xref: /openbsd-src/lib/libc/stdlib/random.c (revision a4afd6dad3fba28f80e70208181c06c482259988)
1 /*
2  * Copyright (c) 1983 Regents of the University of California.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 #if defined(LIBC_SCCS) && !defined(lint)
35 static char *rcsid = "$OpenBSD: random.c,v 1.4 1996/09/15 09:31:51 tholo Exp $";
36 #endif /* LIBC_SCCS and not lint */
37 
38 #include <stdio.h>
39 #include <stdlib.h>
40 
41 /*
42  * random.c:
43  *
44  * An improved random number generation package.  In addition to the standard
45  * rand()/srand() like interface, this package also has a special state info
46  * interface.  The initstate() routine is called with a seed, an array of
47  * bytes, and a count of how many bytes are being passed in; this array is
48  * then initialized to contain information for random number generation with
49  * that much state information.  Good sizes for the amount of state
50  * information are 32, 64, 128, and 256 bytes.  The state can be switched by
51  * calling the setstate() routine with the same array as was initiallized
52  * with initstate().  By default, the package runs with 128 bytes of state
53  * information and generates far better random numbers than a linear
54  * congruential generator.  If the amount of state information is less than
55  * 32 bytes, a simple linear congruential R.N.G. is used.
56  *
57  * Internally, the state information is treated as an array of longs; the
58  * zeroeth element of the array is the type of R.N.G. being used (small
59  * integer); the remainder of the array is the state information for the
60  * R.N.G.  Thus, 32 bytes of state information will give 7 longs worth of
61  * state information, which will allow a degree seven polynomial.  (Note:
62  * the zeroeth word of state information also has some other information
63  * stored in it -- see setstate() for details).
64  *
65  * The random number generation technique is a linear feedback shift register
66  * approach, employing trinomials (since there are fewer terms to sum up that
67  * way).  In this approach, the least significant bit of all the numbers in
68  * the state table will act as a linear feedback shift register, and will
69  * have period 2^deg - 1 (where deg is the degree of the polynomial being
70  * used, assuming that the polynomial is irreducible and primitive).  The
71  * higher order bits will have longer periods, since their values are also
72  * influenced by pseudo-random carries out of the lower bits.  The total
73  * period of the generator is approximately deg*(2**deg - 1); thus doubling
74  * the amount of state information has a vast influence on the period of the
75  * generator.  Note: the deg*(2**deg - 1) is an approximation only good for
76  * large deg, when the period of the shift register is the dominant factor.
77  * With deg equal to seven, the period is actually much longer than the
78  * 7*(2**7 - 1) predicted by this formula.
79  */
80 
81 /*
82  * For each of the currently supported random number generators, we have a
83  * break value on the amount of state information (you need at least this
84  * many bytes of state info to support this random number generator), a degree
85  * for the polynomial (actually a trinomial) that the R.N.G. is based on, and
86  * the separation between the two lower order coefficients of the trinomial.
87  */
88 #define	TYPE_0		0		/* linear congruential */
89 #define	BREAK_0		8
90 #define	DEG_0		0
91 #define	SEP_0		0
92 
93 #define	TYPE_1		1		/* x**7 + x**3 + 1 */
94 #define	BREAK_1		32
95 #define	DEG_1		7
96 #define	SEP_1		3
97 
98 #define	TYPE_2		2		/* x**15 + x + 1 */
99 #define	BREAK_2		64
100 #define	DEG_2		15
101 #define	SEP_2		1
102 
103 #define	TYPE_3		3		/* x**31 + x**3 + 1 */
104 #define	BREAK_3		128
105 #define	DEG_3		31
106 #define	SEP_3		3
107 
108 #define	TYPE_4		4		/* x**63 + x + 1 */
109 #define	BREAK_4		256
110 #define	DEG_4		63
111 #define	SEP_4		1
112 
113 /*
114  * Array versions of the above information to make code run faster --
115  * relies on fact that TYPE_i == i.
116  */
117 #define	MAX_TYPES	5		/* max number of types above */
118 
119 static int degrees[MAX_TYPES] =	{ DEG_0, DEG_1, DEG_2, DEG_3, DEG_4 };
120 static int seps [MAX_TYPES] =	{ SEP_0, SEP_1, SEP_2, SEP_3, SEP_4 };
121 
122 /*
123  * Initially, everything is set up as if from:
124  *
125  *	initstate(1, &randtbl, 128);
126  *
127  * Note that this initialization takes advantage of the fact that srandom()
128  * advances the front and rear pointers 10*rand_deg times, and hence the
129  * rear pointer which starts at 0 will also end up at zero; thus the zeroeth
130  * element of the state information, which contains info about the current
131  * position of the rear pointer is just
132  *
133  *	MAX_TYPES * (rptr - state) + TYPE_3 == TYPE_3.
134  */
135 
136 static long randtbl[DEG_3 + 1] = {
137 	TYPE_3,
138 	0x991539b1, 0x16a5bce3, 0x6774a4cd, 0x3e01511e, 0x4e508aaa, 0x61048c05,
139 	0xf5500617, 0x846b7115, 0x6a19892c, 0x896a97af, 0xdb48f936, 0x14898454,
140 	0x37ffd106, 0xb58bff9c, 0x59e17104, 0xcf918a49, 0x09378c83, 0x52c7a471,
141 	0x8d293ea9, 0x1f4fc301, 0xc3db71be, 0x39b44e1c, 0xf8a44ef9, 0x4c8b80b1,
142 	0x19edc328, 0x87bf4bdd, 0xc9b240e5, 0xe9ee4b1b, 0x4382aee7, 0x535b6b41,
143 	0xf3bec5da,
144 };
145 
146 /*
147  * fptr and rptr are two pointers into the state info, a front and a rear
148  * pointer.  These two pointers are always rand_sep places aparts, as they
149  * cycle cyclically through the state information.  (Yes, this does mean we
150  * could get away with just one pointer, but the code for random() is more
151  * efficient this way).  The pointers are left positioned as they would be
152  * from the call
153  *
154  *	initstate(1, randtbl, 128);
155  *
156  * (The position of the rear pointer, rptr, is really 0 (as explained above
157  * in the initialization of randtbl) because the state table pointer is set
158  * to point to randtbl[1] (as explained below).
159  */
160 static long *fptr = &randtbl[SEP_3 + 1];
161 static long *rptr = &randtbl[1];
162 
163 /*
164  * The following things are the pointer to the state information table, the
165  * type of the current generator, the degree of the current polynomial being
166  * used, and the separation between the two pointers.  Note that for efficiency
167  * of random(), we remember the first location of the state information, not
168  * the zeroeth.  Hence it is valid to access state[-1], which is used to
169  * store the type of the R.N.G.  Also, we remember the last location, since
170  * this is more efficient than indexing every time to find the address of
171  * the last element to see if the front and rear pointers have wrapped.
172  */
173 static long *state = &randtbl[1];
174 static int rand_type = TYPE_3;
175 static int rand_deg = DEG_3;
176 static int rand_sep = SEP_3;
177 static long *end_ptr = &randtbl[DEG_3 + 1];
178 
179 /*
180  * srandom:
181  *
182  * Initialize the random number generator based on the given seed.  If the
183  * type is the trivial no-state-information type, just remember the seed.
184  * Otherwise, initializes state[] based on the given "seed" via a linear
185  * congruential generator.  Then, the pointers are set to known locations
186  * that are exactly rand_sep places apart.  Lastly, it cycles the state
187  * information a given number of times to get rid of any initial dependencies
188  * introduced by the L.C.R.N.G.  Note that the initialization of randtbl[]
189  * for default usage relies on values produced by this routine.
190  */
191 void
192 srandom(x)
193 	u_int x;
194 {
195 	register long int test;
196 	register int i;
197 	ldiv_t val;
198 
199 	if (rand_type == TYPE_0)
200 		state[0] = x;
201 	else {
202 		state[0] = x;
203 		for (i = 1; i < rand_deg; i++) {
204 			/*
205 			 * Implement the following, without overflowing 31 bits:
206 			 *
207 			 *	state[i] = (16807 * state[i - 1]) % 2147483647;
208 			 *
209 			 *	2^31-1 (prime) = 2147483647 = 127773*16807+2836
210 			 */
211 			val = ldiv(state[i-1], 127773);
212 			test = 16807 * val.rem - 2836 * val.quot;
213 			state[i] = test + (test < 0 ? 2147483647 : 0);
214 		}
215 		fptr = &state[rand_sep];
216 		rptr = &state[0];
217 		for (i = 0; i < 10 * rand_deg; i++)
218 			(void)random();
219 	}
220 }
221 
222 /*
223  * initstate:
224  *
225  * Initialize the state information in the given array of n bytes for future
226  * random number generation.  Based on the number of bytes we are given, and
227  * the break values for the different R.N.G.'s, we choose the best (largest)
228  * one we can and set things up for it.  srandom() is then called to
229  * initialize the state information.
230  *
231  * Note that on return from srandom(), we set state[-1] to be the type
232  * multiplexed with the current value of the rear pointer; this is so
233  * successive calls to initstate() won't lose this information and will be
234  * able to restart with setstate().
235  *
236  * Note: the first thing we do is save the current state, if any, just like
237  * setstate() so that it doesn't matter when initstate is called.
238  *
239  * Returns a pointer to the old state.
240  */
241 char *
242 initstate(seed, arg_state, n)
243 	u_int seed;			/* seed for R.N.G. */
244 	char *arg_state;		/* pointer to state array */
245 	int n;				/* # bytes of state info */
246 {
247 	register char *ostate = (char *)(&state[-1]);
248 
249 	if (rand_type == TYPE_0)
250 		state[-1] = rand_type;
251 	else
252 		state[-1] = MAX_TYPES * (rptr - state) + rand_type;
253 	if (n < BREAK_0) {
254 		(void)fprintf(stderr,
255 		    "random: not enough state (%d bytes); ignored.\n", n);
256 		return(0);
257 	}
258 	if (n < BREAK_1) {
259 		rand_type = TYPE_0;
260 		rand_deg = DEG_0;
261 		rand_sep = SEP_0;
262 	} else if (n < BREAK_2) {
263 		rand_type = TYPE_1;
264 		rand_deg = DEG_1;
265 		rand_sep = SEP_1;
266 	} else if (n < BREAK_3) {
267 		rand_type = TYPE_2;
268 		rand_deg = DEG_2;
269 		rand_sep = SEP_2;
270 	} else if (n < BREAK_4) {
271 		rand_type = TYPE_3;
272 		rand_deg = DEG_3;
273 		rand_sep = SEP_3;
274 	} else {
275 		rand_type = TYPE_4;
276 		rand_deg = DEG_4;
277 		rand_sep = SEP_4;
278 	}
279 	state = &(((long *)arg_state)[1]);	/* first location */
280 	end_ptr = &state[rand_deg];	/* must set end_ptr before srandom */
281 	srandom(seed);
282 	if (rand_type == TYPE_0)
283 		state[-1] = rand_type;
284 	else
285 		state[-1] = MAX_TYPES*(rptr - state) + rand_type;
286 	return(ostate);
287 }
288 
289 /*
290  * setstate:
291  *
292  * Restore the state from the given state array.
293  *
294  * Note: it is important that we also remember the locations of the pointers
295  * in the current state information, and restore the locations of the pointers
296  * from the old state information.  This is done by multiplexing the pointer
297  * location into the zeroeth word of the state information.
298  *
299  * Note that due to the order in which things are done, it is OK to call
300  * setstate() with the same state as the current state.
301  *
302  * Returns a pointer to the old state information.
303  */
304 char *
305 setstate(arg_state)
306 	char *arg_state;
307 {
308 	register long *new_state = (long *)arg_state;
309 	register int type = new_state[0] % MAX_TYPES;
310 	register int rear = new_state[0] / MAX_TYPES;
311 	char *ostate = (char *)(&state[-1]);
312 
313 	if (rand_type == TYPE_0)
314 		state[-1] = rand_type;
315 	else
316 		state[-1] = MAX_TYPES * (rptr - state) + rand_type;
317 	switch(type) {
318 	case TYPE_0:
319 	case TYPE_1:
320 	case TYPE_2:
321 	case TYPE_3:
322 	case TYPE_4:
323 		rand_type = type;
324 		rand_deg = degrees[type];
325 		rand_sep = seps[type];
326 		break;
327 	default:
328 		(void)fprintf(stderr,
329 		    "random: state info corrupted; not changed.\n");
330 	}
331 	state = &new_state[1];
332 	if (rand_type != TYPE_0) {
333 		rptr = &state[rear];
334 		fptr = &state[(rear + rand_sep) % rand_deg];
335 	}
336 	end_ptr = &state[rand_deg];		/* set end_ptr too */
337 	return(ostate);
338 }
339 
340 /*
341  * random:
342  *
343  * If we are using the trivial TYPE_0 R.N.G., just do the old linear
344  * congruential bit.  Otherwise, we do our fancy trinomial stuff, which is
345  * the same in all the other cases due to all the global variables that have
346  * been set up.  The basic operation is to add the number at the rear pointer
347  * into the one at the front pointer.  Then both pointers are advanced to
348  * the next location cyclically in the table.  The value returned is the sum
349  * generated, reduced to 31 bits by throwing away the "least random" low bit.
350  *
351  * Note: the code takes advantage of the fact that both the front and
352  * rear pointers can't wrap on the same call by not testing the rear
353  * pointer if the front one has wrapped.
354  *
355  * Returns a 31-bit random number.
356  */
357 long
358 random()
359 {
360 	long i;
361 
362 	if (rand_type == TYPE_0)
363 		i = state[0] = (state[0] * 1103515245 + 12345) & 0x7fffffff;
364 	else {
365 		*fptr += *rptr;
366 		i = (*fptr >> 1) & 0x7fffffff;	/* chucking least random bit */
367 		if (++fptr >= end_ptr) {
368 			fptr = state;
369 			++rptr;
370 		} else if (++rptr >= end_ptr)
371 			rptr = state;
372 	}
373 	return(i);
374 }
375