1 /* $OpenBSD: hash_page.c,v 1.19 2008/05/11 22:21:25 millert Exp $ */ 2 3 /*- 4 * Copyright (c) 1990, 1993, 1994 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Margo Seltzer. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 /* 36 * PACKAGE: hashing 37 * 38 * DESCRIPTION: 39 * Page manipulation for hashing package. 40 * 41 * ROUTINES: 42 * 43 * External 44 * __get_page 45 * __add_ovflpage 46 * Internal 47 * overflow_page 48 * open_temp 49 */ 50 51 #include <sys/param.h> 52 53 #include <errno.h> 54 #include <fcntl.h> 55 #include <signal.h> 56 #include <stdio.h> 57 #include <stdlib.h> 58 #include <string.h> 59 #include <unistd.h> 60 #ifdef DEBUG 61 #include <assert.h> 62 #endif 63 64 #include <db.h> 65 #include "hash.h" 66 #include "page.h" 67 #include "extern.h" 68 69 static u_int32_t *fetch_bitmap(HTAB *, int); 70 static u_int32_t first_free(u_int32_t); 71 static int open_temp(HTAB *); 72 static u_int16_t overflow_page(HTAB *); 73 static void putpair(char *, const DBT *, const DBT *); 74 static void squeeze_key(u_int16_t *, const DBT *, const DBT *); 75 static int ugly_split(HTAB *, u_int32_t, BUFHEAD *, BUFHEAD *, int, int); 76 77 #define PAGE_INIT(P) { \ 78 ((u_int16_t *)(P))[0] = 0; \ 79 ((u_int16_t *)(P))[1] = hashp->BSIZE - 3 * sizeof(u_int16_t); \ 80 ((u_int16_t *)(P))[2] = hashp->BSIZE; \ 81 } 82 83 /* 84 * This is called AFTER we have verified that there is room on the page for 85 * the pair (PAIRFITS has returned true) so we go right ahead and start moving 86 * stuff on. 87 */ 88 static void 89 putpair(char *p, const DBT *key, const DBT *val) 90 { 91 u_int16_t *bp, n, off; 92 93 bp = (u_int16_t *)p; 94 95 /* Enter the key first. */ 96 n = bp[0]; 97 98 off = OFFSET(bp) - key->size; 99 memmove(p + off, key->data, key->size); 100 bp[++n] = off; 101 102 /* Now the data. */ 103 off -= val->size; 104 memmove(p + off, val->data, val->size); 105 bp[++n] = off; 106 107 /* Adjust page info. */ 108 bp[0] = n; 109 bp[n + 1] = off - ((n + 3) * sizeof(u_int16_t)); 110 bp[n + 2] = off; 111 } 112 113 /* 114 * Returns: 115 * 0 OK 116 * -1 error 117 */ 118 int 119 __delpair(HTAB *hashp, BUFHEAD *bufp, int ndx) 120 { 121 u_int16_t *bp, newoff, pairlen; 122 int n; 123 124 bp = (u_int16_t *)bufp->page; 125 n = bp[0]; 126 127 if (bp[ndx + 1] < REAL_KEY) 128 return (__big_delete(hashp, bufp)); 129 if (ndx != 1) 130 newoff = bp[ndx - 1]; 131 else 132 newoff = hashp->BSIZE; 133 pairlen = newoff - bp[ndx + 1]; 134 135 if (ndx != (n - 1)) { 136 /* Hard Case -- need to shuffle keys */ 137 int i; 138 char *src = bufp->page + (int)OFFSET(bp); 139 char *dst = src + (int)pairlen; 140 memmove(dst, src, bp[ndx + 1] - OFFSET(bp)); 141 142 /* Now adjust the pointers */ 143 for (i = ndx + 2; i <= n; i += 2) { 144 if (bp[i + 1] == OVFLPAGE) { 145 bp[i - 2] = bp[i]; 146 bp[i - 1] = bp[i + 1]; 147 } else { 148 bp[i - 2] = bp[i] + pairlen; 149 bp[i - 1] = bp[i + 1] + pairlen; 150 } 151 } 152 if (ndx == hashp->cndx) { 153 /* 154 * We just removed pair we were "pointing" to. 155 * By moving back the cndx we ensure subsequent 156 * hash_seq() calls won't skip over any entries. 157 */ 158 hashp->cndx -= 2; 159 } 160 } 161 /* Finally adjust the page data */ 162 bp[n] = OFFSET(bp) + pairlen; 163 bp[n - 1] = bp[n + 1] + pairlen + 2 * sizeof(u_int16_t); 164 bp[0] = n - 2; 165 hashp->NKEYS--; 166 167 bufp->flags |= BUF_MOD; 168 return (0); 169 } 170 /* 171 * Returns: 172 * 0 ==> OK 173 * -1 ==> Error 174 */ 175 int 176 __split_page(HTAB *hashp, u_int32_t obucket, u_int32_t nbucket) 177 { 178 BUFHEAD *new_bufp, *old_bufp; 179 u_int16_t *ino; 180 char *np; 181 DBT key, val; 182 int n, ndx, retval; 183 u_int16_t copyto, diff, off, moved; 184 char *op; 185 186 copyto = (u_int16_t)hashp->BSIZE; 187 off = (u_int16_t)hashp->BSIZE; 188 old_bufp = __get_buf(hashp, obucket, NULL, 0); 189 if (old_bufp == NULL) 190 return (-1); 191 new_bufp = __get_buf(hashp, nbucket, NULL, 0); 192 if (new_bufp == NULL) 193 return (-1); 194 195 old_bufp->flags |= (BUF_MOD | BUF_PIN); 196 new_bufp->flags |= (BUF_MOD | BUF_PIN); 197 198 ino = (u_int16_t *)(op = old_bufp->page); 199 np = new_bufp->page; 200 201 moved = 0; 202 203 for (n = 1, ndx = 1; n < ino[0]; n += 2) { 204 if (ino[n + 1] < REAL_KEY) { 205 retval = ugly_split(hashp, obucket, old_bufp, new_bufp, 206 (int)copyto, (int)moved); 207 old_bufp->flags &= ~BUF_PIN; 208 new_bufp->flags &= ~BUF_PIN; 209 return (retval); 210 211 } 212 key.data = (u_char *)op + ino[n]; 213 key.size = off - ino[n]; 214 215 if (__call_hash(hashp, key.data, key.size) == obucket) { 216 /* Don't switch page */ 217 diff = copyto - off; 218 if (diff) { 219 copyto = ino[n + 1] + diff; 220 memmove(op + copyto, op + ino[n + 1], 221 off - ino[n + 1]); 222 ino[ndx] = copyto + ino[n] - ino[n + 1]; 223 ino[ndx + 1] = copyto; 224 } else 225 copyto = ino[n + 1]; 226 ndx += 2; 227 } else { 228 /* Switch page */ 229 val.data = (u_char *)op + ino[n + 1]; 230 val.size = ino[n] - ino[n + 1]; 231 putpair(np, &key, &val); 232 moved += 2; 233 } 234 235 off = ino[n + 1]; 236 } 237 238 /* Now clean up the page */ 239 ino[0] -= moved; 240 FREESPACE(ino) = copyto - sizeof(u_int16_t) * (ino[0] + 3); 241 OFFSET(ino) = copyto; 242 243 #ifdef DEBUG3 244 (void)fprintf(stderr, "split %d/%d\n", 245 ((u_int16_t *)np)[0] / 2, 246 ((u_int16_t *)op)[0] / 2); 247 #endif 248 /* unpin both pages */ 249 old_bufp->flags &= ~BUF_PIN; 250 new_bufp->flags &= ~BUF_PIN; 251 return (0); 252 } 253 254 /* 255 * Called when we encounter an overflow or big key/data page during split 256 * handling. This is special cased since we have to begin checking whether 257 * the key/data pairs fit on their respective pages and because we may need 258 * overflow pages for both the old and new pages. 259 * 260 * The first page might be a page with regular key/data pairs in which case 261 * we have a regular overflow condition and just need to go on to the next 262 * page or it might be a big key/data pair in which case we need to fix the 263 * big key/data pair. 264 * 265 * Returns: 266 * 0 ==> success 267 * -1 ==> failure 268 */ 269 static int 270 ugly_split(HTAB *hashp, 271 u_int32_t obucket, /* Same as __split_page. */ 272 BUFHEAD *old_bufp, 273 BUFHEAD *new_bufp, 274 int copyto, /* First byte on page which contains key/data values. */ 275 int moved) /* Number of pairs moved to new page. */ 276 { 277 BUFHEAD *bufp; /* Buffer header for ino */ 278 u_int16_t *ino; /* Page keys come off of */ 279 u_int16_t *np; /* New page */ 280 u_int16_t *op; /* Page keys go on to if they aren't moving */ 281 282 BUFHEAD *last_bfp; /* Last buf header OVFL needing to be freed */ 283 DBT key, val; 284 SPLIT_RETURN ret; 285 u_int16_t n, off, ov_addr, scopyto; 286 char *cino; /* Character value of ino */ 287 288 bufp = old_bufp; 289 ino = (u_int16_t *)old_bufp->page; 290 np = (u_int16_t *)new_bufp->page; 291 op = (u_int16_t *)old_bufp->page; 292 last_bfp = NULL; 293 scopyto = (u_int16_t)copyto; /* ANSI */ 294 295 n = ino[0] - 1; 296 while (n < ino[0]) { 297 if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) { 298 if (__big_split(hashp, old_bufp, 299 new_bufp, bufp, bufp->addr, obucket, &ret)) 300 return (-1); 301 old_bufp = ret.oldp; 302 if (!old_bufp) 303 return (-1); 304 op = (u_int16_t *)old_bufp->page; 305 new_bufp = ret.newp; 306 if (!new_bufp) 307 return (-1); 308 np = (u_int16_t *)new_bufp->page; 309 bufp = ret.nextp; 310 if (!bufp) 311 return (0); 312 cino = (char *)bufp->page; 313 ino = (u_int16_t *)cino; 314 last_bfp = ret.nextp; 315 } else if (ino[n + 1] == OVFLPAGE) { 316 ov_addr = ino[n]; 317 /* 318 * Fix up the old page -- the extra 2 are the fields 319 * which contained the overflow information. 320 */ 321 ino[0] -= (moved + 2); 322 FREESPACE(ino) = 323 scopyto - sizeof(u_int16_t) * (ino[0] + 3); 324 OFFSET(ino) = scopyto; 325 326 bufp = __get_buf(hashp, ov_addr, bufp, 0); 327 if (!bufp) 328 return (-1); 329 330 ino = (u_int16_t *)bufp->page; 331 n = 1; 332 scopyto = hashp->BSIZE; 333 moved = 0; 334 335 if (last_bfp) 336 __free_ovflpage(hashp, last_bfp); 337 last_bfp = bufp; 338 } 339 /* Move regular sized pairs of there are any */ 340 off = hashp->BSIZE; 341 for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) { 342 cino = (char *)ino; 343 key.data = (u_char *)cino + ino[n]; 344 key.size = off - ino[n]; 345 val.data = (u_char *)cino + ino[n + 1]; 346 val.size = ino[n] - ino[n + 1]; 347 off = ino[n + 1]; 348 349 if (__call_hash(hashp, key.data, key.size) == obucket) { 350 /* Keep on old page */ 351 if (PAIRFITS(op, (&key), (&val))) 352 putpair((char *)op, &key, &val); 353 else { 354 old_bufp = 355 __add_ovflpage(hashp, old_bufp); 356 if (!old_bufp) 357 return (-1); 358 op = (u_int16_t *)old_bufp->page; 359 putpair((char *)op, &key, &val); 360 } 361 old_bufp->flags |= BUF_MOD; 362 } else { 363 /* Move to new page */ 364 if (PAIRFITS(np, (&key), (&val))) 365 putpair((char *)np, &key, &val); 366 else { 367 new_bufp = 368 __add_ovflpage(hashp, new_bufp); 369 if (!new_bufp) 370 return (-1); 371 np = (u_int16_t *)new_bufp->page; 372 putpair((char *)np, &key, &val); 373 } 374 new_bufp->flags |= BUF_MOD; 375 } 376 } 377 } 378 if (last_bfp) 379 __free_ovflpage(hashp, last_bfp); 380 return (0); 381 } 382 383 /* 384 * Add the given pair to the page 385 * 386 * Returns: 387 * 0 ==> OK 388 * 1 ==> failure 389 */ 390 int 391 __addel(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT *val) 392 { 393 u_int16_t *bp, *sop; 394 int do_expand; 395 396 bp = (u_int16_t *)bufp->page; 397 do_expand = 0; 398 while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY)) 399 /* Exception case */ 400 if (bp[2] == FULL_KEY_DATA && bp[0] == 2) 401 /* This is the last page of a big key/data pair 402 and we need to add another page */ 403 break; 404 else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) { 405 bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0); 406 if (!bufp) 407 return (-1); 408 bp = (u_int16_t *)bufp->page; 409 } else if (bp[bp[0]] != OVFLPAGE) { 410 /* Short key/data pairs, no more pages */ 411 break; 412 } else { 413 /* Try to squeeze key on this page */ 414 if (bp[2] >= REAL_KEY && 415 FREESPACE(bp) >= PAIRSIZE(key, val)) { 416 squeeze_key(bp, key, val); 417 goto stats; 418 } else { 419 bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0); 420 if (!bufp) 421 return (-1); 422 bp = (u_int16_t *)bufp->page; 423 } 424 } 425 426 if (PAIRFITS(bp, key, val)) 427 putpair(bufp->page, key, val); 428 else { 429 do_expand = 1; 430 bufp = __add_ovflpage(hashp, bufp); 431 if (!bufp) 432 return (-1); 433 sop = (u_int16_t *)bufp->page; 434 435 if (PAIRFITS(sop, key, val)) 436 putpair((char *)sop, key, val); 437 else 438 if (__big_insert(hashp, bufp, key, val)) 439 return (-1); 440 } 441 stats: 442 bufp->flags |= BUF_MOD; 443 /* 444 * If the average number of keys per bucket exceeds the fill factor, 445 * expand the table. 446 */ 447 hashp->NKEYS++; 448 if (do_expand || 449 (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR)) 450 return (__expand_table(hashp)); 451 return (0); 452 } 453 454 /* 455 * 456 * Returns: 457 * pointer on success 458 * NULL on error 459 */ 460 BUFHEAD * 461 __add_ovflpage(HTAB *hashp, BUFHEAD *bufp) 462 { 463 u_int16_t *sp, ndx, ovfl_num; 464 #ifdef DEBUG1 465 int tmp1, tmp2; 466 #endif 467 sp = (u_int16_t *)bufp->page; 468 469 /* Check if we are dynamically determining the fill factor */ 470 if (hashp->FFACTOR == DEF_FFACTOR) { 471 hashp->FFACTOR = sp[0] >> 1; 472 if (hashp->FFACTOR < MIN_FFACTOR) 473 hashp->FFACTOR = MIN_FFACTOR; 474 } 475 bufp->flags |= BUF_MOD; 476 ovfl_num = overflow_page(hashp); 477 #ifdef DEBUG1 478 tmp1 = bufp->addr; 479 tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0; 480 #endif 481 if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, ovfl_num, bufp, 1))) 482 return (NULL); 483 bufp->ovfl->flags |= BUF_MOD; 484 #ifdef DEBUG1 485 (void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n", 486 tmp1, tmp2, bufp->ovfl->addr); 487 #endif 488 ndx = sp[0]; 489 /* 490 * Since a pair is allocated on a page only if there's room to add 491 * an overflow page, we know that the OVFL information will fit on 492 * the page. 493 */ 494 sp[ndx + 4] = OFFSET(sp); 495 sp[ndx + 3] = FREESPACE(sp) - OVFLSIZE; 496 sp[ndx + 1] = ovfl_num; 497 sp[ndx + 2] = OVFLPAGE; 498 sp[0] = ndx + 2; 499 #ifdef HASH_STATISTICS 500 hash_overflows++; 501 #endif 502 return (bufp->ovfl); 503 } 504 505 /* 506 * Returns: 507 * 0 indicates SUCCESS 508 * -1 indicates FAILURE 509 */ 510 int 511 __get_page(HTAB *hashp, char *p, u_int32_t bucket, int is_bucket, int is_disk, 512 int is_bitmap) 513 { 514 int fd, page, size, rsize; 515 u_int16_t *bp; 516 517 fd = hashp->fp; 518 size = hashp->BSIZE; 519 520 if ((fd == -1) || !is_disk) { 521 PAGE_INIT(p); 522 return (0); 523 } 524 if (is_bucket) 525 page = BUCKET_TO_PAGE(bucket); 526 else 527 page = OADDR_TO_PAGE(bucket); 528 if ((rsize = pread(fd, p, size, (off_t)page << hashp->BSHIFT)) == -1) 529 return (-1); 530 bp = (u_int16_t *)p; 531 if (!rsize) 532 bp[0] = 0; /* We hit the EOF, so initialize a new page */ 533 else 534 if (rsize != size) { 535 errno = EFTYPE; 536 return (-1); 537 } 538 if (!is_bitmap && !bp[0]) { 539 PAGE_INIT(p); 540 } else 541 if (hashp->LORDER != BYTE_ORDER) { 542 int i, max; 543 544 if (is_bitmap) { 545 max = hashp->BSIZE >> 2; /* divide by 4 */ 546 for (i = 0; i < max; i++) 547 M_32_SWAP(((int *)p)[i]); 548 } else { 549 M_16_SWAP(bp[0]); 550 max = bp[0] + 2; 551 for (i = 1; i <= max; i++) 552 M_16_SWAP(bp[i]); 553 } 554 } 555 return (0); 556 } 557 558 /* 559 * Write page p to disk 560 * 561 * Returns: 562 * 0 ==> OK 563 * -1 ==>failure 564 */ 565 int 566 __put_page(HTAB *hashp, char *p, u_int32_t bucket, int is_bucket, int is_bitmap) 567 { 568 int fd, page, size, wsize; 569 570 size = hashp->BSIZE; 571 if ((hashp->fp == -1) && open_temp(hashp)) 572 return (-1); 573 fd = hashp->fp; 574 575 if (hashp->LORDER != BYTE_ORDER) { 576 int i, max; 577 578 if (is_bitmap) { 579 max = hashp->BSIZE >> 2; /* divide by 4 */ 580 for (i = 0; i < max; i++) 581 M_32_SWAP(((int *)p)[i]); 582 } else { 583 max = ((u_int16_t *)p)[0] + 2; 584 for (i = 0; i <= max; i++) 585 M_16_SWAP(((u_int16_t *)p)[i]); 586 } 587 } 588 if (is_bucket) 589 page = BUCKET_TO_PAGE(bucket); 590 else 591 page = OADDR_TO_PAGE(bucket); 592 if ((wsize = pwrite(fd, p, size, (off_t)page << hashp->BSHIFT)) == -1) 593 /* Errno is set */ 594 return (-1); 595 if (wsize != size) { 596 errno = EFTYPE; 597 return (-1); 598 } 599 return (0); 600 } 601 602 #define BYTE_MASK ((1 << INT_BYTE_SHIFT) -1) 603 /* 604 * Initialize a new bitmap page. Bitmap pages are left in memory 605 * once they are read in. 606 */ 607 int 608 __ibitmap(HTAB *hashp, int pnum, int nbits, int ndx) 609 { 610 u_int32_t *ip; 611 int clearbytes, clearints; 612 613 if ((ip = (u_int32_t *)malloc(hashp->BSIZE)) == NULL) 614 return (1); 615 hashp->nmaps++; 616 clearints = ((nbits - 1) >> INT_BYTE_SHIFT) + 1; 617 clearbytes = clearints << INT_TO_BYTE; 618 (void)memset((char *)ip, 0, clearbytes); 619 (void)memset(((char *)ip) + clearbytes, 0xFF, 620 hashp->BSIZE - clearbytes); 621 ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK); 622 SETBIT(ip, 0); 623 hashp->BITMAPS[ndx] = (u_int16_t)pnum; 624 hashp->mapp[ndx] = ip; 625 return (0); 626 } 627 628 static u_int32_t 629 first_free(u_int32_t map) 630 { 631 u_int32_t i, mask; 632 633 mask = 0x1; 634 for (i = 0; i < BITS_PER_MAP; i++) { 635 if (!(mask & map)) 636 return (i); 637 mask = mask << 1; 638 } 639 return (i); 640 } 641 642 static u_int16_t 643 overflow_page(HTAB *hashp) 644 { 645 u_int32_t *freep; 646 int max_free, offset, splitnum; 647 u_int16_t addr; 648 int bit, first_page, free_bit, free_page, i, in_use_bits, j; 649 #ifdef DEBUG2 650 int tmp1, tmp2; 651 #endif 652 splitnum = hashp->OVFL_POINT; 653 max_free = hashp->SPARES[splitnum]; 654 655 free_page = (max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT); 656 free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1); 657 658 /* Look through all the free maps to find the first free block */ 659 first_page = hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT); 660 for ( i = first_page; i <= free_page; i++ ) { 661 if (!(freep = (u_int32_t *)hashp->mapp[i]) && 662 !(freep = fetch_bitmap(hashp, i))) 663 return (0); 664 if (i == free_page) 665 in_use_bits = free_bit; 666 else 667 in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1; 668 669 if (i == first_page) { 670 bit = hashp->LAST_FREED & 671 ((hashp->BSIZE << BYTE_SHIFT) - 1); 672 j = bit / BITS_PER_MAP; 673 bit = bit & ~(BITS_PER_MAP - 1); 674 } else { 675 bit = 0; 676 j = 0; 677 } 678 for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP) 679 if (freep[j] != ALL_SET) 680 goto found; 681 } 682 683 /* No Free Page Found */ 684 hashp->LAST_FREED = hashp->SPARES[splitnum]; 685 hashp->SPARES[splitnum]++; 686 offset = hashp->SPARES[splitnum] - 687 (splitnum ? hashp->SPARES[splitnum - 1] : 0); 688 689 #define OVMSG "HASH: Out of overflow pages. Increase page size\n" 690 if (offset > SPLITMASK) { 691 if (++splitnum >= NCACHED) { 692 (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1); 693 errno = EFBIG; 694 return (0); 695 } 696 hashp->OVFL_POINT = splitnum; 697 hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1]; 698 hashp->SPARES[splitnum-1]--; 699 offset = 1; 700 } 701 702 /* Check if we need to allocate a new bitmap page */ 703 if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) { 704 free_page++; 705 if (free_page >= NCACHED) { 706 (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1); 707 errno = EFBIG; 708 return (0); 709 } 710 /* 711 * This is tricky. The 1 indicates that you want the new page 712 * allocated with 1 clear bit. Actually, you are going to 713 * allocate 2 pages from this map. The first is going to be 714 * the map page, the second is the overflow page we were 715 * looking for. The init_bitmap routine automatically, sets 716 * the first bit of itself to indicate that the bitmap itself 717 * is in use. We would explicitly set the second bit, but 718 * don't have to if we tell init_bitmap not to leave it clear 719 * in the first place. 720 */ 721 if (__ibitmap(hashp, 722 (int)OADDR_OF(splitnum, offset), 1, free_page)) 723 return (0); 724 hashp->SPARES[splitnum]++; 725 #ifdef DEBUG2 726 free_bit = 2; 727 #endif 728 offset++; 729 if (offset > SPLITMASK) { 730 if (++splitnum >= NCACHED) { 731 (void)write(STDERR_FILENO, OVMSG, 732 sizeof(OVMSG) - 1); 733 errno = EFBIG; 734 return (0); 735 } 736 hashp->OVFL_POINT = splitnum; 737 hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1]; 738 hashp->SPARES[splitnum-1]--; 739 offset = 0; 740 } 741 } else { 742 /* 743 * Free_bit addresses the last used bit. Bump it to address 744 * the first available bit. 745 */ 746 free_bit++; 747 SETBIT(freep, free_bit); 748 } 749 750 /* Calculate address of the new overflow page */ 751 addr = OADDR_OF(splitnum, offset); 752 #ifdef DEBUG2 753 (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n", 754 addr, free_bit, free_page); 755 #endif 756 return (addr); 757 758 found: 759 bit = bit + first_free(freep[j]); 760 SETBIT(freep, bit); 761 #ifdef DEBUG2 762 tmp1 = bit; 763 tmp2 = i; 764 #endif 765 /* 766 * Bits are addressed starting with 0, but overflow pages are addressed 767 * beginning at 1. Bit is a bit addressnumber, so we need to increment 768 * it to convert it to a page number. 769 */ 770 bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT)); 771 if (bit >= hashp->LAST_FREED) 772 hashp->LAST_FREED = bit - 1; 773 774 /* Calculate the split number for this page */ 775 for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++); 776 offset = (i ? bit - hashp->SPARES[i - 1] : bit); 777 if (offset >= SPLITMASK) { 778 (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1); 779 errno = EFBIG; 780 return (0); /* Out of overflow pages */ 781 } 782 addr = OADDR_OF(i, offset); 783 #ifdef DEBUG2 784 (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n", 785 addr, tmp1, tmp2); 786 #endif 787 788 /* Allocate and return the overflow page */ 789 return (addr); 790 } 791 792 /* 793 * Mark this overflow page as free. 794 */ 795 void 796 __free_ovflpage(HTAB *hashp, BUFHEAD *obufp) 797 { 798 u_int16_t addr; 799 u_int32_t *freep; 800 int bit_address, free_page, free_bit; 801 u_int16_t ndx; 802 803 addr = obufp->addr; 804 #ifdef DEBUG1 805 (void)fprintf(stderr, "Freeing %d\n", addr); 806 #endif 807 ndx = (((u_int16_t)addr) >> SPLITSHIFT); 808 bit_address = 809 (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1; 810 if (bit_address < hashp->LAST_FREED) 811 hashp->LAST_FREED = bit_address; 812 free_page = (bit_address >> (hashp->BSHIFT + BYTE_SHIFT)); 813 free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1); 814 815 if (!(freep = hashp->mapp[free_page])) 816 freep = fetch_bitmap(hashp, free_page); 817 #ifdef DEBUG 818 /* 819 * This had better never happen. It means we tried to read a bitmap 820 * that has already had overflow pages allocated off it, and we 821 * failed to read it from the file. 822 */ 823 if (!freep) 824 assert(0); 825 #endif 826 CLRBIT(freep, free_bit); 827 #ifdef DEBUG2 828 (void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n", 829 obufp->addr, free_bit, free_page); 830 #endif 831 __reclaim_buf(hashp, obufp); 832 } 833 834 /* 835 * Returns: 836 * 0 success 837 * -1 failure 838 */ 839 static int 840 open_temp(HTAB *hashp) 841 { 842 sigset_t set, oset; 843 int len; 844 char *envtmp = NULL; 845 char path[MAXPATHLEN]; 846 847 if (issetugid() == 0) 848 envtmp = getenv("TMPDIR"); 849 len = snprintf(path, 850 sizeof(path), "%s/_hash.XXXXXX", envtmp ? envtmp : "/tmp"); 851 if (len < 0 || len >= sizeof(path)) { 852 errno = ENAMETOOLONG; 853 return (-1); 854 } 855 856 /* Block signals; make sure file goes away at process exit. */ 857 (void)sigfillset(&set); 858 (void)sigprocmask(SIG_BLOCK, &set, &oset); 859 if ((hashp->fp = mkstemp(path)) != -1) { 860 (void)unlink(path); 861 (void)fcntl(hashp->fp, F_SETFD, 1); 862 } 863 (void)sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL); 864 return (hashp->fp != -1 ? 0 : -1); 865 } 866 867 /* 868 * We have to know that the key will fit, but the last entry on the page is 869 * an overflow pair, so we need to shift things. 870 */ 871 static void 872 squeeze_key(u_int16_t *sp, const DBT *key, const DBT *val) 873 { 874 char *p; 875 u_int16_t free_space, n, off, pageno; 876 877 p = (char *)sp; 878 n = sp[0]; 879 free_space = FREESPACE(sp); 880 off = OFFSET(sp); 881 882 pageno = sp[n - 1]; 883 off -= key->size; 884 sp[n - 1] = off; 885 memmove(p + off, key->data, key->size); 886 off -= val->size; 887 sp[n] = off; 888 memmove(p + off, val->data, val->size); 889 sp[0] = n + 2; 890 sp[n + 1] = pageno; 891 sp[n + 2] = OVFLPAGE; 892 FREESPACE(sp) = free_space - PAIRSIZE(key, val); 893 OFFSET(sp) = off; 894 } 895 896 static u_int32_t * 897 fetch_bitmap(HTAB *hashp, int ndx) 898 { 899 if (ndx >= hashp->nmaps) 900 return (NULL); 901 if ((hashp->mapp[ndx] = (u_int32_t *)malloc(hashp->BSIZE)) == NULL) 902 return (NULL); 903 if (__get_page(hashp, 904 (char *)hashp->mapp[ndx], hashp->BITMAPS[ndx], 0, 1, 1)) { 905 free(hashp->mapp[ndx]); 906 return (NULL); 907 } 908 return (hashp->mapp[ndx]); 909 } 910 911 #ifdef DEBUG4 912 int 913 print_chain(int addr) 914 { 915 BUFHEAD *bufp; 916 short *bp, oaddr; 917 918 (void)fprintf(stderr, "%d ", addr); 919 bufp = __get_buf(hashp, addr, NULL, 0); 920 bp = (short *)bufp->page; 921 while (bp[0] && ((bp[bp[0]] == OVFLPAGE) || 922 ((bp[0] > 2) && bp[2] < REAL_KEY))) { 923 oaddr = bp[bp[0] - 1]; 924 (void)fprintf(stderr, "%d ", (int)oaddr); 925 bufp = __get_buf(hashp, (int)oaddr, bufp, 0); 926 bp = (short *)bufp->page; 927 } 928 (void)fprintf(stderr, "\n"); 929 } 930 #endif 931