xref: /openbsd-src/lib/libc/arch/sparc64/fpu/fpu_explode.c (revision 99fd087599a8791921855f21bd7e36130f39aadc)
1 /*	$OpenBSD: fpu_explode.c,v 1.10 2019/06/21 17:00:58 jca Exp $	*/
2 
3 /*
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This software was developed by the Computer Systems Engineering group
8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9  * contributed to Berkeley.
10  *
11  * All advertising materials mentioning features or use of this software
12  * must display the following acknowledgement:
13  *	This product includes software developed by the University of
14  *	California, Lawrence Berkeley Laboratory.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *	@(#)fpu_explode.c	8.1 (Berkeley) 6/11/93
45  *	$NetBSD: fpu_explode.c,v 1.5 2000/08/03 18:32:08 eeh Exp $
46  */
47 
48 /*
49  * FPU subroutines: `explode' the machine's `packed binary' format numbers
50  * into our internal format.
51  */
52 
53 #include <sys/param.h>
54 
55 #include <machine/frame.h>
56 #include <machine/fsr.h>
57 #include <machine/ieee.h>
58 #include <machine/instr.h>
59 
60 #include "fpu_arith.h"
61 #include "fpu_emu.h"
62 #include "fpu_extern.h"
63 #include "fpu_reg.h"
64 
65 /*
66  * N.B.: in all of the following, we assume the FP format is
67  *
68  *	---------------------------
69  *	| s | exponent | fraction |
70  *	---------------------------
71  *
72  * (which represents -1**s * 1.fraction * 2**exponent), so that the
73  * sign bit is way at the top (bit 31), the exponent is next, and
74  * then the remaining bits mark the fraction.  A zero exponent means
75  * zero or denormalized (0.fraction rather than 1.fraction), and the
76  * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
77  *
78  * Since the sign bit is always the topmost bit---this holds even for
79  * integers---we set that outside all the *tof functions.  Each function
80  * returns the class code for the new number (but note that we use
81  * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
82  */
83 
84 /*
85  * int -> fpn.
86  */
87 int
88 __fpu_itof(fp, i)
89 	struct fpn *fp;
90 	u_int i;
91 {
92 
93 	if (i == 0)
94 		return (FPC_ZERO);
95 	/*
96 	 * The value FP_1 represents 2^FP_LG, so set the exponent
97 	 * there and let normalization fix it up.  Convert negative
98 	 * numbers to sign-and-magnitude.  Note that this relies on
99 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
100 	 */
101 	fp->fp_exp = FP_LG;
102 	fp->fp_mant[0] = (fp->fp_sign && (int)i < 0) ? -i : i;
103 	fp->fp_mant[1] = 0;
104 	fp->fp_mant[2] = 0;
105 	fp->fp_mant[3] = 0;
106 	__fpu_norm(fp);
107 	return (FPC_NUM);
108 }
109 
110 /*
111  * uint -> fpn.
112  */
113 int
114 __fpu_uitof(fp, i)
115 	struct fpn *fp;
116 	u_int i;
117 {
118 
119 	if (i == 0)
120 		return (FPC_ZERO);
121 	/*
122 	 * The value FP_1 represents 2^FP_LG, so set the exponent
123 	 * there and let normalization fix it up.
124 	 * Note that this relies on fpu_norm()'s handling of
125 	 * `supernormals'; see fpu_subr.c.
126 	 */
127 	fp->fp_exp = FP_LG;
128 	fp->fp_mant[0] = i;
129 	fp->fp_mant[1] = 0;
130 	fp->fp_mant[2] = 0;
131 	fp->fp_mant[3] = 0;
132 	__fpu_norm(fp);
133 	return (FPC_NUM);
134 }
135 
136 /*
137  * 64-bit int -> fpn.
138  */
139 int
140 __fpu_xtof(fp, i)
141 	struct fpn *fp;
142 	u_int64_t i;
143 {
144 
145 	if (i == 0)
146 		return (FPC_ZERO);
147 	/*
148 	 * The value FP_1 represents 2^FP_LG, so set the exponent
149 	 * there and let normalization fix it up.  Convert negative
150 	 * numbers to sign-and-magnitude.  Note that this relies on
151 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
152 	 */
153 	fp->fp_exp = FP_LG2;
154 	i = (fp->fp_sign && (int64_t)i < 0) ? -i : i;
155 	fp->fp_mant[0] = (i >> 32) & 0xffffffff;
156 	fp->fp_mant[1] = (i >> 0)  & 0xffffffff;
157 	fp->fp_mant[2] = 0;
158 	fp->fp_mant[3] = 0;
159 	__fpu_norm(fp);
160 	return (FPC_NUM);
161 }
162 
163 /*
164  * 64-bit uint -> fpn.
165  */
166 int
167 __fpu_uxtof(fp, i)
168 	struct fpn *fp;
169 	u_int64_t i;
170 {
171 
172 	if (i == 0)
173 		return (FPC_ZERO);
174 	/*
175 	 * The value FP_1 represents 2^FP_LG, so set the exponent
176 	 * there and let normalization fix it up.
177 	 * Note that this relies on fpu_norm()'s handling of
178 	 * `supernormals'; see fpu_subr.c.
179 	 */
180 	fp->fp_exp = FP_LG2;
181 	fp->fp_mant[0] = (i >> 32) & 0xffffffff;
182 	fp->fp_mant[1] = (i >> 0)  & 0xffffffff;
183 	fp->fp_mant[2] = 0;
184 	fp->fp_mant[3] = 0;
185 	__fpu_norm(fp);
186 	return (FPC_NUM);
187 }
188 
189 #define	mask(nbits) ((1L << (nbits)) - 1)
190 
191 /*
192  * All external floating formats convert to internal in the same manner,
193  * as defined here.  Note that only normals get an implied 1.0 inserted.
194  */
195 #define	FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
196 	if (exp == 0) { \
197 		if (allfrac == 0) \
198 			return (FPC_ZERO); \
199 		fp->fp_exp = 1 - expbias; \
200 		fp->fp_mant[0] = f0; \
201 		fp->fp_mant[1] = f1; \
202 		fp->fp_mant[2] = f2; \
203 		fp->fp_mant[3] = f3; \
204 		__fpu_norm(fp); \
205 		return (FPC_NUM); \
206 	} \
207 	if (exp == (2 * expbias + 1)) { \
208 		if (allfrac == 0) \
209 			return (FPC_INF); \
210 		fp->fp_mant[0] = f0; \
211 		fp->fp_mant[1] = f1; \
212 		fp->fp_mant[2] = f2; \
213 		fp->fp_mant[3] = f3; \
214 		return (FPC_QNAN); \
215 	} \
216 	fp->fp_exp = exp - expbias; \
217 	fp->fp_mant[0] = FP_1 | f0; \
218 	fp->fp_mant[1] = f1; \
219 	fp->fp_mant[2] = f2; \
220 	fp->fp_mant[3] = f3; \
221 	return (FPC_NUM)
222 
223 /*
224  * 32-bit single precision -> fpn.
225  * We assume a single occupies at most (64-FP_LG) bits in the internal
226  * format: i.e., needs at most fp_mant[0] and fp_mant[1].
227  */
228 int
229 __fpu_stof(fp, i)
230 	struct fpn *fp;
231 	u_int i;
232 {
233 	int exp;
234 	u_int frac, f0, f1;
235 #define SNG_SHIFT (SNG_FRACBITS - FP_LG)
236 
237 	exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
238 	frac = i & mask(SNG_FRACBITS);
239 	f0 = frac >> SNG_SHIFT;
240 	f1 = frac << (32 - SNG_SHIFT);
241 	FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
242 }
243 
244 /*
245  * 64-bit double -> fpn.
246  * We assume this uses at most (96-FP_LG) bits.
247  */
248 int
249 __fpu_dtof(fp, i, j)
250 	struct fpn *fp;
251 	u_int i, j;
252 {
253 	int exp;
254 	u_int frac, f0, f1, f2;
255 #define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
256 
257 	exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
258 	frac = i & mask(DBL_FRACBITS - 32);
259 	f0 = frac >> DBL_SHIFT;
260 	f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT);
261 	f2 = j << (32 - DBL_SHIFT);
262 	frac |= j;
263 	FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
264 }
265 
266 /*
267  * 128-bit extended -> fpn.
268  */
269 int
270 __fpu_qtof(fp, i, j, k, l)
271 	struct fpn *fp;
272 	u_int i, j, k, l;
273 {
274 	int exp;
275 	u_int frac, f0, f1, f2, f3;
276 #define EXT_SHIFT (-(EXT_FRACBITS - 3 * 32 - FP_LG))	/* left shift! */
277 
278 	/*
279 	 * Note that ext and fpn `line up', hence no shifting needed.
280 	 */
281 	exp = (i >> (32 - 1 - EXT_EXPBITS)) & mask(EXT_EXPBITS);
282 	frac = i & mask(EXT_FRACBITS - 3 * 32);
283 	f0 = (frac << EXT_SHIFT) | (j >> (32 - EXT_SHIFT));
284 	f1 = (j << EXT_SHIFT) | (k >> (32 - EXT_SHIFT));
285 	f2 = (k << EXT_SHIFT) | (l >> (32 - EXT_SHIFT));
286 	f3 = l << EXT_SHIFT;
287 	frac |= j | k | l;
288 	FP_TOF(exp, EXT_EXP_BIAS, frac, f0, f1, f2, f3);
289 }
290 
291 #if 0	/* __fpu_explode is unused */
292 /*
293  * Explode the contents of a / regpair / regquad.
294  * If the input is a signalling NaN, an NV (invalid) exception
295  * will be set.  (Note that nothing but NV can occur until ALU
296  * operations are performed.)
297  */
298 void
299 __fpu_explode(fe, fp, type, reg)
300 	struct fpemu *fe;
301 	struct fpn *fp;
302 	int type, reg;
303 {
304 	u_int32_t s = 0/* XXX gcc */, *sp;
305 	u_int64_t l[2];
306 
307 	if (type == FTYPE_LNG || type == FTYPE_DBL || type == FTYPE_EXT) {
308 		l[0] = __fpu_getreg64(reg & ~1);
309 		sp = (u_int32_t *)l;
310 		fp->fp_sign = sp[0] >> 31;
311 		fp->fp_sticky = 0;
312 		switch (type) {
313 			case FTYPE_LNG:
314 				s = __fpu_xtof(fp, l[0]);
315 				break;
316 			case FTYPE_DBL:
317 				s = __fpu_dtof(fp, sp[0], sp[1]);
318 				break;
319 			case FTYPE_EXT:
320 				l[1] = __fpu_getreg64((reg & ~1) + 2);
321 				s = __fpu_qtof(fp, sp[0], sp[1], sp[2], sp[3]);
322 				break;
323 			default:
324 #ifdef DIAGNOSTIC
325 				__utrap_panic("fpu_explode");
326 #endif
327 				break;
328 		}
329 	} else {
330 #ifdef DIAGNOSTIC
331 		if (type != FTYPE_SNG)
332 			__utrap_panic("fpu_explode");
333 #endif
334 		s = __fpu_getreg32(reg);
335 		fp->fp_sign = s >> 31;
336 		fp->fp_sticky = 0;
337 		s = __fpu_stof(fp, s);
338 	}
339 
340 	if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
341 		/*
342 		 * Input is a signalling NaN.  All operations that return
343 		 * an input NaN operand put it through a ``NaN conversion'',
344 		 * which basically just means ``turn on the quiet bit''.
345 		 * We do this here so that all NaNs internally look quiet
346 		 * (we can tell signalling ones by their class).
347 		 */
348 		fp->fp_mant[0] |= FP_QUIETBIT;
349 		fe->fe_cx = FSR_NV;	/* assert invalid operand */
350 		s = FPC_SNAN;
351 	}
352 	fp->fp_class = s;
353 	DPRINTF(FPE_REG, ("fpu_explode: %%%c%d => ", (type == FTYPE_LNG) ? 'x' :
354 		((type == FTYPE_INT) ? 'i' :
355 			((type == FTYPE_SNG) ? 's' :
356 				((type == FTYPE_DBL) ? 'd' :
357 					((type == FTYPE_EXT) ? 'q' : '?')))),
358 		reg));
359 	DUMPFPN(FPE_REG, fp);
360 	DPRINTF(FPE_REG, ("\n"));
361 }
362 #endif
363