xref: /openbsd-src/lib/libc/crypt/arc4random.c (revision c8f7bca9300980379eb50a4ac79e962c67a6bad3)
1 /*	$OpenBSD: arc4random.c,v 1.28 2014/05/06 02:31:45 tedu Exp $	*/
2 
3 /*
4  * Copyright (c) 1996, David Mazieres <dm@uun.org>
5  * Copyright (c) 2008, Damien Miller <djm@openbsd.org>
6  * Copyright (c) 2013, Markus Friedl <markus@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * ChaCha based random number generator for OpenBSD.
23  */
24 
25 #include <fcntl.h>
26 #include <limits.h>
27 #include <stdlib.h>
28 #include <string.h>
29 #include <unistd.h>
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/time.h>
33 #include <sys/sysctl.h>
34 #include <sys/mman.h>
35 
36 #include "thread_private.h"
37 
38 #define KEYSTREAM_ONLY
39 #include "chacha_private.h"
40 
41 #ifdef __GNUC__
42 #define inline __inline
43 #else				/* !__GNUC__ */
44 #define inline
45 #endif				/* !__GNUC__ */
46 
47 #define KEYSZ	32
48 #define IVSZ	8
49 #define BLOCKSZ	64
50 #define RSBUFSZ	(16*BLOCKSZ)
51 static int rs_initialized;
52 static pid_t rs_stir_pid;
53 static chacha_ctx *rs;		/* chacha context for random keystream */
54 static u_char *rs_buf;		/* keystream blocks */
55 static size_t rs_have;		/* valid bytes at end of rs_buf */
56 static size_t rs_count;		/* bytes till reseed */
57 
58 static inline void _rs_rekey(u_char *dat, size_t datlen);
59 
60 static inline void
61 _rs_init(u_char *buf, size_t n)
62 {
63 	if (n < KEYSZ + IVSZ)
64 		return;
65 
66 	if ((rs = mmap(NULL, sizeof(*rs), PROT_READ|PROT_WRITE,
67 	    MAP_ANON, -1, 0)) == MAP_FAILED)
68 		abort();
69 	if ((rs_buf = mmap(NULL, RSBUFSZ, PROT_READ|PROT_WRITE,
70 	    MAP_ANON, -1, 0)) == MAP_FAILED)
71 		abort();
72 
73 	chacha_keysetup(rs, buf, KEYSZ * 8, 0);
74 	chacha_ivsetup(rs, buf + KEYSZ);
75 }
76 
77 static void
78 _rs_stir(void)
79 {
80 	int     mib[2];
81 	size_t	len;
82 	u_char rnd[KEYSZ + IVSZ];
83 
84 	mib[0] = CTL_KERN;
85 	mib[1] = KERN_ARND;
86 
87 	len = sizeof(rnd);
88 	sysctl(mib, 2, rnd, &len, NULL, 0);
89 
90 	if (!rs_initialized) {
91 		rs_initialized = 1;
92 		_rs_init(rnd, sizeof(rnd));
93 	} else
94 		_rs_rekey(rnd, sizeof(rnd));
95 	memset(rnd, 0, sizeof(rnd));
96 
97 	/* invalidate rs_buf */
98 	rs_have = 0;
99 	memset(rs_buf, 0, RSBUFSZ);
100 
101 	rs_count = 1600000;
102 }
103 
104 static inline void
105 _rs_stir_if_needed(size_t len)
106 {
107 	pid_t pid = getpid();
108 
109 	if (rs_count <= len || !rs_initialized || rs_stir_pid != pid) {
110 		rs_stir_pid = pid;
111 		_rs_stir();
112 	} else
113 		rs_count -= len;
114 }
115 
116 static inline void
117 _rs_rekey(u_char *dat, size_t datlen)
118 {
119 #ifndef KEYSTREAM_ONLY
120 	memset(rs_buf, 0,RSBUFSZ);
121 #endif
122 	/* fill rs_buf with the keystream */
123 	chacha_encrypt_bytes(rs, rs_buf, rs_buf, RSBUFSZ);
124 	/* mix in optional user provided data */
125 	if (dat) {
126 		size_t i, m;
127 
128 		m = MIN(datlen, KEYSZ + IVSZ);
129 		for (i = 0; i < m; i++)
130 			rs_buf[i] ^= dat[i];
131 	}
132 	/* immediately reinit for backtracking resistance */
133 	_rs_init(rs_buf, KEYSZ + IVSZ);
134 	memset(rs_buf, 0, KEYSZ + IVSZ);
135 	rs_have = RSBUFSZ - KEYSZ - IVSZ;
136 }
137 
138 static inline void
139 _rs_random_buf(void *_buf, size_t n)
140 {
141 	u_char *buf = (u_char *)_buf;
142 	size_t m;
143 
144 	_rs_stir_if_needed(n);
145 	while (n > 0) {
146 		if (rs_have > 0) {
147 			m = MIN(n, rs_have);
148 			memcpy(buf, rs_buf + RSBUFSZ - rs_have, m);
149 			memset(rs_buf + RSBUFSZ - rs_have, 0, m);
150 			buf += m;
151 			n -= m;
152 			rs_have -= m;
153 		}
154 		if (rs_have == 0)
155 			_rs_rekey(NULL, 0);
156 	}
157 }
158 
159 static inline void
160 _rs_random_u32(u_int32_t *val)
161 {
162 	_rs_stir_if_needed(sizeof(*val));
163 	if (rs_have < sizeof(*val))
164 		_rs_rekey(NULL, 0);
165 	memcpy(val, rs_buf + RSBUFSZ - rs_have, sizeof(*val));
166 	memset(rs_buf + RSBUFSZ - rs_have, 0, sizeof(*val));
167 	rs_have -= sizeof(*val);
168 	return;
169 }
170 
171 u_int32_t
172 arc4random(void)
173 {
174 	u_int32_t val;
175 
176 	_ARC4_LOCK();
177 	_rs_random_u32(&val);
178 	_ARC4_UNLOCK();
179 	return val;
180 }
181 
182 void
183 arc4random_buf(void *buf, size_t n)
184 {
185 	_ARC4_LOCK();
186 	_rs_random_buf(buf, n);
187 	_ARC4_UNLOCK();
188 }
189 
190 /*
191  * Calculate a uniformly distributed random number less than upper_bound
192  * avoiding "modulo bias".
193  *
194  * Uniformity is achieved by generating new random numbers until the one
195  * returned is outside the range [0, 2**32 % upper_bound).  This
196  * guarantees the selected random number will be inside
197  * [2**32 % upper_bound, 2**32) which maps back to [0, upper_bound)
198  * after reduction modulo upper_bound.
199  */
200 u_int32_t
201 arc4random_uniform(u_int32_t upper_bound)
202 {
203 	u_int32_t r, min;
204 
205 	if (upper_bound < 2)
206 		return 0;
207 
208 	/* 2**32 % x == (2**32 - x) % x */
209 	min = -upper_bound % upper_bound;
210 
211 	/*
212 	 * This could theoretically loop forever but each retry has
213 	 * p > 0.5 (worst case, usually far better) of selecting a
214 	 * number inside the range we need, so it should rarely need
215 	 * to re-roll.
216 	 */
217 	for (;;) {
218 		r = arc4random();
219 		if (r >= min)
220 			break;
221 	}
222 
223 	return r % upper_bound;
224 }
225