1 /* $OpenBSD: sha2.c,v 1.12 2008/09/06 12:00:19 djm Exp $ */ 2 3 /* 4 * FILE: sha2.c 5 * AUTHOR: Aaron D. Gifford <me@aarongifford.com> 6 * 7 * Copyright (c) 2000-2001, Aaron D. Gifford 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the copyright holder nor the names of contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $ 35 */ 36 37 #include <sys/types.h> 38 39 #include <string.h> 40 #include <sha2.h> 41 42 /* 43 * UNROLLED TRANSFORM LOOP NOTE: 44 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform 45 * loop version for the hash transform rounds (defined using macros 46 * later in this file). Either define on the command line, for example: 47 * 48 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c 49 * 50 * or define below: 51 * 52 * #define SHA2_UNROLL_TRANSFORM 53 * 54 */ 55 56 /*** SHA-256/384/512 Machine Architecture Definitions *****************/ 57 /* 58 * BYTE_ORDER NOTE: 59 * 60 * Please make sure that your system defines BYTE_ORDER. If your 61 * architecture is little-endian, make sure it also defines 62 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are 63 * equivilent. 64 * 65 * If your system does not define the above, then you can do so by 66 * hand like this: 67 * 68 * #define LITTLE_ENDIAN 1234 69 * #define BIG_ENDIAN 4321 70 * 71 * And for little-endian machines, add: 72 * 73 * #define BYTE_ORDER LITTLE_ENDIAN 74 * 75 * Or for big-endian machines: 76 * 77 * #define BYTE_ORDER BIG_ENDIAN 78 * 79 * The FreeBSD machine this was written on defines BYTE_ORDER 80 * appropriately by including <sys/types.h> (which in turn includes 81 * <machine/endian.h> where the appropriate definitions are actually 82 * made). 83 */ 84 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN) 85 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN 86 #endif 87 88 89 /*** SHA-256/384/512 Various Length Definitions ***********************/ 90 /* NOTE: Most of these are in sha2.h */ 91 #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8) 92 #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16) 93 #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16) 94 95 /*** ENDIAN SPECIFIC COPY MACROS **************************************/ 96 #define BE_8_TO_32(dst, cp) do { \ 97 (dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) | \ 98 ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24); \ 99 } while(0) 100 101 #define BE_8_TO_64(dst, cp) do { \ 102 (dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) | \ 103 ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) | \ 104 ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) | \ 105 ((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56); \ 106 } while (0) 107 108 #define BE_64_TO_8(cp, src) do { \ 109 (cp)[0] = (src) >> 56; \ 110 (cp)[1] = (src) >> 48; \ 111 (cp)[2] = (src) >> 40; \ 112 (cp)[3] = (src) >> 32; \ 113 (cp)[4] = (src) >> 24; \ 114 (cp)[5] = (src) >> 16; \ 115 (cp)[6] = (src) >> 8; \ 116 (cp)[7] = (src); \ 117 } while (0) 118 119 #define BE_32_TO_8(cp, src) do { \ 120 (cp)[0] = (src) >> 24; \ 121 (cp)[1] = (src) >> 16; \ 122 (cp)[2] = (src) >> 8; \ 123 (cp)[3] = (src); \ 124 } while (0) 125 126 /* 127 * Macro for incrementally adding the unsigned 64-bit integer n to the 128 * unsigned 128-bit integer (represented using a two-element array of 129 * 64-bit words): 130 */ 131 #define ADDINC128(w,n) do { \ 132 (w)[0] += (u_int64_t)(n); \ 133 if ((w)[0] < (n)) { \ 134 (w)[1]++; \ 135 } \ 136 } while (0) 137 138 /*** THE SIX LOGICAL FUNCTIONS ****************************************/ 139 /* 140 * Bit shifting and rotation (used by the six SHA-XYZ logical functions: 141 * 142 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and 143 * S is a ROTATION) because the SHA-256/384/512 description document 144 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this 145 * same "backwards" definition. 146 */ 147 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ 148 #define R(b,x) ((x) >> (b)) 149 /* 32-bit Rotate-right (used in SHA-256): */ 150 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) 151 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ 152 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) 153 154 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ 155 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) 156 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) 157 158 /* Four of six logical functions used in SHA-256: */ 159 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) 160 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) 161 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) 162 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) 163 164 /* Four of six logical functions used in SHA-384 and SHA-512: */ 165 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) 166 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) 167 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) 168 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) 169 170 171 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ 172 /* Hash constant words K for SHA-256: */ 173 const static u_int32_t K256[64] = { 174 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 175 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 176 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, 177 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, 178 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, 179 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 180 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 181 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, 182 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, 183 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 184 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 185 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 186 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, 187 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, 188 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, 189 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL 190 }; 191 192 /* Initial hash value H for SHA-256: */ 193 const static u_int32_t sha256_initial_hash_value[8] = { 194 0x6a09e667UL, 195 0xbb67ae85UL, 196 0x3c6ef372UL, 197 0xa54ff53aUL, 198 0x510e527fUL, 199 0x9b05688cUL, 200 0x1f83d9abUL, 201 0x5be0cd19UL 202 }; 203 204 /* Hash constant words K for SHA-384 and SHA-512: */ 205 const static u_int64_t K512[80] = { 206 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 207 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, 208 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 209 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 210 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 211 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 212 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 213 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, 214 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 215 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 216 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 217 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, 218 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 219 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, 220 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 221 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 222 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 223 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 224 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 225 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, 226 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 227 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 228 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 229 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, 230 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 231 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, 232 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 233 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 234 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 235 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 236 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 237 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, 238 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 239 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 240 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 241 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, 242 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 243 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, 244 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 245 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL 246 }; 247 248 /* Initial hash value H for SHA-384 */ 249 const static u_int64_t sha384_initial_hash_value[8] = { 250 0xcbbb9d5dc1059ed8ULL, 251 0x629a292a367cd507ULL, 252 0x9159015a3070dd17ULL, 253 0x152fecd8f70e5939ULL, 254 0x67332667ffc00b31ULL, 255 0x8eb44a8768581511ULL, 256 0xdb0c2e0d64f98fa7ULL, 257 0x47b5481dbefa4fa4ULL 258 }; 259 260 /* Initial hash value H for SHA-512 */ 261 const static u_int64_t sha512_initial_hash_value[8] = { 262 0x6a09e667f3bcc908ULL, 263 0xbb67ae8584caa73bULL, 264 0x3c6ef372fe94f82bULL, 265 0xa54ff53a5f1d36f1ULL, 266 0x510e527fade682d1ULL, 267 0x9b05688c2b3e6c1fULL, 268 0x1f83d9abfb41bd6bULL, 269 0x5be0cd19137e2179ULL 270 }; 271 272 273 /*** SHA-256: *********************************************************/ 274 void 275 SHA256Init(SHA2_CTX *context) 276 { 277 if (context == NULL) 278 return; 279 memcpy(context->state.st32, sha256_initial_hash_value, 280 sizeof(sha256_initial_hash_value)); 281 memset(context->buffer, 0, sizeof(context->buffer)); 282 context->bitcount[0] = 0; 283 } 284 285 #ifdef SHA2_UNROLL_TRANSFORM 286 287 /* Unrolled SHA-256 round macros: */ 288 289 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do { \ 290 BE_8_TO_32(W256[j], data); \ 291 data += 4; \ 292 T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \ 293 (d) += T1; \ 294 (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \ 295 j++; \ 296 } while(0) 297 298 #define ROUND256(a,b,c,d,e,f,g,h) do { \ 299 s0 = W256[(j+1)&0x0f]; \ 300 s0 = sigma0_256(s0); \ 301 s1 = W256[(j+14)&0x0f]; \ 302 s1 = sigma1_256(s1); \ 303 T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + \ 304 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ 305 (d) += T1; \ 306 (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \ 307 j++; \ 308 } while(0) 309 310 void 311 SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH]) 312 { 313 u_int32_t a, b, c, d, e, f, g, h, s0, s1; 314 u_int32_t T1, W256[16]; 315 int j; 316 317 /* Initialize registers with the prev. intermediate value */ 318 a = state[0]; 319 b = state[1]; 320 c = state[2]; 321 d = state[3]; 322 e = state[4]; 323 f = state[5]; 324 g = state[6]; 325 h = state[7]; 326 327 j = 0; 328 do { 329 /* Rounds 0 to 15 (unrolled): */ 330 ROUND256_0_TO_15(a,b,c,d,e,f,g,h); 331 ROUND256_0_TO_15(h,a,b,c,d,e,f,g); 332 ROUND256_0_TO_15(g,h,a,b,c,d,e,f); 333 ROUND256_0_TO_15(f,g,h,a,b,c,d,e); 334 ROUND256_0_TO_15(e,f,g,h,a,b,c,d); 335 ROUND256_0_TO_15(d,e,f,g,h,a,b,c); 336 ROUND256_0_TO_15(c,d,e,f,g,h,a,b); 337 ROUND256_0_TO_15(b,c,d,e,f,g,h,a); 338 } while (j < 16); 339 340 /* Now for the remaining rounds up to 63: */ 341 do { 342 ROUND256(a,b,c,d,e,f,g,h); 343 ROUND256(h,a,b,c,d,e,f,g); 344 ROUND256(g,h,a,b,c,d,e,f); 345 ROUND256(f,g,h,a,b,c,d,e); 346 ROUND256(e,f,g,h,a,b,c,d); 347 ROUND256(d,e,f,g,h,a,b,c); 348 ROUND256(c,d,e,f,g,h,a,b); 349 ROUND256(b,c,d,e,f,g,h,a); 350 } while (j < 64); 351 352 /* Compute the current intermediate hash value */ 353 state[0] += a; 354 state[1] += b; 355 state[2] += c; 356 state[3] += d; 357 state[4] += e; 358 state[5] += f; 359 state[6] += g; 360 state[7] += h; 361 362 /* Clean up */ 363 a = b = c = d = e = f = g = h = T1 = 0; 364 } 365 366 #else /* SHA2_UNROLL_TRANSFORM */ 367 368 void 369 SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH]) 370 { 371 u_int32_t a, b, c, d, e, f, g, h, s0, s1; 372 u_int32_t T1, T2, W256[16]; 373 int j; 374 375 /* Initialize registers with the prev. intermediate value */ 376 a = state[0]; 377 b = state[1]; 378 c = state[2]; 379 d = state[3]; 380 e = state[4]; 381 f = state[5]; 382 g = state[6]; 383 h = state[7]; 384 385 j = 0; 386 do { 387 BE_8_TO_32(W256[j], data); 388 data += 4; 389 /* Apply the SHA-256 compression function to update a..h */ 390 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; 391 T2 = Sigma0_256(a) + Maj(a, b, c); 392 h = g; 393 g = f; 394 f = e; 395 e = d + T1; 396 d = c; 397 c = b; 398 b = a; 399 a = T1 + T2; 400 401 j++; 402 } while (j < 16); 403 404 do { 405 /* Part of the message block expansion: */ 406 s0 = W256[(j+1)&0x0f]; 407 s0 = sigma0_256(s0); 408 s1 = W256[(j+14)&0x0f]; 409 s1 = sigma1_256(s1); 410 411 /* Apply the SHA-256 compression function to update a..h */ 412 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + 413 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); 414 T2 = Sigma0_256(a) + Maj(a, b, c); 415 h = g; 416 g = f; 417 f = e; 418 e = d + T1; 419 d = c; 420 c = b; 421 b = a; 422 a = T1 + T2; 423 424 j++; 425 } while (j < 64); 426 427 /* Compute the current intermediate hash value */ 428 state[0] += a; 429 state[1] += b; 430 state[2] += c; 431 state[3] += d; 432 state[4] += e; 433 state[5] += f; 434 state[6] += g; 435 state[7] += h; 436 437 /* Clean up */ 438 a = b = c = d = e = f = g = h = T1 = T2 = 0; 439 } 440 441 #endif /* SHA2_UNROLL_TRANSFORM */ 442 443 void 444 SHA256Update(SHA2_CTX *context, const u_int8_t *data, size_t len) 445 { 446 size_t freespace, usedspace; 447 448 /* Calling with no data is valid (we do nothing) */ 449 if (len == 0) 450 return; 451 452 usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH; 453 if (usedspace > 0) { 454 /* Calculate how much free space is available in the buffer */ 455 freespace = SHA256_BLOCK_LENGTH - usedspace; 456 457 if (len >= freespace) { 458 /* Fill the buffer completely and process it */ 459 memcpy(&context->buffer[usedspace], data, freespace); 460 context->bitcount[0] += freespace << 3; 461 len -= freespace; 462 data += freespace; 463 SHA256Transform(context->state.st32, context->buffer); 464 } else { 465 /* The buffer is not yet full */ 466 memcpy(&context->buffer[usedspace], data, len); 467 context->bitcount[0] += len << 3; 468 /* Clean up: */ 469 usedspace = freespace = 0; 470 return; 471 } 472 } 473 while (len >= SHA256_BLOCK_LENGTH) { 474 /* Process as many complete blocks as we can */ 475 SHA256Transform(context->state.st32, data); 476 context->bitcount[0] += SHA256_BLOCK_LENGTH << 3; 477 len -= SHA256_BLOCK_LENGTH; 478 data += SHA256_BLOCK_LENGTH; 479 } 480 if (len > 0) { 481 /* There's left-overs, so save 'em */ 482 memcpy(context->buffer, data, len); 483 context->bitcount[0] += len << 3; 484 } 485 /* Clean up: */ 486 usedspace = freespace = 0; 487 } 488 489 void 490 SHA256Pad(SHA2_CTX *context) 491 { 492 unsigned int usedspace; 493 494 usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH; 495 if (usedspace > 0) { 496 /* Begin padding with a 1 bit: */ 497 context->buffer[usedspace++] = 0x80; 498 499 if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) { 500 /* Set-up for the last transform: */ 501 memset(&context->buffer[usedspace], 0, 502 SHA256_SHORT_BLOCK_LENGTH - usedspace); 503 } else { 504 if (usedspace < SHA256_BLOCK_LENGTH) { 505 memset(&context->buffer[usedspace], 0, 506 SHA256_BLOCK_LENGTH - usedspace); 507 } 508 /* Do second-to-last transform: */ 509 SHA256Transform(context->state.st32, context->buffer); 510 511 /* Prepare for last transform: */ 512 memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH); 513 } 514 } else { 515 /* Set-up for the last transform: */ 516 memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH); 517 518 /* Begin padding with a 1 bit: */ 519 *context->buffer = 0x80; 520 } 521 /* Store the length of input data (in bits) in big endian format: */ 522 BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH], 523 context->bitcount[0]); 524 525 /* Final transform: */ 526 SHA256Transform(context->state.st32, context->buffer); 527 528 /* Clean up: */ 529 usedspace = 0; 530 } 531 532 void 533 SHA256Final(u_int8_t digest[SHA256_DIGEST_LENGTH], SHA2_CTX *context) 534 { 535 SHA256Pad(context); 536 537 /* If no digest buffer is passed, we don't bother doing this: */ 538 if (digest != NULL) { 539 #if BYTE_ORDER == LITTLE_ENDIAN 540 int i; 541 542 /* Convert TO host byte order */ 543 for (i = 0; i < 8; i++) 544 BE_32_TO_8(digest + i * 4, context->state.st32[i]); 545 #else 546 memcpy(digest, context->state.st32, SHA256_DIGEST_LENGTH); 547 #endif 548 memset(context, 0, sizeof(*context)); 549 } 550 } 551 552 553 /*** SHA-512: *********************************************************/ 554 void 555 SHA512Init(SHA2_CTX *context) 556 { 557 if (context == NULL) 558 return; 559 memcpy(context->state.st64, sha512_initial_hash_value, 560 sizeof(sha512_initial_hash_value)); 561 memset(context->buffer, 0, sizeof(context->buffer)); 562 context->bitcount[0] = context->bitcount[1] = 0; 563 } 564 565 #ifdef SHA2_UNROLL_TRANSFORM 566 567 /* Unrolled SHA-512 round macros: */ 568 569 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do { \ 570 BE_8_TO_64(W512[j], data); \ 571 data += 8; \ 572 T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \ 573 (d) += T1; \ 574 (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \ 575 j++; \ 576 } while(0) 577 578 579 #define ROUND512(a,b,c,d,e,f,g,h) do { \ 580 s0 = W512[(j+1)&0x0f]; \ 581 s0 = sigma0_512(s0); \ 582 s1 = W512[(j+14)&0x0f]; \ 583 s1 = sigma1_512(s1); \ 584 T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + \ 585 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ 586 (d) += T1; \ 587 (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \ 588 j++; \ 589 } while(0) 590 591 void 592 SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH]) 593 { 594 u_int64_t a, b, c, d, e, f, g, h, s0, s1; 595 u_int64_t T1, W512[16]; 596 int j; 597 598 /* Initialize registers with the prev. intermediate value */ 599 a = state[0]; 600 b = state[1]; 601 c = state[2]; 602 d = state[3]; 603 e = state[4]; 604 f = state[5]; 605 g = state[6]; 606 h = state[7]; 607 608 j = 0; 609 do { 610 /* Rounds 0 to 15 (unrolled): */ 611 ROUND512_0_TO_15(a,b,c,d,e,f,g,h); 612 ROUND512_0_TO_15(h,a,b,c,d,e,f,g); 613 ROUND512_0_TO_15(g,h,a,b,c,d,e,f); 614 ROUND512_0_TO_15(f,g,h,a,b,c,d,e); 615 ROUND512_0_TO_15(e,f,g,h,a,b,c,d); 616 ROUND512_0_TO_15(d,e,f,g,h,a,b,c); 617 ROUND512_0_TO_15(c,d,e,f,g,h,a,b); 618 ROUND512_0_TO_15(b,c,d,e,f,g,h,a); 619 } while (j < 16); 620 621 /* Now for the remaining rounds up to 79: */ 622 do { 623 ROUND512(a,b,c,d,e,f,g,h); 624 ROUND512(h,a,b,c,d,e,f,g); 625 ROUND512(g,h,a,b,c,d,e,f); 626 ROUND512(f,g,h,a,b,c,d,e); 627 ROUND512(e,f,g,h,a,b,c,d); 628 ROUND512(d,e,f,g,h,a,b,c); 629 ROUND512(c,d,e,f,g,h,a,b); 630 ROUND512(b,c,d,e,f,g,h,a); 631 } while (j < 80); 632 633 /* Compute the current intermediate hash value */ 634 state[0] += a; 635 state[1] += b; 636 state[2] += c; 637 state[3] += d; 638 state[4] += e; 639 state[5] += f; 640 state[6] += g; 641 state[7] += h; 642 643 /* Clean up */ 644 a = b = c = d = e = f = g = h = T1 = 0; 645 } 646 647 #else /* SHA2_UNROLL_TRANSFORM */ 648 649 void 650 SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH]) 651 { 652 u_int64_t a, b, c, d, e, f, g, h, s0, s1; 653 u_int64_t T1, T2, W512[16]; 654 int j; 655 656 /* Initialize registers with the prev. intermediate value */ 657 a = state[0]; 658 b = state[1]; 659 c = state[2]; 660 d = state[3]; 661 e = state[4]; 662 f = state[5]; 663 g = state[6]; 664 h = state[7]; 665 666 j = 0; 667 do { 668 BE_8_TO_64(W512[j], data); 669 data += 8; 670 /* Apply the SHA-512 compression function to update a..h */ 671 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; 672 T2 = Sigma0_512(a) + Maj(a, b, c); 673 h = g; 674 g = f; 675 f = e; 676 e = d + T1; 677 d = c; 678 c = b; 679 b = a; 680 a = T1 + T2; 681 682 j++; 683 } while (j < 16); 684 685 do { 686 /* Part of the message block expansion: */ 687 s0 = W512[(j+1)&0x0f]; 688 s0 = sigma0_512(s0); 689 s1 = W512[(j+14)&0x0f]; 690 s1 = sigma1_512(s1); 691 692 /* Apply the SHA-512 compression function to update a..h */ 693 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + 694 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); 695 T2 = Sigma0_512(a) + Maj(a, b, c); 696 h = g; 697 g = f; 698 f = e; 699 e = d + T1; 700 d = c; 701 c = b; 702 b = a; 703 a = T1 + T2; 704 705 j++; 706 } while (j < 80); 707 708 /* Compute the current intermediate hash value */ 709 state[0] += a; 710 state[1] += b; 711 state[2] += c; 712 state[3] += d; 713 state[4] += e; 714 state[5] += f; 715 state[6] += g; 716 state[7] += h; 717 718 /* Clean up */ 719 a = b = c = d = e = f = g = h = T1 = T2 = 0; 720 } 721 722 #endif /* SHA2_UNROLL_TRANSFORM */ 723 724 void 725 SHA512Update(SHA2_CTX *context, const u_int8_t *data, size_t len) 726 { 727 size_t freespace, usedspace; 728 729 /* Calling with no data is valid (we do nothing) */ 730 if (len == 0) 731 return; 732 733 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; 734 if (usedspace > 0) { 735 /* Calculate how much free space is available in the buffer */ 736 freespace = SHA512_BLOCK_LENGTH - usedspace; 737 738 if (len >= freespace) { 739 /* Fill the buffer completely and process it */ 740 memcpy(&context->buffer[usedspace], data, freespace); 741 ADDINC128(context->bitcount, freespace << 3); 742 len -= freespace; 743 data += freespace; 744 SHA512Transform(context->state.st64, context->buffer); 745 } else { 746 /* The buffer is not yet full */ 747 memcpy(&context->buffer[usedspace], data, len); 748 ADDINC128(context->bitcount, len << 3); 749 /* Clean up: */ 750 usedspace = freespace = 0; 751 return; 752 } 753 } 754 while (len >= SHA512_BLOCK_LENGTH) { 755 /* Process as many complete blocks as we can */ 756 SHA512Transform(context->state.st64, data); 757 ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3); 758 len -= SHA512_BLOCK_LENGTH; 759 data += SHA512_BLOCK_LENGTH; 760 } 761 if (len > 0) { 762 /* There's left-overs, so save 'em */ 763 memcpy(context->buffer, data, len); 764 ADDINC128(context->bitcount, len << 3); 765 } 766 /* Clean up: */ 767 usedspace = freespace = 0; 768 } 769 770 void 771 SHA512Pad(SHA2_CTX *context) 772 { 773 unsigned int usedspace; 774 775 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; 776 if (usedspace > 0) { 777 /* Begin padding with a 1 bit: */ 778 context->buffer[usedspace++] = 0x80; 779 780 if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) { 781 /* Set-up for the last transform: */ 782 memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace); 783 } else { 784 if (usedspace < SHA512_BLOCK_LENGTH) { 785 memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace); 786 } 787 /* Do second-to-last transform: */ 788 SHA512Transform(context->state.st64, context->buffer); 789 790 /* And set-up for the last transform: */ 791 memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2); 792 } 793 } else { 794 /* Prepare for final transform: */ 795 memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH); 796 797 /* Begin padding with a 1 bit: */ 798 *context->buffer = 0x80; 799 } 800 /* Store the length of input data (in bits) in big endian format: */ 801 BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH], 802 context->bitcount[1]); 803 BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8], 804 context->bitcount[0]); 805 806 /* Final transform: */ 807 SHA512Transform(context->state.st64, context->buffer); 808 809 /* Clean up: */ 810 usedspace = 0; 811 } 812 813 void 814 SHA512Final(u_int8_t digest[SHA512_DIGEST_LENGTH], SHA2_CTX *context) 815 { 816 SHA512Pad(context); 817 818 /* If no digest buffer is passed, we don't bother doing this: */ 819 if (digest != NULL) { 820 #if BYTE_ORDER == LITTLE_ENDIAN 821 int i; 822 823 /* Convert TO host byte order */ 824 for (i = 0; i < 8; i++) 825 BE_64_TO_8(digest + i * 8, context->state.st64[i]); 826 #else 827 memcpy(digest, context->state.st64, SHA512_DIGEST_LENGTH); 828 #endif 829 memset(context, 0, sizeof(*context)); 830 } 831 } 832 833 834 /*** SHA-384: *********************************************************/ 835 void 836 SHA384Init(SHA2_CTX *context) 837 { 838 if (context == NULL) 839 return; 840 memcpy(context->state.st64, sha384_initial_hash_value, 841 sizeof(sha384_initial_hash_value)); 842 memset(context->buffer, 0, sizeof(context->buffer)); 843 context->bitcount[0] = context->bitcount[1] = 0; 844 } 845 846 __weak_alias(SHA384Transform, SHA512Transform); 847 __weak_alias(SHA384Update, SHA512Update); 848 __weak_alias(SHA384Pad, SHA512Pad); 849 850 void 851 SHA384Final(u_int8_t digest[SHA384_DIGEST_LENGTH], SHA2_CTX *context) 852 { 853 SHA384Pad(context); 854 855 /* If no digest buffer is passed, we don't bother doing this: */ 856 if (digest != NULL) { 857 #if BYTE_ORDER == LITTLE_ENDIAN 858 int i; 859 860 /* Convert TO host byte order */ 861 for (i = 0; i < 6; i++) 862 BE_64_TO_8(digest + i * 8, context->state.st64[i]); 863 #else 864 memcpy(digest, context->state.st64, SHA384_DIGEST_LENGTH); 865 #endif 866 } 867 868 /* Zero out state data */ 869 memset(context, 0, sizeof(*context)); 870 } 871