1 /* $OpenBSD: sha1.c,v 1.21 2008/07/29 19:32:50 miod Exp $ */ 2 3 /* 4 * SHA-1 in C 5 * By Steve Reid <steve@edmweb.com> 6 * 100% Public Domain 7 * 8 * Test Vectors (from FIPS PUB 180-1) 9 * "abc" 10 * A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D 11 * "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" 12 * 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1 13 * A million repetitions of "a" 14 * 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F 15 */ 16 17 #include <sys/param.h> 18 #include <string.h> 19 #include <sha1.h> 20 21 #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits)))) 22 23 /* 24 * blk0() and blk() perform the initial expand. 25 * I got the idea of expanding during the round function from SSLeay 26 */ 27 #if BYTE_ORDER == LITTLE_ENDIAN 28 # define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \ 29 |(rol(block->l[i],8)&0x00FF00FF)) 30 #else 31 # define blk0(i) block->l[i] 32 #endif 33 #define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \ 34 ^block->l[(i+2)&15]^block->l[i&15],1)) 35 36 /* 37 * (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1 38 */ 39 #define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30); 40 #define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30); 41 #define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30); 42 #define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30); 43 #define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30); 44 45 typedef union { 46 u_int8_t c[64]; 47 u_int32_t l[16]; 48 } CHAR64LONG16; 49 50 #ifdef __sh__ 51 static void do_R01(u_int32_t *a, u_int32_t *b, u_int32_t *c, u_int32_t *d, u_int32_t *e, CHAR64LONG16 *); 52 static void do_R2(u_int32_t *a, u_int32_t *b, u_int32_t *c, u_int32_t *d, u_int32_t *e, CHAR64LONG16 *); 53 static void do_R3(u_int32_t *a, u_int32_t *b, u_int32_t *c, u_int32_t *d, u_int32_t *e, CHAR64LONG16 *); 54 static void do_R4(u_int32_t *a, u_int32_t *b, u_int32_t *c, u_int32_t *d, u_int32_t *e, CHAR64LONG16 *); 55 56 #define nR0(v,w,x,y,z,i) R0(*v,*w,*x,*y,*z,i) 57 #define nR1(v,w,x,y,z,i) R1(*v,*w,*x,*y,*z,i) 58 #define nR2(v,w,x,y,z,i) R2(*v,*w,*x,*y,*z,i) 59 #define nR3(v,w,x,y,z,i) R3(*v,*w,*x,*y,*z,i) 60 #define nR4(v,w,x,y,z,i) R4(*v,*w,*x,*y,*z,i) 61 62 static void 63 do_R01(u_int32_t *a, u_int32_t *b, u_int32_t *c, u_int32_t *d, u_int32_t *e, CHAR64LONG16 *block) 64 { 65 nR0(a,b,c,d,e, 0); nR0(e,a,b,c,d, 1); nR0(d,e,a,b,c, 2); nR0(c,d,e,a,b, 3); 66 nR0(b,c,d,e,a, 4); nR0(a,b,c,d,e, 5); nR0(e,a,b,c,d, 6); nR0(d,e,a,b,c, 7); 67 nR0(c,d,e,a,b, 8); nR0(b,c,d,e,a, 9); nR0(a,b,c,d,e,10); nR0(e,a,b,c,d,11); 68 nR0(d,e,a,b,c,12); nR0(c,d,e,a,b,13); nR0(b,c,d,e,a,14); nR0(a,b,c,d,e,15); 69 nR1(e,a,b,c,d,16); nR1(d,e,a,b,c,17); nR1(c,d,e,a,b,18); nR1(b,c,d,e,a,19); 70 } 71 72 static void 73 do_R2(u_int32_t *a, u_int32_t *b, u_int32_t *c, u_int32_t *d, u_int32_t *e, CHAR64LONG16 *block) 74 { 75 nR2(a,b,c,d,e,20); nR2(e,a,b,c,d,21); nR2(d,e,a,b,c,22); nR2(c,d,e,a,b,23); 76 nR2(b,c,d,e,a,24); nR2(a,b,c,d,e,25); nR2(e,a,b,c,d,26); nR2(d,e,a,b,c,27); 77 nR2(c,d,e,a,b,28); nR2(b,c,d,e,a,29); nR2(a,b,c,d,e,30); nR2(e,a,b,c,d,31); 78 nR2(d,e,a,b,c,32); nR2(c,d,e,a,b,33); nR2(b,c,d,e,a,34); nR2(a,b,c,d,e,35); 79 nR2(e,a,b,c,d,36); nR2(d,e,a,b,c,37); nR2(c,d,e,a,b,38); nR2(b,c,d,e,a,39); 80 } 81 82 static void 83 do_R3(u_int32_t *a, u_int32_t *b, u_int32_t *c, u_int32_t *d, u_int32_t *e, CHAR64LONG16 *block) 84 { 85 nR3(a,b,c,d,e,40); nR3(e,a,b,c,d,41); nR3(d,e,a,b,c,42); nR3(c,d,e,a,b,43); 86 nR3(b,c,d,e,a,44); nR3(a,b,c,d,e,45); nR3(e,a,b,c,d,46); nR3(d,e,a,b,c,47); 87 nR3(c,d,e,a,b,48); nR3(b,c,d,e,a,49); nR3(a,b,c,d,e,50); nR3(e,a,b,c,d,51); 88 nR3(d,e,a,b,c,52); nR3(c,d,e,a,b,53); nR3(b,c,d,e,a,54); nR3(a,b,c,d,e,55); 89 nR3(e,a,b,c,d,56); nR3(d,e,a,b,c,57); nR3(c,d,e,a,b,58); nR3(b,c,d,e,a,59); 90 } 91 92 static void 93 do_R4(u_int32_t *a, u_int32_t *b, u_int32_t *c, u_int32_t *d, u_int32_t *e, CHAR64LONG16 *block) 94 { 95 nR4(a,b,c,d,e,60); nR4(e,a,b,c,d,61); nR4(d,e,a,b,c,62); nR4(c,d,e,a,b,63); 96 nR4(b,c,d,e,a,64); nR4(a,b,c,d,e,65); nR4(e,a,b,c,d,66); nR4(d,e,a,b,c,67); 97 nR4(c,d,e,a,b,68); nR4(b,c,d,e,a,69); nR4(a,b,c,d,e,70); nR4(e,a,b,c,d,71); 98 nR4(d,e,a,b,c,72); nR4(c,d,e,a,b,73); nR4(b,c,d,e,a,74); nR4(a,b,c,d,e,75); 99 nR4(e,a,b,c,d,76); nR4(d,e,a,b,c,77); nR4(c,d,e,a,b,78); nR4(b,c,d,e,a,79); 100 } 101 #endif 102 103 /* 104 * Hash a single 512-bit block. This is the core of the algorithm. 105 */ 106 void 107 SHA1Transform(u_int32_t state[5], const u_int8_t buffer[SHA1_BLOCK_LENGTH]) 108 { 109 u_int32_t a, b, c, d, e; 110 u_int8_t workspace[SHA1_BLOCK_LENGTH]; 111 CHAR64LONG16 *block = (CHAR64LONG16 *)workspace; 112 113 (void)memcpy(block, buffer, SHA1_BLOCK_LENGTH); 114 115 /* Copy context->state[] to working vars */ 116 a = state[0]; 117 b = state[1]; 118 c = state[2]; 119 d = state[3]; 120 e = state[4]; 121 122 #ifdef __sh__ 123 do_R01(&a, &b, &c, &d, &e, block); 124 do_R2(&a, &b, &c, &d, &e, block); 125 do_R3(&a, &b, &c, &d, &e, block); 126 do_R4(&a, &b, &c, &d, &e, block); 127 #else 128 /* 4 rounds of 20 operations each. Loop unrolled. */ 129 R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3); 130 R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7); 131 R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11); 132 R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15); 133 R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); 134 R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); 135 R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); 136 R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); 137 R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); 138 R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); 139 R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); 140 R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); 141 R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); 142 R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); 143 R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); 144 R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); 145 R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); 146 R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); 147 R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); 148 R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); 149 #endif 150 151 /* Add the working vars back into context.state[] */ 152 state[0] += a; 153 state[1] += b; 154 state[2] += c; 155 state[3] += d; 156 state[4] += e; 157 158 /* Wipe variables */ 159 a = b = c = d = e = 0; 160 } 161 162 163 /* 164 * SHA1Init - Initialize new context 165 */ 166 void 167 SHA1Init(SHA1_CTX *context) 168 { 169 170 /* SHA1 initialization constants */ 171 context->count = 0; 172 context->state[0] = 0x67452301; 173 context->state[1] = 0xEFCDAB89; 174 context->state[2] = 0x98BADCFE; 175 context->state[3] = 0x10325476; 176 context->state[4] = 0xC3D2E1F0; 177 } 178 179 180 /* 181 * Run your data through this. 182 */ 183 void 184 SHA1Update(SHA1_CTX *context, const u_int8_t *data, size_t len) 185 { 186 size_t i, j; 187 188 j = (size_t)((context->count >> 3) & 63); 189 context->count += (len << 3); 190 if ((j + len) > 63) { 191 (void)memcpy(&context->buffer[j], data, (i = 64-j)); 192 SHA1Transform(context->state, context->buffer); 193 for ( ; i + 63 < len; i += 64) 194 SHA1Transform(context->state, (u_int8_t *)&data[i]); 195 j = 0; 196 } else { 197 i = 0; 198 } 199 (void)memcpy(&context->buffer[j], &data[i], len - i); 200 } 201 202 203 /* 204 * Add padding and return the message digest. 205 */ 206 void 207 SHA1Pad(SHA1_CTX *context) 208 { 209 u_int8_t finalcount[8]; 210 u_int i; 211 212 for (i = 0; i < 8; i++) { 213 finalcount[i] = (u_int8_t)((context->count >> 214 ((7 - (i & 7)) * 8)) & 255); /* Endian independent */ 215 } 216 SHA1Update(context, (u_int8_t *)"\200", 1); 217 while ((context->count & 504) != 448) 218 SHA1Update(context, (u_int8_t *)"\0", 1); 219 SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform() */ 220 } 221 222 void 223 SHA1Final(u_int8_t digest[SHA1_DIGEST_LENGTH], SHA1_CTX *context) 224 { 225 u_int i; 226 227 SHA1Pad(context); 228 if (digest) { 229 for (i = 0; i < SHA1_DIGEST_LENGTH; i++) { 230 digest[i] = (u_int8_t) 231 ((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255); 232 } 233 memset(context, 0, sizeof(*context)); 234 } 235 } 236