xref: /openbsd-src/lib/libc/arch/sparc64/fpu/fpu_explode.c (revision db3296cf5c1dd9058ceecc3a29fe4aaa0bd26000)
1 /*	$OpenBSD: fpu_explode.c,v 1.1 2003/07/21 18:41:30 jason Exp $	*/
2 
3 /*
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This software was developed by the Computer Systems Engineering group
8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9  * contributed to Berkeley.
10  *
11  * All advertising materials mentioning features or use of this software
12  * must display the following acknowledgement:
13  *	This product includes software developed by the University of
14  *	California, Lawrence Berkeley Laboratory.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *	@(#)fpu_explode.c	8.1 (Berkeley) 6/11/93
45  *	$NetBSD: fpu_explode.c,v 1.5 2000/08/03 18:32:08 eeh Exp $
46  */
47 
48 #include <sys/cdefs.h>
49 #if 0
50 __FBSDID("$FreeBSD: src/lib/libc/sparc64/fpu/fpu_explode.c,v 1.5 2002/05/11 21:20:04 jake Exp $");
51 #endif
52 
53 /*
54  * FPU subroutines: `explode' the machine's `packed binary' format numbers
55  * into our internal format.
56  */
57 
58 #include <sys/param.h>
59 
60 #include <machine/frame.h>
61 #include <machine/fsr.h>
62 #include <machine/ieee.h>
63 #include <machine/instr.h>
64 
65 #include "fpu_arith.h"
66 #include "fpu_emu.h"
67 #include "fpu_extern.h"
68 #include "fpu_reg.h"
69 
70 /*
71  * N.B.: in all of the following, we assume the FP format is
72  *
73  *	---------------------------
74  *	| s | exponent | fraction |
75  *	---------------------------
76  *
77  * (which represents -1**s * 1.fraction * 2**exponent), so that the
78  * sign bit is way at the top (bit 31), the exponent is next, and
79  * then the remaining bits mark the fraction.  A zero exponent means
80  * zero or denormalized (0.fraction rather than 1.fraction), and the
81  * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
82  *
83  * Since the sign bit is always the topmost bit---this holds even for
84  * integers---we set that outside all the *tof functions.  Each function
85  * returns the class code for the new number (but note that we use
86  * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
87  */
88 
89 /*
90  * int -> fpn.
91  */
92 int
93 __fpu_itof(fp, i)
94 	struct fpn *fp;
95 	u_int i;
96 {
97 
98 	if (i == 0)
99 		return (FPC_ZERO);
100 	/*
101 	 * The value FP_1 represents 2^FP_LG, so set the exponent
102 	 * there and let normalization fix it up.  Convert negative
103 	 * numbers to sign-and-magnitude.  Note that this relies on
104 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
105 	 */
106 	fp->fp_exp = FP_LG;
107 	fp->fp_mant[0] = (int)i < 0 ? -i : i;
108 	fp->fp_mant[1] = 0;
109 	fp->fp_mant[2] = 0;
110 	fp->fp_mant[3] = 0;
111 	__fpu_norm(fp);
112 	return (FPC_NUM);
113 }
114 
115 /*
116  * 64-bit int -> fpn.
117  */
118 int
119 __fpu_xtof(fp, i)
120 	struct fpn *fp;
121 	u_int64_t i;
122 {
123 
124 	if (i == 0)
125 		return (FPC_ZERO);
126 	/*
127 	 * The value FP_1 represents 2^FP_LG, so set the exponent
128 	 * there and let normalization fix it up.  Convert negative
129 	 * numbers to sign-and-magnitude.  Note that this relies on
130 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
131 	 */
132 	fp->fp_exp = FP_LG2;
133 	*((int64_t*)fp->fp_mant) = (int64_t)i < 0 ? -i : i;
134 	fp->fp_mant[2] = 0;
135 	fp->fp_mant[3] = 0;
136 	__fpu_norm(fp);
137 	return (FPC_NUM);
138 }
139 
140 #define	mask(nbits) ((1L << (nbits)) - 1)
141 
142 /*
143  * All external floating formats convert to internal in the same manner,
144  * as defined here.  Note that only normals get an implied 1.0 inserted.
145  */
146 #define	FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
147 	if (exp == 0) { \
148 		if (allfrac == 0) \
149 			return (FPC_ZERO); \
150 		fp->fp_exp = 1 - expbias; \
151 		fp->fp_mant[0] = f0; \
152 		fp->fp_mant[1] = f1; \
153 		fp->fp_mant[2] = f2; \
154 		fp->fp_mant[3] = f3; \
155 		__fpu_norm(fp); \
156 		return (FPC_NUM); \
157 	} \
158 	if (exp == (2 * expbias + 1)) { \
159 		if (allfrac == 0) \
160 			return (FPC_INF); \
161 		fp->fp_mant[0] = f0; \
162 		fp->fp_mant[1] = f1; \
163 		fp->fp_mant[2] = f2; \
164 		fp->fp_mant[3] = f3; \
165 		return (FPC_QNAN); \
166 	} \
167 	fp->fp_exp = exp - expbias; \
168 	fp->fp_mant[0] = FP_1 | f0; \
169 	fp->fp_mant[1] = f1; \
170 	fp->fp_mant[2] = f2; \
171 	fp->fp_mant[3] = f3; \
172 	return (FPC_NUM)
173 
174 /*
175  * 32-bit single precision -> fpn.
176  * We assume a single occupies at most (64-FP_LG) bits in the internal
177  * format: i.e., needs at most fp_mant[0] and fp_mant[1].
178  */
179 int
180 __fpu_stof(fp, i)
181 	struct fpn *fp;
182 	u_int i;
183 {
184 	int exp;
185 	u_int frac, f0, f1;
186 #define SNG_SHIFT (SNG_FRACBITS - FP_LG)
187 
188 	exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
189 	frac = i & mask(SNG_FRACBITS);
190 	f0 = frac >> SNG_SHIFT;
191 	f1 = frac << (32 - SNG_SHIFT);
192 	FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
193 }
194 
195 /*
196  * 64-bit double -> fpn.
197  * We assume this uses at most (96-FP_LG) bits.
198  */
199 int
200 __fpu_dtof(fp, i, j)
201 	struct fpn *fp;
202 	u_int i, j;
203 {
204 	int exp;
205 	u_int frac, f0, f1, f2;
206 #define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
207 
208 	exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
209 	frac = i & mask(DBL_FRACBITS - 32);
210 	f0 = frac >> DBL_SHIFT;
211 	f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT);
212 	f2 = j << (32 - DBL_SHIFT);
213 	frac |= j;
214 	FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
215 }
216 
217 /*
218  * 128-bit extended -> fpn.
219  */
220 int
221 __fpu_qtof(fp, i, j, k, l)
222 	struct fpn *fp;
223 	u_int i, j, k, l;
224 {
225 	int exp;
226 	u_int frac, f0, f1, f2, f3;
227 #define EXT_SHIFT (-(EXT_FRACBITS - 3 * 32 - FP_LG))	/* left shift! */
228 
229 	/*
230 	 * Note that ext and fpn `line up', hence no shifting needed.
231 	 */
232 	exp = (i >> (32 - 1 - EXT_EXPBITS)) & mask(EXT_EXPBITS);
233 	frac = i & mask(EXT_FRACBITS - 3 * 32);
234 	f0 = (frac << EXT_SHIFT) | (j >> (32 - EXT_SHIFT));
235 	f1 = (j << EXT_SHIFT) | (k >> (32 - EXT_SHIFT));
236 	f2 = (k << EXT_SHIFT) | (l >> (32 - EXT_SHIFT));
237 	f3 = l << EXT_SHIFT;
238 	frac |= j | k | l;
239 	FP_TOF(exp, EXT_EXP_BIAS, frac, f0, f1, f2, f3);
240 }
241 
242 /*
243  * Explode the contents of a / regpair / regquad.
244  * If the input is a signalling NaN, an NV (invalid) exception
245  * will be set.  (Note that nothing but NV can occur until ALU
246  * operations are performed.)
247  */
248 void
249 __fpu_explode(fe, fp, type, reg)
250 	struct fpemu *fe;
251 	struct fpn *fp;
252 	int type, reg;
253 {
254 	u_int32_t s = 0/* XXX gcc */, *sp;
255 	u_int64_t l[2];
256 
257 	if (type == FTYPE_LNG || type == FTYPE_DBL || type == FTYPE_EXT) {
258 		l[0] = __fpu_getreg64(reg & ~1);
259 		sp = (u_int32_t *)l;
260 		fp->fp_sign = sp[0] >> 31;
261 		fp->fp_sticky = 0;
262 		switch (type) {
263 			case FTYPE_LNG:
264 				s = __fpu_xtof(fp, l[0]);
265 				break;
266 			case FTYPE_DBL:
267 				s = __fpu_dtof(fp, sp[0], sp[1]);
268 				break;
269 			case FTYPE_EXT:
270 				l[1] = __fpu_getreg64((reg & ~1) + 2);
271 				s = __fpu_qtof(fp, sp[0], sp[1], sp[2], sp[3]);
272 				break;
273 			default:
274 #ifdef DIAGNOSTIC
275 				__utrap_panic("fpu_explode");
276 #endif
277 		}
278 	} else {
279 #ifdef DIAGNOSTIC
280 		if (type != FTYPE_SNG)
281 			__utrap_panic("fpu_explode");
282 #endif
283 		s = __fpu_getreg32(reg);
284 		fp->fp_sign = s >> 31;
285 		fp->fp_sticky = 0;
286 		s = __fpu_stof(fp, s);
287 	}
288 
289 	if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
290 		/*
291 		 * Input is a signalling NaN.  All operations that return
292 		 * an input NaN operand put it through a ``NaN conversion'',
293 		 * which basically just means ``turn on the quiet bit''.
294 		 * We do this here so that all NaNs internally look quiet
295 		 * (we can tell signalling ones by their class).
296 		 */
297 		fp->fp_mant[0] |= FP_QUIETBIT;
298 		fe->fe_cx = FSR_NV;	/* assert invalid operand */
299 		s = FPC_SNAN;
300 	}
301 	fp->fp_class = s;
302 	DPRINTF(FPE_REG, ("fpu_explode: %%%c%d => ", (type == FTYPE_LNG) ? 'x' :
303 		((type == FTYPE_INT) ? 'i' :
304 			((type == FTYPE_SNG) ? 's' :
305 				((type == FTYPE_DBL) ? 'd' :
306 					((type == FTYPE_EXT) ? 'q' : '?')))),
307 		reg));
308 	DUMPFPN(FPE_REG, fp);
309 	DPRINTF(FPE_REG, ("\n"));
310 }
311