xref: /openbsd-src/lib/libc/hash/sha2.c (revision 50b7afb2c2c0993b0894d4e34bf857cb13ed9c80)
1 /*	$OpenBSD: sha2.c,v 1.17 2014/01/08 06:14:57 tedu Exp $	*/
2 
3 /*
4  * FILE:	sha2.c
5  * AUTHOR:	Aaron D. Gifford <me@aarongifford.com>
6  *
7  * Copyright (c) 2000-2001, Aaron D. Gifford
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the copyright holder nor the names of contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
35  */
36 
37 #include <sys/types.h>
38 
39 #include <string.h>
40 #include <sha2.h>
41 
42 /*
43  * UNROLLED TRANSFORM LOOP NOTE:
44  * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
45  * loop version for the hash transform rounds (defined using macros
46  * later in this file).  Either define on the command line, for example:
47  *
48  *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
49  *
50  * or define below:
51  *
52  *   #define SHA2_UNROLL_TRANSFORM
53  *
54  */
55 
56 /*** SHA-224/256/384/512 Machine Architecture Definitions *****************/
57 /*
58  * BYTE_ORDER NOTE:
59  *
60  * Please make sure that your system defines BYTE_ORDER.  If your
61  * architecture is little-endian, make sure it also defines
62  * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
63  * equivilent.
64  *
65  * If your system does not define the above, then you can do so by
66  * hand like this:
67  *
68  *   #define LITTLE_ENDIAN 1234
69  *   #define BIG_ENDIAN    4321
70  *
71  * And for little-endian machines, add:
72  *
73  *   #define BYTE_ORDER LITTLE_ENDIAN
74  *
75  * Or for big-endian machines:
76  *
77  *   #define BYTE_ORDER BIG_ENDIAN
78  *
79  * The FreeBSD machine this was written on defines BYTE_ORDER
80  * appropriately by including <sys/types.h> (which in turn includes
81  * <machine/endian.h> where the appropriate definitions are actually
82  * made).
83  */
84 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
85 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
86 #endif
87 
88 
89 /*** SHA-224/256/384/512 Various Length Definitions ***********************/
90 /* NOTE: Most of these are in sha2.h */
91 #define SHA224_SHORT_BLOCK_LENGTH	(SHA224_BLOCK_LENGTH - 8)
92 #define SHA256_SHORT_BLOCK_LENGTH	(SHA256_BLOCK_LENGTH - 8)
93 #define SHA384_SHORT_BLOCK_LENGTH	(SHA384_BLOCK_LENGTH - 16)
94 #define SHA512_SHORT_BLOCK_LENGTH	(SHA512_BLOCK_LENGTH - 16)
95 
96 /*** ENDIAN SPECIFIC COPY MACROS **************************************/
97 #define BE_8_TO_32(dst, cp) do {					\
98 	(dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) |	\
99 	    ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24);	\
100 } while(0)
101 
102 #define BE_8_TO_64(dst, cp) do {					\
103 	(dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) |	\
104 	    ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) |	\
105 	    ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) |	\
106 	    ((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56);	\
107 } while (0)
108 
109 #define BE_64_TO_8(cp, src) do {					\
110 	(cp)[0] = (src) >> 56;						\
111         (cp)[1] = (src) >> 48;						\
112 	(cp)[2] = (src) >> 40;						\
113 	(cp)[3] = (src) >> 32;						\
114 	(cp)[4] = (src) >> 24;						\
115 	(cp)[5] = (src) >> 16;						\
116 	(cp)[6] = (src) >> 8;						\
117 	(cp)[7] = (src);						\
118 } while (0)
119 
120 #define BE_32_TO_8(cp, src) do {					\
121 	(cp)[0] = (src) >> 24;						\
122 	(cp)[1] = (src) >> 16;						\
123 	(cp)[2] = (src) >> 8;						\
124 	(cp)[3] = (src);						\
125 } while (0)
126 
127 /*
128  * Macro for incrementally adding the unsigned 64-bit integer n to the
129  * unsigned 128-bit integer (represented using a two-element array of
130  * 64-bit words):
131  */
132 #define ADDINC128(w,n) do {						\
133 	(w)[0] += (u_int64_t)(n);					\
134 	if ((w)[0] < (n)) {						\
135 		(w)[1]++;						\
136 	}								\
137 } while (0)
138 
139 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
140 /*
141  * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
142  *
143  *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
144  *   S is a ROTATION) because the SHA-224/256/384/512 description document
145  *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
146  *   same "backwards" definition.
147  */
148 /* Shift-right (used in SHA-224, SHA-256, SHA-384, and SHA-512): */
149 #define R(b,x) 		((x) >> (b))
150 /* 32-bit Rotate-right (used in SHA-224 and SHA-256): */
151 #define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
152 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
153 #define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
154 
155 /* Two of six logical functions used in SHA-224, SHA-256, SHA-384, and SHA-512: */
156 #define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
157 #define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
158 
159 /* Four of six logical functions used in SHA-224 and SHA-256: */
160 #define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
161 #define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
162 #define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
163 #define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
164 
165 /* Four of six logical functions used in SHA-384 and SHA-512: */
166 #define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
167 #define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
168 #define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
169 #define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
170 
171 
172 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
173 /* Hash constant words K for SHA-224 and SHA-256: */
174 const static u_int32_t K256[64] = {
175 	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
176 	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
177 	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
178 	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
179 	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
180 	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
181 	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
182 	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
183 	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
184 	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
185 	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
186 	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
187 	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
188 	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
189 	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
190 	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
191 };
192 
193 /* Initial hash value H for SHA-224: */
194 const static u_int32_t sha224_initial_hash_value[8] = {
195 	0xc1059ed8UL,
196 	0x367cd507UL,
197 	0x3070dd17UL,
198 	0xf70e5939UL,
199 	0xffc00b31UL,
200 	0x68581511UL,
201 	0x64f98fa7UL,
202 	0xbefa4fa4UL
203 };
204 
205 /* Initial hash value H for SHA-256: */
206 const static u_int32_t sha256_initial_hash_value[8] = {
207 	0x6a09e667UL,
208 	0xbb67ae85UL,
209 	0x3c6ef372UL,
210 	0xa54ff53aUL,
211 	0x510e527fUL,
212 	0x9b05688cUL,
213 	0x1f83d9abUL,
214 	0x5be0cd19UL
215 };
216 
217 /* Hash constant words K for SHA-384 and SHA-512: */
218 const static u_int64_t K512[80] = {
219 	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
220 	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
221 	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
222 	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
223 	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
224 	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
225 	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
226 	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
227 	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
228 	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
229 	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
230 	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
231 	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
232 	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
233 	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
234 	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
235 	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
236 	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
237 	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
238 	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
239 	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
240 	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
241 	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
242 	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
243 	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
244 	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
245 	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
246 	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
247 	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
248 	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
249 	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
250 	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
251 	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
252 	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
253 	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
254 	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
255 	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
256 	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
257 	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
258 	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
259 };
260 
261 /* Initial hash value H for SHA-512 */
262 const static u_int64_t sha512_initial_hash_value[8] = {
263 	0x6a09e667f3bcc908ULL,
264 	0xbb67ae8584caa73bULL,
265 	0x3c6ef372fe94f82bULL,
266 	0xa54ff53a5f1d36f1ULL,
267 	0x510e527fade682d1ULL,
268 	0x9b05688c2b3e6c1fULL,
269 	0x1f83d9abfb41bd6bULL,
270 	0x5be0cd19137e2179ULL
271 };
272 
273 #if !defined(SHA2_SMALL)
274 /* Initial hash value H for SHA-384 */
275 const static u_int64_t sha384_initial_hash_value[8] = {
276 	0xcbbb9d5dc1059ed8ULL,
277 	0x629a292a367cd507ULL,
278 	0x9159015a3070dd17ULL,
279 	0x152fecd8f70e5939ULL,
280 	0x67332667ffc00b31ULL,
281 	0x8eb44a8768581511ULL,
282 	0xdb0c2e0d64f98fa7ULL,
283 	0x47b5481dbefa4fa4ULL
284 };
285 
286 /*** SHA-224: *********************************************************/
287 void
288 SHA224Init(SHA2_CTX *context)
289 {
290 	memcpy(context->state.st32, sha224_initial_hash_value,
291 	    sizeof(sha224_initial_hash_value));
292 	memset(context->buffer, 0, sizeof(context->buffer));
293 	context->bitcount[0] = 0;
294 }
295 
296 __weak_alias(SHA224Transform, SHA256Transform);
297 __weak_alias(SHA224Update, SHA256Update);
298 __weak_alias(SHA224Pad, SHA256Pad);
299 
300 void
301 SHA224Final(u_int8_t digest[SHA224_DIGEST_LENGTH], SHA2_CTX *context)
302 {
303 	SHA224Pad(context);
304 
305 #if BYTE_ORDER == LITTLE_ENDIAN
306 	int	i;
307 
308 	/* Convert TO host byte order */
309 	for (i = 0; i < 7; i++)
310 		BE_32_TO_8(digest + i * 4, context->state.st32[i]);
311 #else
312 	memcpy(digest, context->state.st32, SHA224_DIGEST_LENGTH);
313 #endif
314 	memset(context, 0, sizeof(*context));
315 }
316 #endif /* !defined(SHA2_SMALL) */
317 
318 /*** SHA-256: *********************************************************/
319 void
320 SHA256Init(SHA2_CTX *context)
321 {
322 	memcpy(context->state.st32, sha256_initial_hash_value,
323 	    sizeof(sha256_initial_hash_value));
324 	memset(context->buffer, 0, sizeof(context->buffer));
325 	context->bitcount[0] = 0;
326 }
327 
328 #ifdef SHA2_UNROLL_TRANSFORM
329 
330 /* Unrolled SHA-256 round macros: */
331 
332 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do {				    \
333 	BE_8_TO_32(W256[j], data);					    \
334 	data += 4;							    \
335 	T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \
336 	(d) += T1;							    \
337 	(h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c));		    \
338 	j++;								    \
339 } while(0)
340 
341 #define ROUND256(a,b,c,d,e,f,g,h) do {					    \
342 	s0 = W256[(j+1)&0x0f];						    \
343 	s0 = sigma0_256(s0);						    \
344 	s1 = W256[(j+14)&0x0f];						    \
345 	s1 = sigma1_256(s1);						    \
346 	T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] +	    \
347 	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);		    \
348 	(d) += T1;							    \
349 	(h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c));		    \
350 	j++;								    \
351 } while(0)
352 
353 void
354 SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
355 {
356 	u_int32_t	a, b, c, d, e, f, g, h, s0, s1;
357 	u_int32_t	T1, W256[16];
358 	int		j;
359 
360 	/* Initialize registers with the prev. intermediate value */
361 	a = state[0];
362 	b = state[1];
363 	c = state[2];
364 	d = state[3];
365 	e = state[4];
366 	f = state[5];
367 	g = state[6];
368 	h = state[7];
369 
370 	j = 0;
371 	do {
372 		/* Rounds 0 to 15 (unrolled): */
373 		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
374 		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
375 		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
376 		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
377 		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
378 		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
379 		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
380 		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
381 	} while (j < 16);
382 
383 	/* Now for the remaining rounds up to 63: */
384 	do {
385 		ROUND256(a,b,c,d,e,f,g,h);
386 		ROUND256(h,a,b,c,d,e,f,g);
387 		ROUND256(g,h,a,b,c,d,e,f);
388 		ROUND256(f,g,h,a,b,c,d,e);
389 		ROUND256(e,f,g,h,a,b,c,d);
390 		ROUND256(d,e,f,g,h,a,b,c);
391 		ROUND256(c,d,e,f,g,h,a,b);
392 		ROUND256(b,c,d,e,f,g,h,a);
393 	} while (j < 64);
394 
395 	/* Compute the current intermediate hash value */
396 	state[0] += a;
397 	state[1] += b;
398 	state[2] += c;
399 	state[3] += d;
400 	state[4] += e;
401 	state[5] += f;
402 	state[6] += g;
403 	state[7] += h;
404 
405 	/* Clean up */
406 	a = b = c = d = e = f = g = h = T1 = 0;
407 }
408 
409 #else /* SHA2_UNROLL_TRANSFORM */
410 
411 void
412 SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
413 {
414 	u_int32_t	a, b, c, d, e, f, g, h, s0, s1;
415 	u_int32_t	T1, T2, W256[16];
416 	int		j;
417 
418 	/* Initialize registers with the prev. intermediate value */
419 	a = state[0];
420 	b = state[1];
421 	c = state[2];
422 	d = state[3];
423 	e = state[4];
424 	f = state[5];
425 	g = state[6];
426 	h = state[7];
427 
428 	j = 0;
429 	do {
430 		BE_8_TO_32(W256[j], data);
431 		data += 4;
432 		/* Apply the SHA-256 compression function to update a..h */
433 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
434 		T2 = Sigma0_256(a) + Maj(a, b, c);
435 		h = g;
436 		g = f;
437 		f = e;
438 		e = d + T1;
439 		d = c;
440 		c = b;
441 		b = a;
442 		a = T1 + T2;
443 
444 		j++;
445 	} while (j < 16);
446 
447 	do {
448 		/* Part of the message block expansion: */
449 		s0 = W256[(j+1)&0x0f];
450 		s0 = sigma0_256(s0);
451 		s1 = W256[(j+14)&0x0f];
452 		s1 = sigma1_256(s1);
453 
454 		/* Apply the SHA-256 compression function to update a..h */
455 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
456 		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
457 		T2 = Sigma0_256(a) + Maj(a, b, c);
458 		h = g;
459 		g = f;
460 		f = e;
461 		e = d + T1;
462 		d = c;
463 		c = b;
464 		b = a;
465 		a = T1 + T2;
466 
467 		j++;
468 	} while (j < 64);
469 
470 	/* Compute the current intermediate hash value */
471 	state[0] += a;
472 	state[1] += b;
473 	state[2] += c;
474 	state[3] += d;
475 	state[4] += e;
476 	state[5] += f;
477 	state[6] += g;
478 	state[7] += h;
479 
480 	/* Clean up */
481 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
482 }
483 
484 #endif /* SHA2_UNROLL_TRANSFORM */
485 
486 void
487 SHA256Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
488 {
489 	size_t	freespace, usedspace;
490 
491 	/* Calling with no data is valid (we do nothing) */
492 	if (len == 0)
493 		return;
494 
495 	usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
496 	if (usedspace > 0) {
497 		/* Calculate how much free space is available in the buffer */
498 		freespace = SHA256_BLOCK_LENGTH - usedspace;
499 
500 		if (len >= freespace) {
501 			/* Fill the buffer completely and process it */
502 			memcpy(&context->buffer[usedspace], data, freespace);
503 			context->bitcount[0] += freespace << 3;
504 			len -= freespace;
505 			data += freespace;
506 			SHA256Transform(context->state.st32, context->buffer);
507 		} else {
508 			/* The buffer is not yet full */
509 			memcpy(&context->buffer[usedspace], data, len);
510 			context->bitcount[0] += len << 3;
511 			/* Clean up: */
512 			usedspace = freespace = 0;
513 			return;
514 		}
515 	}
516 	while (len >= SHA256_BLOCK_LENGTH) {
517 		/* Process as many complete blocks as we can */
518 		SHA256Transform(context->state.st32, data);
519 		context->bitcount[0] += SHA256_BLOCK_LENGTH << 3;
520 		len -= SHA256_BLOCK_LENGTH;
521 		data += SHA256_BLOCK_LENGTH;
522 	}
523 	if (len > 0) {
524 		/* There's left-overs, so save 'em */
525 		memcpy(context->buffer, data, len);
526 		context->bitcount[0] += len << 3;
527 	}
528 	/* Clean up: */
529 	usedspace = freespace = 0;
530 }
531 
532 void
533 SHA256Pad(SHA2_CTX *context)
534 {
535 	unsigned int	usedspace;
536 
537 	usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
538 	if (usedspace > 0) {
539 		/* Begin padding with a 1 bit: */
540 		context->buffer[usedspace++] = 0x80;
541 
542 		if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
543 			/* Set-up for the last transform: */
544 			memset(&context->buffer[usedspace], 0,
545 			    SHA256_SHORT_BLOCK_LENGTH - usedspace);
546 		} else {
547 			if (usedspace < SHA256_BLOCK_LENGTH) {
548 				memset(&context->buffer[usedspace], 0,
549 				    SHA256_BLOCK_LENGTH - usedspace);
550 			}
551 			/* Do second-to-last transform: */
552 			SHA256Transform(context->state.st32, context->buffer);
553 
554 			/* Prepare for last transform: */
555 			memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
556 		}
557 	} else {
558 		/* Set-up for the last transform: */
559 		memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
560 
561 		/* Begin padding with a 1 bit: */
562 		*context->buffer = 0x80;
563 	}
564 	/* Store the length of input data (in bits) in big endian format: */
565 	BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH],
566 	    context->bitcount[0]);
567 
568 	/* Final transform: */
569 	SHA256Transform(context->state.st32, context->buffer);
570 
571 	/* Clean up: */
572 	usedspace = 0;
573 }
574 
575 void
576 SHA256Final(u_int8_t digest[SHA256_DIGEST_LENGTH], SHA2_CTX *context)
577 {
578 	SHA256Pad(context);
579 
580 #if BYTE_ORDER == LITTLE_ENDIAN
581 	int	i;
582 
583 	/* Convert TO host byte order */
584 	for (i = 0; i < 8; i++)
585 		BE_32_TO_8(digest + i * 4, context->state.st32[i]);
586 #else
587 	memcpy(digest, context->state.st32, SHA256_DIGEST_LENGTH);
588 #endif
589 	memset(context, 0, sizeof(*context));
590 }
591 
592 
593 /*** SHA-512: *********************************************************/
594 void
595 SHA512Init(SHA2_CTX *context)
596 {
597 	memcpy(context->state.st64, sha512_initial_hash_value,
598 	    sizeof(sha512_initial_hash_value));
599 	memset(context->buffer, 0, sizeof(context->buffer));
600 	context->bitcount[0] = context->bitcount[1] =  0;
601 }
602 
603 #ifdef SHA2_UNROLL_TRANSFORM
604 
605 /* Unrolled SHA-512 round macros: */
606 
607 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do {				    \
608 	BE_8_TO_64(W512[j], data);					    \
609 	data += 8;							    \
610 	T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \
611 	(d) += T1;							    \
612 	(h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c));		    \
613 	j++;								    \
614 } while(0)
615 
616 
617 #define ROUND512(a,b,c,d,e,f,g,h) do {					    \
618 	s0 = W512[(j+1)&0x0f];						    \
619 	s0 = sigma0_512(s0);						    \
620 	s1 = W512[(j+14)&0x0f];						    \
621 	s1 = sigma1_512(s1);						    \
622 	T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] +	    \
623              (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);		    \
624 	(d) += T1;							    \
625 	(h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c));		    \
626 	j++;								    \
627 } while(0)
628 
629 void
630 SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
631 {
632 	u_int64_t	a, b, c, d, e, f, g, h, s0, s1;
633 	u_int64_t	T1, W512[16];
634 	int		j;
635 
636 	/* Initialize registers with the prev. intermediate value */
637 	a = state[0];
638 	b = state[1];
639 	c = state[2];
640 	d = state[3];
641 	e = state[4];
642 	f = state[5];
643 	g = state[6];
644 	h = state[7];
645 
646 	j = 0;
647 	do {
648 		/* Rounds 0 to 15 (unrolled): */
649 		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
650 		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
651 		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
652 		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
653 		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
654 		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
655 		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
656 		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
657 	} while (j < 16);
658 
659 	/* Now for the remaining rounds up to 79: */
660 	do {
661 		ROUND512(a,b,c,d,e,f,g,h);
662 		ROUND512(h,a,b,c,d,e,f,g);
663 		ROUND512(g,h,a,b,c,d,e,f);
664 		ROUND512(f,g,h,a,b,c,d,e);
665 		ROUND512(e,f,g,h,a,b,c,d);
666 		ROUND512(d,e,f,g,h,a,b,c);
667 		ROUND512(c,d,e,f,g,h,a,b);
668 		ROUND512(b,c,d,e,f,g,h,a);
669 	} while (j < 80);
670 
671 	/* Compute the current intermediate hash value */
672 	state[0] += a;
673 	state[1] += b;
674 	state[2] += c;
675 	state[3] += d;
676 	state[4] += e;
677 	state[5] += f;
678 	state[6] += g;
679 	state[7] += h;
680 
681 	/* Clean up */
682 	a = b = c = d = e = f = g = h = T1 = 0;
683 }
684 
685 #else /* SHA2_UNROLL_TRANSFORM */
686 
687 void
688 SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
689 {
690 	u_int64_t	a, b, c, d, e, f, g, h, s0, s1;
691 	u_int64_t	T1, T2, W512[16];
692 	int		j;
693 
694 	/* Initialize registers with the prev. intermediate value */
695 	a = state[0];
696 	b = state[1];
697 	c = state[2];
698 	d = state[3];
699 	e = state[4];
700 	f = state[5];
701 	g = state[6];
702 	h = state[7];
703 
704 	j = 0;
705 	do {
706 		BE_8_TO_64(W512[j], data);
707 		data += 8;
708 		/* Apply the SHA-512 compression function to update a..h */
709 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
710 		T2 = Sigma0_512(a) + Maj(a, b, c);
711 		h = g;
712 		g = f;
713 		f = e;
714 		e = d + T1;
715 		d = c;
716 		c = b;
717 		b = a;
718 		a = T1 + T2;
719 
720 		j++;
721 	} while (j < 16);
722 
723 	do {
724 		/* Part of the message block expansion: */
725 		s0 = W512[(j+1)&0x0f];
726 		s0 = sigma0_512(s0);
727 		s1 = W512[(j+14)&0x0f];
728 		s1 =  sigma1_512(s1);
729 
730 		/* Apply the SHA-512 compression function to update a..h */
731 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
732 		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
733 		T2 = Sigma0_512(a) + Maj(a, b, c);
734 		h = g;
735 		g = f;
736 		f = e;
737 		e = d + T1;
738 		d = c;
739 		c = b;
740 		b = a;
741 		a = T1 + T2;
742 
743 		j++;
744 	} while (j < 80);
745 
746 	/* Compute the current intermediate hash value */
747 	state[0] += a;
748 	state[1] += b;
749 	state[2] += c;
750 	state[3] += d;
751 	state[4] += e;
752 	state[5] += f;
753 	state[6] += g;
754 	state[7] += h;
755 
756 	/* Clean up */
757 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
758 }
759 
760 #endif /* SHA2_UNROLL_TRANSFORM */
761 
762 void
763 SHA512Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
764 {
765 	size_t	freespace, usedspace;
766 
767 	/* Calling with no data is valid (we do nothing) */
768 	if (len == 0)
769 		return;
770 
771 	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
772 	if (usedspace > 0) {
773 		/* Calculate how much free space is available in the buffer */
774 		freespace = SHA512_BLOCK_LENGTH - usedspace;
775 
776 		if (len >= freespace) {
777 			/* Fill the buffer completely and process it */
778 			memcpy(&context->buffer[usedspace], data, freespace);
779 			ADDINC128(context->bitcount, freespace << 3);
780 			len -= freespace;
781 			data += freespace;
782 			SHA512Transform(context->state.st64, context->buffer);
783 		} else {
784 			/* The buffer is not yet full */
785 			memcpy(&context->buffer[usedspace], data, len);
786 			ADDINC128(context->bitcount, len << 3);
787 			/* Clean up: */
788 			usedspace = freespace = 0;
789 			return;
790 		}
791 	}
792 	while (len >= SHA512_BLOCK_LENGTH) {
793 		/* Process as many complete blocks as we can */
794 		SHA512Transform(context->state.st64, data);
795 		ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
796 		len -= SHA512_BLOCK_LENGTH;
797 		data += SHA512_BLOCK_LENGTH;
798 	}
799 	if (len > 0) {
800 		/* There's left-overs, so save 'em */
801 		memcpy(context->buffer, data, len);
802 		ADDINC128(context->bitcount, len << 3);
803 	}
804 	/* Clean up: */
805 	usedspace = freespace = 0;
806 }
807 
808 void
809 SHA512Pad(SHA2_CTX *context)
810 {
811 	unsigned int	usedspace;
812 
813 	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
814 	if (usedspace > 0) {
815 		/* Begin padding with a 1 bit: */
816 		context->buffer[usedspace++] = 0x80;
817 
818 		if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
819 			/* Set-up for the last transform: */
820 			memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace);
821 		} else {
822 			if (usedspace < SHA512_BLOCK_LENGTH) {
823 				memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace);
824 			}
825 			/* Do second-to-last transform: */
826 			SHA512Transform(context->state.st64, context->buffer);
827 
828 			/* And set-up for the last transform: */
829 			memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2);
830 		}
831 	} else {
832 		/* Prepare for final transform: */
833 		memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH);
834 
835 		/* Begin padding with a 1 bit: */
836 		*context->buffer = 0x80;
837 	}
838 	/* Store the length of input data (in bits) in big endian format: */
839 	BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH],
840 	    context->bitcount[1]);
841 	BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8],
842 	    context->bitcount[0]);
843 
844 	/* Final transform: */
845 	SHA512Transform(context->state.st64, context->buffer);
846 
847 	/* Clean up: */
848 	usedspace = 0;
849 }
850 
851 void
852 SHA512Final(u_int8_t digest[SHA512_DIGEST_LENGTH], SHA2_CTX *context)
853 {
854 	SHA512Pad(context);
855 
856 #if BYTE_ORDER == LITTLE_ENDIAN
857 	int	i;
858 
859 	/* Convert TO host byte order */
860 	for (i = 0; i < 8; i++)
861 		BE_64_TO_8(digest + i * 8, context->state.st64[i]);
862 #else
863 	memcpy(digest, context->state.st64, SHA512_DIGEST_LENGTH);
864 #endif
865 	memset(context, 0, sizeof(*context));
866 }
867 
868 #if !defined(SHA2_SMALL)
869 
870 /*** SHA-384: *********************************************************/
871 void
872 SHA384Init(SHA2_CTX *context)
873 {
874 	memcpy(context->state.st64, sha384_initial_hash_value,
875 	    sizeof(sha384_initial_hash_value));
876 	memset(context->buffer, 0, sizeof(context->buffer));
877 	context->bitcount[0] = context->bitcount[1] = 0;
878 }
879 
880 __weak_alias(SHA384Transform, SHA512Transform);
881 __weak_alias(SHA384Update, SHA512Update);
882 __weak_alias(SHA384Pad, SHA512Pad);
883 
884 void
885 SHA384Final(u_int8_t digest[SHA384_DIGEST_LENGTH], SHA2_CTX *context)
886 {
887 	SHA384Pad(context);
888 
889 #if BYTE_ORDER == LITTLE_ENDIAN
890 	int	i;
891 
892 	/* Convert TO host byte order */
893 	for (i = 0; i < 6; i++)
894 		BE_64_TO_8(digest + i * 8, context->state.st64[i]);
895 #else
896 	memcpy(digest, context->state.st64, SHA384_DIGEST_LENGTH);
897 #endif
898 	/* Zero out state data */
899 	memset(context, 0, sizeof(*context));
900 }
901 #endif /* !defined(SHA2_SMALL) */
902