xref: /openbsd-src/lib/libc/hash/sha2.c (revision 2b0358df1d88d06ef4139321dd05bd5e05d91eaf)
1 /*	$OpenBSD: sha2.c,v 1.12 2008/09/06 12:00:19 djm Exp $	*/
2 
3 /*
4  * FILE:	sha2.c
5  * AUTHOR:	Aaron D. Gifford <me@aarongifford.com>
6  *
7  * Copyright (c) 2000-2001, Aaron D. Gifford
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the copyright holder nor the names of contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
35  */
36 
37 #include <sys/types.h>
38 
39 #include <string.h>
40 #include <sha2.h>
41 
42 /*
43  * UNROLLED TRANSFORM LOOP NOTE:
44  * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
45  * loop version for the hash transform rounds (defined using macros
46  * later in this file).  Either define on the command line, for example:
47  *
48  *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
49  *
50  * or define below:
51  *
52  *   #define SHA2_UNROLL_TRANSFORM
53  *
54  */
55 
56 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
57 /*
58  * BYTE_ORDER NOTE:
59  *
60  * Please make sure that your system defines BYTE_ORDER.  If your
61  * architecture is little-endian, make sure it also defines
62  * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
63  * equivilent.
64  *
65  * If your system does not define the above, then you can do so by
66  * hand like this:
67  *
68  *   #define LITTLE_ENDIAN 1234
69  *   #define BIG_ENDIAN    4321
70  *
71  * And for little-endian machines, add:
72  *
73  *   #define BYTE_ORDER LITTLE_ENDIAN
74  *
75  * Or for big-endian machines:
76  *
77  *   #define BYTE_ORDER BIG_ENDIAN
78  *
79  * The FreeBSD machine this was written on defines BYTE_ORDER
80  * appropriately by including <sys/types.h> (which in turn includes
81  * <machine/endian.h> where the appropriate definitions are actually
82  * made).
83  */
84 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
85 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
86 #endif
87 
88 
89 /*** SHA-256/384/512 Various Length Definitions ***********************/
90 /* NOTE: Most of these are in sha2.h */
91 #define SHA256_SHORT_BLOCK_LENGTH	(SHA256_BLOCK_LENGTH - 8)
92 #define SHA384_SHORT_BLOCK_LENGTH	(SHA384_BLOCK_LENGTH - 16)
93 #define SHA512_SHORT_BLOCK_LENGTH	(SHA512_BLOCK_LENGTH - 16)
94 
95 /*** ENDIAN SPECIFIC COPY MACROS **************************************/
96 #define BE_8_TO_32(dst, cp) do {					\
97 	(dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) |	\
98 	    ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24);	\
99 } while(0)
100 
101 #define BE_8_TO_64(dst, cp) do {					\
102 	(dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) |	\
103 	    ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) |	\
104 	    ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) |	\
105 	    ((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56);	\
106 } while (0)
107 
108 #define BE_64_TO_8(cp, src) do {					\
109 	(cp)[0] = (src) >> 56;						\
110         (cp)[1] = (src) >> 48;						\
111 	(cp)[2] = (src) >> 40;						\
112 	(cp)[3] = (src) >> 32;						\
113 	(cp)[4] = (src) >> 24;						\
114 	(cp)[5] = (src) >> 16;						\
115 	(cp)[6] = (src) >> 8;						\
116 	(cp)[7] = (src);						\
117 } while (0)
118 
119 #define BE_32_TO_8(cp, src) do {					\
120 	(cp)[0] = (src) >> 24;						\
121 	(cp)[1] = (src) >> 16;						\
122 	(cp)[2] = (src) >> 8;						\
123 	(cp)[3] = (src);						\
124 } while (0)
125 
126 /*
127  * Macro for incrementally adding the unsigned 64-bit integer n to the
128  * unsigned 128-bit integer (represented using a two-element array of
129  * 64-bit words):
130  */
131 #define ADDINC128(w,n) do {						\
132 	(w)[0] += (u_int64_t)(n);					\
133 	if ((w)[0] < (n)) {						\
134 		(w)[1]++;						\
135 	}								\
136 } while (0)
137 
138 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
139 /*
140  * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
141  *
142  *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
143  *   S is a ROTATION) because the SHA-256/384/512 description document
144  *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
145  *   same "backwards" definition.
146  */
147 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
148 #define R(b,x) 		((x) >> (b))
149 /* 32-bit Rotate-right (used in SHA-256): */
150 #define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
151 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
152 #define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
153 
154 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
155 #define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
156 #define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
157 
158 /* Four of six logical functions used in SHA-256: */
159 #define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
160 #define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
161 #define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
162 #define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
163 
164 /* Four of six logical functions used in SHA-384 and SHA-512: */
165 #define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
166 #define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
167 #define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
168 #define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
169 
170 
171 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
172 /* Hash constant words K for SHA-256: */
173 const static u_int32_t K256[64] = {
174 	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
175 	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
176 	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
177 	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
178 	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
179 	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
180 	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
181 	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
182 	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
183 	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
184 	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
185 	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
186 	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
187 	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
188 	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
189 	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
190 };
191 
192 /* Initial hash value H for SHA-256: */
193 const static u_int32_t sha256_initial_hash_value[8] = {
194 	0x6a09e667UL,
195 	0xbb67ae85UL,
196 	0x3c6ef372UL,
197 	0xa54ff53aUL,
198 	0x510e527fUL,
199 	0x9b05688cUL,
200 	0x1f83d9abUL,
201 	0x5be0cd19UL
202 };
203 
204 /* Hash constant words K for SHA-384 and SHA-512: */
205 const static u_int64_t K512[80] = {
206 	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
207 	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
208 	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
209 	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
210 	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
211 	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
212 	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
213 	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
214 	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
215 	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
216 	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
217 	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
218 	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
219 	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
220 	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
221 	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
222 	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
223 	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
224 	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
225 	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
226 	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
227 	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
228 	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
229 	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
230 	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
231 	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
232 	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
233 	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
234 	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
235 	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
236 	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
237 	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
238 	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
239 	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
240 	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
241 	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
242 	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
243 	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
244 	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
245 	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
246 };
247 
248 /* Initial hash value H for SHA-384 */
249 const static u_int64_t sha384_initial_hash_value[8] = {
250 	0xcbbb9d5dc1059ed8ULL,
251 	0x629a292a367cd507ULL,
252 	0x9159015a3070dd17ULL,
253 	0x152fecd8f70e5939ULL,
254 	0x67332667ffc00b31ULL,
255 	0x8eb44a8768581511ULL,
256 	0xdb0c2e0d64f98fa7ULL,
257 	0x47b5481dbefa4fa4ULL
258 };
259 
260 /* Initial hash value H for SHA-512 */
261 const static u_int64_t sha512_initial_hash_value[8] = {
262 	0x6a09e667f3bcc908ULL,
263 	0xbb67ae8584caa73bULL,
264 	0x3c6ef372fe94f82bULL,
265 	0xa54ff53a5f1d36f1ULL,
266 	0x510e527fade682d1ULL,
267 	0x9b05688c2b3e6c1fULL,
268 	0x1f83d9abfb41bd6bULL,
269 	0x5be0cd19137e2179ULL
270 };
271 
272 
273 /*** SHA-256: *********************************************************/
274 void
275 SHA256Init(SHA2_CTX *context)
276 {
277 	if (context == NULL)
278 		return;
279 	memcpy(context->state.st32, sha256_initial_hash_value,
280 	    sizeof(sha256_initial_hash_value));
281 	memset(context->buffer, 0, sizeof(context->buffer));
282 	context->bitcount[0] = 0;
283 }
284 
285 #ifdef SHA2_UNROLL_TRANSFORM
286 
287 /* Unrolled SHA-256 round macros: */
288 
289 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do {				    \
290 	BE_8_TO_32(W256[j], data);					    \
291 	data += 4;							    \
292 	T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \
293 	(d) += T1;							    \
294 	(h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c));		    \
295 	j++;								    \
296 } while(0)
297 
298 #define ROUND256(a,b,c,d,e,f,g,h) do {					    \
299 	s0 = W256[(j+1)&0x0f];						    \
300 	s0 = sigma0_256(s0);						    \
301 	s1 = W256[(j+14)&0x0f];						    \
302 	s1 = sigma1_256(s1);						    \
303 	T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] +	    \
304 	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);		    \
305 	(d) += T1;							    \
306 	(h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c));		    \
307 	j++;								    \
308 } while(0)
309 
310 void
311 SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
312 {
313 	u_int32_t	a, b, c, d, e, f, g, h, s0, s1;
314 	u_int32_t	T1, W256[16];
315 	int		j;
316 
317 	/* Initialize registers with the prev. intermediate value */
318 	a = state[0];
319 	b = state[1];
320 	c = state[2];
321 	d = state[3];
322 	e = state[4];
323 	f = state[5];
324 	g = state[6];
325 	h = state[7];
326 
327 	j = 0;
328 	do {
329 		/* Rounds 0 to 15 (unrolled): */
330 		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
331 		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
332 		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
333 		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
334 		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
335 		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
336 		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
337 		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
338 	} while (j < 16);
339 
340 	/* Now for the remaining rounds up to 63: */
341 	do {
342 		ROUND256(a,b,c,d,e,f,g,h);
343 		ROUND256(h,a,b,c,d,e,f,g);
344 		ROUND256(g,h,a,b,c,d,e,f);
345 		ROUND256(f,g,h,a,b,c,d,e);
346 		ROUND256(e,f,g,h,a,b,c,d);
347 		ROUND256(d,e,f,g,h,a,b,c);
348 		ROUND256(c,d,e,f,g,h,a,b);
349 		ROUND256(b,c,d,e,f,g,h,a);
350 	} while (j < 64);
351 
352 	/* Compute the current intermediate hash value */
353 	state[0] += a;
354 	state[1] += b;
355 	state[2] += c;
356 	state[3] += d;
357 	state[4] += e;
358 	state[5] += f;
359 	state[6] += g;
360 	state[7] += h;
361 
362 	/* Clean up */
363 	a = b = c = d = e = f = g = h = T1 = 0;
364 }
365 
366 #else /* SHA2_UNROLL_TRANSFORM */
367 
368 void
369 SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
370 {
371 	u_int32_t	a, b, c, d, e, f, g, h, s0, s1;
372 	u_int32_t	T1, T2, W256[16];
373 	int		j;
374 
375 	/* Initialize registers with the prev. intermediate value */
376 	a = state[0];
377 	b = state[1];
378 	c = state[2];
379 	d = state[3];
380 	e = state[4];
381 	f = state[5];
382 	g = state[6];
383 	h = state[7];
384 
385 	j = 0;
386 	do {
387 		BE_8_TO_32(W256[j], data);
388 		data += 4;
389 		/* Apply the SHA-256 compression function to update a..h */
390 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
391 		T2 = Sigma0_256(a) + Maj(a, b, c);
392 		h = g;
393 		g = f;
394 		f = e;
395 		e = d + T1;
396 		d = c;
397 		c = b;
398 		b = a;
399 		a = T1 + T2;
400 
401 		j++;
402 	} while (j < 16);
403 
404 	do {
405 		/* Part of the message block expansion: */
406 		s0 = W256[(j+1)&0x0f];
407 		s0 = sigma0_256(s0);
408 		s1 = W256[(j+14)&0x0f];
409 		s1 = sigma1_256(s1);
410 
411 		/* Apply the SHA-256 compression function to update a..h */
412 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
413 		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
414 		T2 = Sigma0_256(a) + Maj(a, b, c);
415 		h = g;
416 		g = f;
417 		f = e;
418 		e = d + T1;
419 		d = c;
420 		c = b;
421 		b = a;
422 		a = T1 + T2;
423 
424 		j++;
425 	} while (j < 64);
426 
427 	/* Compute the current intermediate hash value */
428 	state[0] += a;
429 	state[1] += b;
430 	state[2] += c;
431 	state[3] += d;
432 	state[4] += e;
433 	state[5] += f;
434 	state[6] += g;
435 	state[7] += h;
436 
437 	/* Clean up */
438 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
439 }
440 
441 #endif /* SHA2_UNROLL_TRANSFORM */
442 
443 void
444 SHA256Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
445 {
446 	size_t	freespace, usedspace;
447 
448 	/* Calling with no data is valid (we do nothing) */
449 	if (len == 0)
450 		return;
451 
452 	usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
453 	if (usedspace > 0) {
454 		/* Calculate how much free space is available in the buffer */
455 		freespace = SHA256_BLOCK_LENGTH - usedspace;
456 
457 		if (len >= freespace) {
458 			/* Fill the buffer completely and process it */
459 			memcpy(&context->buffer[usedspace], data, freespace);
460 			context->bitcount[0] += freespace << 3;
461 			len -= freespace;
462 			data += freespace;
463 			SHA256Transform(context->state.st32, context->buffer);
464 		} else {
465 			/* The buffer is not yet full */
466 			memcpy(&context->buffer[usedspace], data, len);
467 			context->bitcount[0] += len << 3;
468 			/* Clean up: */
469 			usedspace = freespace = 0;
470 			return;
471 		}
472 	}
473 	while (len >= SHA256_BLOCK_LENGTH) {
474 		/* Process as many complete blocks as we can */
475 		SHA256Transform(context->state.st32, data);
476 		context->bitcount[0] += SHA256_BLOCK_LENGTH << 3;
477 		len -= SHA256_BLOCK_LENGTH;
478 		data += SHA256_BLOCK_LENGTH;
479 	}
480 	if (len > 0) {
481 		/* There's left-overs, so save 'em */
482 		memcpy(context->buffer, data, len);
483 		context->bitcount[0] += len << 3;
484 	}
485 	/* Clean up: */
486 	usedspace = freespace = 0;
487 }
488 
489 void
490 SHA256Pad(SHA2_CTX *context)
491 {
492 	unsigned int	usedspace;
493 
494 	usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
495 	if (usedspace > 0) {
496 		/* Begin padding with a 1 bit: */
497 		context->buffer[usedspace++] = 0x80;
498 
499 		if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
500 			/* Set-up for the last transform: */
501 			memset(&context->buffer[usedspace], 0,
502 			    SHA256_SHORT_BLOCK_LENGTH - usedspace);
503 		} else {
504 			if (usedspace < SHA256_BLOCK_LENGTH) {
505 				memset(&context->buffer[usedspace], 0,
506 				    SHA256_BLOCK_LENGTH - usedspace);
507 			}
508 			/* Do second-to-last transform: */
509 			SHA256Transform(context->state.st32, context->buffer);
510 
511 			/* Prepare for last transform: */
512 			memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
513 		}
514 	} else {
515 		/* Set-up for the last transform: */
516 		memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
517 
518 		/* Begin padding with a 1 bit: */
519 		*context->buffer = 0x80;
520 	}
521 	/* Store the length of input data (in bits) in big endian format: */
522 	BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH],
523 	    context->bitcount[0]);
524 
525 	/* Final transform: */
526 	SHA256Transform(context->state.st32, context->buffer);
527 
528 	/* Clean up: */
529 	usedspace = 0;
530 }
531 
532 void
533 SHA256Final(u_int8_t digest[SHA256_DIGEST_LENGTH], SHA2_CTX *context)
534 {
535 	SHA256Pad(context);
536 
537 	/* If no digest buffer is passed, we don't bother doing this: */
538 	if (digest != NULL) {
539 #if BYTE_ORDER == LITTLE_ENDIAN
540 		int	i;
541 
542 		/* Convert TO host byte order */
543 		for (i = 0; i < 8; i++)
544 			BE_32_TO_8(digest + i * 4, context->state.st32[i]);
545 #else
546 		memcpy(digest, context->state.st32, SHA256_DIGEST_LENGTH);
547 #endif
548 		memset(context, 0, sizeof(*context));
549 	}
550 }
551 
552 
553 /*** SHA-512: *********************************************************/
554 void
555 SHA512Init(SHA2_CTX *context)
556 {
557 	if (context == NULL)
558 		return;
559 	memcpy(context->state.st64, sha512_initial_hash_value,
560 	    sizeof(sha512_initial_hash_value));
561 	memset(context->buffer, 0, sizeof(context->buffer));
562 	context->bitcount[0] = context->bitcount[1] =  0;
563 }
564 
565 #ifdef SHA2_UNROLL_TRANSFORM
566 
567 /* Unrolled SHA-512 round macros: */
568 
569 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do {				    \
570 	BE_8_TO_64(W512[j], data);					    \
571 	data += 8;							    \
572 	T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \
573 	(d) += T1;							    \
574 	(h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c));		    \
575 	j++;								    \
576 } while(0)
577 
578 
579 #define ROUND512(a,b,c,d,e,f,g,h) do {					    \
580 	s0 = W512[(j+1)&0x0f];						    \
581 	s0 = sigma0_512(s0);						    \
582 	s1 = W512[(j+14)&0x0f];						    \
583 	s1 = sigma1_512(s1);						    \
584 	T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] +	    \
585              (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);		    \
586 	(d) += T1;							    \
587 	(h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c));		    \
588 	j++;								    \
589 } while(0)
590 
591 void
592 SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
593 {
594 	u_int64_t	a, b, c, d, e, f, g, h, s0, s1;
595 	u_int64_t	T1, W512[16];
596 	int		j;
597 
598 	/* Initialize registers with the prev. intermediate value */
599 	a = state[0];
600 	b = state[1];
601 	c = state[2];
602 	d = state[3];
603 	e = state[4];
604 	f = state[5];
605 	g = state[6];
606 	h = state[7];
607 
608 	j = 0;
609 	do {
610 		/* Rounds 0 to 15 (unrolled): */
611 		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
612 		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
613 		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
614 		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
615 		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
616 		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
617 		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
618 		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
619 	} while (j < 16);
620 
621 	/* Now for the remaining rounds up to 79: */
622 	do {
623 		ROUND512(a,b,c,d,e,f,g,h);
624 		ROUND512(h,a,b,c,d,e,f,g);
625 		ROUND512(g,h,a,b,c,d,e,f);
626 		ROUND512(f,g,h,a,b,c,d,e);
627 		ROUND512(e,f,g,h,a,b,c,d);
628 		ROUND512(d,e,f,g,h,a,b,c);
629 		ROUND512(c,d,e,f,g,h,a,b);
630 		ROUND512(b,c,d,e,f,g,h,a);
631 	} while (j < 80);
632 
633 	/* Compute the current intermediate hash value */
634 	state[0] += a;
635 	state[1] += b;
636 	state[2] += c;
637 	state[3] += d;
638 	state[4] += e;
639 	state[5] += f;
640 	state[6] += g;
641 	state[7] += h;
642 
643 	/* Clean up */
644 	a = b = c = d = e = f = g = h = T1 = 0;
645 }
646 
647 #else /* SHA2_UNROLL_TRANSFORM */
648 
649 void
650 SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
651 {
652 	u_int64_t	a, b, c, d, e, f, g, h, s0, s1;
653 	u_int64_t	T1, T2, W512[16];
654 	int		j;
655 
656 	/* Initialize registers with the prev. intermediate value */
657 	a = state[0];
658 	b = state[1];
659 	c = state[2];
660 	d = state[3];
661 	e = state[4];
662 	f = state[5];
663 	g = state[6];
664 	h = state[7];
665 
666 	j = 0;
667 	do {
668 		BE_8_TO_64(W512[j], data);
669 		data += 8;
670 		/* Apply the SHA-512 compression function to update a..h */
671 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
672 		T2 = Sigma0_512(a) + Maj(a, b, c);
673 		h = g;
674 		g = f;
675 		f = e;
676 		e = d + T1;
677 		d = c;
678 		c = b;
679 		b = a;
680 		a = T1 + T2;
681 
682 		j++;
683 	} while (j < 16);
684 
685 	do {
686 		/* Part of the message block expansion: */
687 		s0 = W512[(j+1)&0x0f];
688 		s0 = sigma0_512(s0);
689 		s1 = W512[(j+14)&0x0f];
690 		s1 =  sigma1_512(s1);
691 
692 		/* Apply the SHA-512 compression function to update a..h */
693 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
694 		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
695 		T2 = Sigma0_512(a) + Maj(a, b, c);
696 		h = g;
697 		g = f;
698 		f = e;
699 		e = d + T1;
700 		d = c;
701 		c = b;
702 		b = a;
703 		a = T1 + T2;
704 
705 		j++;
706 	} while (j < 80);
707 
708 	/* Compute the current intermediate hash value */
709 	state[0] += a;
710 	state[1] += b;
711 	state[2] += c;
712 	state[3] += d;
713 	state[4] += e;
714 	state[5] += f;
715 	state[6] += g;
716 	state[7] += h;
717 
718 	/* Clean up */
719 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
720 }
721 
722 #endif /* SHA2_UNROLL_TRANSFORM */
723 
724 void
725 SHA512Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
726 {
727 	size_t	freespace, usedspace;
728 
729 	/* Calling with no data is valid (we do nothing) */
730 	if (len == 0)
731 		return;
732 
733 	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
734 	if (usedspace > 0) {
735 		/* Calculate how much free space is available in the buffer */
736 		freespace = SHA512_BLOCK_LENGTH - usedspace;
737 
738 		if (len >= freespace) {
739 			/* Fill the buffer completely and process it */
740 			memcpy(&context->buffer[usedspace], data, freespace);
741 			ADDINC128(context->bitcount, freespace << 3);
742 			len -= freespace;
743 			data += freespace;
744 			SHA512Transform(context->state.st64, context->buffer);
745 		} else {
746 			/* The buffer is not yet full */
747 			memcpy(&context->buffer[usedspace], data, len);
748 			ADDINC128(context->bitcount, len << 3);
749 			/* Clean up: */
750 			usedspace = freespace = 0;
751 			return;
752 		}
753 	}
754 	while (len >= SHA512_BLOCK_LENGTH) {
755 		/* Process as many complete blocks as we can */
756 		SHA512Transform(context->state.st64, data);
757 		ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
758 		len -= SHA512_BLOCK_LENGTH;
759 		data += SHA512_BLOCK_LENGTH;
760 	}
761 	if (len > 0) {
762 		/* There's left-overs, so save 'em */
763 		memcpy(context->buffer, data, len);
764 		ADDINC128(context->bitcount, len << 3);
765 	}
766 	/* Clean up: */
767 	usedspace = freespace = 0;
768 }
769 
770 void
771 SHA512Pad(SHA2_CTX *context)
772 {
773 	unsigned int	usedspace;
774 
775 	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
776 	if (usedspace > 0) {
777 		/* Begin padding with a 1 bit: */
778 		context->buffer[usedspace++] = 0x80;
779 
780 		if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
781 			/* Set-up for the last transform: */
782 			memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace);
783 		} else {
784 			if (usedspace < SHA512_BLOCK_LENGTH) {
785 				memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace);
786 			}
787 			/* Do second-to-last transform: */
788 			SHA512Transform(context->state.st64, context->buffer);
789 
790 			/* And set-up for the last transform: */
791 			memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2);
792 		}
793 	} else {
794 		/* Prepare for final transform: */
795 		memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH);
796 
797 		/* Begin padding with a 1 bit: */
798 		*context->buffer = 0x80;
799 	}
800 	/* Store the length of input data (in bits) in big endian format: */
801 	BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH],
802 	    context->bitcount[1]);
803 	BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8],
804 	    context->bitcount[0]);
805 
806 	/* Final transform: */
807 	SHA512Transform(context->state.st64, context->buffer);
808 
809 	/* Clean up: */
810 	usedspace = 0;
811 }
812 
813 void
814 SHA512Final(u_int8_t digest[SHA512_DIGEST_LENGTH], SHA2_CTX *context)
815 {
816 	SHA512Pad(context);
817 
818 	/* If no digest buffer is passed, we don't bother doing this: */
819 	if (digest != NULL) {
820 #if BYTE_ORDER == LITTLE_ENDIAN
821 		int	i;
822 
823 		/* Convert TO host byte order */
824 		for (i = 0; i < 8; i++)
825 			BE_64_TO_8(digest + i * 8, context->state.st64[i]);
826 #else
827 		memcpy(digest, context->state.st64, SHA512_DIGEST_LENGTH);
828 #endif
829 		memset(context, 0, sizeof(*context));
830 	}
831 }
832 
833 
834 /*** SHA-384: *********************************************************/
835 void
836 SHA384Init(SHA2_CTX *context)
837 {
838 	if (context == NULL)
839 		return;
840 	memcpy(context->state.st64, sha384_initial_hash_value,
841 	    sizeof(sha384_initial_hash_value));
842 	memset(context->buffer, 0, sizeof(context->buffer));
843 	context->bitcount[0] = context->bitcount[1] = 0;
844 }
845 
846 __weak_alias(SHA384Transform, SHA512Transform);
847 __weak_alias(SHA384Update, SHA512Update);
848 __weak_alias(SHA384Pad, SHA512Pad);
849 
850 void
851 SHA384Final(u_int8_t digest[SHA384_DIGEST_LENGTH], SHA2_CTX *context)
852 {
853 	SHA384Pad(context);
854 
855 	/* If no digest buffer is passed, we don't bother doing this: */
856 	if (digest != NULL) {
857 #if BYTE_ORDER == LITTLE_ENDIAN
858 		int	i;
859 
860 		/* Convert TO host byte order */
861 		for (i = 0; i < 6; i++)
862 			BE_64_TO_8(digest + i * 8, context->state.st64[i]);
863 #else
864 		memcpy(digest, context->state.st64, SHA384_DIGEST_LENGTH);
865 #endif
866 	}
867 
868 	/* Zero out state data */
869 	memset(context, 0, sizeof(*context));
870 }
871