1 /* $OpenBSD: sha2.c,v 1.13 2009/04/15 00:55:52 djm Exp $ */ 2 3 /* 4 * FILE: sha2.c 5 * AUTHOR: Aaron D. Gifford <me@aarongifford.com> 6 * 7 * Copyright (c) 2000-2001, Aaron D. Gifford 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the copyright holder nor the names of contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $ 35 */ 36 37 #include <sys/types.h> 38 39 #include <string.h> 40 #include <sha2.h> 41 42 /* 43 * UNROLLED TRANSFORM LOOP NOTE: 44 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform 45 * loop version for the hash transform rounds (defined using macros 46 * later in this file). Either define on the command line, for example: 47 * 48 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c 49 * 50 * or define below: 51 * 52 * #define SHA2_UNROLL_TRANSFORM 53 * 54 */ 55 56 /*** SHA-256/384/512 Machine Architecture Definitions *****************/ 57 /* 58 * BYTE_ORDER NOTE: 59 * 60 * Please make sure that your system defines BYTE_ORDER. If your 61 * architecture is little-endian, make sure it also defines 62 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are 63 * equivilent. 64 * 65 * If your system does not define the above, then you can do so by 66 * hand like this: 67 * 68 * #define LITTLE_ENDIAN 1234 69 * #define BIG_ENDIAN 4321 70 * 71 * And for little-endian machines, add: 72 * 73 * #define BYTE_ORDER LITTLE_ENDIAN 74 * 75 * Or for big-endian machines: 76 * 77 * #define BYTE_ORDER BIG_ENDIAN 78 * 79 * The FreeBSD machine this was written on defines BYTE_ORDER 80 * appropriately by including <sys/types.h> (which in turn includes 81 * <machine/endian.h> where the appropriate definitions are actually 82 * made). 83 */ 84 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN) 85 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN 86 #endif 87 88 89 /*** SHA-256/384/512 Various Length Definitions ***********************/ 90 /* NOTE: Most of these are in sha2.h */ 91 #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8) 92 #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16) 93 #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16) 94 95 /*** ENDIAN SPECIFIC COPY MACROS **************************************/ 96 #define BE_8_TO_32(dst, cp) do { \ 97 (dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) | \ 98 ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24); \ 99 } while(0) 100 101 #define BE_8_TO_64(dst, cp) do { \ 102 (dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) | \ 103 ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) | \ 104 ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) | \ 105 ((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56); \ 106 } while (0) 107 108 #define BE_64_TO_8(cp, src) do { \ 109 (cp)[0] = (src) >> 56; \ 110 (cp)[1] = (src) >> 48; \ 111 (cp)[2] = (src) >> 40; \ 112 (cp)[3] = (src) >> 32; \ 113 (cp)[4] = (src) >> 24; \ 114 (cp)[5] = (src) >> 16; \ 115 (cp)[6] = (src) >> 8; \ 116 (cp)[7] = (src); \ 117 } while (0) 118 119 #define BE_32_TO_8(cp, src) do { \ 120 (cp)[0] = (src) >> 24; \ 121 (cp)[1] = (src) >> 16; \ 122 (cp)[2] = (src) >> 8; \ 123 (cp)[3] = (src); \ 124 } while (0) 125 126 /* 127 * Macro for incrementally adding the unsigned 64-bit integer n to the 128 * unsigned 128-bit integer (represented using a two-element array of 129 * 64-bit words): 130 */ 131 #define ADDINC128(w,n) do { \ 132 (w)[0] += (u_int64_t)(n); \ 133 if ((w)[0] < (n)) { \ 134 (w)[1]++; \ 135 } \ 136 } while (0) 137 138 /*** THE SIX LOGICAL FUNCTIONS ****************************************/ 139 /* 140 * Bit shifting and rotation (used by the six SHA-XYZ logical functions: 141 * 142 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and 143 * S is a ROTATION) because the SHA-256/384/512 description document 144 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this 145 * same "backwards" definition. 146 */ 147 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ 148 #define R(b,x) ((x) >> (b)) 149 /* 32-bit Rotate-right (used in SHA-256): */ 150 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) 151 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ 152 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) 153 154 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ 155 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) 156 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) 157 158 /* Four of six logical functions used in SHA-256: */ 159 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) 160 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) 161 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) 162 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) 163 164 /* Four of six logical functions used in SHA-384 and SHA-512: */ 165 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) 166 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) 167 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) 168 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) 169 170 171 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ 172 /* Hash constant words K for SHA-256: */ 173 const static u_int32_t K256[64] = { 174 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 175 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 176 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, 177 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, 178 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, 179 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 180 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 181 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, 182 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, 183 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 184 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 185 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 186 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, 187 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, 188 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, 189 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL 190 }; 191 192 /* Initial hash value H for SHA-256: */ 193 const static u_int32_t sha256_initial_hash_value[8] = { 194 0x6a09e667UL, 195 0xbb67ae85UL, 196 0x3c6ef372UL, 197 0xa54ff53aUL, 198 0x510e527fUL, 199 0x9b05688cUL, 200 0x1f83d9abUL, 201 0x5be0cd19UL 202 }; 203 204 #ifndef SHA256_ONLY 205 /* Hash constant words K for SHA-384 and SHA-512: */ 206 const static u_int64_t K512[80] = { 207 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 208 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, 209 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 210 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 211 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 212 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 213 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 214 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, 215 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 216 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 217 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 218 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, 219 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 220 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, 221 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 222 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 223 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 224 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 225 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 226 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, 227 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 228 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 229 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 230 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, 231 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 232 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, 233 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 234 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 235 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 236 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 237 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 238 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, 239 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 240 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 241 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 242 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, 243 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 244 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, 245 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 246 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL 247 }; 248 249 /* Initial hash value H for SHA-384 */ 250 const static u_int64_t sha384_initial_hash_value[8] = { 251 0xcbbb9d5dc1059ed8ULL, 252 0x629a292a367cd507ULL, 253 0x9159015a3070dd17ULL, 254 0x152fecd8f70e5939ULL, 255 0x67332667ffc00b31ULL, 256 0x8eb44a8768581511ULL, 257 0xdb0c2e0d64f98fa7ULL, 258 0x47b5481dbefa4fa4ULL 259 }; 260 261 /* Initial hash value H for SHA-512 */ 262 const static u_int64_t sha512_initial_hash_value[8] = { 263 0x6a09e667f3bcc908ULL, 264 0xbb67ae8584caa73bULL, 265 0x3c6ef372fe94f82bULL, 266 0xa54ff53a5f1d36f1ULL, 267 0x510e527fade682d1ULL, 268 0x9b05688c2b3e6c1fULL, 269 0x1f83d9abfb41bd6bULL, 270 0x5be0cd19137e2179ULL 271 }; 272 #endif /* SHA256_ONLY */ 273 274 /*** SHA-256: *********************************************************/ 275 void 276 SHA256Init(SHA2_CTX *context) 277 { 278 if (context == NULL) 279 return; 280 memcpy(context->state.st32, sha256_initial_hash_value, 281 sizeof(sha256_initial_hash_value)); 282 memset(context->buffer, 0, sizeof(context->buffer)); 283 context->bitcount[0] = 0; 284 } 285 286 #ifdef SHA2_UNROLL_TRANSFORM 287 288 /* Unrolled SHA-256 round macros: */ 289 290 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do { \ 291 BE_8_TO_32(W256[j], data); \ 292 data += 4; \ 293 T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \ 294 (d) += T1; \ 295 (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \ 296 j++; \ 297 } while(0) 298 299 #define ROUND256(a,b,c,d,e,f,g,h) do { \ 300 s0 = W256[(j+1)&0x0f]; \ 301 s0 = sigma0_256(s0); \ 302 s1 = W256[(j+14)&0x0f]; \ 303 s1 = sigma1_256(s1); \ 304 T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + \ 305 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ 306 (d) += T1; \ 307 (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \ 308 j++; \ 309 } while(0) 310 311 void 312 SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH]) 313 { 314 u_int32_t a, b, c, d, e, f, g, h, s0, s1; 315 u_int32_t T1, W256[16]; 316 int j; 317 318 /* Initialize registers with the prev. intermediate value */ 319 a = state[0]; 320 b = state[1]; 321 c = state[2]; 322 d = state[3]; 323 e = state[4]; 324 f = state[5]; 325 g = state[6]; 326 h = state[7]; 327 328 j = 0; 329 do { 330 /* Rounds 0 to 15 (unrolled): */ 331 ROUND256_0_TO_15(a,b,c,d,e,f,g,h); 332 ROUND256_0_TO_15(h,a,b,c,d,e,f,g); 333 ROUND256_0_TO_15(g,h,a,b,c,d,e,f); 334 ROUND256_0_TO_15(f,g,h,a,b,c,d,e); 335 ROUND256_0_TO_15(e,f,g,h,a,b,c,d); 336 ROUND256_0_TO_15(d,e,f,g,h,a,b,c); 337 ROUND256_0_TO_15(c,d,e,f,g,h,a,b); 338 ROUND256_0_TO_15(b,c,d,e,f,g,h,a); 339 } while (j < 16); 340 341 /* Now for the remaining rounds up to 63: */ 342 do { 343 ROUND256(a,b,c,d,e,f,g,h); 344 ROUND256(h,a,b,c,d,e,f,g); 345 ROUND256(g,h,a,b,c,d,e,f); 346 ROUND256(f,g,h,a,b,c,d,e); 347 ROUND256(e,f,g,h,a,b,c,d); 348 ROUND256(d,e,f,g,h,a,b,c); 349 ROUND256(c,d,e,f,g,h,a,b); 350 ROUND256(b,c,d,e,f,g,h,a); 351 } while (j < 64); 352 353 /* Compute the current intermediate hash value */ 354 state[0] += a; 355 state[1] += b; 356 state[2] += c; 357 state[3] += d; 358 state[4] += e; 359 state[5] += f; 360 state[6] += g; 361 state[7] += h; 362 363 /* Clean up */ 364 a = b = c = d = e = f = g = h = T1 = 0; 365 } 366 367 #else /* SHA2_UNROLL_TRANSFORM */ 368 369 void 370 SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH]) 371 { 372 u_int32_t a, b, c, d, e, f, g, h, s0, s1; 373 u_int32_t T1, T2, W256[16]; 374 int j; 375 376 /* Initialize registers with the prev. intermediate value */ 377 a = state[0]; 378 b = state[1]; 379 c = state[2]; 380 d = state[3]; 381 e = state[4]; 382 f = state[5]; 383 g = state[6]; 384 h = state[7]; 385 386 j = 0; 387 do { 388 BE_8_TO_32(W256[j], data); 389 data += 4; 390 /* Apply the SHA-256 compression function to update a..h */ 391 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; 392 T2 = Sigma0_256(a) + Maj(a, b, c); 393 h = g; 394 g = f; 395 f = e; 396 e = d + T1; 397 d = c; 398 c = b; 399 b = a; 400 a = T1 + T2; 401 402 j++; 403 } while (j < 16); 404 405 do { 406 /* Part of the message block expansion: */ 407 s0 = W256[(j+1)&0x0f]; 408 s0 = sigma0_256(s0); 409 s1 = W256[(j+14)&0x0f]; 410 s1 = sigma1_256(s1); 411 412 /* Apply the SHA-256 compression function to update a..h */ 413 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + 414 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); 415 T2 = Sigma0_256(a) + Maj(a, b, c); 416 h = g; 417 g = f; 418 f = e; 419 e = d + T1; 420 d = c; 421 c = b; 422 b = a; 423 a = T1 + T2; 424 425 j++; 426 } while (j < 64); 427 428 /* Compute the current intermediate hash value */ 429 state[0] += a; 430 state[1] += b; 431 state[2] += c; 432 state[3] += d; 433 state[4] += e; 434 state[5] += f; 435 state[6] += g; 436 state[7] += h; 437 438 /* Clean up */ 439 a = b = c = d = e = f = g = h = T1 = T2 = 0; 440 } 441 442 #endif /* SHA2_UNROLL_TRANSFORM */ 443 444 void 445 SHA256Update(SHA2_CTX *context, const u_int8_t *data, size_t len) 446 { 447 size_t freespace, usedspace; 448 449 /* Calling with no data is valid (we do nothing) */ 450 if (len == 0) 451 return; 452 453 usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH; 454 if (usedspace > 0) { 455 /* Calculate how much free space is available in the buffer */ 456 freespace = SHA256_BLOCK_LENGTH - usedspace; 457 458 if (len >= freespace) { 459 /* Fill the buffer completely and process it */ 460 memcpy(&context->buffer[usedspace], data, freespace); 461 context->bitcount[0] += freespace << 3; 462 len -= freespace; 463 data += freespace; 464 SHA256Transform(context->state.st32, context->buffer); 465 } else { 466 /* The buffer is not yet full */ 467 memcpy(&context->buffer[usedspace], data, len); 468 context->bitcount[0] += len << 3; 469 /* Clean up: */ 470 usedspace = freespace = 0; 471 return; 472 } 473 } 474 while (len >= SHA256_BLOCK_LENGTH) { 475 /* Process as many complete blocks as we can */ 476 SHA256Transform(context->state.st32, data); 477 context->bitcount[0] += SHA256_BLOCK_LENGTH << 3; 478 len -= SHA256_BLOCK_LENGTH; 479 data += SHA256_BLOCK_LENGTH; 480 } 481 if (len > 0) { 482 /* There's left-overs, so save 'em */ 483 memcpy(context->buffer, data, len); 484 context->bitcount[0] += len << 3; 485 } 486 /* Clean up: */ 487 usedspace = freespace = 0; 488 } 489 490 void 491 SHA256Pad(SHA2_CTX *context) 492 { 493 unsigned int usedspace; 494 495 usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH; 496 if (usedspace > 0) { 497 /* Begin padding with a 1 bit: */ 498 context->buffer[usedspace++] = 0x80; 499 500 if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) { 501 /* Set-up for the last transform: */ 502 memset(&context->buffer[usedspace], 0, 503 SHA256_SHORT_BLOCK_LENGTH - usedspace); 504 } else { 505 if (usedspace < SHA256_BLOCK_LENGTH) { 506 memset(&context->buffer[usedspace], 0, 507 SHA256_BLOCK_LENGTH - usedspace); 508 } 509 /* Do second-to-last transform: */ 510 SHA256Transform(context->state.st32, context->buffer); 511 512 /* Prepare for last transform: */ 513 memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH); 514 } 515 } else { 516 /* Set-up for the last transform: */ 517 memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH); 518 519 /* Begin padding with a 1 bit: */ 520 *context->buffer = 0x80; 521 } 522 /* Store the length of input data (in bits) in big endian format: */ 523 BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH], 524 context->bitcount[0]); 525 526 /* Final transform: */ 527 SHA256Transform(context->state.st32, context->buffer); 528 529 /* Clean up: */ 530 usedspace = 0; 531 } 532 533 void 534 SHA256Final(u_int8_t digest[SHA256_DIGEST_LENGTH], SHA2_CTX *context) 535 { 536 SHA256Pad(context); 537 538 /* If no digest buffer is passed, we don't bother doing this: */ 539 if (digest != NULL) { 540 #if BYTE_ORDER == LITTLE_ENDIAN 541 int i; 542 543 /* Convert TO host byte order */ 544 for (i = 0; i < 8; i++) 545 BE_32_TO_8(digest + i * 4, context->state.st32[i]); 546 #else 547 memcpy(digest, context->state.st32, SHA256_DIGEST_LENGTH); 548 #endif 549 memset(context, 0, sizeof(*context)); 550 } 551 } 552 553 554 #ifndef SHA256_ONLY 555 /*** SHA-512: *********************************************************/ 556 void 557 SHA512Init(SHA2_CTX *context) 558 { 559 if (context == NULL) 560 return; 561 memcpy(context->state.st64, sha512_initial_hash_value, 562 sizeof(sha512_initial_hash_value)); 563 memset(context->buffer, 0, sizeof(context->buffer)); 564 context->bitcount[0] = context->bitcount[1] = 0; 565 } 566 567 #ifdef SHA2_UNROLL_TRANSFORM 568 569 /* Unrolled SHA-512 round macros: */ 570 571 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do { \ 572 BE_8_TO_64(W512[j], data); \ 573 data += 8; \ 574 T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \ 575 (d) += T1; \ 576 (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \ 577 j++; \ 578 } while(0) 579 580 581 #define ROUND512(a,b,c,d,e,f,g,h) do { \ 582 s0 = W512[(j+1)&0x0f]; \ 583 s0 = sigma0_512(s0); \ 584 s1 = W512[(j+14)&0x0f]; \ 585 s1 = sigma1_512(s1); \ 586 T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + \ 587 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ 588 (d) += T1; \ 589 (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \ 590 j++; \ 591 } while(0) 592 593 void 594 SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH]) 595 { 596 u_int64_t a, b, c, d, e, f, g, h, s0, s1; 597 u_int64_t T1, W512[16]; 598 int j; 599 600 /* Initialize registers with the prev. intermediate value */ 601 a = state[0]; 602 b = state[1]; 603 c = state[2]; 604 d = state[3]; 605 e = state[4]; 606 f = state[5]; 607 g = state[6]; 608 h = state[7]; 609 610 j = 0; 611 do { 612 /* Rounds 0 to 15 (unrolled): */ 613 ROUND512_0_TO_15(a,b,c,d,e,f,g,h); 614 ROUND512_0_TO_15(h,a,b,c,d,e,f,g); 615 ROUND512_0_TO_15(g,h,a,b,c,d,e,f); 616 ROUND512_0_TO_15(f,g,h,a,b,c,d,e); 617 ROUND512_0_TO_15(e,f,g,h,a,b,c,d); 618 ROUND512_0_TO_15(d,e,f,g,h,a,b,c); 619 ROUND512_0_TO_15(c,d,e,f,g,h,a,b); 620 ROUND512_0_TO_15(b,c,d,e,f,g,h,a); 621 } while (j < 16); 622 623 /* Now for the remaining rounds up to 79: */ 624 do { 625 ROUND512(a,b,c,d,e,f,g,h); 626 ROUND512(h,a,b,c,d,e,f,g); 627 ROUND512(g,h,a,b,c,d,e,f); 628 ROUND512(f,g,h,a,b,c,d,e); 629 ROUND512(e,f,g,h,a,b,c,d); 630 ROUND512(d,e,f,g,h,a,b,c); 631 ROUND512(c,d,e,f,g,h,a,b); 632 ROUND512(b,c,d,e,f,g,h,a); 633 } while (j < 80); 634 635 /* Compute the current intermediate hash value */ 636 state[0] += a; 637 state[1] += b; 638 state[2] += c; 639 state[3] += d; 640 state[4] += e; 641 state[5] += f; 642 state[6] += g; 643 state[7] += h; 644 645 /* Clean up */ 646 a = b = c = d = e = f = g = h = T1 = 0; 647 } 648 649 #else /* SHA2_UNROLL_TRANSFORM */ 650 651 void 652 SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH]) 653 { 654 u_int64_t a, b, c, d, e, f, g, h, s0, s1; 655 u_int64_t T1, T2, W512[16]; 656 int j; 657 658 /* Initialize registers with the prev. intermediate value */ 659 a = state[0]; 660 b = state[1]; 661 c = state[2]; 662 d = state[3]; 663 e = state[4]; 664 f = state[5]; 665 g = state[6]; 666 h = state[7]; 667 668 j = 0; 669 do { 670 BE_8_TO_64(W512[j], data); 671 data += 8; 672 /* Apply the SHA-512 compression function to update a..h */ 673 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; 674 T2 = Sigma0_512(a) + Maj(a, b, c); 675 h = g; 676 g = f; 677 f = e; 678 e = d + T1; 679 d = c; 680 c = b; 681 b = a; 682 a = T1 + T2; 683 684 j++; 685 } while (j < 16); 686 687 do { 688 /* Part of the message block expansion: */ 689 s0 = W512[(j+1)&0x0f]; 690 s0 = sigma0_512(s0); 691 s1 = W512[(j+14)&0x0f]; 692 s1 = sigma1_512(s1); 693 694 /* Apply the SHA-512 compression function to update a..h */ 695 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + 696 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); 697 T2 = Sigma0_512(a) + Maj(a, b, c); 698 h = g; 699 g = f; 700 f = e; 701 e = d + T1; 702 d = c; 703 c = b; 704 b = a; 705 a = T1 + T2; 706 707 j++; 708 } while (j < 80); 709 710 /* Compute the current intermediate hash value */ 711 state[0] += a; 712 state[1] += b; 713 state[2] += c; 714 state[3] += d; 715 state[4] += e; 716 state[5] += f; 717 state[6] += g; 718 state[7] += h; 719 720 /* Clean up */ 721 a = b = c = d = e = f = g = h = T1 = T2 = 0; 722 } 723 724 #endif /* SHA2_UNROLL_TRANSFORM */ 725 726 void 727 SHA512Update(SHA2_CTX *context, const u_int8_t *data, size_t len) 728 { 729 size_t freespace, usedspace; 730 731 /* Calling with no data is valid (we do nothing) */ 732 if (len == 0) 733 return; 734 735 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; 736 if (usedspace > 0) { 737 /* Calculate how much free space is available in the buffer */ 738 freespace = SHA512_BLOCK_LENGTH - usedspace; 739 740 if (len >= freespace) { 741 /* Fill the buffer completely and process it */ 742 memcpy(&context->buffer[usedspace], data, freespace); 743 ADDINC128(context->bitcount, freespace << 3); 744 len -= freespace; 745 data += freespace; 746 SHA512Transform(context->state.st64, context->buffer); 747 } else { 748 /* The buffer is not yet full */ 749 memcpy(&context->buffer[usedspace], data, len); 750 ADDINC128(context->bitcount, len << 3); 751 /* Clean up: */ 752 usedspace = freespace = 0; 753 return; 754 } 755 } 756 while (len >= SHA512_BLOCK_LENGTH) { 757 /* Process as many complete blocks as we can */ 758 SHA512Transform(context->state.st64, data); 759 ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3); 760 len -= SHA512_BLOCK_LENGTH; 761 data += SHA512_BLOCK_LENGTH; 762 } 763 if (len > 0) { 764 /* There's left-overs, so save 'em */ 765 memcpy(context->buffer, data, len); 766 ADDINC128(context->bitcount, len << 3); 767 } 768 /* Clean up: */ 769 usedspace = freespace = 0; 770 } 771 772 void 773 SHA512Pad(SHA2_CTX *context) 774 { 775 unsigned int usedspace; 776 777 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; 778 if (usedspace > 0) { 779 /* Begin padding with a 1 bit: */ 780 context->buffer[usedspace++] = 0x80; 781 782 if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) { 783 /* Set-up for the last transform: */ 784 memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace); 785 } else { 786 if (usedspace < SHA512_BLOCK_LENGTH) { 787 memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace); 788 } 789 /* Do second-to-last transform: */ 790 SHA512Transform(context->state.st64, context->buffer); 791 792 /* And set-up for the last transform: */ 793 memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2); 794 } 795 } else { 796 /* Prepare for final transform: */ 797 memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH); 798 799 /* Begin padding with a 1 bit: */ 800 *context->buffer = 0x80; 801 } 802 /* Store the length of input data (in bits) in big endian format: */ 803 BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH], 804 context->bitcount[1]); 805 BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8], 806 context->bitcount[0]); 807 808 /* Final transform: */ 809 SHA512Transform(context->state.st64, context->buffer); 810 811 /* Clean up: */ 812 usedspace = 0; 813 } 814 815 void 816 SHA512Final(u_int8_t digest[SHA512_DIGEST_LENGTH], SHA2_CTX *context) 817 { 818 SHA512Pad(context); 819 820 /* If no digest buffer is passed, we don't bother doing this: */ 821 if (digest != NULL) { 822 #if BYTE_ORDER == LITTLE_ENDIAN 823 int i; 824 825 /* Convert TO host byte order */ 826 for (i = 0; i < 8; i++) 827 BE_64_TO_8(digest + i * 8, context->state.st64[i]); 828 #else 829 memcpy(digest, context->state.st64, SHA512_DIGEST_LENGTH); 830 #endif 831 memset(context, 0, sizeof(*context)); 832 } 833 } 834 835 836 /*** SHA-384: *********************************************************/ 837 void 838 SHA384Init(SHA2_CTX *context) 839 { 840 if (context == NULL) 841 return; 842 memcpy(context->state.st64, sha384_initial_hash_value, 843 sizeof(sha384_initial_hash_value)); 844 memset(context->buffer, 0, sizeof(context->buffer)); 845 context->bitcount[0] = context->bitcount[1] = 0; 846 } 847 848 __weak_alias(SHA384Transform, SHA512Transform); 849 __weak_alias(SHA384Update, SHA512Update); 850 __weak_alias(SHA384Pad, SHA512Pad); 851 852 void 853 SHA384Final(u_int8_t digest[SHA384_DIGEST_LENGTH], SHA2_CTX *context) 854 { 855 SHA384Pad(context); 856 857 /* If no digest buffer is passed, we don't bother doing this: */ 858 if (digest != NULL) { 859 #if BYTE_ORDER == LITTLE_ENDIAN 860 int i; 861 862 /* Convert TO host byte order */ 863 for (i = 0; i < 6; i++) 864 BE_64_TO_8(digest + i * 8, context->state.st64[i]); 865 #else 866 memcpy(digest, context->state.st64, SHA384_DIGEST_LENGTH); 867 #endif 868 } 869 870 /* Zero out state data */ 871 memset(context, 0, sizeof(*context)); 872 } 873 #endif /* SHA256_ONLY */ 874