xref: /openbsd-src/lib/libc/hash/sha2.c (revision a28daedfc357b214be5c701aa8ba8adb29a7f1c2)
1 /*	$OpenBSD: sha2.c,v 1.13 2009/04/15 00:55:52 djm Exp $	*/
2 
3 /*
4  * FILE:	sha2.c
5  * AUTHOR:	Aaron D. Gifford <me@aarongifford.com>
6  *
7  * Copyright (c) 2000-2001, Aaron D. Gifford
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the copyright holder nor the names of contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
35  */
36 
37 #include <sys/types.h>
38 
39 #include <string.h>
40 #include <sha2.h>
41 
42 /*
43  * UNROLLED TRANSFORM LOOP NOTE:
44  * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
45  * loop version for the hash transform rounds (defined using macros
46  * later in this file).  Either define on the command line, for example:
47  *
48  *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
49  *
50  * or define below:
51  *
52  *   #define SHA2_UNROLL_TRANSFORM
53  *
54  */
55 
56 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
57 /*
58  * BYTE_ORDER NOTE:
59  *
60  * Please make sure that your system defines BYTE_ORDER.  If your
61  * architecture is little-endian, make sure it also defines
62  * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
63  * equivilent.
64  *
65  * If your system does not define the above, then you can do so by
66  * hand like this:
67  *
68  *   #define LITTLE_ENDIAN 1234
69  *   #define BIG_ENDIAN    4321
70  *
71  * And for little-endian machines, add:
72  *
73  *   #define BYTE_ORDER LITTLE_ENDIAN
74  *
75  * Or for big-endian machines:
76  *
77  *   #define BYTE_ORDER BIG_ENDIAN
78  *
79  * The FreeBSD machine this was written on defines BYTE_ORDER
80  * appropriately by including <sys/types.h> (which in turn includes
81  * <machine/endian.h> where the appropriate definitions are actually
82  * made).
83  */
84 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
85 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
86 #endif
87 
88 
89 /*** SHA-256/384/512 Various Length Definitions ***********************/
90 /* NOTE: Most of these are in sha2.h */
91 #define SHA256_SHORT_BLOCK_LENGTH	(SHA256_BLOCK_LENGTH - 8)
92 #define SHA384_SHORT_BLOCK_LENGTH	(SHA384_BLOCK_LENGTH - 16)
93 #define SHA512_SHORT_BLOCK_LENGTH	(SHA512_BLOCK_LENGTH - 16)
94 
95 /*** ENDIAN SPECIFIC COPY MACROS **************************************/
96 #define BE_8_TO_32(dst, cp) do {					\
97 	(dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) |	\
98 	    ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24);	\
99 } while(0)
100 
101 #define BE_8_TO_64(dst, cp) do {					\
102 	(dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) |	\
103 	    ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) |	\
104 	    ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) |	\
105 	    ((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56);	\
106 } while (0)
107 
108 #define BE_64_TO_8(cp, src) do {					\
109 	(cp)[0] = (src) >> 56;						\
110         (cp)[1] = (src) >> 48;						\
111 	(cp)[2] = (src) >> 40;						\
112 	(cp)[3] = (src) >> 32;						\
113 	(cp)[4] = (src) >> 24;						\
114 	(cp)[5] = (src) >> 16;						\
115 	(cp)[6] = (src) >> 8;						\
116 	(cp)[7] = (src);						\
117 } while (0)
118 
119 #define BE_32_TO_8(cp, src) do {					\
120 	(cp)[0] = (src) >> 24;						\
121 	(cp)[1] = (src) >> 16;						\
122 	(cp)[2] = (src) >> 8;						\
123 	(cp)[3] = (src);						\
124 } while (0)
125 
126 /*
127  * Macro for incrementally adding the unsigned 64-bit integer n to the
128  * unsigned 128-bit integer (represented using a two-element array of
129  * 64-bit words):
130  */
131 #define ADDINC128(w,n) do {						\
132 	(w)[0] += (u_int64_t)(n);					\
133 	if ((w)[0] < (n)) {						\
134 		(w)[1]++;						\
135 	}								\
136 } while (0)
137 
138 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
139 /*
140  * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
141  *
142  *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
143  *   S is a ROTATION) because the SHA-256/384/512 description document
144  *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
145  *   same "backwards" definition.
146  */
147 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
148 #define R(b,x) 		((x) >> (b))
149 /* 32-bit Rotate-right (used in SHA-256): */
150 #define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
151 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
152 #define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
153 
154 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
155 #define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
156 #define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
157 
158 /* Four of six logical functions used in SHA-256: */
159 #define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
160 #define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
161 #define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
162 #define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
163 
164 /* Four of six logical functions used in SHA-384 and SHA-512: */
165 #define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
166 #define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
167 #define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
168 #define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
169 
170 
171 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
172 /* Hash constant words K for SHA-256: */
173 const static u_int32_t K256[64] = {
174 	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
175 	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
176 	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
177 	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
178 	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
179 	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
180 	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
181 	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
182 	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
183 	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
184 	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
185 	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
186 	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
187 	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
188 	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
189 	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
190 };
191 
192 /* Initial hash value H for SHA-256: */
193 const static u_int32_t sha256_initial_hash_value[8] = {
194 	0x6a09e667UL,
195 	0xbb67ae85UL,
196 	0x3c6ef372UL,
197 	0xa54ff53aUL,
198 	0x510e527fUL,
199 	0x9b05688cUL,
200 	0x1f83d9abUL,
201 	0x5be0cd19UL
202 };
203 
204 #ifndef SHA256_ONLY
205 /* Hash constant words K for SHA-384 and SHA-512: */
206 const static u_int64_t K512[80] = {
207 	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
208 	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
209 	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
210 	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
211 	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
212 	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
213 	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
214 	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
215 	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
216 	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
217 	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
218 	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
219 	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
220 	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
221 	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
222 	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
223 	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
224 	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
225 	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
226 	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
227 	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
228 	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
229 	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
230 	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
231 	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
232 	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
233 	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
234 	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
235 	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
236 	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
237 	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
238 	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
239 	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
240 	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
241 	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
242 	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
243 	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
244 	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
245 	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
246 	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
247 };
248 
249 /* Initial hash value H for SHA-384 */
250 const static u_int64_t sha384_initial_hash_value[8] = {
251 	0xcbbb9d5dc1059ed8ULL,
252 	0x629a292a367cd507ULL,
253 	0x9159015a3070dd17ULL,
254 	0x152fecd8f70e5939ULL,
255 	0x67332667ffc00b31ULL,
256 	0x8eb44a8768581511ULL,
257 	0xdb0c2e0d64f98fa7ULL,
258 	0x47b5481dbefa4fa4ULL
259 };
260 
261 /* Initial hash value H for SHA-512 */
262 const static u_int64_t sha512_initial_hash_value[8] = {
263 	0x6a09e667f3bcc908ULL,
264 	0xbb67ae8584caa73bULL,
265 	0x3c6ef372fe94f82bULL,
266 	0xa54ff53a5f1d36f1ULL,
267 	0x510e527fade682d1ULL,
268 	0x9b05688c2b3e6c1fULL,
269 	0x1f83d9abfb41bd6bULL,
270 	0x5be0cd19137e2179ULL
271 };
272 #endif /* SHA256_ONLY */
273 
274 /*** SHA-256: *********************************************************/
275 void
276 SHA256Init(SHA2_CTX *context)
277 {
278 	if (context == NULL)
279 		return;
280 	memcpy(context->state.st32, sha256_initial_hash_value,
281 	    sizeof(sha256_initial_hash_value));
282 	memset(context->buffer, 0, sizeof(context->buffer));
283 	context->bitcount[0] = 0;
284 }
285 
286 #ifdef SHA2_UNROLL_TRANSFORM
287 
288 /* Unrolled SHA-256 round macros: */
289 
290 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do {				    \
291 	BE_8_TO_32(W256[j], data);					    \
292 	data += 4;							    \
293 	T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \
294 	(d) += T1;							    \
295 	(h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c));		    \
296 	j++;								    \
297 } while(0)
298 
299 #define ROUND256(a,b,c,d,e,f,g,h) do {					    \
300 	s0 = W256[(j+1)&0x0f];						    \
301 	s0 = sigma0_256(s0);						    \
302 	s1 = W256[(j+14)&0x0f];						    \
303 	s1 = sigma1_256(s1);						    \
304 	T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] +	    \
305 	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);		    \
306 	(d) += T1;							    \
307 	(h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c));		    \
308 	j++;								    \
309 } while(0)
310 
311 void
312 SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
313 {
314 	u_int32_t	a, b, c, d, e, f, g, h, s0, s1;
315 	u_int32_t	T1, W256[16];
316 	int		j;
317 
318 	/* Initialize registers with the prev. intermediate value */
319 	a = state[0];
320 	b = state[1];
321 	c = state[2];
322 	d = state[3];
323 	e = state[4];
324 	f = state[5];
325 	g = state[6];
326 	h = state[7];
327 
328 	j = 0;
329 	do {
330 		/* Rounds 0 to 15 (unrolled): */
331 		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
332 		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
333 		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
334 		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
335 		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
336 		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
337 		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
338 		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
339 	} while (j < 16);
340 
341 	/* Now for the remaining rounds up to 63: */
342 	do {
343 		ROUND256(a,b,c,d,e,f,g,h);
344 		ROUND256(h,a,b,c,d,e,f,g);
345 		ROUND256(g,h,a,b,c,d,e,f);
346 		ROUND256(f,g,h,a,b,c,d,e);
347 		ROUND256(e,f,g,h,a,b,c,d);
348 		ROUND256(d,e,f,g,h,a,b,c);
349 		ROUND256(c,d,e,f,g,h,a,b);
350 		ROUND256(b,c,d,e,f,g,h,a);
351 	} while (j < 64);
352 
353 	/* Compute the current intermediate hash value */
354 	state[0] += a;
355 	state[1] += b;
356 	state[2] += c;
357 	state[3] += d;
358 	state[4] += e;
359 	state[5] += f;
360 	state[6] += g;
361 	state[7] += h;
362 
363 	/* Clean up */
364 	a = b = c = d = e = f = g = h = T1 = 0;
365 }
366 
367 #else /* SHA2_UNROLL_TRANSFORM */
368 
369 void
370 SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
371 {
372 	u_int32_t	a, b, c, d, e, f, g, h, s0, s1;
373 	u_int32_t	T1, T2, W256[16];
374 	int		j;
375 
376 	/* Initialize registers with the prev. intermediate value */
377 	a = state[0];
378 	b = state[1];
379 	c = state[2];
380 	d = state[3];
381 	e = state[4];
382 	f = state[5];
383 	g = state[6];
384 	h = state[7];
385 
386 	j = 0;
387 	do {
388 		BE_8_TO_32(W256[j], data);
389 		data += 4;
390 		/* Apply the SHA-256 compression function to update a..h */
391 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
392 		T2 = Sigma0_256(a) + Maj(a, b, c);
393 		h = g;
394 		g = f;
395 		f = e;
396 		e = d + T1;
397 		d = c;
398 		c = b;
399 		b = a;
400 		a = T1 + T2;
401 
402 		j++;
403 	} while (j < 16);
404 
405 	do {
406 		/* Part of the message block expansion: */
407 		s0 = W256[(j+1)&0x0f];
408 		s0 = sigma0_256(s0);
409 		s1 = W256[(j+14)&0x0f];
410 		s1 = sigma1_256(s1);
411 
412 		/* Apply the SHA-256 compression function to update a..h */
413 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
414 		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
415 		T2 = Sigma0_256(a) + Maj(a, b, c);
416 		h = g;
417 		g = f;
418 		f = e;
419 		e = d + T1;
420 		d = c;
421 		c = b;
422 		b = a;
423 		a = T1 + T2;
424 
425 		j++;
426 	} while (j < 64);
427 
428 	/* Compute the current intermediate hash value */
429 	state[0] += a;
430 	state[1] += b;
431 	state[2] += c;
432 	state[3] += d;
433 	state[4] += e;
434 	state[5] += f;
435 	state[6] += g;
436 	state[7] += h;
437 
438 	/* Clean up */
439 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
440 }
441 
442 #endif /* SHA2_UNROLL_TRANSFORM */
443 
444 void
445 SHA256Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
446 {
447 	size_t	freespace, usedspace;
448 
449 	/* Calling with no data is valid (we do nothing) */
450 	if (len == 0)
451 		return;
452 
453 	usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
454 	if (usedspace > 0) {
455 		/* Calculate how much free space is available in the buffer */
456 		freespace = SHA256_BLOCK_LENGTH - usedspace;
457 
458 		if (len >= freespace) {
459 			/* Fill the buffer completely and process it */
460 			memcpy(&context->buffer[usedspace], data, freespace);
461 			context->bitcount[0] += freespace << 3;
462 			len -= freespace;
463 			data += freespace;
464 			SHA256Transform(context->state.st32, context->buffer);
465 		} else {
466 			/* The buffer is not yet full */
467 			memcpy(&context->buffer[usedspace], data, len);
468 			context->bitcount[0] += len << 3;
469 			/* Clean up: */
470 			usedspace = freespace = 0;
471 			return;
472 		}
473 	}
474 	while (len >= SHA256_BLOCK_LENGTH) {
475 		/* Process as many complete blocks as we can */
476 		SHA256Transform(context->state.st32, data);
477 		context->bitcount[0] += SHA256_BLOCK_LENGTH << 3;
478 		len -= SHA256_BLOCK_LENGTH;
479 		data += SHA256_BLOCK_LENGTH;
480 	}
481 	if (len > 0) {
482 		/* There's left-overs, so save 'em */
483 		memcpy(context->buffer, data, len);
484 		context->bitcount[0] += len << 3;
485 	}
486 	/* Clean up: */
487 	usedspace = freespace = 0;
488 }
489 
490 void
491 SHA256Pad(SHA2_CTX *context)
492 {
493 	unsigned int	usedspace;
494 
495 	usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
496 	if (usedspace > 0) {
497 		/* Begin padding with a 1 bit: */
498 		context->buffer[usedspace++] = 0x80;
499 
500 		if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
501 			/* Set-up for the last transform: */
502 			memset(&context->buffer[usedspace], 0,
503 			    SHA256_SHORT_BLOCK_LENGTH - usedspace);
504 		} else {
505 			if (usedspace < SHA256_BLOCK_LENGTH) {
506 				memset(&context->buffer[usedspace], 0,
507 				    SHA256_BLOCK_LENGTH - usedspace);
508 			}
509 			/* Do second-to-last transform: */
510 			SHA256Transform(context->state.st32, context->buffer);
511 
512 			/* Prepare for last transform: */
513 			memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
514 		}
515 	} else {
516 		/* Set-up for the last transform: */
517 		memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
518 
519 		/* Begin padding with a 1 bit: */
520 		*context->buffer = 0x80;
521 	}
522 	/* Store the length of input data (in bits) in big endian format: */
523 	BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH],
524 	    context->bitcount[0]);
525 
526 	/* Final transform: */
527 	SHA256Transform(context->state.st32, context->buffer);
528 
529 	/* Clean up: */
530 	usedspace = 0;
531 }
532 
533 void
534 SHA256Final(u_int8_t digest[SHA256_DIGEST_LENGTH], SHA2_CTX *context)
535 {
536 	SHA256Pad(context);
537 
538 	/* If no digest buffer is passed, we don't bother doing this: */
539 	if (digest != NULL) {
540 #if BYTE_ORDER == LITTLE_ENDIAN
541 		int	i;
542 
543 		/* Convert TO host byte order */
544 		for (i = 0; i < 8; i++)
545 			BE_32_TO_8(digest + i * 4, context->state.st32[i]);
546 #else
547 		memcpy(digest, context->state.st32, SHA256_DIGEST_LENGTH);
548 #endif
549 		memset(context, 0, sizeof(*context));
550 	}
551 }
552 
553 
554 #ifndef SHA256_ONLY
555 /*** SHA-512: *********************************************************/
556 void
557 SHA512Init(SHA2_CTX *context)
558 {
559 	if (context == NULL)
560 		return;
561 	memcpy(context->state.st64, sha512_initial_hash_value,
562 	    sizeof(sha512_initial_hash_value));
563 	memset(context->buffer, 0, sizeof(context->buffer));
564 	context->bitcount[0] = context->bitcount[1] =  0;
565 }
566 
567 #ifdef SHA2_UNROLL_TRANSFORM
568 
569 /* Unrolled SHA-512 round macros: */
570 
571 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do {				    \
572 	BE_8_TO_64(W512[j], data);					    \
573 	data += 8;							    \
574 	T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \
575 	(d) += T1;							    \
576 	(h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c));		    \
577 	j++;								    \
578 } while(0)
579 
580 
581 #define ROUND512(a,b,c,d,e,f,g,h) do {					    \
582 	s0 = W512[(j+1)&0x0f];						    \
583 	s0 = sigma0_512(s0);						    \
584 	s1 = W512[(j+14)&0x0f];						    \
585 	s1 = sigma1_512(s1);						    \
586 	T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] +	    \
587              (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);		    \
588 	(d) += T1;							    \
589 	(h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c));		    \
590 	j++;								    \
591 } while(0)
592 
593 void
594 SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
595 {
596 	u_int64_t	a, b, c, d, e, f, g, h, s0, s1;
597 	u_int64_t	T1, W512[16];
598 	int		j;
599 
600 	/* Initialize registers with the prev. intermediate value */
601 	a = state[0];
602 	b = state[1];
603 	c = state[2];
604 	d = state[3];
605 	e = state[4];
606 	f = state[5];
607 	g = state[6];
608 	h = state[7];
609 
610 	j = 0;
611 	do {
612 		/* Rounds 0 to 15 (unrolled): */
613 		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
614 		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
615 		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
616 		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
617 		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
618 		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
619 		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
620 		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
621 	} while (j < 16);
622 
623 	/* Now for the remaining rounds up to 79: */
624 	do {
625 		ROUND512(a,b,c,d,e,f,g,h);
626 		ROUND512(h,a,b,c,d,e,f,g);
627 		ROUND512(g,h,a,b,c,d,e,f);
628 		ROUND512(f,g,h,a,b,c,d,e);
629 		ROUND512(e,f,g,h,a,b,c,d);
630 		ROUND512(d,e,f,g,h,a,b,c);
631 		ROUND512(c,d,e,f,g,h,a,b);
632 		ROUND512(b,c,d,e,f,g,h,a);
633 	} while (j < 80);
634 
635 	/* Compute the current intermediate hash value */
636 	state[0] += a;
637 	state[1] += b;
638 	state[2] += c;
639 	state[3] += d;
640 	state[4] += e;
641 	state[5] += f;
642 	state[6] += g;
643 	state[7] += h;
644 
645 	/* Clean up */
646 	a = b = c = d = e = f = g = h = T1 = 0;
647 }
648 
649 #else /* SHA2_UNROLL_TRANSFORM */
650 
651 void
652 SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
653 {
654 	u_int64_t	a, b, c, d, e, f, g, h, s0, s1;
655 	u_int64_t	T1, T2, W512[16];
656 	int		j;
657 
658 	/* Initialize registers with the prev. intermediate value */
659 	a = state[0];
660 	b = state[1];
661 	c = state[2];
662 	d = state[3];
663 	e = state[4];
664 	f = state[5];
665 	g = state[6];
666 	h = state[7];
667 
668 	j = 0;
669 	do {
670 		BE_8_TO_64(W512[j], data);
671 		data += 8;
672 		/* Apply the SHA-512 compression function to update a..h */
673 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
674 		T2 = Sigma0_512(a) + Maj(a, b, c);
675 		h = g;
676 		g = f;
677 		f = e;
678 		e = d + T1;
679 		d = c;
680 		c = b;
681 		b = a;
682 		a = T1 + T2;
683 
684 		j++;
685 	} while (j < 16);
686 
687 	do {
688 		/* Part of the message block expansion: */
689 		s0 = W512[(j+1)&0x0f];
690 		s0 = sigma0_512(s0);
691 		s1 = W512[(j+14)&0x0f];
692 		s1 =  sigma1_512(s1);
693 
694 		/* Apply the SHA-512 compression function to update a..h */
695 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
696 		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
697 		T2 = Sigma0_512(a) + Maj(a, b, c);
698 		h = g;
699 		g = f;
700 		f = e;
701 		e = d + T1;
702 		d = c;
703 		c = b;
704 		b = a;
705 		a = T1 + T2;
706 
707 		j++;
708 	} while (j < 80);
709 
710 	/* Compute the current intermediate hash value */
711 	state[0] += a;
712 	state[1] += b;
713 	state[2] += c;
714 	state[3] += d;
715 	state[4] += e;
716 	state[5] += f;
717 	state[6] += g;
718 	state[7] += h;
719 
720 	/* Clean up */
721 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
722 }
723 
724 #endif /* SHA2_UNROLL_TRANSFORM */
725 
726 void
727 SHA512Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
728 {
729 	size_t	freespace, usedspace;
730 
731 	/* Calling with no data is valid (we do nothing) */
732 	if (len == 0)
733 		return;
734 
735 	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
736 	if (usedspace > 0) {
737 		/* Calculate how much free space is available in the buffer */
738 		freespace = SHA512_BLOCK_LENGTH - usedspace;
739 
740 		if (len >= freespace) {
741 			/* Fill the buffer completely and process it */
742 			memcpy(&context->buffer[usedspace], data, freespace);
743 			ADDINC128(context->bitcount, freespace << 3);
744 			len -= freespace;
745 			data += freespace;
746 			SHA512Transform(context->state.st64, context->buffer);
747 		} else {
748 			/* The buffer is not yet full */
749 			memcpy(&context->buffer[usedspace], data, len);
750 			ADDINC128(context->bitcount, len << 3);
751 			/* Clean up: */
752 			usedspace = freespace = 0;
753 			return;
754 		}
755 	}
756 	while (len >= SHA512_BLOCK_LENGTH) {
757 		/* Process as many complete blocks as we can */
758 		SHA512Transform(context->state.st64, data);
759 		ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
760 		len -= SHA512_BLOCK_LENGTH;
761 		data += SHA512_BLOCK_LENGTH;
762 	}
763 	if (len > 0) {
764 		/* There's left-overs, so save 'em */
765 		memcpy(context->buffer, data, len);
766 		ADDINC128(context->bitcount, len << 3);
767 	}
768 	/* Clean up: */
769 	usedspace = freespace = 0;
770 }
771 
772 void
773 SHA512Pad(SHA2_CTX *context)
774 {
775 	unsigned int	usedspace;
776 
777 	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
778 	if (usedspace > 0) {
779 		/* Begin padding with a 1 bit: */
780 		context->buffer[usedspace++] = 0x80;
781 
782 		if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
783 			/* Set-up for the last transform: */
784 			memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace);
785 		} else {
786 			if (usedspace < SHA512_BLOCK_LENGTH) {
787 				memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace);
788 			}
789 			/* Do second-to-last transform: */
790 			SHA512Transform(context->state.st64, context->buffer);
791 
792 			/* And set-up for the last transform: */
793 			memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2);
794 		}
795 	} else {
796 		/* Prepare for final transform: */
797 		memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH);
798 
799 		/* Begin padding with a 1 bit: */
800 		*context->buffer = 0x80;
801 	}
802 	/* Store the length of input data (in bits) in big endian format: */
803 	BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH],
804 	    context->bitcount[1]);
805 	BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8],
806 	    context->bitcount[0]);
807 
808 	/* Final transform: */
809 	SHA512Transform(context->state.st64, context->buffer);
810 
811 	/* Clean up: */
812 	usedspace = 0;
813 }
814 
815 void
816 SHA512Final(u_int8_t digest[SHA512_DIGEST_LENGTH], SHA2_CTX *context)
817 {
818 	SHA512Pad(context);
819 
820 	/* If no digest buffer is passed, we don't bother doing this: */
821 	if (digest != NULL) {
822 #if BYTE_ORDER == LITTLE_ENDIAN
823 		int	i;
824 
825 		/* Convert TO host byte order */
826 		for (i = 0; i < 8; i++)
827 			BE_64_TO_8(digest + i * 8, context->state.st64[i]);
828 #else
829 		memcpy(digest, context->state.st64, SHA512_DIGEST_LENGTH);
830 #endif
831 		memset(context, 0, sizeof(*context));
832 	}
833 }
834 
835 
836 /*** SHA-384: *********************************************************/
837 void
838 SHA384Init(SHA2_CTX *context)
839 {
840 	if (context == NULL)
841 		return;
842 	memcpy(context->state.st64, sha384_initial_hash_value,
843 	    sizeof(sha384_initial_hash_value));
844 	memset(context->buffer, 0, sizeof(context->buffer));
845 	context->bitcount[0] = context->bitcount[1] = 0;
846 }
847 
848 __weak_alias(SHA384Transform, SHA512Transform);
849 __weak_alias(SHA384Update, SHA512Update);
850 __weak_alias(SHA384Pad, SHA512Pad);
851 
852 void
853 SHA384Final(u_int8_t digest[SHA384_DIGEST_LENGTH], SHA2_CTX *context)
854 {
855 	SHA384Pad(context);
856 
857 	/* If no digest buffer is passed, we don't bother doing this: */
858 	if (digest != NULL) {
859 #if BYTE_ORDER == LITTLE_ENDIAN
860 		int	i;
861 
862 		/* Convert TO host byte order */
863 		for (i = 0; i < 6; i++)
864 			BE_64_TO_8(digest + i * 8, context->state.st64[i]);
865 #else
866 		memcpy(digest, context->state.st64, SHA384_DIGEST_LENGTH);
867 #endif
868 	}
869 
870 	/* Zero out state data */
871 	memset(context, 0, sizeof(*context));
872 }
873 #endif /* SHA256_ONLY */
874