1 /* $OpenBSD: sha2.c,v 1.17 2014/01/08 06:14:57 tedu Exp $ */ 2 3 /* 4 * FILE: sha2.c 5 * AUTHOR: Aaron D. Gifford <me@aarongifford.com> 6 * 7 * Copyright (c) 2000-2001, Aaron D. Gifford 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the copyright holder nor the names of contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $ 35 */ 36 37 #include <sys/types.h> 38 39 #include <string.h> 40 #include <sha2.h> 41 42 /* 43 * UNROLLED TRANSFORM LOOP NOTE: 44 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform 45 * loop version for the hash transform rounds (defined using macros 46 * later in this file). Either define on the command line, for example: 47 * 48 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c 49 * 50 * or define below: 51 * 52 * #define SHA2_UNROLL_TRANSFORM 53 * 54 */ 55 56 /*** SHA-224/256/384/512 Machine Architecture Definitions *****************/ 57 /* 58 * BYTE_ORDER NOTE: 59 * 60 * Please make sure that your system defines BYTE_ORDER. If your 61 * architecture is little-endian, make sure it also defines 62 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are 63 * equivilent. 64 * 65 * If your system does not define the above, then you can do so by 66 * hand like this: 67 * 68 * #define LITTLE_ENDIAN 1234 69 * #define BIG_ENDIAN 4321 70 * 71 * And for little-endian machines, add: 72 * 73 * #define BYTE_ORDER LITTLE_ENDIAN 74 * 75 * Or for big-endian machines: 76 * 77 * #define BYTE_ORDER BIG_ENDIAN 78 * 79 * The FreeBSD machine this was written on defines BYTE_ORDER 80 * appropriately by including <sys/types.h> (which in turn includes 81 * <machine/endian.h> where the appropriate definitions are actually 82 * made). 83 */ 84 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN) 85 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN 86 #endif 87 88 89 /*** SHA-224/256/384/512 Various Length Definitions ***********************/ 90 /* NOTE: Most of these are in sha2.h */ 91 #define SHA224_SHORT_BLOCK_LENGTH (SHA224_BLOCK_LENGTH - 8) 92 #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8) 93 #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16) 94 #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16) 95 96 /*** ENDIAN SPECIFIC COPY MACROS **************************************/ 97 #define BE_8_TO_32(dst, cp) do { \ 98 (dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) | \ 99 ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24); \ 100 } while(0) 101 102 #define BE_8_TO_64(dst, cp) do { \ 103 (dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) | \ 104 ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) | \ 105 ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) | \ 106 ((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56); \ 107 } while (0) 108 109 #define BE_64_TO_8(cp, src) do { \ 110 (cp)[0] = (src) >> 56; \ 111 (cp)[1] = (src) >> 48; \ 112 (cp)[2] = (src) >> 40; \ 113 (cp)[3] = (src) >> 32; \ 114 (cp)[4] = (src) >> 24; \ 115 (cp)[5] = (src) >> 16; \ 116 (cp)[6] = (src) >> 8; \ 117 (cp)[7] = (src); \ 118 } while (0) 119 120 #define BE_32_TO_8(cp, src) do { \ 121 (cp)[0] = (src) >> 24; \ 122 (cp)[1] = (src) >> 16; \ 123 (cp)[2] = (src) >> 8; \ 124 (cp)[3] = (src); \ 125 } while (0) 126 127 /* 128 * Macro for incrementally adding the unsigned 64-bit integer n to the 129 * unsigned 128-bit integer (represented using a two-element array of 130 * 64-bit words): 131 */ 132 #define ADDINC128(w,n) do { \ 133 (w)[0] += (u_int64_t)(n); \ 134 if ((w)[0] < (n)) { \ 135 (w)[1]++; \ 136 } \ 137 } while (0) 138 139 /*** THE SIX LOGICAL FUNCTIONS ****************************************/ 140 /* 141 * Bit shifting and rotation (used by the six SHA-XYZ logical functions: 142 * 143 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and 144 * S is a ROTATION) because the SHA-224/256/384/512 description document 145 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this 146 * same "backwards" definition. 147 */ 148 /* Shift-right (used in SHA-224, SHA-256, SHA-384, and SHA-512): */ 149 #define R(b,x) ((x) >> (b)) 150 /* 32-bit Rotate-right (used in SHA-224 and SHA-256): */ 151 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) 152 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ 153 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) 154 155 /* Two of six logical functions used in SHA-224, SHA-256, SHA-384, and SHA-512: */ 156 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) 157 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) 158 159 /* Four of six logical functions used in SHA-224 and SHA-256: */ 160 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) 161 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) 162 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) 163 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) 164 165 /* Four of six logical functions used in SHA-384 and SHA-512: */ 166 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) 167 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) 168 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) 169 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) 170 171 172 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ 173 /* Hash constant words K for SHA-224 and SHA-256: */ 174 const static u_int32_t K256[64] = { 175 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 176 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 177 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, 178 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, 179 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, 180 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 181 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 182 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, 183 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, 184 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 185 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 186 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 187 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, 188 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, 189 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, 190 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL 191 }; 192 193 /* Initial hash value H for SHA-224: */ 194 const static u_int32_t sha224_initial_hash_value[8] = { 195 0xc1059ed8UL, 196 0x367cd507UL, 197 0x3070dd17UL, 198 0xf70e5939UL, 199 0xffc00b31UL, 200 0x68581511UL, 201 0x64f98fa7UL, 202 0xbefa4fa4UL 203 }; 204 205 /* Initial hash value H for SHA-256: */ 206 const static u_int32_t sha256_initial_hash_value[8] = { 207 0x6a09e667UL, 208 0xbb67ae85UL, 209 0x3c6ef372UL, 210 0xa54ff53aUL, 211 0x510e527fUL, 212 0x9b05688cUL, 213 0x1f83d9abUL, 214 0x5be0cd19UL 215 }; 216 217 /* Hash constant words K for SHA-384 and SHA-512: */ 218 const static u_int64_t K512[80] = { 219 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 220 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, 221 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 222 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 223 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 224 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 225 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 226 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, 227 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 228 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 229 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 230 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, 231 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 232 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, 233 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 234 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 235 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 236 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 237 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 238 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, 239 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 240 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 241 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 242 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, 243 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 244 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, 245 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 246 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 247 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 248 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 249 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 250 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, 251 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 252 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 253 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 254 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, 255 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 256 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, 257 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 258 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL 259 }; 260 261 /* Initial hash value H for SHA-512 */ 262 const static u_int64_t sha512_initial_hash_value[8] = { 263 0x6a09e667f3bcc908ULL, 264 0xbb67ae8584caa73bULL, 265 0x3c6ef372fe94f82bULL, 266 0xa54ff53a5f1d36f1ULL, 267 0x510e527fade682d1ULL, 268 0x9b05688c2b3e6c1fULL, 269 0x1f83d9abfb41bd6bULL, 270 0x5be0cd19137e2179ULL 271 }; 272 273 #if !defined(SHA2_SMALL) 274 /* Initial hash value H for SHA-384 */ 275 const static u_int64_t sha384_initial_hash_value[8] = { 276 0xcbbb9d5dc1059ed8ULL, 277 0x629a292a367cd507ULL, 278 0x9159015a3070dd17ULL, 279 0x152fecd8f70e5939ULL, 280 0x67332667ffc00b31ULL, 281 0x8eb44a8768581511ULL, 282 0xdb0c2e0d64f98fa7ULL, 283 0x47b5481dbefa4fa4ULL 284 }; 285 286 /*** SHA-224: *********************************************************/ 287 void 288 SHA224Init(SHA2_CTX *context) 289 { 290 memcpy(context->state.st32, sha224_initial_hash_value, 291 sizeof(sha224_initial_hash_value)); 292 memset(context->buffer, 0, sizeof(context->buffer)); 293 context->bitcount[0] = 0; 294 } 295 296 __weak_alias(SHA224Transform, SHA256Transform); 297 __weak_alias(SHA224Update, SHA256Update); 298 __weak_alias(SHA224Pad, SHA256Pad); 299 300 void 301 SHA224Final(u_int8_t digest[SHA224_DIGEST_LENGTH], SHA2_CTX *context) 302 { 303 SHA224Pad(context); 304 305 #if BYTE_ORDER == LITTLE_ENDIAN 306 int i; 307 308 /* Convert TO host byte order */ 309 for (i = 0; i < 7; i++) 310 BE_32_TO_8(digest + i * 4, context->state.st32[i]); 311 #else 312 memcpy(digest, context->state.st32, SHA224_DIGEST_LENGTH); 313 #endif 314 memset(context, 0, sizeof(*context)); 315 } 316 #endif /* !defined(SHA2_SMALL) */ 317 318 /*** SHA-256: *********************************************************/ 319 void 320 SHA256Init(SHA2_CTX *context) 321 { 322 memcpy(context->state.st32, sha256_initial_hash_value, 323 sizeof(sha256_initial_hash_value)); 324 memset(context->buffer, 0, sizeof(context->buffer)); 325 context->bitcount[0] = 0; 326 } 327 328 #ifdef SHA2_UNROLL_TRANSFORM 329 330 /* Unrolled SHA-256 round macros: */ 331 332 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do { \ 333 BE_8_TO_32(W256[j], data); \ 334 data += 4; \ 335 T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \ 336 (d) += T1; \ 337 (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \ 338 j++; \ 339 } while(0) 340 341 #define ROUND256(a,b,c,d,e,f,g,h) do { \ 342 s0 = W256[(j+1)&0x0f]; \ 343 s0 = sigma0_256(s0); \ 344 s1 = W256[(j+14)&0x0f]; \ 345 s1 = sigma1_256(s1); \ 346 T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + \ 347 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ 348 (d) += T1; \ 349 (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \ 350 j++; \ 351 } while(0) 352 353 void 354 SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH]) 355 { 356 u_int32_t a, b, c, d, e, f, g, h, s0, s1; 357 u_int32_t T1, W256[16]; 358 int j; 359 360 /* Initialize registers with the prev. intermediate value */ 361 a = state[0]; 362 b = state[1]; 363 c = state[2]; 364 d = state[3]; 365 e = state[4]; 366 f = state[5]; 367 g = state[6]; 368 h = state[7]; 369 370 j = 0; 371 do { 372 /* Rounds 0 to 15 (unrolled): */ 373 ROUND256_0_TO_15(a,b,c,d,e,f,g,h); 374 ROUND256_0_TO_15(h,a,b,c,d,e,f,g); 375 ROUND256_0_TO_15(g,h,a,b,c,d,e,f); 376 ROUND256_0_TO_15(f,g,h,a,b,c,d,e); 377 ROUND256_0_TO_15(e,f,g,h,a,b,c,d); 378 ROUND256_0_TO_15(d,e,f,g,h,a,b,c); 379 ROUND256_0_TO_15(c,d,e,f,g,h,a,b); 380 ROUND256_0_TO_15(b,c,d,e,f,g,h,a); 381 } while (j < 16); 382 383 /* Now for the remaining rounds up to 63: */ 384 do { 385 ROUND256(a,b,c,d,e,f,g,h); 386 ROUND256(h,a,b,c,d,e,f,g); 387 ROUND256(g,h,a,b,c,d,e,f); 388 ROUND256(f,g,h,a,b,c,d,e); 389 ROUND256(e,f,g,h,a,b,c,d); 390 ROUND256(d,e,f,g,h,a,b,c); 391 ROUND256(c,d,e,f,g,h,a,b); 392 ROUND256(b,c,d,e,f,g,h,a); 393 } while (j < 64); 394 395 /* Compute the current intermediate hash value */ 396 state[0] += a; 397 state[1] += b; 398 state[2] += c; 399 state[3] += d; 400 state[4] += e; 401 state[5] += f; 402 state[6] += g; 403 state[7] += h; 404 405 /* Clean up */ 406 a = b = c = d = e = f = g = h = T1 = 0; 407 } 408 409 #else /* SHA2_UNROLL_TRANSFORM */ 410 411 void 412 SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH]) 413 { 414 u_int32_t a, b, c, d, e, f, g, h, s0, s1; 415 u_int32_t T1, T2, W256[16]; 416 int j; 417 418 /* Initialize registers with the prev. intermediate value */ 419 a = state[0]; 420 b = state[1]; 421 c = state[2]; 422 d = state[3]; 423 e = state[4]; 424 f = state[5]; 425 g = state[6]; 426 h = state[7]; 427 428 j = 0; 429 do { 430 BE_8_TO_32(W256[j], data); 431 data += 4; 432 /* Apply the SHA-256 compression function to update a..h */ 433 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; 434 T2 = Sigma0_256(a) + Maj(a, b, c); 435 h = g; 436 g = f; 437 f = e; 438 e = d + T1; 439 d = c; 440 c = b; 441 b = a; 442 a = T1 + T2; 443 444 j++; 445 } while (j < 16); 446 447 do { 448 /* Part of the message block expansion: */ 449 s0 = W256[(j+1)&0x0f]; 450 s0 = sigma0_256(s0); 451 s1 = W256[(j+14)&0x0f]; 452 s1 = sigma1_256(s1); 453 454 /* Apply the SHA-256 compression function to update a..h */ 455 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + 456 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); 457 T2 = Sigma0_256(a) + Maj(a, b, c); 458 h = g; 459 g = f; 460 f = e; 461 e = d + T1; 462 d = c; 463 c = b; 464 b = a; 465 a = T1 + T2; 466 467 j++; 468 } while (j < 64); 469 470 /* Compute the current intermediate hash value */ 471 state[0] += a; 472 state[1] += b; 473 state[2] += c; 474 state[3] += d; 475 state[4] += e; 476 state[5] += f; 477 state[6] += g; 478 state[7] += h; 479 480 /* Clean up */ 481 a = b = c = d = e = f = g = h = T1 = T2 = 0; 482 } 483 484 #endif /* SHA2_UNROLL_TRANSFORM */ 485 486 void 487 SHA256Update(SHA2_CTX *context, const u_int8_t *data, size_t len) 488 { 489 size_t freespace, usedspace; 490 491 /* Calling with no data is valid (we do nothing) */ 492 if (len == 0) 493 return; 494 495 usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH; 496 if (usedspace > 0) { 497 /* Calculate how much free space is available in the buffer */ 498 freespace = SHA256_BLOCK_LENGTH - usedspace; 499 500 if (len >= freespace) { 501 /* Fill the buffer completely and process it */ 502 memcpy(&context->buffer[usedspace], data, freespace); 503 context->bitcount[0] += freespace << 3; 504 len -= freespace; 505 data += freespace; 506 SHA256Transform(context->state.st32, context->buffer); 507 } else { 508 /* The buffer is not yet full */ 509 memcpy(&context->buffer[usedspace], data, len); 510 context->bitcount[0] += len << 3; 511 /* Clean up: */ 512 usedspace = freespace = 0; 513 return; 514 } 515 } 516 while (len >= SHA256_BLOCK_LENGTH) { 517 /* Process as many complete blocks as we can */ 518 SHA256Transform(context->state.st32, data); 519 context->bitcount[0] += SHA256_BLOCK_LENGTH << 3; 520 len -= SHA256_BLOCK_LENGTH; 521 data += SHA256_BLOCK_LENGTH; 522 } 523 if (len > 0) { 524 /* There's left-overs, so save 'em */ 525 memcpy(context->buffer, data, len); 526 context->bitcount[0] += len << 3; 527 } 528 /* Clean up: */ 529 usedspace = freespace = 0; 530 } 531 532 void 533 SHA256Pad(SHA2_CTX *context) 534 { 535 unsigned int usedspace; 536 537 usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH; 538 if (usedspace > 0) { 539 /* Begin padding with a 1 bit: */ 540 context->buffer[usedspace++] = 0x80; 541 542 if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) { 543 /* Set-up for the last transform: */ 544 memset(&context->buffer[usedspace], 0, 545 SHA256_SHORT_BLOCK_LENGTH - usedspace); 546 } else { 547 if (usedspace < SHA256_BLOCK_LENGTH) { 548 memset(&context->buffer[usedspace], 0, 549 SHA256_BLOCK_LENGTH - usedspace); 550 } 551 /* Do second-to-last transform: */ 552 SHA256Transform(context->state.st32, context->buffer); 553 554 /* Prepare for last transform: */ 555 memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH); 556 } 557 } else { 558 /* Set-up for the last transform: */ 559 memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH); 560 561 /* Begin padding with a 1 bit: */ 562 *context->buffer = 0x80; 563 } 564 /* Store the length of input data (in bits) in big endian format: */ 565 BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH], 566 context->bitcount[0]); 567 568 /* Final transform: */ 569 SHA256Transform(context->state.st32, context->buffer); 570 571 /* Clean up: */ 572 usedspace = 0; 573 } 574 575 void 576 SHA256Final(u_int8_t digest[SHA256_DIGEST_LENGTH], SHA2_CTX *context) 577 { 578 SHA256Pad(context); 579 580 #if BYTE_ORDER == LITTLE_ENDIAN 581 int i; 582 583 /* Convert TO host byte order */ 584 for (i = 0; i < 8; i++) 585 BE_32_TO_8(digest + i * 4, context->state.st32[i]); 586 #else 587 memcpy(digest, context->state.st32, SHA256_DIGEST_LENGTH); 588 #endif 589 memset(context, 0, sizeof(*context)); 590 } 591 592 593 /*** SHA-512: *********************************************************/ 594 void 595 SHA512Init(SHA2_CTX *context) 596 { 597 memcpy(context->state.st64, sha512_initial_hash_value, 598 sizeof(sha512_initial_hash_value)); 599 memset(context->buffer, 0, sizeof(context->buffer)); 600 context->bitcount[0] = context->bitcount[1] = 0; 601 } 602 603 #ifdef SHA2_UNROLL_TRANSFORM 604 605 /* Unrolled SHA-512 round macros: */ 606 607 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do { \ 608 BE_8_TO_64(W512[j], data); \ 609 data += 8; \ 610 T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \ 611 (d) += T1; \ 612 (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \ 613 j++; \ 614 } while(0) 615 616 617 #define ROUND512(a,b,c,d,e,f,g,h) do { \ 618 s0 = W512[(j+1)&0x0f]; \ 619 s0 = sigma0_512(s0); \ 620 s1 = W512[(j+14)&0x0f]; \ 621 s1 = sigma1_512(s1); \ 622 T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + \ 623 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ 624 (d) += T1; \ 625 (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \ 626 j++; \ 627 } while(0) 628 629 void 630 SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH]) 631 { 632 u_int64_t a, b, c, d, e, f, g, h, s0, s1; 633 u_int64_t T1, W512[16]; 634 int j; 635 636 /* Initialize registers with the prev. intermediate value */ 637 a = state[0]; 638 b = state[1]; 639 c = state[2]; 640 d = state[3]; 641 e = state[4]; 642 f = state[5]; 643 g = state[6]; 644 h = state[7]; 645 646 j = 0; 647 do { 648 /* Rounds 0 to 15 (unrolled): */ 649 ROUND512_0_TO_15(a,b,c,d,e,f,g,h); 650 ROUND512_0_TO_15(h,a,b,c,d,e,f,g); 651 ROUND512_0_TO_15(g,h,a,b,c,d,e,f); 652 ROUND512_0_TO_15(f,g,h,a,b,c,d,e); 653 ROUND512_0_TO_15(e,f,g,h,a,b,c,d); 654 ROUND512_0_TO_15(d,e,f,g,h,a,b,c); 655 ROUND512_0_TO_15(c,d,e,f,g,h,a,b); 656 ROUND512_0_TO_15(b,c,d,e,f,g,h,a); 657 } while (j < 16); 658 659 /* Now for the remaining rounds up to 79: */ 660 do { 661 ROUND512(a,b,c,d,e,f,g,h); 662 ROUND512(h,a,b,c,d,e,f,g); 663 ROUND512(g,h,a,b,c,d,e,f); 664 ROUND512(f,g,h,a,b,c,d,e); 665 ROUND512(e,f,g,h,a,b,c,d); 666 ROUND512(d,e,f,g,h,a,b,c); 667 ROUND512(c,d,e,f,g,h,a,b); 668 ROUND512(b,c,d,e,f,g,h,a); 669 } while (j < 80); 670 671 /* Compute the current intermediate hash value */ 672 state[0] += a; 673 state[1] += b; 674 state[2] += c; 675 state[3] += d; 676 state[4] += e; 677 state[5] += f; 678 state[6] += g; 679 state[7] += h; 680 681 /* Clean up */ 682 a = b = c = d = e = f = g = h = T1 = 0; 683 } 684 685 #else /* SHA2_UNROLL_TRANSFORM */ 686 687 void 688 SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH]) 689 { 690 u_int64_t a, b, c, d, e, f, g, h, s0, s1; 691 u_int64_t T1, T2, W512[16]; 692 int j; 693 694 /* Initialize registers with the prev. intermediate value */ 695 a = state[0]; 696 b = state[1]; 697 c = state[2]; 698 d = state[3]; 699 e = state[4]; 700 f = state[5]; 701 g = state[6]; 702 h = state[7]; 703 704 j = 0; 705 do { 706 BE_8_TO_64(W512[j], data); 707 data += 8; 708 /* Apply the SHA-512 compression function to update a..h */ 709 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; 710 T2 = Sigma0_512(a) + Maj(a, b, c); 711 h = g; 712 g = f; 713 f = e; 714 e = d + T1; 715 d = c; 716 c = b; 717 b = a; 718 a = T1 + T2; 719 720 j++; 721 } while (j < 16); 722 723 do { 724 /* Part of the message block expansion: */ 725 s0 = W512[(j+1)&0x0f]; 726 s0 = sigma0_512(s0); 727 s1 = W512[(j+14)&0x0f]; 728 s1 = sigma1_512(s1); 729 730 /* Apply the SHA-512 compression function to update a..h */ 731 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + 732 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); 733 T2 = Sigma0_512(a) + Maj(a, b, c); 734 h = g; 735 g = f; 736 f = e; 737 e = d + T1; 738 d = c; 739 c = b; 740 b = a; 741 a = T1 + T2; 742 743 j++; 744 } while (j < 80); 745 746 /* Compute the current intermediate hash value */ 747 state[0] += a; 748 state[1] += b; 749 state[2] += c; 750 state[3] += d; 751 state[4] += e; 752 state[5] += f; 753 state[6] += g; 754 state[7] += h; 755 756 /* Clean up */ 757 a = b = c = d = e = f = g = h = T1 = T2 = 0; 758 } 759 760 #endif /* SHA2_UNROLL_TRANSFORM */ 761 762 void 763 SHA512Update(SHA2_CTX *context, const u_int8_t *data, size_t len) 764 { 765 size_t freespace, usedspace; 766 767 /* Calling with no data is valid (we do nothing) */ 768 if (len == 0) 769 return; 770 771 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; 772 if (usedspace > 0) { 773 /* Calculate how much free space is available in the buffer */ 774 freespace = SHA512_BLOCK_LENGTH - usedspace; 775 776 if (len >= freespace) { 777 /* Fill the buffer completely and process it */ 778 memcpy(&context->buffer[usedspace], data, freespace); 779 ADDINC128(context->bitcount, freespace << 3); 780 len -= freespace; 781 data += freespace; 782 SHA512Transform(context->state.st64, context->buffer); 783 } else { 784 /* The buffer is not yet full */ 785 memcpy(&context->buffer[usedspace], data, len); 786 ADDINC128(context->bitcount, len << 3); 787 /* Clean up: */ 788 usedspace = freespace = 0; 789 return; 790 } 791 } 792 while (len >= SHA512_BLOCK_LENGTH) { 793 /* Process as many complete blocks as we can */ 794 SHA512Transform(context->state.st64, data); 795 ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3); 796 len -= SHA512_BLOCK_LENGTH; 797 data += SHA512_BLOCK_LENGTH; 798 } 799 if (len > 0) { 800 /* There's left-overs, so save 'em */ 801 memcpy(context->buffer, data, len); 802 ADDINC128(context->bitcount, len << 3); 803 } 804 /* Clean up: */ 805 usedspace = freespace = 0; 806 } 807 808 void 809 SHA512Pad(SHA2_CTX *context) 810 { 811 unsigned int usedspace; 812 813 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; 814 if (usedspace > 0) { 815 /* Begin padding with a 1 bit: */ 816 context->buffer[usedspace++] = 0x80; 817 818 if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) { 819 /* Set-up for the last transform: */ 820 memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace); 821 } else { 822 if (usedspace < SHA512_BLOCK_LENGTH) { 823 memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace); 824 } 825 /* Do second-to-last transform: */ 826 SHA512Transform(context->state.st64, context->buffer); 827 828 /* And set-up for the last transform: */ 829 memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2); 830 } 831 } else { 832 /* Prepare for final transform: */ 833 memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH); 834 835 /* Begin padding with a 1 bit: */ 836 *context->buffer = 0x80; 837 } 838 /* Store the length of input data (in bits) in big endian format: */ 839 BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH], 840 context->bitcount[1]); 841 BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8], 842 context->bitcount[0]); 843 844 /* Final transform: */ 845 SHA512Transform(context->state.st64, context->buffer); 846 847 /* Clean up: */ 848 usedspace = 0; 849 } 850 851 void 852 SHA512Final(u_int8_t digest[SHA512_DIGEST_LENGTH], SHA2_CTX *context) 853 { 854 SHA512Pad(context); 855 856 #if BYTE_ORDER == LITTLE_ENDIAN 857 int i; 858 859 /* Convert TO host byte order */ 860 for (i = 0; i < 8; i++) 861 BE_64_TO_8(digest + i * 8, context->state.st64[i]); 862 #else 863 memcpy(digest, context->state.st64, SHA512_DIGEST_LENGTH); 864 #endif 865 memset(context, 0, sizeof(*context)); 866 } 867 868 #if !defined(SHA2_SMALL) 869 870 /*** SHA-384: *********************************************************/ 871 void 872 SHA384Init(SHA2_CTX *context) 873 { 874 memcpy(context->state.st64, sha384_initial_hash_value, 875 sizeof(sha384_initial_hash_value)); 876 memset(context->buffer, 0, sizeof(context->buffer)); 877 context->bitcount[0] = context->bitcount[1] = 0; 878 } 879 880 __weak_alias(SHA384Transform, SHA512Transform); 881 __weak_alias(SHA384Update, SHA512Update); 882 __weak_alias(SHA384Pad, SHA512Pad); 883 884 void 885 SHA384Final(u_int8_t digest[SHA384_DIGEST_LENGTH], SHA2_CTX *context) 886 { 887 SHA384Pad(context); 888 889 #if BYTE_ORDER == LITTLE_ENDIAN 890 int i; 891 892 /* Convert TO host byte order */ 893 for (i = 0; i < 6; i++) 894 BE_64_TO_8(digest + i * 8, context->state.st64[i]); 895 #else 896 memcpy(digest, context->state.st64, SHA384_DIGEST_LENGTH); 897 #endif 898 /* Zero out state data */ 899 memset(context, 0, sizeof(*context)); 900 } 901 #endif /* !defined(SHA2_SMALL) */ 902