xref: /openbsd-src/lib/libc/gdtoa/hdtoa.c (revision 2b0358df1d88d06ef4139321dd05bd5e05d91eaf)
1 /*	$OpenBSD: hdtoa.c,v 1.1 2008/09/07 20:36:08 martynas Exp $	*/
2 /*-
3  * Copyright (c) 2004, 2005 David Schultz <das@FreeBSD.ORG>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/types.h>
29 #include <machine/ieee.h>
30 #include <float.h>
31 #include <limits.h>
32 #include <math.h>
33 
34 #include "gdtoaimp.h"
35 
36 /* Strings values used by dtoa() */
37 #define	INFSTR	"Infinity"
38 #define	NANSTR	"NaN"
39 
40 #define	DBL_ADJ		(DBL_MAX_EXP - 2 + ((DBL_MANT_DIG - 1) % 4))
41 #define	LDBL_ADJ	(LDBL_MAX_EXP - 2 + ((LDBL_MANT_DIG - 1) % 4))
42 
43 /*
44  * Round up the given digit string.  If the digit string is fff...f,
45  * this procedure sets it to 100...0 and returns 1 to indicate that
46  * the exponent needs to be bumped.  Otherwise, 0 is returned.
47  */
48 static int
49 roundup(char *s0, int ndigits)
50 {
51 	char *s;
52 
53 	for (s = s0 + ndigits - 1; *s == 0xf; s--) {
54 		if (s == s0) {
55 			*s = 1;
56 			return (1);
57 		}
58 		*s = 0;
59 	}
60 	++*s;
61 	return (0);
62 }
63 
64 /*
65  * Round the given digit string to ndigits digits according to the
66  * current rounding mode.  Note that this could produce a string whose
67  * value is not representable in the corresponding floating-point
68  * type.  The exponent pointed to by decpt is adjusted if necessary.
69  */
70 static void
71 dorounding(char *s0, int ndigits, int sign, int *decpt)
72 {
73 	int adjust = 0;	/* do we need to adjust the exponent? */
74 
75 	switch (FLT_ROUNDS) {
76 	case 0:		/* toward zero */
77 	default:	/* implementation-defined */
78 		break;
79 	case 1:		/* to nearest, halfway rounds to even */
80 		if ((s0[ndigits] > 8) ||
81 		    (s0[ndigits] == 8 && s0[ndigits + 1] & 1))
82 			adjust = roundup(s0, ndigits);
83 		break;
84 	case 2:		/* toward +inf */
85 		if (sign == 0)
86 			adjust = roundup(s0, ndigits);
87 		break;
88 	case 3:		/* toward -inf */
89 		if (sign != 0)
90 			adjust = roundup(s0, ndigits);
91 		break;
92 	}
93 
94 	if (adjust)
95 		*decpt += 4;
96 }
97 
98 /*
99  * This procedure converts a double-precision number in IEEE format
100  * into a string of hexadecimal digits and an exponent of 2.  Its
101  * behavior is bug-for-bug compatible with dtoa() in mode 2, with the
102  * following exceptions:
103  *
104  * - An ndigits < 0 causes it to use as many digits as necessary to
105  *   represent the number exactly.
106  * - The additional xdigs argument should point to either the string
107  *   "0123456789ABCDEF" or the string "0123456789abcdef", depending on
108  *   which case is desired.
109  * - This routine does not repeat dtoa's mistake of setting decpt
110  *   to 9999 in the case of an infinity or NaN.  INT_MAX is used
111  *   for this purpose instead.
112  *
113  * Note that the C99 standard does not specify what the leading digit
114  * should be for non-zero numbers.  For instance, 0x1.3p3 is the same
115  * as 0x2.6p2 is the same as 0x4.cp3.  This implementation chooses the
116  * first digit so that subsequent digits are aligned on nibble
117  * boundaries (before rounding).
118  *
119  * Inputs:	d, xdigs, ndigits
120  * Outputs:	decpt, sign, rve
121  */
122 char *
123 __hdtoa(double d, const char *xdigs, int ndigits, int *decpt, int *sign,
124     char **rve)
125 {
126 	static const int sigfigs = (DBL_MANT_DIG + 3) / 4;
127 	struct ieee_double *p = (struct ieee_double *)&d;
128 	char *s, *s0;
129 	int bufsize;
130 
131 	*sign = p->dbl_sign;
132 
133 	switch (fpclassify(d)) {
134 	case FP_NORMAL:
135 		*decpt = p->dbl_exp - DBL_ADJ;
136 		break;
137 	case FP_ZERO:
138 		*decpt = 1;
139 		return (nrv_alloc("0", rve, 1));
140 	case FP_SUBNORMAL:
141 		d *= 0x1p514;
142 		*decpt = p->dbl_exp - (514 + DBL_ADJ);
143 		break;
144 	case FP_INFINITE:
145 		*decpt = INT_MAX;
146 		return (nrv_alloc(INFSTR, rve, sizeof(INFSTR) - 1));
147 	case FP_NAN:
148 		*decpt = INT_MAX;
149 		return (nrv_alloc(NANSTR, rve, sizeof(NANSTR) - 1));
150 	default:
151 		abort();
152 	}
153 
154 	/* FP_NORMAL or FP_SUBNORMAL */
155 
156 	if (ndigits == 0)		/* dtoa() compatibility */
157 		ndigits = 1;
158 
159 	/*
160 	 * For simplicity, we generate all the digits even if the
161 	 * caller has requested fewer.
162 	 */
163 	bufsize = (sigfigs > ndigits) ? sigfigs : ndigits;
164 	s0 = rv_alloc(bufsize);
165 
166 	/*
167 	 * We work from right to left, first adding any requested zero
168 	 * padding, then the least significant portion of the
169 	 * mantissa, followed by the most significant.  The buffer is
170 	 * filled with the byte values 0x0 through 0xf, which are
171 	 * converted to xdigs[0x0] through xdigs[0xf] after the
172 	 * rounding phase.
173 	 */
174 	for (s = s0 + bufsize - 1; s > s0 + sigfigs - 1; s--)
175 		*s = 0;
176 	for (; s > s0 + sigfigs - (DBL_FRACLBITS / 4) - 1 && s > s0; s--) {
177 		*s = p->dbl_fracl & 0xf;
178 		p->dbl_fracl >>= 4;
179 	}
180 	for (; s > s0; s--) {
181 		*s = p->dbl_frach & 0xf;
182 		p->dbl_frach >>= 4;
183 	}
184 
185 	/*
186 	 * At this point, we have snarfed all the bits in the
187 	 * mantissa, with the possible exception of the highest-order
188 	 * (partial) nibble, which is dealt with by the next
189 	 * statement.  We also tack on the implicit normalization bit.
190 	 */
191 	*s = p->dbl_frach | (1U << ((DBL_MANT_DIG - 1) % 4));
192 
193 	/* If ndigits < 0, we are expected to auto-size the precision. */
194 	if (ndigits < 0) {
195 		for (ndigits = sigfigs; s0[ndigits - 1] == 0; ndigits--)
196 			;
197 	}
198 
199 	if (sigfigs > ndigits && s0[ndigits] != 0)
200 		dorounding(s0, ndigits, p->dbl_sign, decpt);
201 
202 	s = s0 + ndigits;
203 	if (rve != NULL)
204 		*rve = s;
205 	*s-- = '\0';
206 	for (; s >= s0; s--)
207 		*s = xdigs[(unsigned int)*s];
208 
209 	return (s0);
210 }
211 
212 #if (LDBL_MANT_DIG > DBL_MANT_DIG)
213 
214 /*
215  * This is the long double version of __hdtoa().
216  */
217 char *
218 __hldtoa(long double e, const char *xdigs, int ndigits, int *decpt, int *sign,
219     char **rve)
220 {
221 	static const int sigfigs = (LDBL_MANT_DIG + 3) / 4;
222 	struct ieee_ext *p = (struct ieee_ext *)&e;
223 	char *s, *s0;
224 	int bufsize;
225 
226 	*sign = p->ext_sign;
227 
228 	switch (fpclassify(e)) {
229 	case FP_NORMAL:
230 		*decpt = p->ext_exp - LDBL_ADJ;
231 		break;
232 	case FP_ZERO:
233 		*decpt = 1;
234 		return (nrv_alloc("0", rve, 1));
235 	case FP_SUBNORMAL:
236 		e *= 0x1p514L;
237 		*decpt = p->ext_exp - (514 + LDBL_ADJ);
238 		break;
239 	case FP_INFINITE:
240 		*decpt = INT_MAX;
241 		return (nrv_alloc(INFSTR, rve, sizeof(INFSTR) - 1));
242 	case FP_NAN:
243 		*decpt = INT_MAX;
244 		return (nrv_alloc(NANSTR, rve, sizeof(NANSTR) - 1));
245 	default:
246 		abort();
247 	}
248 
249 	/* FP_NORMAL or FP_SUBNORMAL */
250 
251 	if (ndigits == 0)		/* dtoa() compatibility */
252 		ndigits = 1;
253 
254 	/*
255 	 * For simplicity, we generate all the digits even if the
256 	 * caller has requested fewer.
257 	 */
258 	bufsize = (sigfigs > ndigits) ? sigfigs : ndigits;
259 	s0 = rv_alloc(bufsize);
260 
261 	/*
262 	 * We work from right to left, first adding any requested zero
263 	 * padding, then the least significant portion of the
264 	 * mantissa, followed by the most significant.  The buffer is
265 	 * filled with the byte values 0x0 through 0xf, which are
266 	 * converted to xdigs[0x0] through xdigs[0xf] after the
267 	 * rounding phase.
268 	 */
269 	for (s = s0 + bufsize - 1; s > s0 + sigfigs - 1; s--)
270 		*s = 0;
271 	for (; s > s0 + sigfigs - (EXT_FRACLBITS / 4) - 1 && s > s0; s--) {
272 		*s = p->ext_fracl & 0xf;
273 		p->ext_fracl >>= 4;
274 	}
275 #ifdef EXT_FRACHMBITS
276 	for (; s > s0; s--) {
277 		*s = p->ext_frachm & 0xf;
278 		p->ext_frachm >>= 4;
279 	}
280 #endif
281 #ifdef EXT_FRACLMBITS
282 	for (; s > s0; s--) {
283 		*s = p->ext_fraclm & 0xf;
284 		p->ext_fraclm >>= 4;
285 	}
286 #endif
287 	for (; s > s0; s--) {
288 		*s = p->ext_frach & 0xf;
289 		p->ext_frach >>= 4;
290 	}
291 
292 	/*
293 	 * At this point, we have snarfed all the bits in the
294 	 * mantissa, with the possible exception of the highest-order
295 	 * (partial) nibble, which is dealt with by the next
296 	 * statement.  We also tack on the implicit normalization bit.
297 	 */
298 	*s = p->ext_frach | (1U << ((LDBL_MANT_DIG - 1) % 4));
299 
300 	/* If ndigits < 0, we are expected to auto-size the precision. */
301 	if (ndigits < 0) {
302 		for (ndigits = sigfigs; s0[ndigits - 1] == 0; ndigits--)
303 			;
304 	}
305 
306 	if (sigfigs > ndigits && s0[ndigits] != 0)
307 		dorounding(s0, ndigits, p->ext_sign, decpt);
308 
309 	s = s0 + ndigits;
310 	if (rve != NULL)
311 		*rve = s;
312 	*s-- = '\0';
313 	for (; s >= s0; s--)
314 		*s = xdigs[(unsigned int)*s];
315 
316 	return (s0);
317 }
318 
319 #else	/* (LDBL_MANT_DIG == DBL_MANT_DIG) */
320 
321 char *
322 __hldtoa(long double e, const char *xdigs, int ndigits, int *decpt, int *sign,
323     char **rve)
324 {
325 	return (__hdtoa((double)e, xdigs, ndigits, decpt, sign, rve));
326 }
327 
328 #endif	/* (LDBL_MANT_DIG == DBL_MANT_DIG) */
329