt)
413 				goto oops;
414 		}
415 		for (i = 0; i < sp->charcnt; ++i)
416 			sp->chars[i] = *p++;
417 		sp->chars[i] = '\0';	/* ensure '\0' at end */
418 		for (i = 0; i < sp->leapcnt; ++i) {
419 			struct lsinfo *	lsisp;
420 
421 			lsisp = &sp->lsis[i];
422 			lsisp->ls_trans = (stored == 4) ?
423 			    detzcode(p) : detzcode64(p);
424 			p += stored;
425 			lsisp->ls_corr = detzcode(p);
426 			p += 4;
427 		}
428 		for (i = 0; i < sp->typecnt; ++i) {
429 			struct ttinfo *	ttisp;
430 
431 			ttisp = &sp->ttis[i];
432 			if (ttisstdcnt == 0)
433 				ttisp->tt_ttisstd = FALSE;
434 			else {
435 				ttisp->tt_ttisstd = *p++;
436 				if (ttisp->tt_ttisstd != TRUE &&
437 				    ttisp->tt_ttisstd != FALSE)
438 					goto oops;
439 			}
440 		}
441 		for (i = 0; i < sp->typecnt; ++i) {
442 			struct ttinfo *	ttisp;
443 
444 			ttisp = &sp->ttis[i];
445 			if (ttisgmtcnt == 0)
446 				ttisp->tt_ttisgmt = FALSE;
447 			else {
448 				ttisp->tt_ttisgmt = *p++;
449 				if (ttisp->tt_ttisgmt != TRUE &&
450 				    ttisp->tt_ttisgmt != FALSE)
451 					goto oops;
452 			}
453 		}
454 		/*
455 		** Out-of-sort ats should mean we're running on a
456 		** signed time_t system but using a data file with
457 		** unsigned values (or vice versa).
458 		*/
459 		for (i = 0; i < sp->timecnt - 2; ++i)
460 			if (sp->ats[i] > sp->ats[i + 1]) {
461 				++i;
462 				/*
463 				** Ignore the end (easy).
464 				*/
465 				sp->timecnt = i;
466 				break;
467 			}
468 		/*
469 		** If this is an old file, we're done.
470 		*/
471 		if (up->tzhead.tzh_version[0] == '\0')
472 			break;
473 		nread -= p - up->buf;
474 		for (i = 0; i < nread; ++i)
475 			up->buf[i] = p[i];
476 		/*
477 		** If this is a narrow integer time_t system, we're done.
478 		*/
479 		if (stored >= sizeof(time_t))
480 			break;
481 	}
482 	if (doextend && nread > 2 &&
483 	    up->buf[0] == '\n' && up->buf[nread - 1] == '\n' &&
484 	    sp->typecnt + 2 <= TZ_MAX_TYPES) {
485 		struct state	ts;
486 		int	result;
487 
488 		up->buf[nread - 1] = '\0';
489 		result = tzparse(&up->buf[1], &ts, FALSE);
490 		if (result == 0 && ts.typecnt == 2 &&
491 		    sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
492 			for (i = 0; i < 2; ++i)
493 				ts.ttis[i].tt_abbrind +=
494 				    sp->charcnt;
495 			for (i = 0; i < ts.charcnt; ++i)
496 				sp->chars[sp->charcnt++] =
497 				    ts.chars[i];
498 			i = 0;
499 			while (i < ts.timecnt &&
500 			    ts.ats[i] <=
501 			    sp->ats[sp->timecnt - 1])
502 				++i;
503 			while (i < ts.timecnt &&
504 			    sp->timecnt < TZ_MAX_TIMES) {
505 				sp->ats[sp->timecnt] =
506 				    ts.ats[i];
507 				sp->types[sp->timecnt] =
508 				    sp->typecnt +
509 				    ts.types[i];
510 				++sp->timecnt;
511 				++i;
512 			}
513 			sp->ttis[sp->typecnt++] = ts.ttis[0];
514 			sp->ttis[sp->typecnt++] = ts.ttis[1];
515 		}
516 	}
517 	if (sp->timecnt > 1) {
518 		for (i = 1; i < sp->timecnt; ++i) {
519 			if (typesequiv(sp, sp->types[i], sp->types[0]) &&
520 			    differ_by_repeat(sp->ats[i], sp->ats[0])) {
521 				sp->goback = TRUE;
522 				break;
523 			}
524 		}
525 		for (i = sp->timecnt - 2; i >= 0; --i) {
526 			if (typesequiv(sp, sp->types[sp->timecnt - 1],
527 			    sp->types[i]) &&
528 			    differ_by_repeat(sp->ats[sp->timecnt - 1],
529 			    sp->ats[i])) {
530 				sp->goahead = TRUE;
531 				break;
532 			}
533 		}
534 	}
535 	free(up);
536 	return 0;
537 oops:
538 	free(up);
539 	return -1;
540 }
541 
542 static int
543 typesequiv(const struct state *sp, int a, int b)
544 {
545 	int	result;
546 
547 	if (sp == NULL ||
548 	    a < 0 || a >= sp->typecnt ||
549 	    b < 0 || b >= sp->typecnt)
550 		result = FALSE;
551 	else {
552 		const struct ttinfo *	ap = &sp->ttis[a];
553 		const struct ttinfo *	bp = &sp->ttis[b];
554 		result = ap->tt_gmtoff == bp->tt_gmtoff &&
555 		    ap->tt_isdst == bp->tt_isdst &&
556 		    ap->tt_ttisstd == bp->tt_ttisstd &&
557 		    ap->tt_ttisgmt == bp->tt_ttisgmt &&
558 		    strcmp(&sp->chars[ap->tt_abbrind],
559 		    &sp->chars[bp->tt_abbrind]) == 0;
560 	}
561 	return result;
562 }
563 
564 static const int	mon_lengths[2][MONSPERYEAR] = {
565 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
566 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
567 };
568 
569 static const int	year_lengths[2] = {
570 	DAYSPERNYEAR, DAYSPERLYEAR
571 };
572 
573 /*
574 ** Given a pointer into a time zone string, scan until a character that is not
575 ** a valid character in a zone name is found. Return a pointer to that
576 ** character.
577 */
578 
579 static const char *
580 getzname(const char *strp)
581 {
582 	char	c;
583 
584 	while ((c = *strp) != '\0' && !isdigit((unsigned char)c) && c != ',' && c != '-' &&
585 	    c != '+')
586 		++strp;
587 	return strp;
588 }
589 
590 /*
591 ** Given a pointer into an extended time zone string, scan until the ending
592 ** delimiter of the zone name is located. Return a pointer to the delimiter.
593 **
594 ** As with getzname above, the legal character set is actually quite
595 ** restricted, with other characters producing undefined results.
596 ** We don't do any checking here; checking is done later in common-case code.
597 */
598 
599 static const char *
600 getqzname(const char *strp, const int delim)
601 {
602 	int	c;
603 
604 	while ((c = *strp) != '\0' && c != delim)
605 		++strp;
606 	return strp;
607 }
608 
609 /*
610 ** Given a pointer into a time zone string, extract a number from that string.
611 ** Check that the number is within a specified range; if it is not, return
612 ** NULL.
613 ** Otherwise, return a pointer to the first character not part of the number.
614 */
615 
616 static const char *
617 getnum(const char *strp, int *nump, int min, int max)
618 {
619 	char	c;
620 	int	num;
621 
622 	if (strp == NULL || !isdigit((unsigned char)(c = *strp)))
623 		return NULL;
624 	num = 0;
625 	do {
626 		num = num * 10 + (c - '0');
627 		if (num > max)
628 			return NULL;	/* illegal value */
629 		c = *++strp;
630 	} while (isdigit((unsigned char)c));
631 	if (num < min)
632 		return NULL;		/* illegal value */
633 	*nump = num;
634 	return strp;
635 }
636 
637 /*
638 ** Given a pointer into a time zone string, extract a number of seconds,
639 ** in hh[:mm[:ss]] form, from the string.
640 ** If any error occurs, return NULL.
641 ** Otherwise, return a pointer to the first character not part of the number
642 ** of seconds.
643 */
644 
645 static const char *
646 getsecs(const char *strp, long *secsp)
647 {
648 	int	num;
649 
650 	/*
651 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
652 	** "M10.4.6/26", which does not conform to Posix,
653 	** but which specifies the equivalent of
654 	** ``02:00 on the first Sunday on or after 23 Oct''.
655 	*/
656 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
657 	if (strp == NULL)
658 		return NULL;
659 	*secsp = num * (long) SECSPERHOUR;
660 	if (*strp == ':') {
661 		++strp;
662 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
663 		if (strp == NULL)
664 			return NULL;
665 		*secsp += num * SECSPERMIN;
666 		if (*strp == ':') {
667 			++strp;
668 			/* `SECSPERMIN' allows for leap seconds. */
669 			strp = getnum(strp, &num, 0, SECSPERMIN);
670 			if (strp == NULL)
671 				return NULL;
672 			*secsp += num;
673 		}
674 	}
675 	return strp;
676 }
677 
678 /*
679 ** Given a pointer into a time zone string, extract an offset, in
680 ** [+-]hh[:mm[:ss]] form, from the string.
681 ** If any error occurs, return NULL.
682 ** Otherwise, return a pointer to the first character not part of the time.
683 */
684 
685 static const char *
686 getoffset(const char *strp, long *offsetp)
687 {
688 	int	neg = 0;
689 
690 	if (*strp == '-') {
691 		neg = 1;
692 		++strp;
693 	} else if (*strp == '+')
694 		++strp;
695 	strp = getsecs(strp, offsetp);
696 	if (strp == NULL)
697 		return NULL;		/* illegal time */
698 	if (neg)
699 		*offsetp = -*offsetp;
700 	return strp;
701 }
702 
703 /*
704 ** Given a pointer into a time zone string, extract a rule in the form
705 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
706 ** If a valid rule is not found, return NULL.
707 ** Otherwise, return a pointer to the first character not part of the rule.
708 */
709 
710 static const char *
711 getrule(const char *strp, struct rule *rulep)
712 {
713 	if (*strp == 'J') {
714 		/*
715 		** Julian day.
716 		*/
717 		rulep->r_type = JULIAN_DAY;
718 		++strp;
719 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
720 	} else if (*strp == 'M') {
721 		/*
722 		** Month, week, day.
723 		*/
724 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
725 		++strp;
726 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
727 		if (strp == NULL)
728 			return NULL;
729 		if (*strp++ != '.')
730 			return NULL;
731 		strp = getnum(strp, &rulep->r_week, 1, 5);
732 		if (strp == NULL)
733 			return NULL;
734 		if (*strp++ != '.')
735 			return NULL;
736 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
737 	} else if (isdigit((unsigned char)*strp)) {
738 		/*
739 		** Day of year.
740 		*/
741 		rulep->r_type = DAY_OF_YEAR;
742 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
743 	} else
744 		return NULL;		/* invalid format */
745 	if (strp == NULL)
746 		return NULL;
747 	if (*strp == '/') {
748 		/*
749 		** Time specified.
750 		*/
751 		++strp;
752 		strp = getsecs(strp, &rulep->r_time);
753 	} else
754 		rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
755 	return strp;
756 }
757 
758 /*
759 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
760 ** year, a rule, and the offset from UTC at the time that rule takes effect,
761 ** calculate the Epoch-relative time that rule takes effect.
762 */
763 
764 static time_t
765 transtime(time_t janfirst, int year, const struct rule *rulep, long offset)
766 {
767 	int	leapyear;
768 	time_t	value;
769 	int	i;
770 	int		d, m1, yy0, yy1, yy2, dow;
771 
772 	value = 0;
773 	leapyear = isleap(year);
774 	switch (rulep->r_type) {
775 
776 	case JULIAN_DAY:
777 		/*
778 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
779 		** years.
780 		** In non-leap years, or if the day number is 59 or less, just
781 		** add SECSPERDAY times the day number-1 to the time of
782 		** January 1, midnight, to get the day.
783 		*/
784 		value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
785 		if (leapyear && rulep->r_day >= 60)
786 			value += SECSPERDAY;
787 		break;
788 
789 	case DAY_OF_YEAR:
790 		/*
791 		** n - day of year.
792 		** Just add SECSPERDAY times the day number to the time of
793 		** January 1, midnight, to get the day.
794 		*/
795 		value = janfirst + rulep->r_day * SECSPERDAY;
796 		break;
797 
798 	case MONTH_NTH_DAY_OF_WEEK:
799 		/*
800 		** Mm.n.d - nth "dth day" of month m.
801 		*/
802 		value = janfirst;
803 		for (i = 0; i < rulep->r_mon - 1; ++i)
804 			value += mon_lengths[leapyear][i] * SECSPERDAY;
805 
806 		/*
807 		** Use Zeller's Congruence to get day-of-week of first day of
808 		** month.
809 		*/
810 		m1 = (rulep->r_mon + 9) % 12 + 1;
811 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
812 		yy1 = yy0 / 100;
813 		yy2 = yy0 % 100;
814 		dow = ((26 * m1 - 2) / 10 +
815 		    1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
816 		if (dow < 0)
817 			dow += DAYSPERWEEK;
818 
819 		/*
820 		** "dow" is the day-of-week of the first day of the month. Get
821 		** the day-of-month (zero-origin) of the first "dow" day of the
822 		** month.
823 		*/
824 		d = rulep->r_day - dow;
825 		if (d < 0)
826 			d += DAYSPERWEEK;
827 		for (i = 1; i < rulep->r_week; ++i) {
828 			if (d + DAYSPERWEEK >=
829 			    mon_lengths[leapyear][rulep->r_mon - 1])
830 				break;
831 			d += DAYSPERWEEK;
832 		}
833 
834 		/*
835 		** "d" is the day-of-month (zero-origin) of the day we want.
836 		*/
837 		value += d * SECSPERDAY;
838 		break;
839 	}
840 
841 	/*
842 	** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
843 	** question. To get the Epoch-relative time of the specified local
844 	** time on that day, add the transition time and the current offset
845 	** from UTC.
846 	*/
847 	return value + rulep->r_time + offset;
848 }
849 
850 /*
851 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
852 ** appropriate.
853 */
854 
855 static int
856 tzparse(const char *name, struct state *sp, int lastditch)
857 {
858 	const char *			stdname;
859 	const char *			dstname;
860 	size_t				stdlen;
861 	size_t				dstlen;
862 	long				stdoffset;
863 	long				dstoffset;
864 	time_t *		atp;
865 	unsigned char *	typep;
866 	char *			cp;
867 	int			load_result;
868 	static struct ttinfo		zttinfo;
869 
870 	dstname = NULL;
871 	stdname = name;
872 	if (lastditch) {
873 		stdlen = strlen(name);	/* length of standard zone name */
874 		name += stdlen;
875 		if (stdlen >= sizeof sp->chars)
876 			stdlen = (sizeof sp->chars) - 1;
877 		stdoffset = 0;
878 	} else {
879 		if (*name == '<') {
880 			name++;
881 			stdname = name;
882 			name = getqzname(name, '>');
883 			if (*name != '>')
884 				return (-1);
885 			stdlen = name - stdname;
886 			name++;
887 		} else {
888 			name = getzname(name);
889 			stdlen = name - stdname;
890 		}
891 		if (*name == '\0')
892 			return -1;
893 		name = getoffset(name, &stdoffset);
894 		if (name == NULL)
895 			return -1;
896 	}
897 	load_result = tzload(TZDEFRULES, sp, FALSE);
898 	if (load_result != 0)
899 		sp->leapcnt = 0;		/* so, we're off a little */
900 	if (*name != '\0') {
901 		if (*name == '<') {
902 			dstname = ++name;
903 			name = getqzname(name, '>');
904 			if (*name != '>')
905 				return -1;
906 			dstlen = name - dstname;
907 			name++;
908 		} else {
909 			dstname = name;
910 			name = getzname(name);
911 			dstlen = name - dstname; /* length of DST zone name */
912 		}
913 		if (*name != '\0' && *name != ',' && *name != ';') {
914 			name = getoffset(name, &dstoffset);
915 			if (name == NULL)
916 				return -1;
917 		} else
918 			dstoffset = stdoffset - SECSPERHOUR;
919 		if (*name == '\0' && load_result != 0)
920 			name = TZDEFRULESTRING;
921 		if (*name == ',' || *name == ';') {
922 			struct rule	start;
923 			struct rule	end;
924 			int		year;
925 			time_t		janfirst;
926 			time_t		starttime;
927 			time_t		endtime;
928 
929 			++name;
930 			if ((name = getrule(name, &start)) == NULL)
931 				return -1;
932 			if (*name++ != ',')
933 				return -1;
934 			if ((name = getrule(name, &end)) == NULL)
935 				return -1;
936 			if (*name != '\0')
937 				return -1;
938 			sp->typecnt = 2;	/* standard time and DST */
939 			/*
940 			** Two transitions per year, from EPOCH_YEAR forward.
941 			*/
942 			sp->ttis[0] = sp->ttis[1] = zttinfo;
943 			sp->ttis[0].tt_gmtoff = -dstoffset;
944 			sp->ttis[0].tt_isdst = 1;
945 			sp->ttis[0].tt_abbrind = stdlen + 1;
946 			sp->ttis[1].tt_gmtoff = -stdoffset;
947 			sp->ttis[1].tt_isdst = 0;
948 			sp->ttis[1].tt_abbrind = 0;
949 			atp = sp->ats;
950 			typep = sp->types;
951 			janfirst = 0;
952 			sp->timecnt = 0;
953 			for (year = EPOCH_YEAR;
954 			    sp->timecnt + 2 <= TZ_MAX_TIMES;
955 			    ++year) {
956 			    	time_t	newfirst;
957 
958 				starttime = transtime(janfirst, year, &start,
959 				    stdoffset);
960 				endtime = transtime(janfirst, year, &end,
961 				    dstoffset);
962 				if (starttime > endtime) {
963 					*atp++ = endtime;
964 					*typep++ = 1;	/* DST ends */
965 					*atp++ = starttime;
966 					*typep++ = 0;	/* DST begins */
967 				} else {
968 					*atp++ = starttime;
969 					*typep++ = 0;	/* DST begins */
970 					*atp++ = endtime;
971 					*typep++ = 1;	/* DST ends */
972 				}
973 				sp->timecnt += 2;
974 				newfirst = janfirst;
975 				newfirst += year_lengths[isleap(year)] *
976 				    SECSPERDAY;
977 				if (newfirst <= janfirst)
978 					break;
979 				janfirst = newfirst;
980 			}
981 		} else {
982 			long	theirstdoffset;
983 			long	theirdstoffset;
984 			long	theiroffset;
985 			int	isdst;
986 			int	i;
987 			int	j;
988 
989 			if (*name != '\0')
990 				return -1;
991 			/*
992 			** Initial values of theirstdoffset and theirdstoffset.
993 			*/
994 			theirstdoffset = 0;
995 			for (i = 0; i < sp->timecnt; ++i) {
996 				j = sp->types[i];
997 				if (!sp->ttis[j].tt_isdst) {
998 					theirstdoffset =
999 						-sp->ttis[j].tt_gmtoff;
1000 					break;
1001 				}
1002 			}
1003 			theirdstoffset = 0;
1004 			for (i = 0; i < sp->timecnt; ++i) {
1005 				j = sp->types[i];
1006 				if (sp->ttis[j].tt_isdst) {
1007 					theirdstoffset =
1008 						-sp->ttis[j].tt_gmtoff;
1009 					break;
1010 				}
1011 			}
1012 			/*
1013 			** Initially we're assumed to be in standard time.
1014 			*/
1015 			isdst = FALSE;
1016 			theiroffset = theirstdoffset;
1017 			/*
1018 			** Now juggle transition times and types
1019 			** tracking offsets as you do.
1020 			*/
1021 			for (i = 0; i < sp->timecnt; ++i) {
1022 				j = sp->types[i];
1023 				sp->types[i] = sp->ttis[j].tt_isdst;
1024 				if (sp->ttis[j].tt_ttisgmt) {
1025 					/* No adjustment to transition time */
1026 				} else {
1027 					/*
1028 					** If summer time is in effect, and the
1029 					** transition time was not specified as
1030 					** standard time, add the summer time
1031 					** offset to the transition time;
1032 					** otherwise, add the standard time
1033 					** offset to the transition time.
1034 					*/
1035 					/*
1036 					** Transitions from DST to DDST
1037 					** will effectively disappear since
1038 					** POSIX provides for only one DST
1039 					** offset.
1040 					*/
1041 					if (isdst && !sp->ttis[j].tt_ttisstd) {
1042 						sp->ats[i] += dstoffset -
1043 						    theirdstoffset;
1044 					} else {
1045 						sp->ats[i] += stdoffset -
1046 						    theirstdoffset;
1047 					}
1048 				}
1049 				theiroffset = -sp->ttis[j].tt_gmtoff;
1050 				if (sp->ttis[j].tt_isdst)
1051 					theirdstoffset = theiroffset;
1052 				else
1053 					theirstdoffset = theiroffset;
1054 			}
1055 			/*
1056 			** Finally, fill in ttis.
1057 			*/
1058 			sp->ttis[0] = sp->ttis[1] = zttinfo;
1059 			sp->ttis[0].tt_gmtoff = -stdoffset;
1060 			sp->ttis[0].tt_isdst = FALSE;
1061 			sp->ttis[0].tt_abbrind = 0;
1062 			sp->ttis[1].tt_gmtoff = -dstoffset;
1063 			sp->ttis[1].tt_isdst = TRUE;
1064 			sp->ttis[1].tt_abbrind = stdlen + 1;
1065 			sp->typecnt = 2;
1066 		}
1067 	} else {
1068 		dstlen = 0;
1069 		sp->typecnt = 1;		/* only standard time */
1070 		sp->timecnt = 0;
1071 		sp->ttis[0] = zttinfo;
1072 		sp->ttis[0].tt_gmtoff = -stdoffset;
1073 		sp->ttis[0].tt_isdst = 0;
1074 		sp->ttis[0].tt_abbrind = 0;
1075 	}
1076 	sp->charcnt = stdlen + 1;
1077 	if (dstlen != 0)
1078 		sp->charcnt += dstlen + 1;
1079 	if ((size_t) sp->charcnt > sizeof sp->chars)
1080 		return -1;
1081 	cp = sp->chars;
1082 	strlcpy(cp, stdname, stdlen + 1);
1083 	cp += stdlen + 1;
1084 	if (dstlen != 0) {
1085 		strlcpy(cp, dstname, dstlen + 1);
1086 	}
1087 	return 0;
1088 }
1089 
1090 static void
1091 gmtload(struct state *sp)
1092 {
1093 	if (tzload(gmt, sp, TRUE) != 0)
1094 		(void) tzparse(gmt, sp, TRUE);
1095 }
1096 
1097 static void
1098 tzsetwall_basic(void)
1099 {
1100 	if (lcl_is_set < 0)
1101 		return;
1102 	lcl_is_set = -1;
1103 
1104 	if (lclptr == NULL) {
1105 		lclptr = calloc(1, sizeof *lclptr);
1106 		if (lclptr == NULL) {
1107 			settzname();	/* all we can do */
1108 			return;
1109 		}
1110 	}
1111 	if (tzload(NULL, lclptr, TRUE) != 0)
1112 		gmtload(lclptr);
1113 	settzname();
1114 }
1115 
1116 #ifndef STD_INSPIRED
1117 /*
1118 ** A non-static declaration of tzsetwall in a system header file
1119 ** may cause a warning about this upcoming static declaration...
1120 */
1121 static
1122 #endif /* !defined STD_INSPIRED */
1123 void
1124 tzsetwall(void)
1125 {
1126 	_THREAD_PRIVATE_MUTEX_LOCK(lcl);
1127 	tzsetwall_basic();
1128 	_THREAD_PRIVATE_MUTEX_UNLOCK(lcl);
1129 }
1130 
1131 static void
1132 tzset_basic(void)
1133 {
1134 	const char *	name;
1135 
1136 	name = getenv("TZ");
1137 	if (name == NULL) {
1138 		tzsetwall_basic();
1139 		return;
1140 	}
1141 
1142 	if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
1143 		return;
1144 	lcl_is_set = strlen(name) < sizeof lcl_TZname;
1145 	if (lcl_is_set)
1146 		strlcpy(lcl_TZname, name, sizeof lcl_TZname);
1147 
1148 	if (lclptr == NULL) {
1149 		lclptr = calloc(1, sizeof *lclptr);
1150 		if (lclptr == NULL) {
1151 			settzname();	/* all we can do */
1152 			return;
1153 		}
1154 	}
1155 	if (*name == '\0') {
1156 		/*
1157 		** User wants it fast rather than right.
1158 		*/
1159 		lclptr->leapcnt = 0;		/* so, we're off a little */
1160 		lclptr->timecnt = 0;
1161 		lclptr->typecnt = 0;
1162 		lclptr->ttis[0].tt_isdst = 0;
1163 		lclptr->ttis[0].tt_gmtoff = 0;
1164 		lclptr->ttis[0].tt_abbrind = 0;
1165 		strlcpy(lclptr->chars, gmt, sizeof lclptr->chars);
1166 	} else if (tzload(name, lclptr, TRUE) != 0) {
1167 		if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
1168 			gmtload(lclptr);
1169 	}
1170 	settzname();
1171 }
1172 
1173 void
1174 tzset(void)
1175 {
1176 	_THREAD_PRIVATE_MUTEX_LOCK(lcl);
1177 	tzset_basic();
1178 	_THREAD_PRIVATE_MUTEX_UNLOCK(lcl);
1179 }
1180 DEF_WEAK(tzset);
1181 
1182 /*
1183 ** The easy way to behave "as if no library function calls" localtime
1184 ** is to not call it--so we drop its guts into "localsub", which can be
1185 ** freely called. (And no, the PANS doesn't require the above behavior--
1186 ** but it *is* desirable.)
1187 **
1188 ** The unused offset argument is for the benefit of mktime variants.
1189 */
1190 
1191 static struct tm *
1192 localsub(const time_t *timep, long offset, struct tm *tmp)
1193 {
1194 	struct state *		sp;
1195 	const struct ttinfo *	ttisp;
1196 	int			i;
1197 	struct tm *		result;
1198 	const time_t			t = *timep;
1199 
1200 	sp = lclptr;
1201 	if (sp == NULL)
1202 		return gmtsub(timep, offset, tmp);
1203 	if ((sp->goback && t < sp->ats[0]) ||
1204 	    (sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1205 		time_t			newt = t;
1206 		time_t		seconds;
1207 		time_t		tcycles;
1208 		int_fast64_t	icycles;
1209 
1210 		if (t < sp->ats[0])
1211 			seconds = sp->ats[0] - t;
1212 		else
1213 			seconds = t - sp->ats[sp->timecnt - 1];
1214 		--seconds;
1215 		tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
1216 		++tcycles;
1217 		icycles = tcycles;
1218 		if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
1219 			return NULL;
1220 		seconds = icycles;
1221 		seconds *= YEARSPERREPEAT;
1222 		seconds *= AVGSECSPERYEAR;
1223 		if (t < sp->ats[0])
1224 			newt += seconds;
1225 		else
1226 			newt -= seconds;
1227 		if (newt < sp->ats[0] ||
1228 		    newt > sp->ats[sp->timecnt - 1])
1229 			return NULL;	/* "cannot happen" */
1230 		result = localsub(&newt, offset, tmp);
1231 		if (result == tmp) {
1232 			time_t	newy;
1233 
1234 			newy = tmp->tm_year;
1235 			if (t < sp->ats[0])
1236 				newy -= icycles * YEARSPERREPEAT;
1237 			else
1238 				newy += icycles * YEARSPERREPEAT;
1239 			tmp->tm_year = newy;
1240 			if (tmp->tm_year != newy)
1241 				return NULL;
1242 		}
1243 		return result;
1244 	}
1245 	if (sp->timecnt == 0 || t < sp->ats[0]) {
1246 		i = 0;
1247 		while (sp->ttis[i].tt_isdst) {
1248 			if (++i >= sp->typecnt) {
1249 				i = 0;
1250 				break;
1251 			}
1252 		}
1253 	} else {
1254 		int	lo = 1;
1255 		int	hi = sp->timecnt;
1256 
1257 		while (lo < hi) {
1258 			int	mid = (lo + hi) >> 1;
1259 
1260 			if (t < sp->ats[mid])
1261 				hi = mid;
1262 			else
1263 				lo = mid + 1;
1264 		}
1265 		i = (int) sp->types[lo - 1];
1266 	}
1267 	ttisp = &sp->ttis[i];
1268 	/*
1269 	** To get (wrong) behavior that's compatible with System V Release 2.0
1270 	** you'd replace the statement below with
1271 	**	t += ttisp->tt_gmtoff;
1272 	**	timesub(&t, 0L, sp, tmp);
1273 	*/
1274 	result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1275 	tmp->tm_isdst = ttisp->tt_isdst;
1276 	tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1277 #ifdef TM_ZONE
1278 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1279 #endif /* defined TM_ZONE */
1280 	return result;
1281 }
1282 
1283 /*
1284 ** Re-entrant version of localtime.
1285 */
1286 
1287 struct tm *
1288 localtime_r(const time_t *timep, struct tm *p_tm)
1289 {
1290 	_THREAD_PRIVATE_MUTEX_LOCK(lcl);
1291 	tzset_basic();
1292 	p_tm = localsub(timep, 0L, p_tm);
1293 	_THREAD_PRIVATE_MUTEX_UNLOCK(lcl);
1294 	return p_tm;
1295 }
1296 DEF_WEAK(localtime_r);
1297 
1298 struct tm *
1299 localtime(const time_t *timep)
1300 {
1301 	_THREAD_PRIVATE_KEY(localtime);
1302 	struct tm * p_tm = (struct tm*)_THREAD_PRIVATE(localtime, tm, NULL);
1303 
1304 	if (p_tm == NULL)
1305 		return NULL;
1306 	return localtime_r(timep, p_tm);
1307 }
1308 DEF_STRONG(localtime);
1309 
1310 /*
1311 ** gmtsub is to gmtime as localsub is to localtime.
1312 */
1313 
1314 static struct tm *
1315 gmtsub(const time_t *timep, long offset, struct tm *tmp)
1316 {
1317 	struct tm *	result;
1318 
1319 	_THREAD_PRIVATE_MUTEX_LOCK(gmt);
1320 	if (!gmt_is_set) {
1321 		gmt_is_set = TRUE;
1322 		gmtptr = calloc(1, sizeof(*gmtptr));
1323 		if (gmtptr != NULL)
1324 			gmtload(gmtptr);
1325 	}
1326 	_THREAD_PRIVATE_MUTEX_UNLOCK(gmt);
1327 	result = timesub(timep, offset, gmtptr, tmp);
1328 #ifdef TM_ZONE
1329 	/*
1330 	** Could get fancy here and deliver something such as
1331 	** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1332 	** but this is no time for a treasure hunt.
1333 	*/
1334 	if (offset != 0)
1335 		tmp->TM_ZONE = wildabbr;
1336 	else {
1337 		if (gmtptr == NULL)
1338 			tmp->TM_ZONE = (char *)gmt;
1339 		else
1340 			tmp->TM_ZONE = gmtptr->chars;
1341 	}
1342 #endif /* defined TM_ZONE */
1343 	return result;
1344 }
1345 
1346 /*
1347 ** Re-entrant version of gmtime.
1348 */
1349 
1350 struct tm *
1351 gmtime_r(const time_t *timep, struct tm *p_tm)
1352 {
1353 	return gmtsub(timep, 0L, p_tm);
1354 }
1355 DEF_WEAK(gmtime_r);
1356 
1357 struct tm *
1358 gmtime(const time_t *timep)
1359 {
1360 	_THREAD_PRIVATE_KEY(gmtime);
1361 	struct tm * p_tm = (struct tm*) _THREAD_PRIVATE(gmtime, tm, NULL);
1362 
1363 	if (p_tm == NULL)
1364 		return NULL;
1365 	return gmtime_r(timep, p_tm);
1366 
1367 }
1368 DEF_WEAK(gmtime);
1369 
1370 #ifdef STD_INSPIRED
1371 
1372 struct tm *
1373 offtime(const time_t *timep, long offset)
1374 {
1375 	return gmtsub(timep, offset, &tm);
1376 }
1377 
1378 #endif /* defined STD_INSPIRED */
1379 
1380 /*
1381 ** Return the number of leap years through the end of the given year
1382 ** where, to make the math easy, the answer for year zero is defined as zero.
1383 */
1384 
1385 static int
1386 leaps_thru_end_of(int y)
1387 {
1388 	return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1389 		-(leaps_thru_end_of(-(y + 1)) + 1);
1390 }
1391 
1392 static struct tm *
1393 timesub(const time_t *timep, long offset, const struct state *sp, struct tm *tmp)
1394 {
1395 	const struct lsinfo *	lp;
1396 	time_t			tdays;
1397 	int			idays;	/* unsigned would be so 2003 */
1398 	long			rem;
1399 	int			y;
1400 	const int *		ip;
1401 	long			corr;
1402 	int			hit;
1403 	int			i;
1404 	long			seconds;
1405 
1406 	corr = 0;
1407 	hit = 0;
1408 	i = (sp == NULL) ? 0 : sp->leapcnt;
1409 	while (--i >= 0) {
1410 		lp = &sp->lsis[i];
1411 		if (*timep >= lp->ls_trans) {
1412 			if (*timep == lp->ls_trans) {
1413 				hit = ((i == 0 && lp->ls_corr > 0) ||
1414 				    lp->ls_corr > sp->lsis[i - 1].ls_corr);
1415 				if (hit) {
1416 					while (i > 0 &&
1417 					    sp->lsis[i].ls_trans ==
1418 					    sp->lsis[i - 1].ls_trans + 1 &&
1419 					    sp->lsis[i].ls_corr ==
1420 					    sp->lsis[i - 1].ls_corr + 1) {
1421 						++hit;
1422 						--i;
1423 					}
1424 				}
1425 			}
1426 			corr = lp->ls_corr;
1427 			break;
1428 		}
1429 	}
1430 	y = EPOCH_YEAR;
1431 	tdays = *timep / SECSPERDAY;
1432 	rem = *timep - tdays * SECSPERDAY;
1433 	while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1434 		int		newy;
1435 		time_t	tdelta;
1436 		int	idelta;
1437 		int	leapdays;
1438 
1439 		tdelta = tdays / DAYSPERLYEAR;
1440 		idelta = tdelta;
1441 		if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
1442 			return NULL;
1443 		if (idelta == 0)
1444 			idelta = (tdays < 0) ? -1 : 1;
1445 		newy = y;
1446 		if (increment_overflow(&newy, idelta))
1447 			return NULL;
1448 		leapdays = leaps_thru_end_of(newy - 1) -
1449 			leaps_thru_end_of(y - 1);
1450 		tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1451 		tdays -= leapdays;
1452 		y = newy;
1453 	}
1454 
1455 	seconds = tdays * SECSPERDAY + 0.5;
1456 	tdays = seconds / SECSPERDAY;
1457 	rem += seconds - tdays * SECSPERDAY;
1458 
1459 	/*
1460 	** Given the range, we can now fearlessly cast...
1461 	*/
1462 	idays = tdays;
1463 	rem += offset - corr;
1464 	while (rem < 0) {
1465 		rem += SECSPERDAY;
1466 		--idays;
1467 	}
1468 	while (rem >= SECSPERDAY) {
1469 		rem -= SECSPERDAY;
1470 		++idays;
1471 	}
1472 	while (idays < 0) {
1473 		if (increment_overflow(&y, -1))
1474 			return NULL;
1475 		idays += year_lengths[isleap(y)];
1476 	}
1477 	while (idays >= year_lengths[isleap(y)]) {
1478 		idays -= year_lengths[isleap(y)];
1479 		if (increment_overflow(&y, 1))
1480 			return NULL;
1481 	}
1482 	tmp->tm_year = y;
1483 	if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1484 		return NULL;
1485 	tmp->tm_yday = idays;
1486 	/*
1487 	** The "extra" mods below avoid overflow problems.
1488 	*/
1489 	tmp->tm_wday = EPOCH_WDAY +
1490 	    ((y - EPOCH_YEAR) % DAYSPERWEEK) *
1491 	    (DAYSPERNYEAR % DAYSPERWEEK) +
1492 	    leaps_thru_end_of(y - 1) -
1493 	    leaps_thru_end_of(EPOCH_YEAR - 1) +
1494 	    idays;
1495 	tmp->tm_wday %= DAYSPERWEEK;
1496 	if (tmp->tm_wday < 0)
1497 		tmp->tm_wday += DAYSPERWEEK;
1498 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
1499 	rem %= SECSPERHOUR;
1500 	tmp->tm_min = (int) (rem / SECSPERMIN);
1501 	/*
1502 	** A positive leap second requires a special
1503 	** representation. This uses "... ??:59:60" et seq.
1504 	*/
1505 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1506 	ip = mon_lengths[isleap(y)];
1507 	for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1508 		idays -= ip[tmp->tm_mon];
1509 	tmp->tm_mday = (int) (idays + 1);
1510 	tmp->tm_isdst = 0;
1511 #ifdef TM_GMTOFF
1512 	tmp->TM_GMTOFF = offset;
1513 #endif /* defined TM_GMTOFF */
1514 	return tmp;
1515 }
1516 
1517 char *
1518 ctime(const time_t *timep)
1519 {
1520 /*
1521 ** Section 4.12.3.2 of X3.159-1989 requires that
1522 **	The ctime function converts the calendar time pointed to by timer
1523 **	to local time in the form of a string. It is equivalent to
1524 **		asctime(localtime(timer))
1525 */
1526 	return asctime(localtime(timep));
1527 }
1528 
1529 char *
1530 ctime_r(const time_t *timep, char *buf)
1531 {
1532 	struct tm	mytm;
1533 
1534 	return asctime_r(localtime_r(timep, &mytm), buf);
1535 }
1536 
1537 /*
1538 ** Adapted from code provided by Robert Elz, who writes:
1539 **	The "best" way to do mktime I think is based on an idea of Bob
1540 **	Kridle's (so its said...) from a long time ago.
1541 **	It does a binary search of the time_t space. Since time_t's are
1542 **	just 32 bits, its a max of 32 iterations (even at 64 bits it
1543 **	would still be very reasonable).
1544 */
1545 
1546 #ifndef WRONG
1547 #define WRONG	(-1)
1548 #endif /* !defined WRONG */
1549 
1550 /*
1551 ** Normalize logic courtesy Paul Eggert.
1552 */
1553 
1554 static int
1555 increment_overflow(int *ip, int j)
1556 {
1557 	int const	i = *ip;
1558 
1559 	/*
1560 	** If i >= 0 there can only be overflow if i + j > INT_MAX
1561 	** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
1562 	** If i < 0 there can only be overflow if i + j < INT_MIN
1563 	** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
1564 	*/
1565 	if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
1566 		return TRUE;
1567 	*ip += j;
1568 	return FALSE;
1569 }
1570 
1571 static int
1572 long_increment_overflow(long *lp, int m)
1573 {
1574 	long const	l = *lp;
1575 
1576 	if ((l >= 0) ? (m > LONG_MAX - l) : (m < LONG_MIN - l))
1577 		return TRUE;
1578 	*lp += m;
1579 	return FALSE;
1580 }
1581 
1582 static int
1583 normalize_overflow(int *tensptr, int *unitsptr, int base)
1584 {
1585 	int	tensdelta;
1586 
1587 	tensdelta = (*unitsptr >= 0) ?
1588 	    (*unitsptr / base) :
1589 	    (-1 - (-1 - *unitsptr) / base);
1590 	*unitsptr -= tensdelta * base;
1591 	return increment_overflow(tensptr, tensdelta);
1592 }
1593 
1594 static int
1595 long_normalize_overflow(long *tensptr, int *unitsptr, int base)
1596 {
1597 	int	tensdelta;
1598 
1599 	tensdelta = (*unitsptr >= 0) ?
1600 	    (*unitsptr / base) :
1601 	    (-1 - (-1 - *unitsptr) / base);
1602 	*unitsptr -= tensdelta * base;
1603 	return long_increment_overflow(tensptr, tensdelta);
1604 }
1605 
1606 static int
1607 tmcomp(const struct tm *atmp, const struct tm *btmp)
1608 {
1609 	int	result;
1610 
1611 	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1612 	    (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1613 	    (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1614 	    (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1615 	    (result = (atmp->tm_min - btmp->tm_min)) == 0)
1616 		result = atmp->tm_sec - btmp->tm_sec;
1617 	return result;
1618 }
1619 
1620 static time_t
1621 time2sub(struct tm *tmp, struct tm *(*funcp)(const time_t *, long, struct tm *),
1622     long offset, int *okayp, int do_norm_secs)
1623 {
1624 	const struct state *	sp;
1625 	int			dir;
1626 	int			i, j;
1627 	int			saved_seconds;
1628 	long			li;
1629 	time_t			lo;
1630 	time_t			hi;
1631 	long			y;
1632 	time_t			newt;
1633 	time_t			t;
1634 	struct tm		yourtm, mytm;
1635 
1636 	*okayp = FALSE;
1637 	yourtm = *tmp;
1638 	if (do_norm_secs) {
1639 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1640 			SECSPERMIN))
1641 				return WRONG;
1642 	}
1643 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1644 		return WRONG;
1645 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1646 		return WRONG;
1647 	y = yourtm.tm_year;
1648 	if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
1649 		return WRONG;
1650 	/*
1651 	** Turn y into an actual year number for now.
1652 	** It is converted back to an offset from TM_YEAR_BASE later.
1653 	*/
1654 	if (long_increment_overflow(&y, TM_YEAR_BASE))
1655 		return WRONG;
1656 	while (yourtm.tm_mday <= 0) {
1657 		if (long_increment_overflow(&y, -1))
1658 			return WRONG;
1659 		li = y + (1 < yourtm.tm_mon);
1660 		yourtm.tm_mday += year_lengths[isleap(li)];
1661 	}
1662 	while (yourtm.tm_mday > DAYSPERLYEAR) {
1663 		li = y + (1 < yourtm.tm_mon);
1664 		yourtm.tm_mday -= year_lengths[isleap(li)];
1665 		if (long_increment_overflow(&y, 1))
1666 			return WRONG;
1667 	}
1668 	for ( ; ; ) {
1669 		i = mon_lengths[isleap(y)][yourtm.tm_mon];
1670 		if (yourtm.tm_mday <= i)
1671 			break;
1672 		yourtm.tm_mday -= i;
1673 		if (++yourtm.tm_mon >= MONSPERYEAR) {
1674 			yourtm.tm_mon = 0;
1675 			if (long_increment_overflow(&y, 1))
1676 				return WRONG;
1677 		}
1678 	}
1679 	if (long_increment_overflow(&y, -TM_YEAR_BASE))
1680 		return WRONG;
1681 	yourtm.tm_year = y;
1682 	if (yourtm.tm_year != y)
1683 		return WRONG;
1684 	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1685 		saved_seconds = 0;
1686 	else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1687 		/*
1688 		** We can't set tm_sec to 0, because that might push the
1689 		** time below the minimum representable time.
1690 		** Set tm_sec to 59 instead.
1691 		** This assumes that the minimum representable time is
1692 		** not in the same minute that a leap second was deleted from,
1693 		** which is a safer assumption than using 58 would be.
1694 		*/
1695 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1696 			return WRONG;
1697 		saved_seconds = yourtm.tm_sec;
1698 		yourtm.tm_sec = SECSPERMIN - 1;
1699 	} else {
1700 		saved_seconds = yourtm.tm_sec;
1701 		yourtm.tm_sec = 0;
1702 	}
1703 	/*
1704 	** Do a binary search (this works whatever time_t's type is).
1705 	*/
1706 	lo = 1;
1707 	for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1708 		lo *= 2;
1709 	hi = -(lo + 1);
1710 	for ( ; ; ) {
1711 		t = lo / 2 + hi / 2;
1712 		if (t < lo)
1713 			t = lo;
1714 		else if (t > hi)
1715 			t = hi;
1716 		if ((*funcp)(&t, offset, &mytm) == NULL) {
1717 			/*
1718 			** Assume that t is too extreme to be represented in
1719 			** a struct tm; arrange things so that it is less
1720 			** extreme on the next pass.
1721 			*/
1722 			dir = (t > 0) ? 1 : -1;
1723 		} else
1724 			dir = tmcomp(&mytm, &yourtm);
1725 		if (dir != 0) {
1726 			if (t == lo) {
1727 				++t;
1728 				if (t <= lo)
1729 					return WRONG;
1730 				++lo;
1731 			} else if (t == hi) {
1732 				--t;
1733 				if (t >= hi)
1734 					return WRONG;
1735 				--hi;
1736 			}
1737 			if (lo > hi)
1738 				return WRONG;
1739 			if (dir > 0)
1740 				hi = t;
1741 			else
1742 				lo = t;
1743 			continue;
1744 		}
1745 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1746 			break;
1747 		/*
1748 		** Right time, wrong type.
1749 		** Hunt for right time, right type.
1750 		** It's okay to guess wrong since the guess
1751 		** gets checked.
1752 		*/
1753 		sp = (const struct state *)
1754 		    ((funcp == localsub) ? lclptr : gmtptr);
1755 		if (sp == NULL)
1756 			return WRONG;
1757 		for (i = sp->typecnt - 1; i >= 0; --i) {
1758 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1759 				continue;
1760 			for (j = sp->typecnt - 1; j >= 0; --j) {
1761 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1762 					continue;
1763 				newt = t + sp->ttis[j].tt_gmtoff -
1764 					sp->ttis[i].tt_gmtoff;
1765 				if ((*funcp)(&newt, offset, &mytm) == NULL)
1766 					continue;
1767 				if (tmcomp(&mytm, &yourtm) != 0)
1768 					continue;
1769 				if (mytm.tm_isdst != yourtm.tm_isdst)
1770 					continue;
1771 				/*
1772 				** We have a match.
1773 				*/
1774 				t = newt;
1775 				goto label;
1776 			}
1777 		}
1778 		return WRONG;
1779 	}
1780 label:
1781 	newt = t + saved_seconds;
1782 	if ((newt < t) != (saved_seconds < 0))
1783 		return WRONG;
1784 	t = newt;
1785 	if ((*funcp)(&t, offset, tmp))
1786 		*okayp = TRUE;
1787 	return t;
1788 }
1789 
1790 static time_t
1791 time2(struct tm *tmp, struct tm * (*funcp)(const time_t *, long, struct tm *),
1792     long offset, int *okayp)
1793 {
1794 	time_t	t;
1795 
1796 	/*
1797 	** First try without normalization of seconds
1798 	** (in case tm_sec contains a value associated with a leap second).
1799 	** If that fails, try with normalization of seconds.
1800 	*/
1801 	t = time2sub(tmp, funcp, offset, okayp, FALSE);
1802 	return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
1803 }
1804 
1805 static time_t
1806 time1(struct tm *tmp, struct tm * (*funcp)(const time_t *, long, struct tm *),
1807     long offset)
1808 {
1809 	time_t			t;
1810 	const struct state *	sp;
1811 	int			samei, otheri;
1812 	int			sameind, otherind;
1813 	int			i;
1814 	int			nseen;
1815 	int			seen[TZ_MAX_TYPES];
1816 	int			types[TZ_MAX_TYPES];
1817 	int			okay;
1818 
1819 	if (tmp == NULL) {
1820 		errno = EINVAL;
1821 		return WRONG;
1822 	}
1823 	if (tmp->tm_isdst > 1)
1824 		tmp->tm_isdst = 1;
1825 	t = time2(tmp, funcp, offset, &okay);
1826 #ifdef PCTS
1827 	/*
1828 	** PCTS code courtesy Grant Sullivan.
1829 	*/
1830 	if (okay)
1831 		return t;
1832 	if (tmp->tm_isdst < 0)
1833 		tmp->tm_isdst = 0;	/* reset to std and try again */
1834 #endif /* defined PCTS */
1835 #ifndef PCTS
1836 	if (okay || tmp->tm_isdst < 0)
1837 		return t;
1838 #endif /* !defined PCTS */
1839 	/*
1840 	** We're supposed to assume that somebody took a time of one type
1841 	** and did some math on it that yielded a "struct tm" that's bad.
1842 	** We try to divine the type they started from and adjust to the
1843 	** type they need.
1844 	*/
1845 	sp = (const struct state *) ((funcp == localsub) ?  lclptr : gmtptr);
1846 	if (sp == NULL)
1847 		return WRONG;
1848 	for (i = 0; i < sp->typecnt; ++i)
1849 		seen[i] = FALSE;
1850 	nseen = 0;
1851 	for (i = sp->timecnt - 1; i >= 0; --i) {
1852 		if (!seen[sp->types[i]]) {
1853 			seen[sp->types[i]] = TRUE;
1854 			types[nseen++] = sp->types[i];
1855 		}
1856 	}
1857 	for (sameind = 0; sameind < nseen; ++sameind) {
1858 		samei = types[sameind];
1859 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1860 			continue;
1861 		for (otherind = 0; otherind < nseen; ++otherind) {
1862 			otheri = types[otherind];
1863 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1864 				continue;
1865 			tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
1866 			    sp->ttis[samei].tt_gmtoff;
1867 			tmp->tm_isdst = !tmp->tm_isdst;
1868 			t = time2(tmp, funcp, offset, &okay);
1869 			if (okay)
1870 				return t;
1871 			tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
1872 			    sp->ttis[samei].tt_gmtoff;
1873 			tmp->tm_isdst = !tmp->tm_isdst;
1874 		}
1875 	}
1876 	return WRONG;
1877 }
1878 
1879 time_t
1880 mktime(struct tm *tmp)
1881 {
1882 	time_t ret;
1883 
1884 	_THREAD_PRIVATE_MUTEX_LOCK(lcl);
1885 	tzset_basic();
1886 	ret = time1(tmp, localsub, 0L);
1887 	_THREAD_PRIVATE_MUTEX_UNLOCK(lcl);
1888 	return ret;
1889 }
1890 DEF_STRONG(mktime);
1891 
1892 #ifdef STD_INSPIRED
1893 
1894 time_t
1895 timelocal(struct tm *tmp)
1896 {
1897 	if (tmp != NULL)
1898 		tmp->tm_isdst = -1;	/* in case it wasn't initialized */
1899 	return mktime(tmp);
1900 }
1901 
1902 time_t
1903 timegm(struct tm *tmp)
1904 {
1905 	if (tmp != NULL)
1906 		tmp->tm_isdst = 0;
1907 	return time1(tmp, gmtsub, 0L);
1908 }
1909 
1910 time_t
1911 timeoff(struct tm *tmp, long offset)
1912 {
1913 	if (tmp != NULL)
1914 		tmp->tm_isdst = 0;
1915 	return time1(tmp, gmtsub, offset);
1916 }
1917 
1918 #endif /* defined STD_INSPIRED */
1919 
1920 /*
1921 ** XXX--is the below the right way to conditionalize??
1922 */
1923 
1924 #ifdef STD_INSPIRED
1925 
1926 /*
1927 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
1928 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
1929 ** is not the case if we are accounting for leap seconds.
1930 ** So, we provide the following conversion routines for use
1931 ** when exchanging timestamps with POSIX conforming systems.
1932 */
1933 
1934 static long
1935 leapcorr(time_t *timep)
1936 {
1937 	struct state *		sp;
1938 	struct lsinfo *	lp;
1939 	int			i;
1940 
1941 	sp = lclptr;
1942 	i = sp->leapcnt;
1943 	while (--i >= 0) {
1944 		lp = &sp->lsis[i];
1945 		if (*timep >= lp->ls_trans)
1946 			return lp->ls_corr;
1947 	}
1948 	return 0;
1949 }
1950 
1951 time_t
1952 time2posix(time_t t)
1953 {
1954 	tzset();
1955 	return t - leapcorr(&t);
1956 }
1957 
1958 time_t
1959 posix2time(time_t t)
1960 {
1961 	time_t	x;
1962 	time_t	y;
1963 
1964 	tzset();
1965 	/*
1966 	** For a positive leap second hit, the result
1967 	** is not unique. For a negative leap second
1968 	** hit, the corresponding time doesn't exist,
1969 	** so we return an adjacent second.
1970 	*/
1971 	x = t + leapcorr(&t);
1972 	y = x - leapcorr(&x);
1973 	if (y < t) {
1974 		do {
1975 			x++;
1976 			y = x - leapcorr(&x);
1977 		} while (y < t);
1978 		if (t != y)
1979 			return x - 1;
1980 	} else if (y > t) {
1981 		do {
1982 			--x;
1983 			y = x - leapcorr(&x);
1984 		} while (y > t);
1985 		if (t != y)
1986 			return x + 1;
1987 	}
1988 	return x;
1989 }
1990 
1991 #endif /* defined STD_INSPIRED */
1992