xref: /openbsd-src/gnu/usr.bin/perl/utf8.c (revision 50b7afb2c2c0993b0894d4e34bf857cb13ed9c80)
1 /*    utf8.c
2  *
3  *    Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4  *    by Larry Wall and others
5  *
6  *    You may distribute under the terms of either the GNU General Public
7  *    License or the Artistic License, as specified in the README file.
8  *
9  */
10 
11 /*
12  * 'What a fix!' said Sam.  'That's the one place in all the lands we've ever
13  *  heard of that we don't want to see any closer; and that's the one place
14  *  we're trying to get to!  And that's just where we can't get, nohow.'
15  *
16  *     [p.603 of _The Lord of the Rings_, IV/I: "The Taming of Sméagol"]
17  *
18  * 'Well do I understand your speech,' he answered in the same language;
19  * 'yet few strangers do so.  Why then do you not speak in the Common Tongue,
20  *  as is the custom in the West, if you wish to be answered?'
21  *                           --Gandalf, addressing Théoden's door wardens
22  *
23  *     [p.508 of _The Lord of the Rings_, III/vi: "The King of the Golden Hall"]
24  *
25  * ...the travellers perceived that the floor was paved with stones of many
26  * hues; branching runes and strange devices intertwined beneath their feet.
27  *
28  *     [p.512 of _The Lord of the Rings_, III/vi: "The King of the Golden Hall"]
29  */
30 
31 #include "EXTERN.h"
32 #define PERL_IN_UTF8_C
33 #include "perl.h"
34 #include "inline_invlist.c"
35 
36 #ifndef EBCDIC
37 /* Separate prototypes needed because in ASCII systems these are
38  * usually macros but they still are compiled as code, too. */
39 PERL_CALLCONV UV	Perl_utf8n_to_uvchr(pTHX_ const U8 *s, STRLEN curlen, STRLEN *retlen, U32 flags);
40 PERL_CALLCONV UV	Perl_valid_utf8_to_uvchr(pTHX_ const U8 *s, STRLEN *retlen);
41 PERL_CALLCONV U8*	Perl_uvchr_to_utf8(pTHX_ U8 *d, UV uv);
42 #endif
43 
44 static const char unees[] =
45     "Malformed UTF-8 character (unexpected end of string)";
46 
47 /*
48 =head1 Unicode Support
49 
50 This file contains various utility functions for manipulating UTF8-encoded
51 strings. For the uninitiated, this is a method of representing arbitrary
52 Unicode characters as a variable number of bytes, in such a way that
53 characters in the ASCII range are unmodified, and a zero byte never appears
54 within non-zero characters.
55 
56 =cut
57 */
58 
59 /*
60 =for apidoc is_ascii_string
61 
62 Returns true if the first C<len> bytes of the string C<s> are the same whether
63 or not the string is encoded in UTF-8 (or UTF-EBCDIC on EBCDIC machines).  That
64 is, if they are invariant.  On ASCII-ish machines, only ASCII characters
65 fit this definition, hence the function's name.
66 
67 If C<len> is 0, it will be calculated using C<strlen(s)>.
68 
69 See also L</is_utf8_string>(), L</is_utf8_string_loclen>(), and L</is_utf8_string_loc>().
70 
71 =cut
72 */
73 
74 bool
75 Perl_is_ascii_string(const U8 *s, STRLEN len)
76 {
77     const U8* const send = s + (len ? len : strlen((const char *)s));
78     const U8* x = s;
79 
80     PERL_ARGS_ASSERT_IS_ASCII_STRING;
81 
82     for (; x < send; ++x) {
83 	if (!UTF8_IS_INVARIANT(*x))
84 	    break;
85     }
86 
87     return x == send;
88 }
89 
90 /*
91 =for apidoc uvuni_to_utf8_flags
92 
93 Adds the UTF-8 representation of the Unicode code point C<uv> to the end
94 of the string C<d>; C<d> should have at least C<UTF8_MAXBYTES+1> free
95 bytes available. The return value is the pointer to the byte after the
96 end of the new character. In other words,
97 
98     d = uvuni_to_utf8_flags(d, uv, flags);
99 
100 or, in most cases,
101 
102     d = uvuni_to_utf8(d, uv);
103 
104 (which is equivalent to)
105 
106     d = uvuni_to_utf8_flags(d, uv, 0);
107 
108 This is the recommended Unicode-aware way of saying
109 
110     *(d++) = uv;
111 
112 where uv is a code point expressed in Latin-1 or above, not the platform's
113 native character set.  B<Almost all code should instead use L</uvchr_to_utf8>
114 or L</uvchr_to_utf8_flags>>.
115 
116 This function will convert to UTF-8 (and not warn) even code points that aren't
117 legal Unicode or are problematic, unless C<flags> contains one or more of the
118 following flags:
119 
120 If C<uv> is a Unicode surrogate code point and UNICODE_WARN_SURROGATE is set,
121 the function will raise a warning, provided UTF8 warnings are enabled.  If instead
122 UNICODE_DISALLOW_SURROGATE is set, the function will fail and return NULL.
123 If both flags are set, the function will both warn and return NULL.
124 
125 The UNICODE_WARN_NONCHAR and UNICODE_DISALLOW_NONCHAR flags correspondingly
126 affect how the function handles a Unicode non-character.  And likewise, the
127 UNICODE_WARN_SUPER and UNICODE_DISALLOW_SUPER flags, affect the handling of
128 code points that are
129 above the Unicode maximum of 0x10FFFF.  Code points above 0x7FFF_FFFF (which are
130 even less portable) can be warned and/or disallowed even if other above-Unicode
131 code points are accepted by the UNICODE_WARN_FE_FF and UNICODE_DISALLOW_FE_FF
132 flags.
133 
134 And finally, the flag UNICODE_WARN_ILLEGAL_INTERCHANGE selects all four of the
135 above WARN flags; and UNICODE_DISALLOW_ILLEGAL_INTERCHANGE selects all four
136 DISALLOW flags.
137 
138 
139 =cut
140 */
141 
142 U8 *
143 Perl_uvuni_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags)
144 {
145     PERL_ARGS_ASSERT_UVUNI_TO_UTF8_FLAGS;
146 
147     /* The first problematic code point is the first surrogate */
148     if (uv >= UNICODE_SURROGATE_FIRST
149         && ckWARN4_d(WARN_UTF8, WARN_SURROGATE, WARN_NON_UNICODE, WARN_NONCHAR))
150     {
151 	if (UNICODE_IS_SURROGATE(uv)) {
152 	    if (flags & UNICODE_WARN_SURROGATE) {
153 		Perl_ck_warner_d(aTHX_ packWARN(WARN_SURROGATE),
154 					    "UTF-16 surrogate U+%04"UVXf, uv);
155 	    }
156 	    if (flags & UNICODE_DISALLOW_SURROGATE) {
157 		return NULL;
158 	    }
159 	}
160 	else if (UNICODE_IS_SUPER(uv)) {
161 	    if (flags & UNICODE_WARN_SUPER
162 		|| (UNICODE_IS_FE_FF(uv) && (flags & UNICODE_WARN_FE_FF)))
163 	    {
164 		Perl_ck_warner_d(aTHX_ packWARN(WARN_NON_UNICODE),
165 			  "Code point 0x%04"UVXf" is not Unicode, may not be portable", uv);
166 	    }
167 	    if (flags & UNICODE_DISALLOW_SUPER
168 		|| (UNICODE_IS_FE_FF(uv) && (flags & UNICODE_DISALLOW_FE_FF)))
169 	    {
170 		return NULL;
171 	    }
172 	}
173 	else if (UNICODE_IS_NONCHAR(uv)) {
174 	    if (flags & UNICODE_WARN_NONCHAR) {
175 		Perl_ck_warner_d(aTHX_ packWARN(WARN_NONCHAR),
176 		 "Unicode non-character U+%04"UVXf" is illegal for open interchange",
177 		 uv);
178 	    }
179 	    if (flags & UNICODE_DISALLOW_NONCHAR) {
180 		return NULL;
181 	    }
182 	}
183     }
184     if (UNI_IS_INVARIANT(uv)) {
185 	*d++ = (U8)UTF_TO_NATIVE(uv);
186 	return d;
187     }
188 #if defined(EBCDIC)
189     else {
190 	STRLEN len  = UNISKIP(uv);
191 	U8 *p = d+len-1;
192 	while (p > d) {
193 	    *p-- = (U8)UTF_TO_NATIVE((uv & UTF_CONTINUATION_MASK) | UTF_CONTINUATION_MARK);
194 	    uv >>= UTF_ACCUMULATION_SHIFT;
195 	}
196 	*p = (U8)UTF_TO_NATIVE((uv & UTF_START_MASK(len)) | UTF_START_MARK(len));
197 	return d+len;
198     }
199 #else /* Non loop style */
200     if (uv < 0x800) {
201 	*d++ = (U8)(( uv >>  6)         | 0xc0);
202 	*d++ = (U8)(( uv        & 0x3f) | 0x80);
203 	return d;
204     }
205     if (uv < 0x10000) {
206 	*d++ = (U8)(( uv >> 12)         | 0xe0);
207 	*d++ = (U8)(((uv >>  6) & 0x3f) | 0x80);
208 	*d++ = (U8)(( uv        & 0x3f) | 0x80);
209 	return d;
210     }
211     if (uv < 0x200000) {
212 	*d++ = (U8)(( uv >> 18)         | 0xf0);
213 	*d++ = (U8)(((uv >> 12) & 0x3f) | 0x80);
214 	*d++ = (U8)(((uv >>  6) & 0x3f) | 0x80);
215 	*d++ = (U8)(( uv        & 0x3f) | 0x80);
216 	return d;
217     }
218     if (uv < 0x4000000) {
219 	*d++ = (U8)(( uv >> 24)         | 0xf8);
220 	*d++ = (U8)(((uv >> 18) & 0x3f) | 0x80);
221 	*d++ = (U8)(((uv >> 12) & 0x3f) | 0x80);
222 	*d++ = (U8)(((uv >>  6) & 0x3f) | 0x80);
223 	*d++ = (U8)(( uv        & 0x3f) | 0x80);
224 	return d;
225     }
226     if (uv < 0x80000000) {
227 	*d++ = (U8)(( uv >> 30)         | 0xfc);
228 	*d++ = (U8)(((uv >> 24) & 0x3f) | 0x80);
229 	*d++ = (U8)(((uv >> 18) & 0x3f) | 0x80);
230 	*d++ = (U8)(((uv >> 12) & 0x3f) | 0x80);
231 	*d++ = (U8)(((uv >>  6) & 0x3f) | 0x80);
232 	*d++ = (U8)(( uv        & 0x3f) | 0x80);
233 	return d;
234     }
235 #ifdef HAS_QUAD
236     if (uv < UTF8_QUAD_MAX)
237 #endif
238     {
239 	*d++ =                            0xfe;	/* Can't match U+FEFF! */
240 	*d++ = (U8)(((uv >> 30) & 0x3f) | 0x80);
241 	*d++ = (U8)(((uv >> 24) & 0x3f) | 0x80);
242 	*d++ = (U8)(((uv >> 18) & 0x3f) | 0x80);
243 	*d++ = (U8)(((uv >> 12) & 0x3f) | 0x80);
244 	*d++ = (U8)(((uv >>  6) & 0x3f) | 0x80);
245 	*d++ = (U8)(( uv        & 0x3f) | 0x80);
246 	return d;
247     }
248 #ifdef HAS_QUAD
249     {
250 	*d++ =                            0xff;		/* Can't match U+FFFE! */
251 	*d++ =                            0x80;		/* 6 Reserved bits */
252 	*d++ = (U8)(((uv >> 60) & 0x0f) | 0x80);	/* 2 Reserved bits */
253 	*d++ = (U8)(((uv >> 54) & 0x3f) | 0x80);
254 	*d++ = (U8)(((uv >> 48) & 0x3f) | 0x80);
255 	*d++ = (U8)(((uv >> 42) & 0x3f) | 0x80);
256 	*d++ = (U8)(((uv >> 36) & 0x3f) | 0x80);
257 	*d++ = (U8)(((uv >> 30) & 0x3f) | 0x80);
258 	*d++ = (U8)(((uv >> 24) & 0x3f) | 0x80);
259 	*d++ = (U8)(((uv >> 18) & 0x3f) | 0x80);
260 	*d++ = (U8)(((uv >> 12) & 0x3f) | 0x80);
261 	*d++ = (U8)(((uv >>  6) & 0x3f) | 0x80);
262 	*d++ = (U8)(( uv        & 0x3f) | 0x80);
263 	return d;
264     }
265 #endif
266 #endif /* Non loop style */
267 }
268 
269 /*
270 
271 Tests if the first C<len> bytes of string C<s> form a valid UTF-8
272 character.  Note that an INVARIANT (i.e. ASCII) character is a valid
273 UTF-8 character.  The number of bytes in the UTF-8 character
274 will be returned if it is valid, otherwise 0.
275 
276 This is the "slow" version as opposed to the "fast" version which is
277 the "unrolled" IS_UTF8_CHAR().  E.g. for t/uni/class.t the speed
278 difference is a factor of 2 to 3.  For lengths (UTF8SKIP(s)) of four
279 or less you should use the IS_UTF8_CHAR(), for lengths of five or more
280 you should use the _slow().  In practice this means that the _slow()
281 will be used very rarely, since the maximum Unicode code point (as of
282 Unicode 4.1) is U+10FFFF, which encodes in UTF-8 to four bytes.  Only
283 the "Perl extended UTF-8" (e.g, the infamous 'v-strings') will encode into
284 five bytes or more.
285 
286 =cut */
287 PERL_STATIC_INLINE STRLEN
288 S_is_utf8_char_slow(const U8 *s, const STRLEN len)
289 {
290     dTHX;   /* The function called below requires thread context */
291 
292     STRLEN actual_len;
293 
294     PERL_ARGS_ASSERT_IS_UTF8_CHAR_SLOW;
295 
296     utf8n_to_uvuni(s, len, &actual_len, UTF8_CHECK_ONLY);
297 
298     return (actual_len == (STRLEN) -1) ? 0 : actual_len;
299 }
300 
301 /*
302 =for apidoc is_utf8_char_buf
303 
304 Returns the number of bytes that comprise the first UTF-8 encoded character in
305 buffer C<buf>.  C<buf_end> should point to one position beyond the end of the
306 buffer.  0 is returned if C<buf> does not point to a complete, valid UTF-8
307 encoded character.
308 
309 Note that an INVARIANT character (i.e. ASCII on non-EBCDIC
310 machines) is a valid UTF-8 character.
311 
312 =cut */
313 
314 STRLEN
315 Perl_is_utf8_char_buf(const U8 *buf, const U8* buf_end)
316 {
317 
318     STRLEN len;
319 
320     PERL_ARGS_ASSERT_IS_UTF8_CHAR_BUF;
321 
322     if (buf_end <= buf) {
323 	return 0;
324     }
325 
326     len = buf_end - buf;
327     if (len > UTF8SKIP(buf)) {
328 	len = UTF8SKIP(buf);
329     }
330 
331 #ifdef IS_UTF8_CHAR
332     if (IS_UTF8_CHAR_FAST(len))
333         return IS_UTF8_CHAR(buf, len) ? len : 0;
334 #endif /* #ifdef IS_UTF8_CHAR */
335     return is_utf8_char_slow(buf, len);
336 }
337 
338 /*
339 =for apidoc is_utf8_char
340 
341 DEPRECATED!
342 
343 Tests if some arbitrary number of bytes begins in a valid UTF-8
344 character.  Note that an INVARIANT (i.e. ASCII on non-EBCDIC machines)
345 character is a valid UTF-8 character.  The actual number of bytes in the UTF-8
346 character will be returned if it is valid, otherwise 0.
347 
348 This function is deprecated due to the possibility that malformed input could
349 cause reading beyond the end of the input buffer.  Use L</is_utf8_char_buf>
350 instead.
351 
352 =cut */
353 
354 STRLEN
355 Perl_is_utf8_char(const U8 *s)
356 {
357     PERL_ARGS_ASSERT_IS_UTF8_CHAR;
358 
359     /* Assumes we have enough space, which is why this is deprecated */
360     return is_utf8_char_buf(s, s + UTF8SKIP(s));
361 }
362 
363 
364 /*
365 =for apidoc is_utf8_string
366 
367 Returns true if the first C<len> bytes of string C<s> form a valid
368 UTF-8 string, false otherwise.  If C<len> is 0, it will be calculated
369 using C<strlen(s)> (which means if you use this option, that C<s> has to have a
370 terminating NUL byte).  Note that all characters being ASCII constitute 'a
371 valid UTF-8 string'.
372 
373 See also L</is_ascii_string>(), L</is_utf8_string_loclen>(), and L</is_utf8_string_loc>().
374 
375 =cut
376 */
377 
378 bool
379 Perl_is_utf8_string(const U8 *s, STRLEN len)
380 {
381     const U8* const send = s + (len ? len : strlen((const char *)s));
382     const U8* x = s;
383 
384     PERL_ARGS_ASSERT_IS_UTF8_STRING;
385 
386     while (x < send) {
387 	 /* Inline the easy bits of is_utf8_char() here for speed... */
388 	 if (UTF8_IS_INVARIANT(*x)) {
389 	    x++;
390 	 }
391 	 else {
392 	      /* ... and call is_utf8_char() only if really needed. */
393 	     const STRLEN c = UTF8SKIP(x);
394 	     const U8* const next_char_ptr = x + c;
395 
396 	     if (next_char_ptr > send) {
397 		 return FALSE;
398 	     }
399 
400 	     if (IS_UTF8_CHAR_FAST(c)) {
401 	         if (!IS_UTF8_CHAR(x, c))
402 		     return FALSE;
403 	     }
404 	     else if (! is_utf8_char_slow(x, c)) {
405 		 return FALSE;
406 	     }
407 	     x = next_char_ptr;
408 	 }
409     }
410 
411     return TRUE;
412 }
413 
414 /*
415 Implemented as a macro in utf8.h
416 
417 =for apidoc is_utf8_string_loc
418 
419 Like L</is_utf8_string> but stores the location of the failure (in the
420 case of "utf8ness failure") or the location C<s>+C<len> (in the case of
421 "utf8ness success") in the C<ep>.
422 
423 See also L</is_utf8_string_loclen>() and L</is_utf8_string>().
424 
425 =for apidoc is_utf8_string_loclen
426 
427 Like L</is_utf8_string>() but stores the location of the failure (in the
428 case of "utf8ness failure") or the location C<s>+C<len> (in the case of
429 "utf8ness success") in the C<ep>, and the number of UTF-8
430 encoded characters in the C<el>.
431 
432 See also L</is_utf8_string_loc>() and L</is_utf8_string>().
433 
434 =cut
435 */
436 
437 bool
438 Perl_is_utf8_string_loclen(const U8 *s, STRLEN len, const U8 **ep, STRLEN *el)
439 {
440     const U8* const send = s + (len ? len : strlen((const char *)s));
441     const U8* x = s;
442     STRLEN c;
443     STRLEN outlen = 0;
444 
445     PERL_ARGS_ASSERT_IS_UTF8_STRING_LOCLEN;
446 
447     while (x < send) {
448 	 const U8* next_char_ptr;
449 
450 	 /* Inline the easy bits of is_utf8_char() here for speed... */
451 	 if (UTF8_IS_INVARIANT(*x))
452 	     next_char_ptr = x + 1;
453 	 else {
454 	     /* ... and call is_utf8_char() only if really needed. */
455 	     c = UTF8SKIP(x);
456 	     next_char_ptr = c + x;
457 	     if (next_char_ptr > send) {
458 		 goto out;
459 	     }
460 	     if (IS_UTF8_CHAR_FAST(c)) {
461 	         if (!IS_UTF8_CHAR(x, c))
462 		     c = 0;
463 	     } else
464 	         c = is_utf8_char_slow(x, c);
465 	     if (!c)
466 	         goto out;
467 	 }
468          x = next_char_ptr;
469 	 outlen++;
470     }
471 
472  out:
473     if (el)
474         *el = outlen;
475 
476     if (ep)
477         *ep = x;
478     return (x == send);
479 }
480 
481 /*
482 
483 =for apidoc utf8n_to_uvuni
484 
485 Bottom level UTF-8 decode routine.
486 Returns the code point value of the first character in the string C<s>,
487 which is assumed to be in UTF-8 (or UTF-EBCDIC) encoding, and no longer than
488 C<curlen> bytes; C<*retlen> (if C<retlen> isn't NULL) will be set to
489 the length, in bytes, of that character.
490 
491 The value of C<flags> determines the behavior when C<s> does not point to a
492 well-formed UTF-8 character.  If C<flags> is 0, when a malformation is found,
493 zero is returned and C<*retlen> is set so that (S<C<s> + C<*retlen>>) is the
494 next possible position in C<s> that could begin a non-malformed character.
495 Also, if UTF-8 warnings haven't been lexically disabled, a warning is raised.
496 
497 Various ALLOW flags can be set in C<flags> to allow (and not warn on)
498 individual types of malformations, such as the sequence being overlong (that
499 is, when there is a shorter sequence that can express the same code point;
500 overlong sequences are expressly forbidden in the UTF-8 standard due to
501 potential security issues).  Another malformation example is the first byte of
502 a character not being a legal first byte.  See F<utf8.h> for the list of such
503 flags.  For allowed 0 length strings, this function returns 0; for allowed
504 overlong sequences, the computed code point is returned; for all other allowed
505 malformations, the Unicode REPLACEMENT CHARACTER is returned, as these have no
506 determinable reasonable value.
507 
508 The UTF8_CHECK_ONLY flag overrides the behavior when a non-allowed (by other
509 flags) malformation is found.  If this flag is set, the routine assumes that
510 the caller will raise a warning, and this function will silently just set
511 C<retlen> to C<-1> (cast to C<STRLEN>) and return zero.
512 
513 Note that this API requires disambiguation between successful decoding a NUL
514 character, and an error return (unless the UTF8_CHECK_ONLY flag is set), as
515 in both cases, 0 is returned.  To disambiguate, upon a zero return, see if the
516 first byte of C<s> is 0 as well.  If so, the input was a NUL; if not, the input
517 had an error.
518 
519 Certain code points are considered problematic.  These are Unicode surrogates,
520 Unicode non-characters, and code points above the Unicode maximum of 0x10FFFF.
521 By default these are considered regular code points, but certain situations
522 warrant special handling for them.  If C<flags> contains
523 UTF8_DISALLOW_ILLEGAL_INTERCHANGE, all three classes are treated as
524 malformations and handled as such.  The flags UTF8_DISALLOW_SURROGATE,
525 UTF8_DISALLOW_NONCHAR, and UTF8_DISALLOW_SUPER (meaning above the legal Unicode
526 maximum) can be set to disallow these categories individually.
527 
528 The flags UTF8_WARN_ILLEGAL_INTERCHANGE, UTF8_WARN_SURROGATE,
529 UTF8_WARN_NONCHAR, and UTF8_WARN_SUPER will cause warning messages to be raised
530 for their respective categories, but otherwise the code points are considered
531 valid (not malformations).  To get a category to both be treated as a
532 malformation and raise a warning, specify both the WARN and DISALLOW flags.
533 (But note that warnings are not raised if lexically disabled nor if
534 UTF8_CHECK_ONLY is also specified.)
535 
536 Very large code points (above 0x7FFF_FFFF) are considered more problematic than
537 the others that are above the Unicode legal maximum.  There are several
538 reasons: they requre at least 32 bits to represent them on ASCII platforms, are
539 not representable at all on EBCDIC platforms, and the original UTF-8
540 specification never went above this number (the current 0x10FFFF limit was
541 imposed later).  (The smaller ones, those that fit into 32 bits, are
542 representable by a UV on ASCII platforms, but not by an IV, which means that
543 the number of operations that can be performed on them is quite restricted.)
544 The UTF-8 encoding on ASCII platforms for these large code points begins with a
545 byte containing 0xFE or 0xFF.  The UTF8_DISALLOW_FE_FF flag will cause them to
546 be treated as malformations, while allowing smaller above-Unicode code points.
547 (Of course UTF8_DISALLOW_SUPER will treat all above-Unicode code points,
548 including these, as malformations.) Similarly, UTF8_WARN_FE_FF acts just like
549 the other WARN flags, but applies just to these code points.
550 
551 All other code points corresponding to Unicode characters, including private
552 use and those yet to be assigned, are never considered malformed and never
553 warn.
554 
555 Most code should use L</utf8_to_uvchr_buf>() rather than call this directly.
556 
557 =cut
558 */
559 
560 UV
561 Perl_utf8n_to_uvuni(pTHX_ const U8 *s, STRLEN curlen, STRLEN *retlen, U32 flags)
562 {
563     dVAR;
564     const U8 * const s0 = s;
565     U8 overflow_byte = '\0';	/* Save byte in case of overflow */
566     U8 * send;
567     UV uv = *s;
568     STRLEN expectlen;
569     SV* sv = NULL;
570     UV outlier_ret = 0;	/* return value when input is in error or problematic
571 			 */
572     UV pack_warn = 0;	/* Save result of packWARN() for later */
573     bool unexpected_non_continuation = FALSE;
574     bool overflowed = FALSE;
575     bool do_overlong_test = TRUE;   /* May have to skip this test */
576 
577     const char* const malformed_text = "Malformed UTF-8 character";
578 
579     PERL_ARGS_ASSERT_UTF8N_TO_UVUNI;
580 
581     /* The order of malformation tests here is important.  We should consume as
582      * few bytes as possible in order to not skip any valid character.  This is
583      * required by the Unicode Standard (section 3.9 of Unicode 6.0); see also
584      * http://unicode.org/reports/tr36 for more discussion as to why.  For
585      * example, once we've done a UTF8SKIP, we can tell the expected number of
586      * bytes, and could fail right off the bat if the input parameters indicate
587      * that there are too few available.  But it could be that just that first
588      * byte is garbled, and the intended character occupies fewer bytes.  If we
589      * blindly assumed that the first byte is correct, and skipped based on
590      * that number, we could skip over a valid input character.  So instead, we
591      * always examine the sequence byte-by-byte.
592      *
593      * We also should not consume too few bytes, otherwise someone could inject
594      * things.  For example, an input could be deliberately designed to
595      * overflow, and if this code bailed out immediately upon discovering that,
596      * returning to the caller *retlen pointing to the very next byte (one
597      * which is actually part of of the overflowing sequence), that could look
598      * legitimate to the caller, which could discard the initial partial
599      * sequence and process the rest, inappropriately */
600 
601     /* Zero length strings, if allowed, of necessity are zero */
602     if (UNLIKELY(curlen == 0)) {
603 	if (retlen) {
604 	    *retlen = 0;
605 	}
606 
607 	if (flags & UTF8_ALLOW_EMPTY) {
608 	    return 0;
609 	}
610 	if (! (flags & UTF8_CHECK_ONLY)) {
611 	    sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s (empty string)", malformed_text));
612 	}
613 	goto malformed;
614     }
615 
616     expectlen = UTF8SKIP(s);
617 
618     /* A well-formed UTF-8 character, as the vast majority of calls to this
619      * function will be for, has this expected length.  For efficiency, set
620      * things up here to return it.  It will be overriden only in those rare
621      * cases where a malformation is found */
622     if (retlen) {
623 	*retlen = expectlen;
624     }
625 
626     /* An invariant is trivially well-formed */
627     if (UTF8_IS_INVARIANT(uv)) {
628 	return (UV) (NATIVE_TO_UTF(*s));
629     }
630 
631     /* A continuation character can't start a valid sequence */
632     if (UNLIKELY(UTF8_IS_CONTINUATION(uv))) {
633 	if (flags & UTF8_ALLOW_CONTINUATION) {
634 	    if (retlen) {
635 		*retlen = 1;
636 	    }
637 	    return UNICODE_REPLACEMENT;
638 	}
639 
640 	if (! (flags & UTF8_CHECK_ONLY)) {
641 	    sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s (unexpected continuation byte 0x%02x, with no preceding start byte)", malformed_text, *s0));
642 	}
643 	curlen = 1;
644 	goto malformed;
645     }
646 
647 #ifdef EBCDIC
648     uv = NATIVE_TO_UTF(uv);
649 #endif
650 
651     /* Here is not a continuation byte, nor an invariant.  The only thing left
652      * is a start byte (possibly for an overlong) */
653 
654     /* Remove the leading bits that indicate the number of bytes in the
655      * character's whole UTF-8 sequence, leaving just the bits that are part of
656      * the value */
657     uv &= UTF_START_MASK(expectlen);
658 
659     /* Now, loop through the remaining bytes in the character's sequence,
660      * accumulating each into the working value as we go.  Be sure to not look
661      * past the end of the input string */
662     send =  (U8*) s0 + ((expectlen <= curlen) ? expectlen : curlen);
663 
664     for (s = s0 + 1; s < send; s++) {
665 	if (LIKELY(UTF8_IS_CONTINUATION(*s))) {
666 #ifndef EBCDIC	/* Can't overflow in EBCDIC */
667 	    if (uv & UTF_ACCUMULATION_OVERFLOW_MASK) {
668 
669 		/* The original implementors viewed this malformation as more
670 		 * serious than the others (though I, khw, don't understand
671 		 * why, since other malformations also give very very wrong
672 		 * results), so there is no way to turn off checking for it.
673 		 * Set a flag, but keep going in the loop, so that we absorb
674 		 * the rest of the bytes that comprise the character. */
675 		overflowed = TRUE;
676 		overflow_byte = *s; /* Save for warning message's use */
677 	    }
678 #endif
679 	    uv = UTF8_ACCUMULATE(uv, *s);
680 	}
681 	else {
682 	    /* Here, found a non-continuation before processing all expected
683 	     * bytes.  This byte begins a new character, so quit, even if
684 	     * allowing this malformation. */
685 	    unexpected_non_continuation = TRUE;
686 	    break;
687 	}
688     } /* End of loop through the character's bytes */
689 
690     /* Save how many bytes were actually in the character */
691     curlen = s - s0;
692 
693     /* The loop above finds two types of malformations: non-continuation and/or
694      * overflow.  The non-continuation malformation is really a too-short
695      * malformation, as it means that the current character ended before it was
696      * expected to (being terminated prematurely by the beginning of the next
697      * character, whereas in the too-short malformation there just are too few
698      * bytes available to hold the character.  In both cases, the check below
699      * that we have found the expected number of bytes would fail if executed.)
700      * Thus the non-continuation malformation is really unnecessary, being a
701      * subset of the too-short malformation.  But there may be existing
702      * applications that are expecting the non-continuation type, so we retain
703      * it, and return it in preference to the too-short malformation.  (If this
704      * code were being written from scratch, the two types might be collapsed
705      * into one.)  I, khw, am also giving priority to returning the
706      * non-continuation and too-short malformations over overflow when multiple
707      * ones are present.  I don't know of any real reason to prefer one over
708      * the other, except that it seems to me that multiple-byte errors trumps
709      * errors from a single byte */
710     if (UNLIKELY(unexpected_non_continuation)) {
711 	if (!(flags & UTF8_ALLOW_NON_CONTINUATION)) {
712 	    if (! (flags & UTF8_CHECK_ONLY)) {
713 		if (curlen == 1) {
714 		    sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s (unexpected non-continuation byte 0x%02x, immediately after start byte 0x%02x)", malformed_text, *s, *s0));
715 		}
716 		else {
717 		    sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s (unexpected non-continuation byte 0x%02x, %d bytes after start byte 0x%02x, expected %d bytes)", malformed_text, *s, (int) curlen, *s0, (int)expectlen));
718 		}
719 	    }
720 	    goto malformed;
721 	}
722 	uv = UNICODE_REPLACEMENT;
723 
724 	/* Skip testing for overlongs, as the REPLACEMENT may not be the same
725 	 * as what the original expectations were. */
726 	do_overlong_test = FALSE;
727 	if (retlen) {
728 	    *retlen = curlen;
729 	}
730     }
731     else if (UNLIKELY(curlen < expectlen)) {
732 	if (! (flags & UTF8_ALLOW_SHORT)) {
733 	    if (! (flags & UTF8_CHECK_ONLY)) {
734 		sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s (%d byte%s, need %d, after start byte 0x%02x)", malformed_text, (int)curlen, curlen == 1 ? "" : "s", (int)expectlen, *s0));
735 	    }
736 	    goto malformed;
737 	}
738 	uv = UNICODE_REPLACEMENT;
739 	do_overlong_test = FALSE;
740 	if (retlen) {
741 	    *retlen = curlen;
742 	}
743     }
744 
745 #ifndef EBCDIC	/* EBCDIC allows FE, FF, can't overflow */
746     if ((*s0 & 0xFE) == 0xFE	/* matches both FE, FF */
747 	&& (flags & (UTF8_WARN_FE_FF|UTF8_DISALLOW_FE_FF)))
748     {
749 	/* By adding UTF8_CHECK_ONLY to the test, we avoid unnecessary
750 	 * generation of the sv, since no warnings are raised under CHECK */
751 	if ((flags & (UTF8_WARN_FE_FF|UTF8_CHECK_ONLY)) == UTF8_WARN_FE_FF
752 	    && ckWARN_d(WARN_UTF8))
753 	{
754 	    /* This message is deliberately not of the same syntax as the other
755 	     * messages for malformations, for backwards compatibility in the
756 	     * unlikely event that code is relying on its precise earlier text
757 	     */
758 	    sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s Code point beginning with byte 0x%02X is not Unicode, and not portable", malformed_text, *s0));
759 	    pack_warn = packWARN(WARN_UTF8);
760 	}
761 	if (flags & UTF8_DISALLOW_FE_FF) {
762 	    goto malformed;
763 	}
764     }
765     if (UNLIKELY(overflowed)) {
766 
767 	/* If the first byte is FF, it will overflow a 32-bit word.  If the
768 	 * first byte is FE, it will overflow a signed 32-bit word.  The
769 	 * above preserves backward compatibility, since its message was used
770 	 * in earlier versions of this code in preference to overflow */
771 	sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s (overflow at byte 0x%02x, after start byte 0x%02x)", malformed_text, overflow_byte, *s0));
772 	goto malformed;
773     }
774 #endif
775 
776     if (do_overlong_test
777 	&& expectlen > (STRLEN)UNISKIP(uv)
778 	&& ! (flags & UTF8_ALLOW_LONG))
779     {
780 	/* The overlong malformation has lower precedence than the others.
781 	 * Note that if this malformation is allowed, we return the actual
782 	 * value, instead of the replacement character.  This is because this
783 	 * value is actually well-defined. */
784 	if (! (flags & UTF8_CHECK_ONLY)) {
785 	    sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s (%d byte%s, need %d, after start byte 0x%02x)", malformed_text, (int)expectlen, expectlen == 1 ? "": "s", UNISKIP(uv), *s0));
786 	}
787 	goto malformed;
788     }
789 
790     /* Here, the input is considered to be well-formed , but could be a
791      * problematic code point that is not allowed by the input parameters. */
792     if (uv >= UNICODE_SURROGATE_FIRST /* isn't problematic if < this */
793 	&& (flags & (UTF8_DISALLOW_ILLEGAL_INTERCHANGE
794 		     |UTF8_WARN_ILLEGAL_INTERCHANGE)))
795     {
796 	if (UNICODE_IS_SURROGATE(uv)) {
797 	    if ((flags & (UTF8_WARN_SURROGATE|UTF8_CHECK_ONLY)) == UTF8_WARN_SURROGATE
798 		&& ckWARN2_d(WARN_UTF8, WARN_SURROGATE))
799 	    {
800 		sv = sv_2mortal(Perl_newSVpvf(aTHX_ "UTF-16 surrogate U+%04"UVXf"", uv));
801 		pack_warn = packWARN2(WARN_UTF8, WARN_SURROGATE);
802 	    }
803 	    if (flags & UTF8_DISALLOW_SURROGATE) {
804 		goto disallowed;
805 	    }
806 	}
807 	else if ((uv > PERL_UNICODE_MAX)) {
808 	    if ((flags & (UTF8_WARN_SUPER|UTF8_CHECK_ONLY)) == UTF8_WARN_SUPER
809 		&& ckWARN2_d(WARN_UTF8, WARN_NON_UNICODE))
810 	    {
811 		sv = sv_2mortal(Perl_newSVpvf(aTHX_ "Code point 0x%04"UVXf" is not Unicode, may not be portable", uv));
812 		pack_warn = packWARN2(WARN_UTF8, WARN_NON_UNICODE);
813 	    }
814 	    if (flags & UTF8_DISALLOW_SUPER) {
815 		goto disallowed;
816 	    }
817 	}
818 	else if (UNICODE_IS_NONCHAR(uv)) {
819 	    if ((flags & (UTF8_WARN_NONCHAR|UTF8_CHECK_ONLY)) == UTF8_WARN_NONCHAR
820 		&& ckWARN2_d(WARN_UTF8, WARN_NONCHAR))
821 	    {
822 		sv = sv_2mortal(Perl_newSVpvf(aTHX_ "Unicode non-character U+%04"UVXf" is illegal for open interchange", uv));
823 		pack_warn = packWARN2(WARN_UTF8, WARN_NONCHAR);
824 	    }
825 	    if (flags & UTF8_DISALLOW_NONCHAR) {
826 		goto disallowed;
827 	    }
828 	}
829 
830 	if (sv) {
831 	    outlier_ret = uv;
832 	    goto do_warn;
833 	}
834 
835 	/* Here, this is not considered a malformed character, so drop through
836 	 * to return it */
837     }
838 
839     return uv;
840 
841     /* There are three cases which get to beyond this point.  In all 3 cases:
842      * <sv>	    if not null points to a string to print as a warning.
843      * <curlen>	    is what <*retlen> should be set to if UTF8_CHECK_ONLY isn't
844      *		    set.
845      * <outlier_ret> is what return value to use if UTF8_CHECK_ONLY isn't set.
846      *		    This is done by initializing it to 0, and changing it only
847      *		    for case 1).
848      * The 3 cases are:
849      * 1)   The input is valid but problematic, and to be warned about.  The
850      *	    return value is the resultant code point; <*retlen> is set to
851      *	    <curlen>, the number of bytes that comprise the code point.
852      *	    <pack_warn> contains the result of packWARN() for the warning
853      *	    types.  The entry point for this case is the label <do_warn>;
854      * 2)   The input is a valid code point but disallowed by the parameters to
855      *	    this function.  The return value is 0.  If UTF8_CHECK_ONLY is set,
856      *	    <*relen> is -1; otherwise it is <curlen>, the number of bytes that
857      *	    comprise the code point.  <pack_warn> contains the result of
858      *	    packWARN() for the warning types.  The entry point for this case is
859      *	    the label <disallowed>.
860      * 3)   The input is malformed.  The return value is 0.  If UTF8_CHECK_ONLY
861      *	    is set, <*relen> is -1; otherwise it is <curlen>, the number of
862      *	    bytes that comprise the malformation.  All such malformations are
863      *	    assumed to be warning type <utf8>.  The entry point for this case
864      *	    is the label <malformed>.
865      */
866 
867 malformed:
868 
869     if (sv && ckWARN_d(WARN_UTF8)) {
870 	pack_warn = packWARN(WARN_UTF8);
871     }
872 
873 disallowed:
874 
875     if (flags & UTF8_CHECK_ONLY) {
876 	if (retlen)
877 	    *retlen = ((STRLEN) -1);
878 	return 0;
879     }
880 
881 do_warn:
882 
883     if (pack_warn) {	/* <pack_warn> was initialized to 0, and changed only
884 			   if warnings are to be raised. */
885 	const char * const string = SvPVX_const(sv);
886 
887 	if (PL_op)
888 	    Perl_warner(aTHX_ pack_warn, "%s in %s", string,  OP_DESC(PL_op));
889 	else
890 	    Perl_warner(aTHX_ pack_warn, "%s", string);
891     }
892 
893     if (retlen) {
894 	*retlen = curlen;
895     }
896 
897     return outlier_ret;
898 }
899 
900 /*
901 =for apidoc utf8_to_uvchr_buf
902 
903 Returns the native code point of the first character in the string C<s> which
904 is assumed to be in UTF-8 encoding; C<send> points to 1 beyond the end of C<s>.
905 C<*retlen> will be set to the length, in bytes, of that character.
906 
907 If C<s> does not point to a well-formed UTF-8 character and UTF8 warnings are
908 enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't
909 NULL) to -1.  If those warnings are off, the computed value, if well-defined
910 (or the Unicode REPLACEMENT CHARACTER if not), is silently returned, and
911 C<*retlen> is set (if C<retlen> isn't NULL) so that (S<C<s> + C<*retlen>>) is
912 the next possible position in C<s> that could begin a non-malformed character.
913 See L</utf8n_to_uvuni> for details on when the REPLACEMENT CHARACTER is
914 returned.
915 
916 =cut
917 */
918 
919 
920 UV
921 Perl_utf8_to_uvchr_buf(pTHX_ const U8 *s, const U8 *send, STRLEN *retlen)
922 {
923     PERL_ARGS_ASSERT_UTF8_TO_UVCHR_BUF;
924 
925     assert(s < send);
926 
927     return utf8n_to_uvchr(s, send - s, retlen,
928 			  ckWARN_d(WARN_UTF8) ? 0 : UTF8_ALLOW_ANY);
929 }
930 
931 /* Like L</utf8_to_uvchr_buf>(), but should only be called when it is known that
932  * there are no malformations in the input UTF-8 string C<s>.  surrogates,
933  * non-character code points, and non-Unicode code points are allowed.  A macro
934  * in utf8.h is used to normally avoid this function wrapper */
935 
936 UV
937 Perl_valid_utf8_to_uvchr(pTHX_ const U8 *s, STRLEN *retlen)
938 {
939     const UV uv = valid_utf8_to_uvuni(s, retlen);
940 
941     PERL_ARGS_ASSERT_VALID_UTF8_TO_UVCHR;
942 
943     return UNI_TO_NATIVE(uv);
944 }
945 
946 /*
947 =for apidoc utf8_to_uvchr
948 
949 DEPRECATED!
950 
951 Returns the native code point of the first character in the string C<s>
952 which is assumed to be in UTF-8 encoding; C<retlen> will be set to the
953 length, in bytes, of that character.
954 
955 Some, but not all, UTF-8 malformations are detected, and in fact, some
956 malformed input could cause reading beyond the end of the input buffer, which
957 is why this function is deprecated.  Use L</utf8_to_uvchr_buf> instead.
958 
959 If C<s> points to one of the detected malformations, and UTF8 warnings are
960 enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't
961 NULL) to -1.  If those warnings are off, the computed value if well-defined (or
962 the Unicode REPLACEMENT CHARACTER, if not) is silently returned, and C<*retlen>
963 is set (if C<retlen> isn't NULL) so that (S<C<s> + C<*retlen>>) is the
964 next possible position in C<s> that could begin a non-malformed character.
965 See L</utf8n_to_uvuni> for details on when the REPLACEMENT CHARACTER is returned.
966 
967 =cut
968 */
969 
970 UV
971 Perl_utf8_to_uvchr(pTHX_ const U8 *s, STRLEN *retlen)
972 {
973     PERL_ARGS_ASSERT_UTF8_TO_UVCHR;
974 
975     return utf8_to_uvchr_buf(s, s + UTF8_MAXBYTES, retlen);
976 }
977 
978 /*
979 =for apidoc utf8_to_uvuni_buf
980 
981 Returns the Unicode code point of the first character in the string C<s> which
982 is assumed to be in UTF-8 encoding; C<send> points to 1 beyond the end of C<s>.
983 C<retlen> will be set to the length, in bytes, of that character.
984 
985 This function should only be used when the returned UV is considered
986 an index into the Unicode semantic tables (e.g. swashes).
987 
988 If C<s> does not point to a well-formed UTF-8 character and UTF8 warnings are
989 enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't
990 NULL) to -1.  If those warnings are off, the computed value if well-defined (or
991 the Unicode REPLACEMENT CHARACTER, if not) is silently returned, and C<*retlen>
992 is set (if C<retlen> isn't NULL) so that (S<C<s> + C<*retlen>>) is the
993 next possible position in C<s> that could begin a non-malformed character.
994 See L</utf8n_to_uvuni> for details on when the REPLACEMENT CHARACTER is returned.
995 
996 =cut
997 */
998 
999 UV
1000 Perl_utf8_to_uvuni_buf(pTHX_ const U8 *s, const U8 *send, STRLEN *retlen)
1001 {
1002     PERL_ARGS_ASSERT_UTF8_TO_UVUNI_BUF;
1003 
1004     assert(send > s);
1005 
1006     /* Call the low level routine asking for checks */
1007     return Perl_utf8n_to_uvuni(aTHX_ s, send -s, retlen,
1008 			       ckWARN_d(WARN_UTF8) ? 0 : UTF8_ALLOW_ANY);
1009 }
1010 
1011 /* Like L</utf8_to_uvuni_buf>(), but should only be called when it is known that
1012  * there are no malformations in the input UTF-8 string C<s>.  Surrogates,
1013  * non-character code points, and non-Unicode code points are allowed */
1014 
1015 UV
1016 Perl_valid_utf8_to_uvuni(pTHX_ const U8 *s, STRLEN *retlen)
1017 {
1018     UV expectlen = UTF8SKIP(s);
1019     const U8* send = s + expectlen;
1020     UV uv = NATIVE_TO_UTF(*s);
1021 
1022     PERL_ARGS_ASSERT_VALID_UTF8_TO_UVUNI;
1023 
1024     if (retlen) {
1025 	*retlen = expectlen;
1026     }
1027 
1028     /* An invariant is trivially returned */
1029     if (expectlen == 1) {
1030 	return uv;
1031     }
1032 
1033     /* Remove the leading bits that indicate the number of bytes, leaving just
1034      * the bits that are part of the value */
1035     uv &= UTF_START_MASK(expectlen);
1036 
1037     /* Now, loop through the remaining bytes, accumulating each into the
1038      * working total as we go.  (I khw tried unrolling the loop for up to 4
1039      * bytes, but there was no performance improvement) */
1040     for (++s; s < send; s++) {
1041 	uv = UTF8_ACCUMULATE(uv, *s);
1042     }
1043 
1044     return uv;
1045 }
1046 
1047 /*
1048 =for apidoc utf8_to_uvuni
1049 
1050 DEPRECATED!
1051 
1052 Returns the Unicode code point of the first character in the string C<s>
1053 which is assumed to be in UTF-8 encoding; C<retlen> will be set to the
1054 length, in bytes, of that character.
1055 
1056 This function should only be used when the returned UV is considered
1057 an index into the Unicode semantic tables (e.g. swashes).
1058 
1059 Some, but not all, UTF-8 malformations are detected, and in fact, some
1060 malformed input could cause reading beyond the end of the input buffer, which
1061 is why this function is deprecated.  Use L</utf8_to_uvuni_buf> instead.
1062 
1063 If C<s> points to one of the detected malformations, and UTF8 warnings are
1064 enabled, zero is returned and C<*retlen> is set (if C<retlen> doesn't point to
1065 NULL) to -1.  If those warnings are off, the computed value if well-defined (or
1066 the Unicode REPLACEMENT CHARACTER, if not) is silently returned, and C<*retlen>
1067 is set (if C<retlen> isn't NULL) so that (S<C<s> + C<*retlen>>) is the
1068 next possible position in C<s> that could begin a non-malformed character.
1069 See L</utf8n_to_uvuni> for details on when the REPLACEMENT CHARACTER is returned.
1070 
1071 =cut
1072 */
1073 
1074 UV
1075 Perl_utf8_to_uvuni(pTHX_ const U8 *s, STRLEN *retlen)
1076 {
1077     PERL_ARGS_ASSERT_UTF8_TO_UVUNI;
1078 
1079     return valid_utf8_to_uvuni(s, retlen);
1080 }
1081 
1082 /*
1083 =for apidoc utf8_length
1084 
1085 Return the length of the UTF-8 char encoded string C<s> in characters.
1086 Stops at C<e> (inclusive).  If C<e E<lt> s> or if the scan would end
1087 up past C<e>, croaks.
1088 
1089 =cut
1090 */
1091 
1092 STRLEN
1093 Perl_utf8_length(pTHX_ const U8 *s, const U8 *e)
1094 {
1095     dVAR;
1096     STRLEN len = 0;
1097 
1098     PERL_ARGS_ASSERT_UTF8_LENGTH;
1099 
1100     /* Note: cannot use UTF8_IS_...() too eagerly here since e.g.
1101      * the bitops (especially ~) can create illegal UTF-8.
1102      * In other words: in Perl UTF-8 is not just for Unicode. */
1103 
1104     if (e < s)
1105 	goto warn_and_return;
1106     while (s < e) {
1107         s += UTF8SKIP(s);
1108 	len++;
1109     }
1110 
1111     if (e != s) {
1112 	len--;
1113         warn_and_return:
1114 	if (PL_op)
1115 	    Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
1116 			     "%s in %s", unees, OP_DESC(PL_op));
1117 	else
1118 	    Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8), "%s", unees);
1119     }
1120 
1121     return len;
1122 }
1123 
1124 /*
1125 =for apidoc utf8_distance
1126 
1127 Returns the number of UTF-8 characters between the UTF-8 pointers C<a>
1128 and C<b>.
1129 
1130 WARNING: use only if you *know* that the pointers point inside the
1131 same UTF-8 buffer.
1132 
1133 =cut
1134 */
1135 
1136 IV
1137 Perl_utf8_distance(pTHX_ const U8 *a, const U8 *b)
1138 {
1139     PERL_ARGS_ASSERT_UTF8_DISTANCE;
1140 
1141     return (a < b) ? -1 * (IV) utf8_length(a, b) : (IV) utf8_length(b, a);
1142 }
1143 
1144 /*
1145 =for apidoc utf8_hop
1146 
1147 Return the UTF-8 pointer C<s> displaced by C<off> characters, either
1148 forward or backward.
1149 
1150 WARNING: do not use the following unless you *know* C<off> is within
1151 the UTF-8 data pointed to by C<s> *and* that on entry C<s> is aligned
1152 on the first byte of character or just after the last byte of a character.
1153 
1154 =cut
1155 */
1156 
1157 U8 *
1158 Perl_utf8_hop(pTHX_ const U8 *s, I32 off)
1159 {
1160     PERL_ARGS_ASSERT_UTF8_HOP;
1161 
1162     PERL_UNUSED_CONTEXT;
1163     /* Note: cannot use UTF8_IS_...() too eagerly here since e.g
1164      * the bitops (especially ~) can create illegal UTF-8.
1165      * In other words: in Perl UTF-8 is not just for Unicode. */
1166 
1167     if (off >= 0) {
1168 	while (off--)
1169 	    s += UTF8SKIP(s);
1170     }
1171     else {
1172 	while (off++) {
1173 	    s--;
1174 	    while (UTF8_IS_CONTINUATION(*s))
1175 		s--;
1176 	}
1177     }
1178     return (U8 *)s;
1179 }
1180 
1181 /*
1182 =for apidoc bytes_cmp_utf8
1183 
1184 Compares the sequence of characters (stored as octets) in C<b>, C<blen> with the
1185 sequence of characters (stored as UTF-8) in C<u>, C<ulen>. Returns 0 if they are
1186 equal, -1 or -2 if the first string is less than the second string, +1 or +2
1187 if the first string is greater than the second string.
1188 
1189 -1 or +1 is returned if the shorter string was identical to the start of the
1190 longer string. -2 or +2 is returned if the was a difference between characters
1191 within the strings.
1192 
1193 =cut
1194 */
1195 
1196 int
1197 Perl_bytes_cmp_utf8(pTHX_ const U8 *b, STRLEN blen, const U8 *u, STRLEN ulen)
1198 {
1199     const U8 *const bend = b + blen;
1200     const U8 *const uend = u + ulen;
1201 
1202     PERL_ARGS_ASSERT_BYTES_CMP_UTF8;
1203 
1204     PERL_UNUSED_CONTEXT;
1205 
1206     while (b < bend && u < uend) {
1207         U8 c = *u++;
1208 	if (!UTF8_IS_INVARIANT(c)) {
1209 	    if (UTF8_IS_DOWNGRADEABLE_START(c)) {
1210 		if (u < uend) {
1211 		    U8 c1 = *u++;
1212 		    if (UTF8_IS_CONTINUATION(c1)) {
1213 			c = UNI_TO_NATIVE(TWO_BYTE_UTF8_TO_UNI(c, c1));
1214 		    } else {
1215 			Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
1216 					 "Malformed UTF-8 character "
1217 					 "(unexpected non-continuation byte 0x%02x"
1218 					 ", immediately after start byte 0x%02x)"
1219 					 /* Dear diag.t, it's in the pod.  */
1220 					 "%s%s", c1, c,
1221 					 PL_op ? " in " : "",
1222 					 PL_op ? OP_DESC(PL_op) : "");
1223 			return -2;
1224 		    }
1225 		} else {
1226 		    if (PL_op)
1227 			Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
1228 					 "%s in %s", unees, OP_DESC(PL_op));
1229 		    else
1230 			Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8), "%s", unees);
1231 		    return -2; /* Really want to return undef :-)  */
1232 		}
1233 	    } else {
1234 		return -2;
1235 	    }
1236 	}
1237 	if (*b != c) {
1238 	    return *b < c ? -2 : +2;
1239 	}
1240 	++b;
1241     }
1242 
1243     if (b == bend && u == uend)
1244 	return 0;
1245 
1246     return b < bend ? +1 : -1;
1247 }
1248 
1249 /*
1250 =for apidoc utf8_to_bytes
1251 
1252 Converts a string C<s> of length C<len> from UTF-8 into native byte encoding.
1253 Unlike L</bytes_to_utf8>, this over-writes the original string, and
1254 updates C<len> to contain the new length.
1255 Returns zero on failure, setting C<len> to -1.
1256 
1257 If you need a copy of the string, see L</bytes_from_utf8>.
1258 
1259 =cut
1260 */
1261 
1262 U8 *
1263 Perl_utf8_to_bytes(pTHX_ U8 *s, STRLEN *len)
1264 {
1265     U8 * const save = s;
1266     U8 * const send = s + *len;
1267     U8 *d;
1268 
1269     PERL_ARGS_ASSERT_UTF8_TO_BYTES;
1270 
1271     /* ensure valid UTF-8 and chars < 256 before updating string */
1272     while (s < send) {
1273         U8 c = *s++;
1274 
1275         if (!UTF8_IS_INVARIANT(c) &&
1276             (!UTF8_IS_DOWNGRADEABLE_START(c) || (s >= send)
1277 	     || !(c = *s++) || !UTF8_IS_CONTINUATION(c))) {
1278             *len = ((STRLEN) -1);
1279             return 0;
1280         }
1281     }
1282 
1283     d = s = save;
1284     while (s < send) {
1285         STRLEN ulen;
1286         *d++ = (U8)utf8_to_uvchr_buf(s, send, &ulen);
1287         s += ulen;
1288     }
1289     *d = '\0';
1290     *len = d - save;
1291     return save;
1292 }
1293 
1294 /*
1295 =for apidoc bytes_from_utf8
1296 
1297 Converts a string C<s> of length C<len> from UTF-8 into native byte encoding.
1298 Unlike L</utf8_to_bytes> but like L</bytes_to_utf8>, returns a pointer to
1299 the newly-created string, and updates C<len> to contain the new
1300 length.  Returns the original string if no conversion occurs, C<len>
1301 is unchanged. Do nothing if C<is_utf8> points to 0. Sets C<is_utf8> to
1302 0 if C<s> is converted or consisted entirely of characters that are invariant
1303 in utf8 (i.e., US-ASCII on non-EBCDIC machines).
1304 
1305 =cut
1306 */
1307 
1308 U8 *
1309 Perl_bytes_from_utf8(pTHX_ const U8 *s, STRLEN *len, bool *is_utf8)
1310 {
1311     U8 *d;
1312     const U8 *start = s;
1313     const U8 *send;
1314     I32 count = 0;
1315 
1316     PERL_ARGS_ASSERT_BYTES_FROM_UTF8;
1317 
1318     PERL_UNUSED_CONTEXT;
1319     if (!*is_utf8)
1320         return (U8 *)start;
1321 
1322     /* ensure valid UTF-8 and chars < 256 before converting string */
1323     for (send = s + *len; s < send;) {
1324         U8 c = *s++;
1325 	if (!UTF8_IS_INVARIANT(c)) {
1326 	    if (UTF8_IS_DOWNGRADEABLE_START(c) && s < send &&
1327                 (c = *s++) && UTF8_IS_CONTINUATION(c))
1328 		count++;
1329 	    else
1330                 return (U8 *)start;
1331 	}
1332     }
1333 
1334     *is_utf8 = FALSE;
1335 
1336     Newx(d, (*len) - count + 1, U8);
1337     s = start; start = d;
1338     while (s < send) {
1339 	U8 c = *s++;
1340 	if (!UTF8_IS_INVARIANT(c)) {
1341 	    /* Then it is two-byte encoded */
1342 	    c = UNI_TO_NATIVE(TWO_BYTE_UTF8_TO_UNI(c, *s++));
1343 	}
1344 	*d++ = c;
1345     }
1346     *d = '\0';
1347     *len = d - start;
1348     return (U8 *)start;
1349 }
1350 
1351 /*
1352 =for apidoc bytes_to_utf8
1353 
1354 Converts a string C<s> of length C<len> bytes from the native encoding into
1355 UTF-8.
1356 Returns a pointer to the newly-created string, and sets C<len> to
1357 reflect the new length in bytes.
1358 
1359 A NUL character will be written after the end of the string.
1360 
1361 If you want to convert to UTF-8 from encodings other than
1362 the native (Latin1 or EBCDIC),
1363 see L</sv_recode_to_utf8>().
1364 
1365 =cut
1366 */
1367 
1368 /* This logic is duplicated in sv_catpvn_flags, so any bug fixes will
1369    likewise need duplication. */
1370 
1371 U8*
1372 Perl_bytes_to_utf8(pTHX_ const U8 *s, STRLEN *len)
1373 {
1374     const U8 * const send = s + (*len);
1375     U8 *d;
1376     U8 *dst;
1377 
1378     PERL_ARGS_ASSERT_BYTES_TO_UTF8;
1379     PERL_UNUSED_CONTEXT;
1380 
1381     Newx(d, (*len) * 2 + 1, U8);
1382     dst = d;
1383 
1384     while (s < send) {
1385         const UV uv = NATIVE_TO_ASCII(*s++);
1386         if (UNI_IS_INVARIANT(uv))
1387             *d++ = (U8)UTF_TO_NATIVE(uv);
1388         else {
1389             *d++ = (U8)UTF8_EIGHT_BIT_HI(uv);
1390             *d++ = (U8)UTF8_EIGHT_BIT_LO(uv);
1391         }
1392     }
1393     *d = '\0';
1394     *len = d-dst;
1395     return dst;
1396 }
1397 
1398 /*
1399  * Convert native (big-endian) or reversed (little-endian) UTF-16 to UTF-8.
1400  *
1401  * Destination must be pre-extended to 3/2 source.  Do not use in-place.
1402  * We optimize for native, for obvious reasons. */
1403 
1404 U8*
1405 Perl_utf16_to_utf8(pTHX_ U8* p, U8* d, I32 bytelen, I32 *newlen)
1406 {
1407     U8* pend;
1408     U8* dstart = d;
1409 
1410     PERL_ARGS_ASSERT_UTF16_TO_UTF8;
1411 
1412     if (bytelen & 1)
1413 	Perl_croak(aTHX_ "panic: utf16_to_utf8: odd bytelen %"UVuf, (UV)bytelen);
1414 
1415     pend = p + bytelen;
1416 
1417     while (p < pend) {
1418 	UV uv = (p[0] << 8) + p[1]; /* UTF-16BE */
1419 	p += 2;
1420 	if (uv < 0x80) {
1421 #ifdef EBCDIC
1422 	    *d++ = UNI_TO_NATIVE(uv);
1423 #else
1424 	    *d++ = (U8)uv;
1425 #endif
1426 	    continue;
1427 	}
1428 	if (uv < 0x800) {
1429 	    *d++ = (U8)(( uv >>  6)         | 0xc0);
1430 	    *d++ = (U8)(( uv        & 0x3f) | 0x80);
1431 	    continue;
1432 	}
1433 	if (uv >= 0xd800 && uv <= 0xdbff) {	/* surrogates */
1434 	    if (p >= pend) {
1435 		Perl_croak(aTHX_ "Malformed UTF-16 surrogate");
1436 	    } else {
1437 		UV low = (p[0] << 8) + p[1];
1438 		p += 2;
1439 		if (low < 0xdc00 || low > 0xdfff)
1440 		    Perl_croak(aTHX_ "Malformed UTF-16 surrogate");
1441 		uv = ((uv - 0xd800) << 10) + (low - 0xdc00) + 0x10000;
1442 	    }
1443 	} else if (uv >= 0xdc00 && uv <= 0xdfff) {
1444 	    Perl_croak(aTHX_ "Malformed UTF-16 surrogate");
1445 	}
1446 	if (uv < 0x10000) {
1447 	    *d++ = (U8)(( uv >> 12)         | 0xe0);
1448 	    *d++ = (U8)(((uv >>  6) & 0x3f) | 0x80);
1449 	    *d++ = (U8)(( uv        & 0x3f) | 0x80);
1450 	    continue;
1451 	}
1452 	else {
1453 	    *d++ = (U8)(( uv >> 18)         | 0xf0);
1454 	    *d++ = (U8)(((uv >> 12) & 0x3f) | 0x80);
1455 	    *d++ = (U8)(((uv >>  6) & 0x3f) | 0x80);
1456 	    *d++ = (U8)(( uv        & 0x3f) | 0x80);
1457 	    continue;
1458 	}
1459     }
1460     *newlen = d - dstart;
1461     return d;
1462 }
1463 
1464 /* Note: this one is slightly destructive of the source. */
1465 
1466 U8*
1467 Perl_utf16_to_utf8_reversed(pTHX_ U8* p, U8* d, I32 bytelen, I32 *newlen)
1468 {
1469     U8* s = (U8*)p;
1470     U8* const send = s + bytelen;
1471 
1472     PERL_ARGS_ASSERT_UTF16_TO_UTF8_REVERSED;
1473 
1474     if (bytelen & 1)
1475 	Perl_croak(aTHX_ "panic: utf16_to_utf8_reversed: odd bytelen %"UVuf,
1476 		   (UV)bytelen);
1477 
1478     while (s < send) {
1479 	const U8 tmp = s[0];
1480 	s[0] = s[1];
1481 	s[1] = tmp;
1482 	s += 2;
1483     }
1484     return utf16_to_utf8(p, d, bytelen, newlen);
1485 }
1486 
1487 bool
1488 Perl__is_uni_FOO(pTHX_ const U8 classnum, const UV c)
1489 {
1490     U8 tmpbuf[UTF8_MAXBYTES+1];
1491     uvchr_to_utf8(tmpbuf, c);
1492     return _is_utf8_FOO(classnum, tmpbuf);
1493 }
1494 
1495 /* for now these are all defined (inefficiently) in terms of the utf8 versions.
1496  * Note that the macros in handy.h that call these short-circuit calling them
1497  * for Latin-1 range inputs */
1498 
1499 bool
1500 Perl_is_uni_alnum(pTHX_ UV c)
1501 {
1502     U8 tmpbuf[UTF8_MAXBYTES+1];
1503     uvchr_to_utf8(tmpbuf, c);
1504     return _is_utf8_FOO(_CC_WORDCHAR, tmpbuf);
1505 }
1506 
1507 bool
1508 Perl_is_uni_alnumc(pTHX_ UV c)
1509 {
1510     U8 tmpbuf[UTF8_MAXBYTES+1];
1511     uvchr_to_utf8(tmpbuf, c);
1512     return _is_utf8_FOO(_CC_ALPHANUMERIC, tmpbuf);
1513 }
1514 
1515 /* Internal function so we can deprecate the external one, and call
1516    this one from other deprecated functions in this file */
1517 
1518 PERL_STATIC_INLINE bool
1519 S_is_utf8_idfirst(pTHX_ const U8 *p)
1520 {
1521     dVAR;
1522 
1523     if (*p == '_')
1524 	return TRUE;
1525     /* is_utf8_idstart would be more logical. */
1526     return is_utf8_common(p, &PL_utf8_idstart, "IdStart");
1527 }
1528 
1529 bool
1530 Perl_is_uni_idfirst(pTHX_ UV c)
1531 {
1532     U8 tmpbuf[UTF8_MAXBYTES+1];
1533     uvchr_to_utf8(tmpbuf, c);
1534     return S_is_utf8_idfirst(aTHX_ tmpbuf);
1535 }
1536 
1537 bool
1538 Perl__is_uni_perl_idcont(pTHX_ UV c)
1539 {
1540     U8 tmpbuf[UTF8_MAXBYTES+1];
1541     uvchr_to_utf8(tmpbuf, c);
1542     return _is_utf8_perl_idcont(tmpbuf);
1543 }
1544 
1545 bool
1546 Perl__is_uni_perl_idstart(pTHX_ UV c)
1547 {
1548     U8 tmpbuf[UTF8_MAXBYTES+1];
1549     uvchr_to_utf8(tmpbuf, c);
1550     return _is_utf8_perl_idstart(tmpbuf);
1551 }
1552 
1553 bool
1554 Perl_is_uni_alpha(pTHX_ UV c)
1555 {
1556     U8 tmpbuf[UTF8_MAXBYTES+1];
1557     uvchr_to_utf8(tmpbuf, c);
1558     return _is_utf8_FOO(_CC_ALPHA, tmpbuf);
1559 }
1560 
1561 bool
1562 Perl_is_uni_ascii(pTHX_ UV c)
1563 {
1564     return isASCII(c);
1565 }
1566 
1567 bool
1568 Perl_is_uni_blank(pTHX_ UV c)
1569 {
1570     return isBLANK_uni(c);
1571 }
1572 
1573 bool
1574 Perl_is_uni_space(pTHX_ UV c)
1575 {
1576     return isSPACE_uni(c);
1577 }
1578 
1579 bool
1580 Perl_is_uni_digit(pTHX_ UV c)
1581 {
1582     U8 tmpbuf[UTF8_MAXBYTES+1];
1583     uvchr_to_utf8(tmpbuf, c);
1584     return _is_utf8_FOO(_CC_DIGIT, tmpbuf);
1585 }
1586 
1587 bool
1588 Perl_is_uni_upper(pTHX_ UV c)
1589 {
1590     U8 tmpbuf[UTF8_MAXBYTES+1];
1591     uvchr_to_utf8(tmpbuf, c);
1592     return _is_utf8_FOO(_CC_UPPER, tmpbuf);
1593 }
1594 
1595 bool
1596 Perl_is_uni_lower(pTHX_ UV c)
1597 {
1598     U8 tmpbuf[UTF8_MAXBYTES+1];
1599     uvchr_to_utf8(tmpbuf, c);
1600     return _is_utf8_FOO(_CC_LOWER, tmpbuf);
1601 }
1602 
1603 bool
1604 Perl_is_uni_cntrl(pTHX_ UV c)
1605 {
1606     return isCNTRL_L1(c);
1607 }
1608 
1609 bool
1610 Perl_is_uni_graph(pTHX_ UV c)
1611 {
1612     U8 tmpbuf[UTF8_MAXBYTES+1];
1613     uvchr_to_utf8(tmpbuf, c);
1614     return _is_utf8_FOO(_CC_GRAPH, tmpbuf);
1615 }
1616 
1617 bool
1618 Perl_is_uni_print(pTHX_ UV c)
1619 {
1620     U8 tmpbuf[UTF8_MAXBYTES+1];
1621     uvchr_to_utf8(tmpbuf, c);
1622     return _is_utf8_FOO(_CC_PRINT, tmpbuf);
1623 }
1624 
1625 bool
1626 Perl_is_uni_punct(pTHX_ UV c)
1627 {
1628     U8 tmpbuf[UTF8_MAXBYTES+1];
1629     uvchr_to_utf8(tmpbuf, c);
1630     return _is_utf8_FOO(_CC_PUNCT, tmpbuf);
1631 }
1632 
1633 bool
1634 Perl_is_uni_xdigit(pTHX_ UV c)
1635 {
1636     return isXDIGIT_uni(c);
1637 }
1638 
1639 UV
1640 Perl__to_upper_title_latin1(pTHX_ const U8 c, U8* p, STRLEN *lenp, const char S_or_s)
1641 {
1642     /* We have the latin1-range values compiled into the core, so just use
1643      * those, converting the result to utf8.  The only difference between upper
1644      * and title case in this range is that LATIN_SMALL_LETTER_SHARP_S is
1645      * either "SS" or "Ss".  Which one to use is passed into the routine in
1646      * 'S_or_s' to avoid a test */
1647 
1648     UV converted = toUPPER_LATIN1_MOD(c);
1649 
1650     PERL_ARGS_ASSERT__TO_UPPER_TITLE_LATIN1;
1651 
1652     assert(S_or_s == 'S' || S_or_s == 's');
1653 
1654     if (UNI_IS_INVARIANT(converted)) { /* No difference between the two for
1655 					  characters in this range */
1656 	*p = (U8) converted;
1657 	*lenp = 1;
1658 	return converted;
1659     }
1660 
1661     /* toUPPER_LATIN1_MOD gives the correct results except for three outliers,
1662      * which it maps to one of them, so as to only have to have one check for
1663      * it in the main case */
1664     if (UNLIKELY(converted == LATIN_SMALL_LETTER_Y_WITH_DIAERESIS)) {
1665 	switch (c) {
1666 	    case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
1667 		converted = LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS;
1668 		break;
1669 	    case MICRO_SIGN:
1670 		converted = GREEK_CAPITAL_LETTER_MU;
1671 		break;
1672 	    case LATIN_SMALL_LETTER_SHARP_S:
1673 		*(p)++ = 'S';
1674 		*p = S_or_s;
1675 		*lenp = 2;
1676 		return 'S';
1677 	    default:
1678 		Perl_croak(aTHX_ "panic: to_upper_title_latin1 did not expect '%c' to map to '%c'", c, LATIN_SMALL_LETTER_Y_WITH_DIAERESIS);
1679 		assert(0); /* NOTREACHED */
1680 	}
1681     }
1682 
1683     *(p)++ = UTF8_TWO_BYTE_HI(converted);
1684     *p = UTF8_TWO_BYTE_LO(converted);
1685     *lenp = 2;
1686 
1687     return converted;
1688 }
1689 
1690 /* Call the function to convert a UTF-8 encoded character to the specified case.
1691  * Note that there may be more than one character in the result.
1692  * INP is a pointer to the first byte of the input character
1693  * OUTP will be set to the first byte of the string of changed characters.  It
1694  *	needs to have space for UTF8_MAXBYTES_CASE+1 bytes
1695  * LENP will be set to the length in bytes of the string of changed characters
1696  *
1697  * The functions return the ordinal of the first character in the string of OUTP */
1698 #define CALL_UPPER_CASE(INP, OUTP, LENP) Perl_to_utf8_case(aTHX_ INP, OUTP, LENP, &PL_utf8_toupper, "ToUc", "utf8::ToSpecUc")
1699 #define CALL_TITLE_CASE(INP, OUTP, LENP) Perl_to_utf8_case(aTHX_ INP, OUTP, LENP, &PL_utf8_totitle, "ToTc", "utf8::ToSpecTc")
1700 #define CALL_LOWER_CASE(INP, OUTP, LENP) Perl_to_utf8_case(aTHX_ INP, OUTP, LENP, &PL_utf8_tolower, "ToLc", "utf8::ToSpecLc")
1701 
1702 /* This additionally has the input parameter SPECIALS, which if non-zero will
1703  * cause this to use the SPECIALS hash for folding (meaning get full case
1704  * folding); otherwise, when zero, this implies a simple case fold */
1705 #define CALL_FOLD_CASE(INP, OUTP, LENP, SPECIALS) Perl_to_utf8_case(aTHX_ INP, OUTP, LENP, &PL_utf8_tofold, "ToCf", (SPECIALS) ? "utf8::ToSpecCf" : NULL)
1706 
1707 UV
1708 Perl_to_uni_upper(pTHX_ UV c, U8* p, STRLEN *lenp)
1709 {
1710     dVAR;
1711 
1712     /* Convert the Unicode character whose ordinal is <c> to its uppercase
1713      * version and store that in UTF-8 in <p> and its length in bytes in <lenp>.
1714      * Note that the <p> needs to be at least UTF8_MAXBYTES_CASE+1 bytes since
1715      * the changed version may be longer than the original character.
1716      *
1717      * The ordinal of the first character of the changed version is returned
1718      * (but note, as explained above, that there may be more.) */
1719 
1720     PERL_ARGS_ASSERT_TO_UNI_UPPER;
1721 
1722     if (c < 256) {
1723 	return _to_upper_title_latin1((U8) c, p, lenp, 'S');
1724     }
1725 
1726     uvchr_to_utf8(p, c);
1727     return CALL_UPPER_CASE(p, p, lenp);
1728 }
1729 
1730 UV
1731 Perl_to_uni_title(pTHX_ UV c, U8* p, STRLEN *lenp)
1732 {
1733     dVAR;
1734 
1735     PERL_ARGS_ASSERT_TO_UNI_TITLE;
1736 
1737     if (c < 256) {
1738 	return _to_upper_title_latin1((U8) c, p, lenp, 's');
1739     }
1740 
1741     uvchr_to_utf8(p, c);
1742     return CALL_TITLE_CASE(p, p, lenp);
1743 }
1744 
1745 STATIC U8
1746 S_to_lower_latin1(pTHX_ const U8 c, U8* p, STRLEN *lenp)
1747 {
1748     /* We have the latin1-range values compiled into the core, so just use
1749      * those, converting the result to utf8.  Since the result is always just
1750      * one character, we allow <p> to be NULL */
1751 
1752     U8 converted = toLOWER_LATIN1(c);
1753 
1754     if (p != NULL) {
1755 	if (UNI_IS_INVARIANT(converted)) {
1756 	    *p = converted;
1757 	    *lenp = 1;
1758 	}
1759 	else {
1760 	    *p = UTF8_TWO_BYTE_HI(converted);
1761 	    *(p+1) = UTF8_TWO_BYTE_LO(converted);
1762 	    *lenp = 2;
1763 	}
1764     }
1765     return converted;
1766 }
1767 
1768 UV
1769 Perl_to_uni_lower(pTHX_ UV c, U8* p, STRLEN *lenp)
1770 {
1771     dVAR;
1772 
1773     PERL_ARGS_ASSERT_TO_UNI_LOWER;
1774 
1775     if (c < 256) {
1776 	return to_lower_latin1((U8) c, p, lenp);
1777     }
1778 
1779     uvchr_to_utf8(p, c);
1780     return CALL_LOWER_CASE(p, p, lenp);
1781 }
1782 
1783 UV
1784 Perl__to_fold_latin1(pTHX_ const U8 c, U8* p, STRLEN *lenp, const bool flags)
1785 {
1786     /* Corresponds to to_lower_latin1(), <flags> is TRUE if to use full case
1787      * folding */
1788 
1789     UV converted;
1790 
1791     PERL_ARGS_ASSERT__TO_FOLD_LATIN1;
1792 
1793     if (c == MICRO_SIGN) {
1794 	converted = GREEK_SMALL_LETTER_MU;
1795     }
1796     else if (flags && c == LATIN_SMALL_LETTER_SHARP_S) {
1797 	*(p)++ = 's';
1798 	*p = 's';
1799 	*lenp = 2;
1800 	return 's';
1801     }
1802     else { /* In this range the fold of all other characters is their lower
1803               case */
1804 	converted = toLOWER_LATIN1(c);
1805     }
1806 
1807     if (UNI_IS_INVARIANT(converted)) {
1808 	*p = (U8) converted;
1809 	*lenp = 1;
1810     }
1811     else {
1812 	*(p)++ = UTF8_TWO_BYTE_HI(converted);
1813 	*p = UTF8_TWO_BYTE_LO(converted);
1814 	*lenp = 2;
1815     }
1816 
1817     return converted;
1818 }
1819 
1820 UV
1821 Perl__to_uni_fold_flags(pTHX_ UV c, U8* p, STRLEN *lenp, const U8 flags)
1822 {
1823 
1824     /* Not currently externally documented, and subject to change
1825      *  <flags> bits meanings:
1826      *	    FOLD_FLAGS_FULL  iff full folding is to be used;
1827      *	    FOLD_FLAGS_LOCALE iff in locale
1828      *	    FOLD_FLAGS_NOMIX_ASCII iff non-ASCII to ASCII folds are prohibited
1829      */
1830 
1831     PERL_ARGS_ASSERT__TO_UNI_FOLD_FLAGS;
1832 
1833     if (c < 256) {
1834 	UV result = _to_fold_latin1((U8) c, p, lenp,
1835 			       cBOOL(((flags & FOLD_FLAGS_FULL)
1836 				   /* If ASCII-safe, don't allow full folding,
1837 				    * as that could include SHARP S => ss;
1838 				    * otherwise there is no crossing of
1839 				    * ascii/non-ascii in the latin1 range */
1840 				   && ! (flags & FOLD_FLAGS_NOMIX_ASCII))));
1841 	/* It is illegal for the fold to cross the 255/256 boundary under
1842 	 * locale; in this case return the original */
1843 	return (result > 256 && flags & FOLD_FLAGS_LOCALE)
1844 	       ? c
1845 	       : result;
1846     }
1847 
1848     /* If no special needs, just use the macro */
1849     if ( ! (flags & (FOLD_FLAGS_LOCALE|FOLD_FLAGS_NOMIX_ASCII))) {
1850 	uvchr_to_utf8(p, c);
1851 	return CALL_FOLD_CASE(p, p, lenp, flags & FOLD_FLAGS_FULL);
1852     }
1853     else {  /* Otherwise, _to_utf8_fold_flags has the intelligence to deal with
1854 	       the special flags. */
1855 	U8 utf8_c[UTF8_MAXBYTES + 1];
1856 	uvchr_to_utf8(utf8_c, c);
1857 	return _to_utf8_fold_flags(utf8_c, p, lenp, flags, NULL);
1858     }
1859 }
1860 
1861 bool
1862 Perl_is_uni_alnum_lc(pTHX_ UV c)
1863 {
1864     if (c < 256) {
1865         return isALNUM_LC(UNI_TO_NATIVE(c));
1866     }
1867     return _is_uni_FOO(_CC_WORDCHAR, c);
1868 }
1869 
1870 bool
1871 Perl_is_uni_alnumc_lc(pTHX_ UV c)
1872 {
1873     if (c < 256) {
1874         return isALPHANUMERIC_LC(UNI_TO_NATIVE(c));
1875     }
1876     return _is_uni_FOO(_CC_ALPHANUMERIC, c);
1877 }
1878 
1879 bool
1880 Perl_is_uni_idfirst_lc(pTHX_ UV c)
1881 {
1882     if (c < 256) {
1883         return isIDFIRST_LC(UNI_TO_NATIVE(c));
1884     }
1885     return _is_uni_perl_idstart(c);
1886 }
1887 
1888 bool
1889 Perl_is_uni_alpha_lc(pTHX_ UV c)
1890 {
1891     if (c < 256) {
1892         return isALPHA_LC(UNI_TO_NATIVE(c));
1893     }
1894     return _is_uni_FOO(_CC_ALPHA, c);
1895 }
1896 
1897 bool
1898 Perl_is_uni_ascii_lc(pTHX_ UV c)
1899 {
1900     if (c < 256) {
1901         return isASCII_LC(UNI_TO_NATIVE(c));
1902     }
1903     return 0;
1904 }
1905 
1906 bool
1907 Perl_is_uni_blank_lc(pTHX_ UV c)
1908 {
1909     if (c < 256) {
1910         return isBLANK_LC(UNI_TO_NATIVE(c));
1911     }
1912     return isBLANK_uni(c);
1913 }
1914 
1915 bool
1916 Perl_is_uni_space_lc(pTHX_ UV c)
1917 {
1918     if (c < 256) {
1919         return isSPACE_LC(UNI_TO_NATIVE(c));
1920     }
1921     return isSPACE_uni(c);
1922 }
1923 
1924 bool
1925 Perl_is_uni_digit_lc(pTHX_ UV c)
1926 {
1927     if (c < 256) {
1928         return isDIGIT_LC(UNI_TO_NATIVE(c));
1929     }
1930     return _is_uni_FOO(_CC_DIGIT, c);
1931 }
1932 
1933 bool
1934 Perl_is_uni_upper_lc(pTHX_ UV c)
1935 {
1936     if (c < 256) {
1937         return isUPPER_LC(UNI_TO_NATIVE(c));
1938     }
1939     return _is_uni_FOO(_CC_UPPER, c);
1940 }
1941 
1942 bool
1943 Perl_is_uni_lower_lc(pTHX_ UV c)
1944 {
1945     if (c < 256) {
1946         return isLOWER_LC(UNI_TO_NATIVE(c));
1947     }
1948     return _is_uni_FOO(_CC_LOWER, c);
1949 }
1950 
1951 bool
1952 Perl_is_uni_cntrl_lc(pTHX_ UV c)
1953 {
1954     if (c < 256) {
1955         return isCNTRL_LC(UNI_TO_NATIVE(c));
1956     }
1957     return 0;
1958 }
1959 
1960 bool
1961 Perl_is_uni_graph_lc(pTHX_ UV c)
1962 {
1963     if (c < 256) {
1964         return isGRAPH_LC(UNI_TO_NATIVE(c));
1965     }
1966     return _is_uni_FOO(_CC_GRAPH, c);
1967 }
1968 
1969 bool
1970 Perl_is_uni_print_lc(pTHX_ UV c)
1971 {
1972     if (c < 256) {
1973         return isPRINT_LC(UNI_TO_NATIVE(c));
1974     }
1975     return _is_uni_FOO(_CC_PRINT, c);
1976 }
1977 
1978 bool
1979 Perl_is_uni_punct_lc(pTHX_ UV c)
1980 {
1981     if (c < 256) {
1982         return isPUNCT_LC(UNI_TO_NATIVE(c));
1983     }
1984     return _is_uni_FOO(_CC_PUNCT, c);
1985 }
1986 
1987 bool
1988 Perl_is_uni_xdigit_lc(pTHX_ UV c)
1989 {
1990     if (c < 256) {
1991        return isXDIGIT_LC(UNI_TO_NATIVE(c));
1992     }
1993     return isXDIGIT_uni(c);
1994 }
1995 
1996 U32
1997 Perl_to_uni_upper_lc(pTHX_ U32 c)
1998 {
1999     /* XXX returns only the first character -- do not use XXX */
2000     /* XXX no locale support yet */
2001     STRLEN len;
2002     U8 tmpbuf[UTF8_MAXBYTES_CASE+1];
2003     return (U32)to_uni_upper(c, tmpbuf, &len);
2004 }
2005 
2006 U32
2007 Perl_to_uni_title_lc(pTHX_ U32 c)
2008 {
2009     /* XXX returns only the first character XXX -- do not use XXX */
2010     /* XXX no locale support yet */
2011     STRLEN len;
2012     U8 tmpbuf[UTF8_MAXBYTES_CASE+1];
2013     return (U32)to_uni_title(c, tmpbuf, &len);
2014 }
2015 
2016 U32
2017 Perl_to_uni_lower_lc(pTHX_ U32 c)
2018 {
2019     /* XXX returns only the first character -- do not use XXX */
2020     /* XXX no locale support yet */
2021     STRLEN len;
2022     U8 tmpbuf[UTF8_MAXBYTES_CASE+1];
2023     return (U32)to_uni_lower(c, tmpbuf, &len);
2024 }
2025 
2026 PERL_STATIC_INLINE bool
2027 S_is_utf8_common(pTHX_ const U8 *const p, SV **swash,
2028 		 const char *const swashname)
2029 {
2030     /* returns a boolean giving whether or not the UTF8-encoded character that
2031      * starts at <p> is in the swash indicated by <swashname>.  <swash>
2032      * contains a pointer to where the swash indicated by <swashname>
2033      * is to be stored; which this routine will do, so that future calls will
2034      * look at <*swash> and only generate a swash if it is not null
2035      *
2036      * Note that it is assumed that the buffer length of <p> is enough to
2037      * contain all the bytes that comprise the character.  Thus, <*p> should
2038      * have been checked before this call for mal-formedness enough to assure
2039      * that. */
2040 
2041     dVAR;
2042 
2043     PERL_ARGS_ASSERT_IS_UTF8_COMMON;
2044 
2045     /* The API should have included a length for the UTF-8 character in <p>,
2046      * but it doesn't.  We therefore assume that p has been validated at least
2047      * as far as there being enough bytes available in it to accommodate the
2048      * character without reading beyond the end, and pass that number on to the
2049      * validating routine */
2050     if (! is_utf8_char_buf(p, p + UTF8SKIP(p))) {
2051         if (ckWARN_d(WARN_UTF8)) {
2052             Perl_warner(aTHX_ packWARN2(WARN_DEPRECATED,WARN_UTF8),
2053 		    "Passing malformed UTF-8 to \"%s\" is deprecated", swashname);
2054             if (ckWARN(WARN_UTF8)) {    /* This will output details as to the
2055                                            what the malformation is */
2056                 utf8_to_uvchr_buf(p, p + UTF8SKIP(p), NULL);
2057             }
2058         }
2059         return FALSE;
2060     }
2061     if (!*swash) {
2062         U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
2063         *swash = _core_swash_init("utf8", swashname, &PL_sv_undef, 1, 0, NULL, &flags);
2064     }
2065 
2066     return swash_fetch(*swash, p, TRUE) != 0;
2067 }
2068 
2069 bool
2070 Perl__is_utf8_FOO(pTHX_ const U8 classnum, const U8 *p)
2071 {
2072     dVAR;
2073 
2074     PERL_ARGS_ASSERT__IS_UTF8_FOO;
2075 
2076     assert(classnum < _FIRST_NON_SWASH_CC);
2077 
2078     return is_utf8_common(p, &PL_utf8_swash_ptrs[classnum], swash_property_names[classnum]);
2079 }
2080 
2081 bool
2082 Perl_is_utf8_alnum(pTHX_ const U8 *p)
2083 {
2084     dVAR;
2085 
2086     PERL_ARGS_ASSERT_IS_UTF8_ALNUM;
2087 
2088     /* NOTE: "IsWord", not "IsAlnum", since Alnum is a true
2089      * descendant of isalnum(3), in other words, it doesn't
2090      * contain the '_'. --jhi */
2091     return is_utf8_common(p, &PL_utf8_swash_ptrs[_CC_WORDCHAR], "IsWord");
2092 }
2093 
2094 bool
2095 Perl_is_utf8_alnumc(pTHX_ const U8 *p)
2096 {
2097     dVAR;
2098 
2099     PERL_ARGS_ASSERT_IS_UTF8_ALNUMC;
2100 
2101     return is_utf8_common(p, &PL_utf8_swash_ptrs[_CC_ALPHANUMERIC], "IsAlnum");
2102 }
2103 
2104 bool
2105 Perl_is_utf8_idfirst(pTHX_ const U8 *p) /* The naming is historical. */
2106 {
2107     dVAR;
2108 
2109     PERL_ARGS_ASSERT_IS_UTF8_IDFIRST;
2110 
2111     return S_is_utf8_idfirst(aTHX_ p);
2112 }
2113 
2114 bool
2115 Perl_is_utf8_xidfirst(pTHX_ const U8 *p) /* The naming is historical. */
2116 {
2117     dVAR;
2118 
2119     PERL_ARGS_ASSERT_IS_UTF8_XIDFIRST;
2120 
2121     if (*p == '_')
2122 	return TRUE;
2123     /* is_utf8_idstart would be more logical. */
2124     return is_utf8_common(p, &PL_utf8_xidstart, "XIdStart");
2125 }
2126 
2127 bool
2128 Perl__is_utf8_perl_idstart(pTHX_ const U8 *p)
2129 {
2130     dVAR;
2131 
2132     PERL_ARGS_ASSERT__IS_UTF8_PERL_IDSTART;
2133 
2134     return is_utf8_common(p, &PL_utf8_perl_idstart, "_Perl_IDStart");
2135 }
2136 
2137 bool
2138 Perl__is_utf8_perl_idcont(pTHX_ const U8 *p)
2139 {
2140     dVAR;
2141 
2142     PERL_ARGS_ASSERT__IS_UTF8_PERL_IDCONT;
2143 
2144     return is_utf8_common(p, &PL_utf8_perl_idcont, "_Perl_IDCont");
2145 }
2146 
2147 
2148 bool
2149 Perl_is_utf8_idcont(pTHX_ const U8 *p)
2150 {
2151     dVAR;
2152 
2153     PERL_ARGS_ASSERT_IS_UTF8_IDCONT;
2154 
2155     return is_utf8_common(p, &PL_utf8_idcont, "IdContinue");
2156 }
2157 
2158 bool
2159 Perl_is_utf8_xidcont(pTHX_ const U8 *p)
2160 {
2161     dVAR;
2162 
2163     PERL_ARGS_ASSERT_IS_UTF8_XIDCONT;
2164 
2165     return is_utf8_common(p, &PL_utf8_idcont, "XIdContinue");
2166 }
2167 
2168 bool
2169 Perl_is_utf8_alpha(pTHX_ const U8 *p)
2170 {
2171     dVAR;
2172 
2173     PERL_ARGS_ASSERT_IS_UTF8_ALPHA;
2174 
2175     return is_utf8_common(p, &PL_utf8_swash_ptrs[_CC_ALPHA], "IsAlpha");
2176 }
2177 
2178 bool
2179 Perl_is_utf8_ascii(pTHX_ const U8 *p)
2180 {
2181     dVAR;
2182 
2183     PERL_ARGS_ASSERT_IS_UTF8_ASCII;
2184 
2185     /* ASCII characters are the same whether in utf8 or not.  So the macro
2186      * works on both utf8 and non-utf8 representations. */
2187     return isASCII(*p);
2188 }
2189 
2190 bool
2191 Perl_is_utf8_blank(pTHX_ const U8 *p)
2192 {
2193     dVAR;
2194 
2195     PERL_ARGS_ASSERT_IS_UTF8_BLANK;
2196 
2197     return isBLANK_utf8(p);
2198 }
2199 
2200 bool
2201 Perl_is_utf8_space(pTHX_ const U8 *p)
2202 {
2203     dVAR;
2204 
2205     PERL_ARGS_ASSERT_IS_UTF8_SPACE;
2206 
2207     return isSPACE_utf8(p);
2208 }
2209 
2210 bool
2211 Perl_is_utf8_perl_space(pTHX_ const U8 *p)
2212 {
2213     dVAR;
2214 
2215     PERL_ARGS_ASSERT_IS_UTF8_PERL_SPACE;
2216 
2217     /* Only true if is an ASCII space-like character, and ASCII is invariant
2218      * under utf8, so can just use the macro */
2219     return isSPACE_A(*p);
2220 }
2221 
2222 bool
2223 Perl_is_utf8_perl_word(pTHX_ const U8 *p)
2224 {
2225     dVAR;
2226 
2227     PERL_ARGS_ASSERT_IS_UTF8_PERL_WORD;
2228 
2229     /* Only true if is an ASCII word character, and ASCII is invariant
2230      * under utf8, so can just use the macro */
2231     return isWORDCHAR_A(*p);
2232 }
2233 
2234 bool
2235 Perl_is_utf8_digit(pTHX_ const U8 *p)
2236 {
2237     dVAR;
2238 
2239     PERL_ARGS_ASSERT_IS_UTF8_DIGIT;
2240 
2241     return is_utf8_common(p, &PL_utf8_swash_ptrs[_CC_DIGIT], "IsDigit");
2242 }
2243 
2244 bool
2245 Perl_is_utf8_posix_digit(pTHX_ const U8 *p)
2246 {
2247     dVAR;
2248 
2249     PERL_ARGS_ASSERT_IS_UTF8_POSIX_DIGIT;
2250 
2251     /* Only true if is an ASCII digit character, and ASCII is invariant
2252      * under utf8, so can just use the macro */
2253     return isDIGIT_A(*p);
2254 }
2255 
2256 bool
2257 Perl_is_utf8_upper(pTHX_ const U8 *p)
2258 {
2259     dVAR;
2260 
2261     PERL_ARGS_ASSERT_IS_UTF8_UPPER;
2262 
2263     return is_utf8_common(p, &PL_utf8_swash_ptrs[_CC_UPPER], "IsUppercase");
2264 }
2265 
2266 bool
2267 Perl_is_utf8_lower(pTHX_ const U8 *p)
2268 {
2269     dVAR;
2270 
2271     PERL_ARGS_ASSERT_IS_UTF8_LOWER;
2272 
2273     return is_utf8_common(p, &PL_utf8_swash_ptrs[_CC_LOWER], "IsLowercase");
2274 }
2275 
2276 bool
2277 Perl_is_utf8_cntrl(pTHX_ const U8 *p)
2278 {
2279     dVAR;
2280 
2281     PERL_ARGS_ASSERT_IS_UTF8_CNTRL;
2282 
2283     return isCNTRL_utf8(p);
2284 }
2285 
2286 bool
2287 Perl_is_utf8_graph(pTHX_ const U8 *p)
2288 {
2289     dVAR;
2290 
2291     PERL_ARGS_ASSERT_IS_UTF8_GRAPH;
2292 
2293     return is_utf8_common(p, &PL_utf8_swash_ptrs[_CC_GRAPH], "IsGraph");
2294 }
2295 
2296 bool
2297 Perl_is_utf8_print(pTHX_ const U8 *p)
2298 {
2299     dVAR;
2300 
2301     PERL_ARGS_ASSERT_IS_UTF8_PRINT;
2302 
2303     return is_utf8_common(p, &PL_utf8_swash_ptrs[_CC_PRINT], "IsPrint");
2304 }
2305 
2306 bool
2307 Perl_is_utf8_punct(pTHX_ const U8 *p)
2308 {
2309     dVAR;
2310 
2311     PERL_ARGS_ASSERT_IS_UTF8_PUNCT;
2312 
2313     return is_utf8_common(p, &PL_utf8_swash_ptrs[_CC_PUNCT], "IsPunct");
2314 }
2315 
2316 bool
2317 Perl_is_utf8_xdigit(pTHX_ const U8 *p)
2318 {
2319     dVAR;
2320 
2321     PERL_ARGS_ASSERT_IS_UTF8_XDIGIT;
2322 
2323     return is_XDIGIT_utf8(p);
2324 }
2325 
2326 bool
2327 Perl__is_utf8_mark(pTHX_ const U8 *p)
2328 {
2329     dVAR;
2330 
2331     PERL_ARGS_ASSERT__IS_UTF8_MARK;
2332 
2333     return is_utf8_common(p, &PL_utf8_mark, "IsM");
2334 }
2335 
2336 
2337 bool
2338 Perl_is_utf8_mark(pTHX_ const U8 *p)
2339 {
2340     dVAR;
2341 
2342     PERL_ARGS_ASSERT_IS_UTF8_MARK;
2343 
2344     return _is_utf8_mark(p);
2345 }
2346 
2347 /*
2348 =for apidoc to_utf8_case
2349 
2350 The C<p> contains the pointer to the UTF-8 string encoding
2351 the character that is being converted.  This routine assumes that the character
2352 at C<p> is well-formed.
2353 
2354 The C<ustrp> is a pointer to the character buffer to put the
2355 conversion result to.  The C<lenp> is a pointer to the length
2356 of the result.
2357 
2358 The C<swashp> is a pointer to the swash to use.
2359 
2360 Both the special and normal mappings are stored in F<lib/unicore/To/Foo.pl>,
2361 and loaded by SWASHNEW, using F<lib/utf8_heavy.pl>.  The C<special> (usually,
2362 but not always, a multicharacter mapping), is tried first.
2363 
2364 The C<special> is a string like "utf8::ToSpecLower", which means the
2365 hash %utf8::ToSpecLower.  The access to the hash is through
2366 Perl_to_utf8_case().
2367 
2368 The C<normal> is a string like "ToLower" which means the swash
2369 %utf8::ToLower.
2370 
2371 =cut */
2372 
2373 UV
2374 Perl_to_utf8_case(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp,
2375 			SV **swashp, const char *normal, const char *special)
2376 {
2377     dVAR;
2378     U8 tmpbuf[UTF8_MAXBYTES_CASE+1];
2379     STRLEN len = 0;
2380     const UV uv0 = valid_utf8_to_uvchr(p, NULL);
2381     /* The NATIVE_TO_UNI() and UNI_TO_NATIVE() mappings
2382      * are necessary in EBCDIC, they are redundant no-ops
2383      * in ASCII-ish platforms, and hopefully optimized away. */
2384     const UV uv1 = NATIVE_TO_UNI(uv0);
2385 
2386     PERL_ARGS_ASSERT_TO_UTF8_CASE;
2387 
2388     /* Note that swash_fetch() doesn't output warnings for these because it
2389      * assumes we will */
2390     if (uv1 >= UNICODE_SURROGATE_FIRST) {
2391 	if (uv1 <= UNICODE_SURROGATE_LAST) {
2392 	    if (ckWARN_d(WARN_SURROGATE)) {
2393 		const char* desc = (PL_op) ? OP_DESC(PL_op) : normal;
2394 		Perl_warner(aTHX_ packWARN(WARN_SURROGATE),
2395 		    "Operation \"%s\" returns its argument for UTF-16 surrogate U+%04"UVXf"", desc, uv1);
2396 	    }
2397 	}
2398 	else if (UNICODE_IS_SUPER(uv1)) {
2399 	    if (ckWARN_d(WARN_NON_UNICODE)) {
2400 		const char* desc = (PL_op) ? OP_DESC(PL_op) : normal;
2401 		Perl_warner(aTHX_ packWARN(WARN_NON_UNICODE),
2402 		    "Operation \"%s\" returns its argument for non-Unicode code point 0x%04"UVXf"", desc, uv1);
2403 	    }
2404 	}
2405 
2406 	/* Note that non-characters are perfectly legal, so no warning should
2407 	 * be given */
2408     }
2409 
2410     uvuni_to_utf8(tmpbuf, uv1);
2411 
2412     if (!*swashp) /* load on-demand */
2413          *swashp = _core_swash_init("utf8", normal, &PL_sv_undef, 4, 0, NULL, NULL);
2414 
2415     if (special) {
2416          /* It might be "special" (sometimes, but not always,
2417 	  * a multicharacter mapping) */
2418 	 HV * const hv = get_hv(special, 0);
2419 	 SV **svp;
2420 
2421 	 if (hv &&
2422 	     (svp = hv_fetch(hv, (const char*)tmpbuf, UNISKIP(uv1), FALSE)) &&
2423 	     (*svp)) {
2424 	     const char *s;
2425 
2426 	      s = SvPV_const(*svp, len);
2427 	      if (len == 1)
2428 		   len = uvuni_to_utf8(ustrp, NATIVE_TO_UNI(*(U8*)s)) - ustrp;
2429 	      else {
2430 #ifdef EBCDIC
2431 		   /* If we have EBCDIC we need to remap the characters
2432 		    * since any characters in the low 256 are Unicode
2433 		    * code points, not EBCDIC. */
2434 		   U8 *t = (U8*)s, *tend = t + len, *d;
2435 
2436 		   d = tmpbuf;
2437 		   if (SvUTF8(*svp)) {
2438 			STRLEN tlen = 0;
2439 
2440 			while (t < tend) {
2441 			     const UV c = utf8_to_uvchr_buf(t, tend, &tlen);
2442 			     if (tlen > 0) {
2443 				  d = uvchr_to_utf8(d, UNI_TO_NATIVE(c));
2444 				  t += tlen;
2445 			     }
2446 			     else
2447 				  break;
2448 			}
2449 		   }
2450 		   else {
2451 			while (t < tend) {
2452 			     d = uvchr_to_utf8(d, UNI_TO_NATIVE(*t));
2453 			     t++;
2454 			}
2455 		   }
2456 		   len = d - tmpbuf;
2457 		   Copy(tmpbuf, ustrp, len, U8);
2458 #else
2459 		   Copy(s, ustrp, len, U8);
2460 #endif
2461 	      }
2462 	 }
2463     }
2464 
2465     if (!len && *swashp) {
2466 	const UV uv2 = swash_fetch(*swashp, tmpbuf, TRUE /* => is utf8 */);
2467 
2468 	 if (uv2) {
2469 	      /* It was "normal" (a single character mapping). */
2470 	      const UV uv3 = UNI_TO_NATIVE(uv2);
2471 	      len = uvchr_to_utf8(ustrp, uv3) - ustrp;
2472 	 }
2473     }
2474 
2475     if (len) {
2476         if (lenp) {
2477             *lenp = len;
2478         }
2479         return valid_utf8_to_uvchr(ustrp, 0);
2480     }
2481 
2482     /* Here, there was no mapping defined, which means that the code point maps
2483      * to itself.  Return the inputs */
2484     len = UTF8SKIP(p);
2485     if (p != ustrp) {   /* Don't copy onto itself */
2486         Copy(p, ustrp, len, U8);
2487     }
2488 
2489     if (lenp)
2490 	 *lenp = len;
2491 
2492     return uv0;
2493 
2494 }
2495 
2496 STATIC UV
2497 S_check_locale_boundary_crossing(pTHX_ const U8* const p, const UV result, U8* const ustrp, STRLEN *lenp)
2498 {
2499     /* This is called when changing the case of a utf8-encoded character above
2500      * the Latin1 range, and the operation is in locale.  If the result
2501      * contains a character that crosses the 255/256 boundary, disallow the
2502      * change, and return the original code point.  See L<perlfunc/lc> for why;
2503      *
2504      * p	points to the original string whose case was changed; assumed
2505      *          by this routine to be well-formed
2506      * result	the code point of the first character in the changed-case string
2507      * ustrp	points to the changed-case string (<result> represents its first char)
2508      * lenp	points to the length of <ustrp> */
2509 
2510     UV original;    /* To store the first code point of <p> */
2511 
2512     PERL_ARGS_ASSERT_CHECK_LOCALE_BOUNDARY_CROSSING;
2513 
2514     assert(! UTF8_IS_INVARIANT(*p) && ! UTF8_IS_DOWNGRADEABLE_START(*p));
2515 
2516     /* We know immediately if the first character in the string crosses the
2517      * boundary, so can skip */
2518     if (result > 255) {
2519 
2520 	/* Look at every character in the result; if any cross the
2521 	* boundary, the whole thing is disallowed */
2522 	U8* s = ustrp + UTF8SKIP(ustrp);
2523 	U8* e = ustrp + *lenp;
2524 	while (s < e) {
2525 	    if (UTF8_IS_INVARIANT(*s) || UTF8_IS_DOWNGRADEABLE_START(*s))
2526 	    {
2527 		goto bad_crossing;
2528 	    }
2529 	    s += UTF8SKIP(s);
2530 	}
2531 
2532 	/* Here, no characters crossed, result is ok as-is */
2533 	return result;
2534     }
2535 
2536 bad_crossing:
2537 
2538     /* Failed, have to return the original */
2539     original = valid_utf8_to_uvchr(p, lenp);
2540     Copy(p, ustrp, *lenp, char);
2541     return original;
2542 }
2543 
2544 /*
2545 =for apidoc to_utf8_upper
2546 
2547 Convert the UTF-8 encoded character at C<p> to its uppercase version and
2548 store that in UTF-8 in C<ustrp> and its length in bytes in C<lenp>.  Note
2549 that the ustrp needs to be at least UTF8_MAXBYTES_CASE+1 bytes since
2550 the uppercase version may be longer than the original character.
2551 
2552 The first character of the uppercased version is returned
2553 (but note, as explained above, that there may be more.)
2554 
2555 The character at C<p> is assumed by this routine to be well-formed.
2556 
2557 =cut */
2558 
2559 /* Not currently externally documented, and subject to change:
2560  * <flags> is set iff locale semantics are to be used for code points < 256
2561  * <tainted_ptr> if non-null, *tainted_ptr will be set TRUE iff locale rules
2562  *		 were used in the calculation; otherwise unchanged. */
2563 
2564 UV
2565 Perl__to_utf8_upper_flags(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp, const bool flags, bool* tainted_ptr)
2566 {
2567     dVAR;
2568 
2569     UV result;
2570 
2571     PERL_ARGS_ASSERT__TO_UTF8_UPPER_FLAGS;
2572 
2573     if (UTF8_IS_INVARIANT(*p)) {
2574 	if (flags) {
2575 	    result = toUPPER_LC(*p);
2576 	}
2577 	else {
2578 	    return _to_upper_title_latin1(*p, ustrp, lenp, 'S');
2579 	}
2580     }
2581     else if UTF8_IS_DOWNGRADEABLE_START(*p) {
2582 	if (flags) {
2583 	    result = toUPPER_LC(TWO_BYTE_UTF8_TO_UNI(*p, *(p+1)));
2584 	}
2585 	else {
2586 	    return _to_upper_title_latin1(TWO_BYTE_UTF8_TO_UNI(*p, *(p+1)),
2587 				          ustrp, lenp, 'S');
2588 	}
2589     }
2590     else {  /* utf8, ord above 255 */
2591 	result = CALL_UPPER_CASE(p, ustrp, lenp);
2592 
2593 	if (flags) {
2594 	    result = check_locale_boundary_crossing(p, result, ustrp, lenp);
2595 	}
2596 	return result;
2597     }
2598 
2599     /* Here, used locale rules.  Convert back to utf8 */
2600     if (UTF8_IS_INVARIANT(result)) {
2601 	*ustrp = (U8) result;
2602 	*lenp = 1;
2603     }
2604     else {
2605 	*ustrp = UTF8_EIGHT_BIT_HI(result);
2606 	*(ustrp + 1) = UTF8_EIGHT_BIT_LO(result);
2607 	*lenp = 2;
2608     }
2609 
2610     if (tainted_ptr) {
2611 	*tainted_ptr = TRUE;
2612     }
2613     return result;
2614 }
2615 
2616 /*
2617 =for apidoc to_utf8_title
2618 
2619 Convert the UTF-8 encoded character at C<p> to its titlecase version and
2620 store that in UTF-8 in C<ustrp> and its length in bytes in C<lenp>.  Note
2621 that the C<ustrp> needs to be at least UTF8_MAXBYTES_CASE+1 bytes since the
2622 titlecase version may be longer than the original character.
2623 
2624 The first character of the titlecased version is returned
2625 (but note, as explained above, that there may be more.)
2626 
2627 The character at C<p> is assumed by this routine to be well-formed.
2628 
2629 =cut */
2630 
2631 /* Not currently externally documented, and subject to change:
2632  * <flags> is set iff locale semantics are to be used for code points < 256
2633  *	   Since titlecase is not defined in POSIX, uppercase is used instead
2634  *	   for these/
2635  * <tainted_ptr> if non-null, *tainted_ptr will be set TRUE iff locale rules
2636  *		 were used in the calculation; otherwise unchanged. */
2637 
2638 UV
2639 Perl__to_utf8_title_flags(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp, const bool flags, bool* tainted_ptr)
2640 {
2641     dVAR;
2642 
2643     UV result;
2644 
2645     PERL_ARGS_ASSERT__TO_UTF8_TITLE_FLAGS;
2646 
2647     if (UTF8_IS_INVARIANT(*p)) {
2648 	if (flags) {
2649 	    result = toUPPER_LC(*p);
2650 	}
2651 	else {
2652 	    return _to_upper_title_latin1(*p, ustrp, lenp, 's');
2653 	}
2654     }
2655     else if UTF8_IS_DOWNGRADEABLE_START(*p) {
2656 	if (flags) {
2657 	    result = toUPPER_LC(TWO_BYTE_UTF8_TO_UNI(*p, *(p+1)));
2658 	}
2659 	else {
2660 	    return _to_upper_title_latin1(TWO_BYTE_UTF8_TO_UNI(*p, *(p+1)),
2661 				          ustrp, lenp, 's');
2662 	}
2663     }
2664     else {  /* utf8, ord above 255 */
2665 	result = CALL_TITLE_CASE(p, ustrp, lenp);
2666 
2667 	if (flags) {
2668 	    result = check_locale_boundary_crossing(p, result, ustrp, lenp);
2669 	}
2670 	return result;
2671     }
2672 
2673     /* Here, used locale rules.  Convert back to utf8 */
2674     if (UTF8_IS_INVARIANT(result)) {
2675 	*ustrp = (U8) result;
2676 	*lenp = 1;
2677     }
2678     else {
2679 	*ustrp = UTF8_EIGHT_BIT_HI(result);
2680 	*(ustrp + 1) = UTF8_EIGHT_BIT_LO(result);
2681 	*lenp = 2;
2682     }
2683 
2684     if (tainted_ptr) {
2685 	*tainted_ptr = TRUE;
2686     }
2687     return result;
2688 }
2689 
2690 /*
2691 =for apidoc to_utf8_lower
2692 
2693 Convert the UTF-8 encoded character at C<p> to its lowercase version and
2694 store that in UTF-8 in ustrp and its length in bytes in C<lenp>.  Note
2695 that the C<ustrp> needs to be at least UTF8_MAXBYTES_CASE+1 bytes since the
2696 lowercase version may be longer than the original character.
2697 
2698 The first character of the lowercased version is returned
2699 (but note, as explained above, that there may be more.)
2700 
2701 The character at C<p> is assumed by this routine to be well-formed.
2702 
2703 =cut */
2704 
2705 /* Not currently externally documented, and subject to change:
2706  * <flags> is set iff locale semantics are to be used for code points < 256
2707  * <tainted_ptr> if non-null, *tainted_ptr will be set TRUE iff locale rules
2708  *		 were used in the calculation; otherwise unchanged. */
2709 
2710 UV
2711 Perl__to_utf8_lower_flags(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp, const bool flags, bool* tainted_ptr)
2712 {
2713     UV result;
2714 
2715     dVAR;
2716 
2717     PERL_ARGS_ASSERT__TO_UTF8_LOWER_FLAGS;
2718 
2719     if (UTF8_IS_INVARIANT(*p)) {
2720 	if (flags) {
2721 	    result = toLOWER_LC(*p);
2722 	}
2723 	else {
2724 	    return to_lower_latin1(*p, ustrp, lenp);
2725 	}
2726     }
2727     else if UTF8_IS_DOWNGRADEABLE_START(*p) {
2728 	if (flags) {
2729 	    result = toLOWER_LC(TWO_BYTE_UTF8_TO_UNI(*p, *(p+1)));
2730 	}
2731 	else {
2732 	    return to_lower_latin1(TWO_BYTE_UTF8_TO_UNI(*p, *(p+1)),
2733 		                   ustrp, lenp);
2734 	}
2735     }
2736     else {  /* utf8, ord above 255 */
2737 	result = CALL_LOWER_CASE(p, ustrp, lenp);
2738 
2739 	if (flags) {
2740 	    result = check_locale_boundary_crossing(p, result, ustrp, lenp);
2741 	}
2742 
2743 	return result;
2744     }
2745 
2746     /* Here, used locale rules.  Convert back to utf8 */
2747     if (UTF8_IS_INVARIANT(result)) {
2748 	*ustrp = (U8) result;
2749 	*lenp = 1;
2750     }
2751     else {
2752 	*ustrp = UTF8_EIGHT_BIT_HI(result);
2753 	*(ustrp + 1) = UTF8_EIGHT_BIT_LO(result);
2754 	*lenp = 2;
2755     }
2756 
2757     if (tainted_ptr) {
2758 	*tainted_ptr = TRUE;
2759     }
2760     return result;
2761 }
2762 
2763 /*
2764 =for apidoc to_utf8_fold
2765 
2766 Convert the UTF-8 encoded character at C<p> to its foldcase version and
2767 store that in UTF-8 in C<ustrp> and its length in bytes in C<lenp>.  Note
2768 that the C<ustrp> needs to be at least UTF8_MAXBYTES_CASE+1 bytes since the
2769 foldcase version may be longer than the original character (up to
2770 three characters).
2771 
2772 The first character of the foldcased version is returned
2773 (but note, as explained above, that there may be more.)
2774 
2775 The character at C<p> is assumed by this routine to be well-formed.
2776 
2777 =cut */
2778 
2779 /* Not currently externally documented, and subject to change,
2780  * in <flags>
2781  *	bit FOLD_FLAGS_LOCALE is set iff locale semantics are to be used for code
2782  *			      points < 256.  Since foldcase is not defined in
2783  *			      POSIX, lowercase is used instead
2784  *      bit FOLD_FLAGS_FULL   is set iff full case folds are to be used;
2785  *			      otherwise simple folds
2786  *      bit FOLD_FLAGS_NOMIX_ASCII is set iff folds of non-ASCII to ASCII are
2787  *			      prohibited
2788  * <tainted_ptr> if non-null, *tainted_ptr will be set TRUE iff locale rules
2789  *		 were used in the calculation; otherwise unchanged. */
2790 
2791 UV
2792 Perl__to_utf8_fold_flags(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp, U8 flags, bool* tainted_ptr)
2793 {
2794     dVAR;
2795 
2796     UV result;
2797 
2798     PERL_ARGS_ASSERT__TO_UTF8_FOLD_FLAGS;
2799 
2800     /* These are mutually exclusive */
2801     assert (! ((flags & FOLD_FLAGS_LOCALE) && (flags & FOLD_FLAGS_NOMIX_ASCII)));
2802 
2803     assert(p != ustrp); /* Otherwise overwrites */
2804 
2805     if (UTF8_IS_INVARIANT(*p)) {
2806 	if (flags & FOLD_FLAGS_LOCALE) {
2807 	    result = toLOWER_LC(*p);
2808 	}
2809 	else {
2810 	    return _to_fold_latin1(*p, ustrp, lenp,
2811 		                   cBOOL(flags & FOLD_FLAGS_FULL));
2812 	}
2813     }
2814     else if UTF8_IS_DOWNGRADEABLE_START(*p) {
2815 	if (flags & FOLD_FLAGS_LOCALE) {
2816 	    result = toLOWER_LC(TWO_BYTE_UTF8_TO_UNI(*p, *(p+1)));
2817 	}
2818 	else {
2819 	    return _to_fold_latin1(TWO_BYTE_UTF8_TO_UNI(*p, *(p+1)),
2820 		                   ustrp, lenp,
2821 				   cBOOL((flags & FOLD_FLAGS_FULL
2822 				       /* If ASCII safe, don't allow full
2823 					* folding, as that could include SHARP
2824 					* S => ss; otherwise there is no
2825 					* crossing of ascii/non-ascii in the
2826 					* latin1 range */
2827 				       && ! (flags & FOLD_FLAGS_NOMIX_ASCII))));
2828 	}
2829     }
2830     else {  /* utf8, ord above 255 */
2831 	result = CALL_FOLD_CASE(p, ustrp, lenp, flags & FOLD_FLAGS_FULL);
2832 
2833 	if ((flags & FOLD_FLAGS_LOCALE)) {
2834 	    return check_locale_boundary_crossing(p, result, ustrp, lenp);
2835 	}
2836 	else if (! (flags & FOLD_FLAGS_NOMIX_ASCII)) {
2837 	    return result;
2838 	}
2839 	else {
2840 	    /* This is called when changing the case of a utf8-encoded
2841 	     * character above the Latin1 range, and the result should not
2842 	     * contain an ASCII character. */
2843 
2844 	    UV original;    /* To store the first code point of <p> */
2845 
2846 	    /* Look at every character in the result; if any cross the
2847 	    * boundary, the whole thing is disallowed */
2848 	    U8* s = ustrp;
2849 	    U8* e = ustrp + *lenp;
2850 	    while (s < e) {
2851 		if (isASCII(*s)) {
2852 		    /* Crossed, have to return the original */
2853 		    original = valid_utf8_to_uvchr(p, lenp);
2854 		    Copy(p, ustrp, *lenp, char);
2855 		    return original;
2856 		}
2857 		s += UTF8SKIP(s);
2858 	    }
2859 
2860 	    /* Here, no characters crossed, result is ok as-is */
2861 	    return result;
2862 	}
2863     }
2864 
2865     /* Here, used locale rules.  Convert back to utf8 */
2866     if (UTF8_IS_INVARIANT(result)) {
2867 	*ustrp = (U8) result;
2868 	*lenp = 1;
2869     }
2870     else {
2871 	*ustrp = UTF8_EIGHT_BIT_HI(result);
2872 	*(ustrp + 1) = UTF8_EIGHT_BIT_LO(result);
2873 	*lenp = 2;
2874     }
2875 
2876     if (tainted_ptr) {
2877 	*tainted_ptr = TRUE;
2878     }
2879     return result;
2880 }
2881 
2882 /* Note:
2883  * Returns a "swash" which is a hash described in utf8.c:Perl_swash_fetch().
2884  * C<pkg> is a pointer to a package name for SWASHNEW, should be "utf8".
2885  * For other parameters, see utf8::SWASHNEW in lib/utf8_heavy.pl.
2886  */
2887 
2888 SV*
2889 Perl_swash_init(pTHX_ const char* pkg, const char* name, SV *listsv, I32 minbits, I32 none)
2890 {
2891     PERL_ARGS_ASSERT_SWASH_INIT;
2892 
2893     /* Returns a copy of a swash initiated by the called function.  This is the
2894      * public interface, and returning a copy prevents others from doing
2895      * mischief on the original */
2896 
2897     return newSVsv(_core_swash_init(pkg, name, listsv, minbits, none, NULL, NULL));
2898 }
2899 
2900 SV*
2901 Perl__core_swash_init(pTHX_ const char* pkg, const char* name, SV *listsv, I32 minbits, I32 none, SV* invlist, U8* const flags_p)
2902 {
2903     /* Initialize and return a swash, creating it if necessary.  It does this
2904      * by calling utf8_heavy.pl in the general case.  The returned value may be
2905      * the swash's inversion list instead if the input parameters allow it.
2906      * Which is returned should be immaterial to callers, as the only
2907      * operations permitted on a swash, swash_fetch(), _get_swash_invlist(),
2908      * and swash_to_invlist() handle both these transparently.
2909      *
2910      * This interface should only be used by functions that won't destroy or
2911      * adversely change the swash, as doing so affects all other uses of the
2912      * swash in the program; the general public should use 'Perl_swash_init'
2913      * instead.
2914      *
2915      * pkg  is the name of the package that <name> should be in.
2916      * name is the name of the swash to find.  Typically it is a Unicode
2917      *	    property name, including user-defined ones
2918      * listsv is a string to initialize the swash with.  It must be of the form
2919      *	    documented as the subroutine return value in
2920      *	    L<perlunicode/User-Defined Character Properties>
2921      * minbits is the number of bits required to represent each data element.
2922      *	    It is '1' for binary properties.
2923      * none I (khw) do not understand this one, but it is used only in tr///.
2924      * invlist is an inversion list to initialize the swash with (or NULL)
2925      * flags_p if non-NULL is the address of various input and output flag bits
2926      *      to the routine, as follows:  ('I' means is input to the routine;
2927      *      'O' means output from the routine.  Only flags marked O are
2928      *      meaningful on return.)
2929      *  _CORE_SWASH_INIT_USER_DEFINED_PROPERTY indicates if the swash
2930      *      came from a user-defined property.  (I O)
2931      *  _CORE_SWASH_INIT_RETURN_IF_UNDEF indicates that instead of croaking
2932      *      when the swash cannot be located, to simply return NULL. (I)
2933      *  _CORE_SWASH_INIT_ACCEPT_INVLIST indicates that the caller will accept a
2934      *      return of an inversion list instead of a swash hash if this routine
2935      *      thinks that would result in faster execution of swash_fetch() later
2936      *      on. (I)
2937      *
2938      * Thus there are three possible inputs to find the swash: <name>,
2939      * <listsv>, and <invlist>.  At least one must be specified.  The result
2940      * will be the union of the specified ones, although <listsv>'s various
2941      * actions can intersect, etc. what <name> gives.
2942      *
2943      * <invlist> is only valid for binary properties */
2944 
2945     dVAR;
2946     SV* retval = &PL_sv_undef;
2947     HV* swash_hv = NULL;
2948     const int invlist_swash_boundary =
2949         (flags_p && *flags_p & _CORE_SWASH_INIT_ACCEPT_INVLIST)
2950         ? 512    /* Based on some benchmarking, but not extensive, see commit
2951                     message */
2952         : -1;   /* Never return just an inversion list */
2953 
2954     assert(listsv != &PL_sv_undef || strNE(name, "") || invlist);
2955     assert(! invlist || minbits == 1);
2956 
2957     /* If data was passed in to go out to utf8_heavy to find the swash of, do
2958      * so */
2959     if (listsv != &PL_sv_undef || strNE(name, "")) {
2960 	dSP;
2961 	const size_t pkg_len = strlen(pkg);
2962 	const size_t name_len = strlen(name);
2963 	HV * const stash = gv_stashpvn(pkg, pkg_len, 0);
2964 	SV* errsv_save;
2965 	GV *method;
2966 
2967 	PERL_ARGS_ASSERT__CORE_SWASH_INIT;
2968 
2969 	PUSHSTACKi(PERLSI_MAGIC);
2970 	ENTER;
2971 	SAVEHINTS();
2972 	save_re_context();
2973 	/* We might get here via a subroutine signature which uses a utf8
2974 	 * parameter name, at which point PL_subname will have been set
2975 	 * but not yet used. */
2976 	save_item(PL_subname);
2977 	if (PL_parser && PL_parser->error_count)
2978 	    SAVEI8(PL_parser->error_count), PL_parser->error_count = 0;
2979 	method = gv_fetchmeth(stash, "SWASHNEW", 8, -1);
2980 	if (!method) {	/* demand load utf8 */
2981 	    ENTER;
2982 	    if ((errsv_save = GvSV(PL_errgv))) SAVEFREESV(errsv_save);
2983 	    GvSV(PL_errgv) = NULL;
2984 	    /* It is assumed that callers of this routine are not passing in
2985 	     * any user derived data.  */
2986 	    /* Need to do this after save_re_context() as it will set
2987 	     * PL_tainted to 1 while saving $1 etc (see the code after getrx:
2988 	     * in Perl_magic_get).  Even line to create errsv_save can turn on
2989 	     * PL_tainted.  */
2990 #ifndef NO_TAINT_SUPPORT
2991 	    SAVEBOOL(TAINT_get);
2992 	    TAINT_NOT;
2993 #endif
2994 	    Perl_load_module(aTHX_ PERL_LOADMOD_NOIMPORT, newSVpvn(pkg,pkg_len),
2995 			     NULL);
2996 	    {
2997 		/* Not ERRSV, as there is no need to vivify a scalar we are
2998 		   about to discard. */
2999 		SV * const errsv = GvSV(PL_errgv);
3000 		if (!SvTRUE(errsv)) {
3001 		    GvSV(PL_errgv) = SvREFCNT_inc_simple(errsv_save);
3002 		    SvREFCNT_dec(errsv);
3003 		}
3004 	    }
3005 	    LEAVE;
3006 	}
3007 	SPAGAIN;
3008 	PUSHMARK(SP);
3009 	EXTEND(SP,5);
3010 	mPUSHp(pkg, pkg_len);
3011 	mPUSHp(name, name_len);
3012 	PUSHs(listsv);
3013 	mPUSHi(minbits);
3014 	mPUSHi(none);
3015 	PUTBACK;
3016 	if ((errsv_save = GvSV(PL_errgv))) SAVEFREESV(errsv_save);
3017 	GvSV(PL_errgv) = NULL;
3018 	/* If we already have a pointer to the method, no need to use
3019 	 * call_method() to repeat the lookup.  */
3020 	if (method
3021             ? call_sv(MUTABLE_SV(method), G_SCALAR)
3022 	    : call_sv(newSVpvs_flags("SWASHNEW", SVs_TEMP), G_SCALAR | G_METHOD))
3023 	{
3024 	    retval = *PL_stack_sp--;
3025 	    SvREFCNT_inc(retval);
3026 	}
3027 	{
3028 	    /* Not ERRSV.  See above. */
3029 	    SV * const errsv = GvSV(PL_errgv);
3030 	    if (!SvTRUE(errsv)) {
3031 		GvSV(PL_errgv) = SvREFCNT_inc_simple(errsv_save);
3032 		SvREFCNT_dec(errsv);
3033 	    }
3034 	}
3035 	LEAVE;
3036 	POPSTACK;
3037 	if (IN_PERL_COMPILETIME) {
3038 	    CopHINTS_set(PL_curcop, PL_hints);
3039 	}
3040 	if (!SvROK(retval) || SvTYPE(SvRV(retval)) != SVt_PVHV) {
3041 	    if (SvPOK(retval))
3042 
3043 		/* If caller wants to handle missing properties, let them */
3044 		if (flags_p && *flags_p & _CORE_SWASH_INIT_RETURN_IF_UNDEF) {
3045 		    return NULL;
3046 		}
3047 		Perl_croak(aTHX_
3048 			   "Can't find Unicode property definition \"%"SVf"\"",
3049 			   SVfARG(retval));
3050 	    Perl_croak(aTHX_ "SWASHNEW didn't return an HV ref");
3051 	}
3052     } /* End of calling the module to find the swash */
3053 
3054     /* If this operation fetched a swash, and we will need it later, get it */
3055     if (retval != &PL_sv_undef
3056         && (minbits == 1 || (flags_p
3057                             && ! (*flags_p
3058                                   & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY))))
3059     {
3060         swash_hv = MUTABLE_HV(SvRV(retval));
3061 
3062         /* If we don't already know that there is a user-defined component to
3063          * this swash, and the user has indicated they wish to know if there is
3064          * one (by passing <flags_p>), find out */
3065         if (flags_p && ! (*flags_p & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY)) {
3066             SV** user_defined = hv_fetchs(swash_hv, "USER_DEFINED", FALSE);
3067             if (user_defined && SvUV(*user_defined)) {
3068                 *flags_p |= _CORE_SWASH_INIT_USER_DEFINED_PROPERTY;
3069             }
3070         }
3071     }
3072 
3073     /* Make sure there is an inversion list for binary properties */
3074     if (minbits == 1) {
3075 	SV** swash_invlistsvp = NULL;
3076 	SV* swash_invlist = NULL;
3077 	bool invlist_in_swash_is_valid = FALSE;
3078 	bool swash_invlist_unclaimed = FALSE; /* whether swash_invlist has
3079 					    an unclaimed reference count */
3080 
3081         /* If this operation fetched a swash, get its already existing
3082          * inversion list, or create one for it */
3083 
3084         if (swash_hv) {
3085 	    swash_invlistsvp = hv_fetchs(swash_hv, "V", FALSE);
3086 	    if (swash_invlistsvp) {
3087 		swash_invlist = *swash_invlistsvp;
3088 		invlist_in_swash_is_valid = TRUE;
3089 	    }
3090 	    else {
3091 		swash_invlist = _swash_to_invlist(retval);
3092 		swash_invlist_unclaimed = TRUE;
3093 	    }
3094 	}
3095 
3096 	/* If an inversion list was passed in, have to include it */
3097 	if (invlist) {
3098 
3099             /* Any fetched swash will by now have an inversion list in it;
3100              * otherwise <swash_invlist>  will be NULL, indicating that we
3101              * didn't fetch a swash */
3102 	    if (swash_invlist) {
3103 
3104 		/* Add the passed-in inversion list, which invalidates the one
3105 		 * already stored in the swash */
3106 		invlist_in_swash_is_valid = FALSE;
3107 		_invlist_union(invlist, swash_invlist, &swash_invlist);
3108 	    }
3109 	    else {
3110 
3111                 /* Here, there is no swash already.  Set up a minimal one, if
3112                  * we are going to return a swash */
3113                 if ((int) _invlist_len(invlist) > invlist_swash_boundary) {
3114                     swash_hv = newHV();
3115                     retval = newRV_noinc(MUTABLE_SV(swash_hv));
3116                 }
3117 		swash_invlist = invlist;
3118 	    }
3119 	}
3120 
3121         /* Here, we have computed the union of all the passed-in data.  It may
3122          * be that there was an inversion list in the swash which didn't get
3123          * touched; otherwise save the one computed one */
3124 	if (! invlist_in_swash_is_valid
3125             && (int) _invlist_len(swash_invlist) > invlist_swash_boundary)
3126         {
3127 	    if (! hv_stores(MUTABLE_HV(SvRV(retval)), "V", swash_invlist))
3128             {
3129 		Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
3130 	    }
3131 	    /* We just stole a reference count. */
3132 	    if (swash_invlist_unclaimed) swash_invlist_unclaimed = FALSE;
3133 	    else SvREFCNT_inc_simple_void_NN(swash_invlist);
3134 	}
3135 
3136         /* Use the inversion list stand-alone if small enough */
3137         if ((int) _invlist_len(swash_invlist) <= invlist_swash_boundary) {
3138 	    SvREFCNT_dec(retval);
3139 	    if (!swash_invlist_unclaimed)
3140 		SvREFCNT_inc_simple_void_NN(swash_invlist);
3141             retval = newRV_noinc(swash_invlist);
3142         }
3143     }
3144 
3145     return retval;
3146 }
3147 
3148 
3149 /* This API is wrong for special case conversions since we may need to
3150  * return several Unicode characters for a single Unicode character
3151  * (see lib/unicore/SpecCase.txt) The SWASHGET in lib/utf8_heavy.pl is
3152  * the lower-level routine, and it is similarly broken for returning
3153  * multiple values.  --jhi
3154  * For those, you should use to_utf8_case() instead */
3155 /* Now SWASHGET is recasted into S_swatch_get in this file. */
3156 
3157 /* Note:
3158  * Returns the value of property/mapping C<swash> for the first character
3159  * of the string C<ptr>. If C<do_utf8> is true, the string C<ptr> is
3160  * assumed to be in utf8. If C<do_utf8> is false, the string C<ptr> is
3161  * assumed to be in native 8-bit encoding. Caches the swatch in C<swash>.
3162  *
3163  * A "swash" is a hash which contains initially the keys/values set up by
3164  * SWASHNEW.  The purpose is to be able to completely represent a Unicode
3165  * property for all possible code points.  Things are stored in a compact form
3166  * (see utf8_heavy.pl) so that calculation is required to find the actual
3167  * property value for a given code point.  As code points are looked up, new
3168  * key/value pairs are added to the hash, so that the calculation doesn't have
3169  * to ever be re-done.  Further, each calculation is done, not just for the
3170  * desired one, but for a whole block of code points adjacent to that one.
3171  * For binary properties on ASCII machines, the block is usually for 64 code
3172  * points, starting with a code point evenly divisible by 64.  Thus if the
3173  * property value for code point 257 is requested, the code goes out and
3174  * calculates the property values for all 64 code points between 256 and 319,
3175  * and stores these as a single 64-bit long bit vector, called a "swatch",
3176  * under the key for code point 256.  The key is the UTF-8 encoding for code
3177  * point 256, minus the final byte.  Thus, if the length of the UTF-8 encoding
3178  * for a code point is 13 bytes, the key will be 12 bytes long.  If the value
3179  * for code point 258 is then requested, this code realizes that it would be
3180  * stored under the key for 256, and would find that value and extract the
3181  * relevant bit, offset from 256.
3182  *
3183  * Non-binary properties are stored in as many bits as necessary to represent
3184  * their values (32 currently, though the code is more general than that), not
3185  * as single bits, but the principal is the same: the value for each key is a
3186  * vector that encompasses the property values for all code points whose UTF-8
3187  * representations are represented by the key.  That is, for all code points
3188  * whose UTF-8 representations are length N bytes, and the key is the first N-1
3189  * bytes of that.
3190  */
3191 UV
3192 Perl_swash_fetch(pTHX_ SV *swash, const U8 *ptr, bool do_utf8)
3193 {
3194     dVAR;
3195     HV *const hv = MUTABLE_HV(SvRV(swash));
3196     U32 klen;
3197     U32 off;
3198     STRLEN slen;
3199     STRLEN needents;
3200     const U8 *tmps = NULL;
3201     U32 bit;
3202     SV *swatch;
3203     U8 tmputf8[2];
3204     const UV c = NATIVE_TO_ASCII(*ptr);
3205 
3206     PERL_ARGS_ASSERT_SWASH_FETCH;
3207 
3208     /* If it really isn't a hash, it isn't really swash; must be an inversion
3209      * list */
3210     if (SvTYPE(hv) != SVt_PVHV) {
3211         return _invlist_contains_cp((SV*)hv,
3212                                     (do_utf8)
3213                                      ? valid_utf8_to_uvchr(ptr, NULL)
3214                                      : c);
3215     }
3216 
3217     /* Convert to utf8 if not already */
3218     if (!do_utf8 && !UNI_IS_INVARIANT(c)) {
3219 	tmputf8[0] = (U8)UTF8_EIGHT_BIT_HI(c);
3220 	tmputf8[1] = (U8)UTF8_EIGHT_BIT_LO(c);
3221 	ptr = tmputf8;
3222     }
3223     /* Given a UTF-X encoded char 0xAA..0xYY,0xZZ
3224      * then the "swatch" is a vec() for all the chars which start
3225      * with 0xAA..0xYY
3226      * So the key in the hash (klen) is length of encoded char -1
3227      */
3228     klen = UTF8SKIP(ptr) - 1;
3229     off  = ptr[klen];
3230 
3231     if (klen == 0) {
3232       /* If char is invariant then swatch is for all the invariant chars
3233        * In both UTF-8 and UTF-8-MOD that happens to be UTF_CONTINUATION_MARK
3234        */
3235 	needents = UTF_CONTINUATION_MARK;
3236 	off      = NATIVE_TO_UTF(ptr[klen]);
3237     }
3238     else {
3239       /* If char is encoded then swatch is for the prefix */
3240 	needents = (1 << UTF_ACCUMULATION_SHIFT);
3241 	off      = NATIVE_TO_UTF(ptr[klen]) & UTF_CONTINUATION_MASK;
3242     }
3243 
3244     /*
3245      * This single-entry cache saves about 1/3 of the utf8 overhead in test
3246      * suite.  (That is, only 7-8% overall over just a hash cache.  Still,
3247      * it's nothing to sniff at.)  Pity we usually come through at least
3248      * two function calls to get here...
3249      *
3250      * NB: this code assumes that swatches are never modified, once generated!
3251      */
3252 
3253     if (hv   == PL_last_swash_hv &&
3254 	klen == PL_last_swash_klen &&
3255 	(!klen || memEQ((char *)ptr, (char *)PL_last_swash_key, klen)) )
3256     {
3257 	tmps = PL_last_swash_tmps;
3258 	slen = PL_last_swash_slen;
3259     }
3260     else {
3261 	/* Try our second-level swatch cache, kept in a hash. */
3262 	SV** svp = hv_fetch(hv, (const char*)ptr, klen, FALSE);
3263 
3264 	/* If not cached, generate it via swatch_get */
3265 	if (!svp || !SvPOK(*svp)
3266 		 || !(tmps = (const U8*)SvPV_const(*svp, slen))) {
3267 	    /* We use utf8n_to_uvuni() as we want an index into
3268 	       Unicode tables, not a native character number.
3269 	     */
3270 	    const UV code_point = utf8n_to_uvuni(ptr, UTF8_MAXBYTES, 0,
3271 					   ckWARN(WARN_UTF8) ?
3272 					   0 : UTF8_ALLOW_ANY);
3273 	    swatch = swatch_get(swash,
3274 		    /* On EBCDIC & ~(0xA0-1) isn't a useful thing to do */
3275 				(klen) ? (code_point & ~((UV)needents - 1)) : 0,
3276 				needents);
3277 
3278 	    if (IN_PERL_COMPILETIME)
3279 		CopHINTS_set(PL_curcop, PL_hints);
3280 
3281 	    svp = hv_store(hv, (const char *)ptr, klen, swatch, 0);
3282 
3283 	    if (!svp || !(tmps = (U8*)SvPV(*svp, slen))
3284 		     || (slen << 3) < needents)
3285 		Perl_croak(aTHX_ "panic: swash_fetch got improper swatch, "
3286 			   "svp=%p, tmps=%p, slen=%"UVuf", needents=%"UVuf,
3287 			   svp, tmps, (UV)slen, (UV)needents);
3288 	}
3289 
3290 	PL_last_swash_hv = hv;
3291 	assert(klen <= sizeof(PL_last_swash_key));
3292 	PL_last_swash_klen = (U8)klen;
3293 	/* FIXME change interpvar.h?  */
3294 	PL_last_swash_tmps = (U8 *) tmps;
3295 	PL_last_swash_slen = slen;
3296 	if (klen)
3297 	    Copy(ptr, PL_last_swash_key, klen, U8);
3298     }
3299 
3300     switch ((int)((slen << 3) / needents)) {
3301     case 1:
3302 	bit = 1 << (off & 7);
3303 	off >>= 3;
3304 	return (tmps[off] & bit) != 0;
3305     case 8:
3306 	return tmps[off];
3307     case 16:
3308 	off <<= 1;
3309 	return (tmps[off] << 8) + tmps[off + 1] ;
3310     case 32:
3311 	off <<= 2;
3312 	return (tmps[off] << 24) + (tmps[off+1] << 16) + (tmps[off+2] << 8) + tmps[off + 3] ;
3313     }
3314     Perl_croak(aTHX_ "panic: swash_fetch got swatch of unexpected bit width, "
3315 	       "slen=%"UVuf", needents=%"UVuf, (UV)slen, (UV)needents);
3316     NORETURN_FUNCTION_END;
3317 }
3318 
3319 /* Read a single line of the main body of the swash input text.  These are of
3320  * the form:
3321  * 0053	0056	0073
3322  * where each number is hex.  The first two numbers form the minimum and
3323  * maximum of a range, and the third is the value associated with the range.
3324  * Not all swashes should have a third number
3325  *
3326  * On input: l	  points to the beginning of the line to be examined; it points
3327  *		  to somewhere in the string of the whole input text, and is
3328  *		  terminated by a \n or the null string terminator.
3329  *	     lend   points to the null terminator of that string
3330  *	     wants_value    is non-zero if the swash expects a third number
3331  *	     typestr is the name of the swash's mapping, like 'ToLower'
3332  * On output: *min, *max, and *val are set to the values read from the line.
3333  *	      returns a pointer just beyond the line examined.  If there was no
3334  *	      valid min number on the line, returns lend+1
3335  */
3336 
3337 STATIC U8*
3338 S_swash_scan_list_line(pTHX_ U8* l, U8* const lend, UV* min, UV* max, UV* val,
3339 			     const bool wants_value, const U8* const typestr)
3340 {
3341     const int  typeto  = typestr[0] == 'T' && typestr[1] == 'o';
3342     STRLEN numlen;	    /* Length of the number */
3343     I32 flags = PERL_SCAN_SILENT_ILLDIGIT
3344 		| PERL_SCAN_DISALLOW_PREFIX
3345 		| PERL_SCAN_SILENT_NON_PORTABLE;
3346 
3347     /* nl points to the next \n in the scan */
3348     U8* const nl = (U8*)memchr(l, '\n', lend - l);
3349 
3350     /* Get the first number on the line: the range minimum */
3351     numlen = lend - l;
3352     *min = grok_hex((char *)l, &numlen, &flags, NULL);
3353     if (numlen)	    /* If found a hex number, position past it */
3354 	l += numlen;
3355     else if (nl) {	    /* Else, go handle next line, if any */
3356 	return nl + 1;	/* 1 is length of "\n" */
3357     }
3358     else {		/* Else, no next line */
3359 	return lend + 1;	/* to LIST's end at which \n is not found */
3360     }
3361 
3362     /* The max range value follows, separated by a BLANK */
3363     if (isBLANK(*l)) {
3364 	++l;
3365 	flags = PERL_SCAN_SILENT_ILLDIGIT
3366 		| PERL_SCAN_DISALLOW_PREFIX
3367 		| PERL_SCAN_SILENT_NON_PORTABLE;
3368 	numlen = lend - l;
3369 	*max = grok_hex((char *)l, &numlen, &flags, NULL);
3370 	if (numlen)
3371 	    l += numlen;
3372 	else    /* If no value here, it is a single element range */
3373 	    *max = *min;
3374 
3375 	/* Non-binary tables have a third entry: what the first element of the
3376 	 * range maps to */
3377 	if (wants_value) {
3378 	    if (isBLANK(*l)) {
3379 		++l;
3380 
3381 		/* The ToLc, etc table mappings are not in hex, and must be
3382 		 * corrected by adding the code point to them */
3383 		if (typeto) {
3384 		    char *after_strtol = (char *) lend;
3385 		    *val = Strtol((char *)l, &after_strtol, 10);
3386 		    l = (U8 *) after_strtol;
3387 		}
3388 		else { /* Other tables are in hex, and are the correct result
3389 			  without tweaking */
3390 		    flags = PERL_SCAN_SILENT_ILLDIGIT
3391 			| PERL_SCAN_DISALLOW_PREFIX
3392 			| PERL_SCAN_SILENT_NON_PORTABLE;
3393 		    numlen = lend - l;
3394 		    *val = grok_hex((char *)l, &numlen, &flags, NULL);
3395 		    if (numlen)
3396 			l += numlen;
3397 		    else
3398 			*val = 0;
3399 		}
3400 	    }
3401 	    else {
3402 		*val = 0;
3403 		if (typeto) {
3404 		    /* diag_listed_as: To%s: illegal mapping '%s' */
3405 		    Perl_croak(aTHX_ "%s: illegal mapping '%s'",
3406 				     typestr, l);
3407 		}
3408 	    }
3409 	}
3410 	else
3411 	    *val = 0; /* bits == 1, then any val should be ignored */
3412     }
3413     else { /* Nothing following range min, should be single element with no
3414 	      mapping expected */
3415 	*max = *min;
3416 	if (wants_value) {
3417 	    *val = 0;
3418 	    if (typeto) {
3419 		/* diag_listed_as: To%s: illegal mapping '%s' */
3420 		Perl_croak(aTHX_ "%s: illegal mapping '%s'", typestr, l);
3421 	    }
3422 	}
3423 	else
3424 	    *val = 0; /* bits == 1, then val should be ignored */
3425     }
3426 
3427     /* Position to next line if any, or EOF */
3428     if (nl)
3429 	l = nl + 1;
3430     else
3431 	l = lend;
3432 
3433     return l;
3434 }
3435 
3436 /* Note:
3437  * Returns a swatch (a bit vector string) for a code point sequence
3438  * that starts from the value C<start> and comprises the number C<span>.
3439  * A C<swash> must be an object created by SWASHNEW (see lib/utf8_heavy.pl).
3440  * Should be used via swash_fetch, which will cache the swatch in C<swash>.
3441  */
3442 STATIC SV*
3443 S_swatch_get(pTHX_ SV* swash, UV start, UV span)
3444 {
3445     SV *swatch;
3446     U8 *l, *lend, *x, *xend, *s, *send;
3447     STRLEN lcur, xcur, scur;
3448     HV *const hv = MUTABLE_HV(SvRV(swash));
3449     SV** const invlistsvp = hv_fetchs(hv, "V", FALSE);
3450 
3451     SV** listsvp = NULL; /* The string containing the main body of the table */
3452     SV** extssvp = NULL;
3453     SV** invert_it_svp = NULL;
3454     U8* typestr = NULL;
3455     STRLEN bits;
3456     STRLEN octets; /* if bits == 1, then octets == 0 */
3457     UV  none;
3458     UV  end = start + span;
3459 
3460     if (invlistsvp == NULL) {
3461         SV** const bitssvp = hv_fetchs(hv, "BITS", FALSE);
3462         SV** const nonesvp = hv_fetchs(hv, "NONE", FALSE);
3463         SV** const typesvp = hv_fetchs(hv, "TYPE", FALSE);
3464         extssvp = hv_fetchs(hv, "EXTRAS", FALSE);
3465         listsvp = hv_fetchs(hv, "LIST", FALSE);
3466         invert_it_svp = hv_fetchs(hv, "INVERT_IT", FALSE);
3467 
3468 	bits  = SvUV(*bitssvp);
3469 	none  = SvUV(*nonesvp);
3470 	typestr = (U8*)SvPV_nolen(*typesvp);
3471     }
3472     else {
3473 	bits = 1;
3474 	none = 0;
3475     }
3476     octets = bits >> 3; /* if bits == 1, then octets == 0 */
3477 
3478     PERL_ARGS_ASSERT_SWATCH_GET;
3479 
3480     if (bits != 1 && bits != 8 && bits != 16 && bits != 32) {
3481 	Perl_croak(aTHX_ "panic: swatch_get doesn't expect bits %"UVuf,
3482 						 (UV)bits);
3483     }
3484 
3485     /* If overflowed, use the max possible */
3486     if (end < start) {
3487 	end = UV_MAX;
3488 	span = end - start;
3489     }
3490 
3491     /* create and initialize $swatch */
3492     scur   = octets ? (span * octets) : (span + 7) / 8;
3493     swatch = newSV(scur);
3494     SvPOK_on(swatch);
3495     s = (U8*)SvPVX(swatch);
3496     if (octets && none) {
3497 	const U8* const e = s + scur;
3498 	while (s < e) {
3499 	    if (bits == 8)
3500 		*s++ = (U8)(none & 0xff);
3501 	    else if (bits == 16) {
3502 		*s++ = (U8)((none >>  8) & 0xff);
3503 		*s++ = (U8)( none        & 0xff);
3504 	    }
3505 	    else if (bits == 32) {
3506 		*s++ = (U8)((none >> 24) & 0xff);
3507 		*s++ = (U8)((none >> 16) & 0xff);
3508 		*s++ = (U8)((none >>  8) & 0xff);
3509 		*s++ = (U8)( none        & 0xff);
3510 	    }
3511 	}
3512 	*s = '\0';
3513     }
3514     else {
3515 	(void)memzero((U8*)s, scur + 1);
3516     }
3517     SvCUR_set(swatch, scur);
3518     s = (U8*)SvPVX(swatch);
3519 
3520     if (invlistsvp) {	/* If has an inversion list set up use that */
3521 	_invlist_populate_swatch(*invlistsvp, start, end, s);
3522         return swatch;
3523     }
3524 
3525     /* read $swash->{LIST} */
3526     l = (U8*)SvPV(*listsvp, lcur);
3527     lend = l + lcur;
3528     while (l < lend) {
3529 	UV min, max, val, upper;
3530 	l = S_swash_scan_list_line(aTHX_ l, lend, &min, &max, &val,
3531 					 cBOOL(octets), typestr);
3532 	if (l > lend) {
3533 	    break;
3534 	}
3535 
3536 	/* If looking for something beyond this range, go try the next one */
3537 	if (max < start)
3538 	    continue;
3539 
3540 	/* <end> is generally 1 beyond where we want to set things, but at the
3541 	 * platform's infinity, where we can't go any higher, we want to
3542 	 * include the code point at <end> */
3543         upper = (max < end)
3544                 ? max
3545                 : (max != UV_MAX || end != UV_MAX)
3546                   ? end - 1
3547                   : end;
3548 
3549 	if (octets) {
3550 	    UV key;
3551 	    if (min < start) {
3552 		if (!none || val < none) {
3553 		    val += start - min;
3554 		}
3555 		min = start;
3556 	    }
3557 	    for (key = min; key <= upper; key++) {
3558 		STRLEN offset;
3559 		/* offset must be non-negative (start <= min <= key < end) */
3560 		offset = octets * (key - start);
3561 		if (bits == 8)
3562 		    s[offset] = (U8)(val & 0xff);
3563 		else if (bits == 16) {
3564 		    s[offset    ] = (U8)((val >>  8) & 0xff);
3565 		    s[offset + 1] = (U8)( val        & 0xff);
3566 		}
3567 		else if (bits == 32) {
3568 		    s[offset    ] = (U8)((val >> 24) & 0xff);
3569 		    s[offset + 1] = (U8)((val >> 16) & 0xff);
3570 		    s[offset + 2] = (U8)((val >>  8) & 0xff);
3571 		    s[offset + 3] = (U8)( val        & 0xff);
3572 		}
3573 
3574 		if (!none || val < none)
3575 		    ++val;
3576 	    }
3577 	}
3578 	else { /* bits == 1, then val should be ignored */
3579 	    UV key;
3580 	    if (min < start)
3581 		min = start;
3582 
3583 	    for (key = min; key <= upper; key++) {
3584 		const STRLEN offset = (STRLEN)(key - start);
3585 		s[offset >> 3] |= 1 << (offset & 7);
3586 	    }
3587 	}
3588     } /* while */
3589 
3590     /* Invert if the data says it should be.  Assumes that bits == 1 */
3591     if (invert_it_svp && SvUV(*invert_it_svp)) {
3592 
3593 	/* Unicode properties should come with all bits above PERL_UNICODE_MAX
3594 	 * be 0, and their inversion should also be 0, as we don't succeed any
3595 	 * Unicode property matches for non-Unicode code points */
3596 	if (start <= PERL_UNICODE_MAX) {
3597 
3598 	    /* The code below assumes that we never cross the
3599 	     * Unicode/above-Unicode boundary in a range, as otherwise we would
3600 	     * have to figure out where to stop flipping the bits.  Since this
3601 	     * boundary is divisible by a large power of 2, and swatches comes
3602 	     * in small powers of 2, this should be a valid assumption */
3603 	    assert(start + span - 1 <= PERL_UNICODE_MAX);
3604 
3605 	    send = s + scur;
3606 	    while (s < send) {
3607 		*s = ~(*s);
3608 		s++;
3609 	    }
3610 	}
3611     }
3612 
3613     /* read $swash->{EXTRAS}
3614      * This code also copied to swash_to_invlist() below */
3615     x = (U8*)SvPV(*extssvp, xcur);
3616     xend = x + xcur;
3617     while (x < xend) {
3618 	STRLEN namelen;
3619 	U8 *namestr;
3620 	SV** othersvp;
3621 	HV* otherhv;
3622 	STRLEN otherbits;
3623 	SV **otherbitssvp, *other;
3624 	U8 *s, *o, *nl;
3625 	STRLEN slen, olen;
3626 
3627 	const U8 opc = *x++;
3628 	if (opc == '\n')
3629 	    continue;
3630 
3631 	nl = (U8*)memchr(x, '\n', xend - x);
3632 
3633 	if (opc != '-' && opc != '+' && opc != '!' && opc != '&') {
3634 	    if (nl) {
3635 		x = nl + 1; /* 1 is length of "\n" */
3636 		continue;
3637 	    }
3638 	    else {
3639 		x = xend; /* to EXTRAS' end at which \n is not found */
3640 		break;
3641 	    }
3642 	}
3643 
3644 	namestr = x;
3645 	if (nl) {
3646 	    namelen = nl - namestr;
3647 	    x = nl + 1;
3648 	}
3649 	else {
3650 	    namelen = xend - namestr;
3651 	    x = xend;
3652 	}
3653 
3654 	othersvp = hv_fetch(hv, (char *)namestr, namelen, FALSE);
3655 	otherhv = MUTABLE_HV(SvRV(*othersvp));
3656 	otherbitssvp = hv_fetchs(otherhv, "BITS", FALSE);
3657 	otherbits = (STRLEN)SvUV(*otherbitssvp);
3658 	if (bits < otherbits)
3659 	    Perl_croak(aTHX_ "panic: swatch_get found swatch size mismatch, "
3660 		       "bits=%"UVuf", otherbits=%"UVuf, (UV)bits, (UV)otherbits);
3661 
3662 	/* The "other" swatch must be destroyed after. */
3663 	other = swatch_get(*othersvp, start, span);
3664 	o = (U8*)SvPV(other, olen);
3665 
3666 	if (!olen)
3667 	    Perl_croak(aTHX_ "panic: swatch_get got improper swatch");
3668 
3669 	s = (U8*)SvPV(swatch, slen);
3670 	if (bits == 1 && otherbits == 1) {
3671 	    if (slen != olen)
3672 		Perl_croak(aTHX_ "panic: swatch_get found swatch length "
3673 			   "mismatch, slen=%"UVuf", olen=%"UVuf,
3674 			   (UV)slen, (UV)olen);
3675 
3676 	    switch (opc) {
3677 	    case '+':
3678 		while (slen--)
3679 		    *s++ |= *o++;
3680 		break;
3681 	    case '!':
3682 		while (slen--)
3683 		    *s++ |= ~*o++;
3684 		break;
3685 	    case '-':
3686 		while (slen--)
3687 		    *s++ &= ~*o++;
3688 		break;
3689 	    case '&':
3690 		while (slen--)
3691 		    *s++ &= *o++;
3692 		break;
3693 	    default:
3694 		break;
3695 	    }
3696 	}
3697 	else {
3698 	    STRLEN otheroctets = otherbits >> 3;
3699 	    STRLEN offset = 0;
3700 	    U8* const send = s + slen;
3701 
3702 	    while (s < send) {
3703 		UV otherval = 0;
3704 
3705 		if (otherbits == 1) {
3706 		    otherval = (o[offset >> 3] >> (offset & 7)) & 1;
3707 		    ++offset;
3708 		}
3709 		else {
3710 		    STRLEN vlen = otheroctets;
3711 		    otherval = *o++;
3712 		    while (--vlen) {
3713 			otherval <<= 8;
3714 			otherval |= *o++;
3715 		    }
3716 		}
3717 
3718 		if (opc == '+' && otherval)
3719 		    NOOP;   /* replace with otherval */
3720 		else if (opc == '!' && !otherval)
3721 		    otherval = 1;
3722 		else if (opc == '-' && otherval)
3723 		    otherval = 0;
3724 		else if (opc == '&' && !otherval)
3725 		    otherval = 0;
3726 		else {
3727 		    s += octets; /* no replacement */
3728 		    continue;
3729 		}
3730 
3731 		if (bits == 8)
3732 		    *s++ = (U8)( otherval & 0xff);
3733 		else if (bits == 16) {
3734 		    *s++ = (U8)((otherval >>  8) & 0xff);
3735 		    *s++ = (U8)( otherval        & 0xff);
3736 		}
3737 		else if (bits == 32) {
3738 		    *s++ = (U8)((otherval >> 24) & 0xff);
3739 		    *s++ = (U8)((otherval >> 16) & 0xff);
3740 		    *s++ = (U8)((otherval >>  8) & 0xff);
3741 		    *s++ = (U8)( otherval        & 0xff);
3742 		}
3743 	    }
3744 	}
3745 	sv_free(other); /* through with it! */
3746     } /* while */
3747     return swatch;
3748 }
3749 
3750 HV*
3751 Perl__swash_inversion_hash(pTHX_ SV* const swash)
3752 {
3753 
3754    /* Subject to change or removal.  For use only in regcomp.c and regexec.c
3755     * Can't be used on a property that is subject to user override, as it
3756     * relies on the value of SPECIALS in the swash which would be set by
3757     * utf8_heavy.pl to the hash in the non-overriden file, and hence is not set
3758     * for overridden properties
3759     *
3760     * Returns a hash which is the inversion and closure of a swash mapping.
3761     * For example, consider the input lines:
3762     * 004B		006B
3763     * 004C		006C
3764     * 212A		006B
3765     *
3766     * The returned hash would have two keys, the utf8 for 006B and the utf8 for
3767     * 006C.  The value for each key is an array.  For 006C, the array would
3768     * have a two elements, the utf8 for itself, and for 004C.  For 006B, there
3769     * would be three elements in its array, the utf8 for 006B, 004B and 212A.
3770     *
3771     * Essentially, for any code point, it gives all the code points that map to
3772     * it, or the list of 'froms' for that point.
3773     *
3774     * Currently it ignores any additions or deletions from other swashes,
3775     * looking at just the main body of the swash, and if there are SPECIALS
3776     * in the swash, at that hash
3777     *
3778     * The specials hash can be extra code points, and most likely consists of
3779     * maps from single code points to multiple ones (each expressed as a string
3780     * of utf8 characters).   This function currently returns only 1-1 mappings.
3781     * However consider this possible input in the specials hash:
3782     * "\xEF\xAC\x85" => "\x{0073}\x{0074}",         # U+FB05 => 0073 0074
3783     * "\xEF\xAC\x86" => "\x{0073}\x{0074}",         # U+FB06 => 0073 0074
3784     *
3785     * Both FB05 and FB06 map to the same multi-char sequence, which we don't
3786     * currently handle.  But it also means that FB05 and FB06 are equivalent in
3787     * a 1-1 mapping which we should handle, and this relationship may not be in
3788     * the main table.  Therefore this function examines all the multi-char
3789     * sequences and adds the 1-1 mappings that come out of that.  */
3790 
3791     U8 *l, *lend;
3792     STRLEN lcur;
3793     HV *const hv = MUTABLE_HV(SvRV(swash));
3794 
3795     /* The string containing the main body of the table.  This will have its
3796      * assertion fail if the swash has been converted to its inversion list */
3797     SV** const listsvp = hv_fetchs(hv, "LIST", FALSE);
3798 
3799     SV** const typesvp = hv_fetchs(hv, "TYPE", FALSE);
3800     SV** const bitssvp = hv_fetchs(hv, "BITS", FALSE);
3801     SV** const nonesvp = hv_fetchs(hv, "NONE", FALSE);
3802     /*SV** const extssvp = hv_fetchs(hv, "EXTRAS", FALSE);*/
3803     const U8* const typestr = (U8*)SvPV_nolen(*typesvp);
3804     const STRLEN bits  = SvUV(*bitssvp);
3805     const STRLEN octets = bits >> 3; /* if bits == 1, then octets == 0 */
3806     const UV     none  = SvUV(*nonesvp);
3807     SV **specials_p = hv_fetchs(hv, "SPECIALS", 0);
3808 
3809     HV* ret = newHV();
3810 
3811     PERL_ARGS_ASSERT__SWASH_INVERSION_HASH;
3812 
3813     /* Must have at least 8 bits to get the mappings */
3814     if (bits != 8 && bits != 16 && bits != 32) {
3815 	Perl_croak(aTHX_ "panic: swash_inversion_hash doesn't expect bits %"UVuf,
3816 						 (UV)bits);
3817     }
3818 
3819     if (specials_p) { /* It might be "special" (sometimes, but not always, a
3820 			mapping to more than one character */
3821 
3822 	/* Construct an inverse mapping hash for the specials */
3823 	HV * const specials_hv = MUTABLE_HV(SvRV(*specials_p));
3824 	HV * specials_inverse = newHV();
3825 	char *char_from; /* the lhs of the map */
3826 	I32 from_len;   /* its byte length */
3827 	char *char_to;  /* the rhs of the map */
3828 	I32 to_len;	/* its byte length */
3829 	SV *sv_to;	/* and in a sv */
3830 	AV* from_list;  /* list of things that map to each 'to' */
3831 
3832 	hv_iterinit(specials_hv);
3833 
3834 	/* The keys are the characters (in utf8) that map to the corresponding
3835 	 * utf8 string value.  Iterate through the list creating the inverse
3836 	 * list. */
3837 	while ((sv_to = hv_iternextsv(specials_hv, &char_from, &from_len))) {
3838 	    SV** listp;
3839 	    if (! SvPOK(sv_to)) {
3840 		Perl_croak(aTHX_ "panic: value returned from hv_iternextsv() "
3841 			   "unexpectedly is not a string, flags=%lu",
3842 			   (unsigned long)SvFLAGS(sv_to));
3843 	    }
3844 	    /*DEBUG_U(PerlIO_printf(Perl_debug_log, "Found mapping from %"UVXf", First char of to is %"UVXf"\n", valid_utf8_to_uvchr((U8*) char_from, 0), valid_utf8_to_uvchr((U8*) SvPVX(sv_to), 0)));*/
3845 
3846 	    /* Each key in the inverse list is a mapped-to value, and the key's
3847 	     * hash value is a list of the strings (each in utf8) that map to
3848 	     * it.  Those strings are all one character long */
3849 	    if ((listp = hv_fetch(specials_inverse,
3850 				    SvPVX(sv_to),
3851 				    SvCUR(sv_to), 0)))
3852 	    {
3853 		from_list = (AV*) *listp;
3854 	    }
3855 	    else { /* No entry yet for it: create one */
3856 		from_list = newAV();
3857 		if (! hv_store(specials_inverse,
3858 				SvPVX(sv_to),
3859 				SvCUR(sv_to),
3860 				(SV*) from_list, 0))
3861 		{
3862 		    Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
3863 		}
3864 	    }
3865 
3866 	    /* Here have the list associated with this 'to' (perhaps newly
3867 	     * created and empty).  Just add to it.  Note that we ASSUME that
3868 	     * the input is guaranteed to not have duplications, so we don't
3869 	     * check for that.  Duplications just slow down execution time. */
3870 	    av_push(from_list, newSVpvn_utf8(char_from, from_len, TRUE));
3871 	}
3872 
3873 	/* Here, 'specials_inverse' contains the inverse mapping.  Go through
3874 	 * it looking for cases like the FB05/FB06 examples above.  There would
3875 	 * be an entry in the hash like
3876 	*	'st' => [ FB05, FB06 ]
3877 	* In this example we will create two lists that get stored in the
3878 	* returned hash, 'ret':
3879 	*	FB05 => [ FB05, FB06 ]
3880 	*	FB06 => [ FB05, FB06 ]
3881 	*
3882 	* Note that there is nothing to do if the array only has one element.
3883 	* (In the normal 1-1 case handled below, we don't have to worry about
3884 	* two lists, as everything gets tied to the single list that is
3885 	* generated for the single character 'to'.  But here, we are omitting
3886 	* that list, ('st' in the example), so must have multiple lists.) */
3887 	while ((from_list = (AV *) hv_iternextsv(specials_inverse,
3888 						 &char_to, &to_len)))
3889 	{
3890 	    if (av_len(from_list) > 0) {
3891 		int i;
3892 
3893 		/* We iterate over all combinations of i,j to place each code
3894 		 * point on each list */
3895 		for (i = 0; i <= av_len(from_list); i++) {
3896 		    int j;
3897 		    AV* i_list = newAV();
3898 		    SV** entryp = av_fetch(from_list, i, FALSE);
3899 		    if (entryp == NULL) {
3900 			Perl_croak(aTHX_ "panic: av_fetch() unexpectedly failed");
3901 		    }
3902 		    if (hv_fetch(ret, SvPVX(*entryp), SvCUR(*entryp), FALSE)) {
3903 			Perl_croak(aTHX_ "panic: unexpected entry for %s", SvPVX(*entryp));
3904 		    }
3905 		    if (! hv_store(ret, SvPVX(*entryp), SvCUR(*entryp),
3906 				   (SV*) i_list, FALSE))
3907 		    {
3908 			Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
3909 		    }
3910 
3911 		    /* For debugging: UV u = valid_utf8_to_uvchr((U8*) SvPVX(*entryp), 0);*/
3912 		    for (j = 0; j <= av_len(from_list); j++) {
3913 			entryp = av_fetch(from_list, j, FALSE);
3914 			if (entryp == NULL) {
3915 			    Perl_croak(aTHX_ "panic: av_fetch() unexpectedly failed");
3916 			}
3917 
3918 			/* When i==j this adds itself to the list */
3919 			av_push(i_list, newSVuv(utf8_to_uvchr_buf(
3920 					(U8*) SvPVX(*entryp),
3921 					(U8*) SvPVX(*entryp) + SvCUR(*entryp),
3922 					0)));
3923 			/*DEBUG_U(PerlIO_printf(Perl_debug_log, "%s: %d: Adding %"UVXf" to list for %"UVXf"\n", __FILE__, __LINE__, valid_utf8_to_uvchr((U8*) SvPVX(*entryp), 0), u));*/
3924 		    }
3925 		}
3926 	    }
3927 	}
3928 	SvREFCNT_dec(specials_inverse); /* done with it */
3929     } /* End of specials */
3930 
3931     /* read $swash->{LIST} */
3932     l = (U8*)SvPV(*listsvp, lcur);
3933     lend = l + lcur;
3934 
3935     /* Go through each input line */
3936     while (l < lend) {
3937 	UV min, max, val;
3938 	UV inverse;
3939 	l = S_swash_scan_list_line(aTHX_ l, lend, &min, &max, &val,
3940 					 cBOOL(octets), typestr);
3941 	if (l > lend) {
3942 	    break;
3943 	}
3944 
3945 	/* Each element in the range is to be inverted */
3946 	for (inverse = min; inverse <= max; inverse++) {
3947 	    AV* list;
3948 	    SV** listp;
3949 	    IV i;
3950 	    bool found_key = FALSE;
3951 	    bool found_inverse = FALSE;
3952 
3953 	    /* The key is the inverse mapping */
3954 	    char key[UTF8_MAXBYTES+1];
3955 	    char* key_end = (char *) uvuni_to_utf8((U8*) key, val);
3956 	    STRLEN key_len = key_end - key;
3957 
3958 	    /* Get the list for the map */
3959 	    if ((listp = hv_fetch(ret, key, key_len, FALSE))) {
3960 		list = (AV*) *listp;
3961 	    }
3962 	    else { /* No entry yet for it: create one */
3963 		list = newAV();
3964 		if (! hv_store(ret, key, key_len, (SV*) list, FALSE)) {
3965 		    Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
3966 		}
3967 	    }
3968 
3969 	    /* Look through list to see if this inverse mapping already is
3970 	     * listed, or if there is a mapping to itself already */
3971 	    for (i = 0; i <= av_len(list); i++) {
3972 		SV** entryp = av_fetch(list, i, FALSE);
3973 		SV* entry;
3974 		if (entryp == NULL) {
3975 		    Perl_croak(aTHX_ "panic: av_fetch() unexpectedly failed");
3976 		}
3977 		entry = *entryp;
3978 		/*DEBUG_U(PerlIO_printf(Perl_debug_log, "list for %"UVXf" contains %"UVXf"\n", val, SvUV(entry)));*/
3979 		if (SvUV(entry) == val) {
3980 		    found_key = TRUE;
3981 		}
3982 		if (SvUV(entry) == inverse) {
3983 		    found_inverse = TRUE;
3984 		}
3985 
3986 		/* No need to continue searching if found everything we are
3987 		 * looking for */
3988 		if (found_key && found_inverse) {
3989 		    break;
3990 		}
3991 	    }
3992 
3993 	    /* Make sure there is a mapping to itself on the list */
3994 	    if (! found_key) {
3995 		av_push(list, newSVuv(val));
3996 		/*DEBUG_U(PerlIO_printf(Perl_debug_log, "%s: %d: Adding %"UVXf" to list for %"UVXf"\n", __FILE__, __LINE__, val, val));*/
3997 	    }
3998 
3999 
4000 	    /* Simply add the value to the list */
4001 	    if (! found_inverse) {
4002 		av_push(list, newSVuv(inverse));
4003 		/*DEBUG_U(PerlIO_printf(Perl_debug_log, "%s: %d: Adding %"UVXf" to list for %"UVXf"\n", __FILE__, __LINE__, inverse, val));*/
4004 	    }
4005 
4006 	    /* swatch_get() increments the value of val for each element in the
4007 	     * range.  That makes more compact tables possible.  You can
4008 	     * express the capitalization, for example, of all consecutive
4009 	     * letters with a single line: 0061\t007A\t0041 This maps 0061 to
4010 	     * 0041, 0062 to 0042, etc.  I (khw) have never understood 'none',
4011 	     * and it's not documented; it appears to be used only in
4012 	     * implementing tr//; I copied the semantics from swatch_get(), just
4013 	     * in case */
4014 	    if (!none || val < none) {
4015 		++val;
4016 	    }
4017 	}
4018     }
4019 
4020     return ret;
4021 }
4022 
4023 SV*
4024 Perl__swash_to_invlist(pTHX_ SV* const swash)
4025 {
4026 
4027    /* Subject to change or removal.  For use only in one place in regcomp.c.
4028     * Ownership is given to one reference count in the returned SV* */
4029 
4030     U8 *l, *lend;
4031     char *loc;
4032     STRLEN lcur;
4033     HV *const hv = MUTABLE_HV(SvRV(swash));
4034     UV elements = 0;    /* Number of elements in the inversion list */
4035     U8 empty[] = "";
4036     SV** listsvp;
4037     SV** typesvp;
4038     SV** bitssvp;
4039     SV** extssvp;
4040     SV** invert_it_svp;
4041 
4042     U8* typestr;
4043     STRLEN bits;
4044     STRLEN octets; /* if bits == 1, then octets == 0 */
4045     U8 *x, *xend;
4046     STRLEN xcur;
4047 
4048     SV* invlist;
4049 
4050     PERL_ARGS_ASSERT__SWASH_TO_INVLIST;
4051 
4052     /* If not a hash, it must be the swash's inversion list instead */
4053     if (SvTYPE(hv) != SVt_PVHV) {
4054         return SvREFCNT_inc_simple_NN((SV*) hv);
4055     }
4056 
4057     /* The string containing the main body of the table */
4058     listsvp = hv_fetchs(hv, "LIST", FALSE);
4059     typesvp = hv_fetchs(hv, "TYPE", FALSE);
4060     bitssvp = hv_fetchs(hv, "BITS", FALSE);
4061     extssvp = hv_fetchs(hv, "EXTRAS", FALSE);
4062     invert_it_svp = hv_fetchs(hv, "INVERT_IT", FALSE);
4063 
4064     typestr = (U8*)SvPV_nolen(*typesvp);
4065     bits  = SvUV(*bitssvp);
4066     octets = bits >> 3; /* if bits == 1, then octets == 0 */
4067 
4068     /* read $swash->{LIST} */
4069     if (SvPOK(*listsvp)) {
4070 	l = (U8*)SvPV(*listsvp, lcur);
4071     }
4072     else {
4073 	/* LIST legitimately doesn't contain a string during compilation phases
4074 	 * of Perl itself, before the Unicode tables are generated.  In this
4075 	 * case, just fake things up by creating an empty list */
4076 	l = empty;
4077 	lcur = 0;
4078     }
4079     loc = (char *) l;
4080     lend = l + lcur;
4081 
4082     /* Scan the input to count the number of lines to preallocate array size
4083      * based on worst possible case, which is each line in the input creates 2
4084      * elements in the inversion list: 1) the beginning of a range in the list;
4085      * 2) the beginning of a range not in the list.  */
4086     while ((loc = (strchr(loc, '\n'))) != NULL) {
4087 	elements += 2;
4088 	loc++;
4089     }
4090 
4091     /* If the ending is somehow corrupt and isn't a new line, add another
4092      * element for the final range that isn't in the inversion list */
4093     if (! (*lend == '\n'
4094 	|| (*lend == '\0' && (lcur == 0 || *(lend - 1) == '\n'))))
4095     {
4096 	elements++;
4097     }
4098 
4099     invlist = _new_invlist(elements);
4100 
4101     /* Now go through the input again, adding each range to the list */
4102     while (l < lend) {
4103 	UV start, end;
4104 	UV val;		/* Not used by this function */
4105 
4106 	l = S_swash_scan_list_line(aTHX_ l, lend, &start, &end, &val,
4107 					 cBOOL(octets), typestr);
4108 
4109 	if (l > lend) {
4110 	    break;
4111 	}
4112 
4113 	invlist = _add_range_to_invlist(invlist, start, end);
4114     }
4115 
4116     /* Invert if the data says it should be */
4117     if (invert_it_svp && SvUV(*invert_it_svp)) {
4118 	_invlist_invert_prop(invlist);
4119     }
4120 
4121     /* This code is copied from swatch_get()
4122      * read $swash->{EXTRAS} */
4123     x = (U8*)SvPV(*extssvp, xcur);
4124     xend = x + xcur;
4125     while (x < xend) {
4126 	STRLEN namelen;
4127 	U8 *namestr;
4128 	SV** othersvp;
4129 	HV* otherhv;
4130 	STRLEN otherbits;
4131 	SV **otherbitssvp, *other;
4132 	U8 *nl;
4133 
4134 	const U8 opc = *x++;
4135 	if (opc == '\n')
4136 	    continue;
4137 
4138 	nl = (U8*)memchr(x, '\n', xend - x);
4139 
4140 	if (opc != '-' && opc != '+' && opc != '!' && opc != '&') {
4141 	    if (nl) {
4142 		x = nl + 1; /* 1 is length of "\n" */
4143 		continue;
4144 	    }
4145 	    else {
4146 		x = xend; /* to EXTRAS' end at which \n is not found */
4147 		break;
4148 	    }
4149 	}
4150 
4151 	namestr = x;
4152 	if (nl) {
4153 	    namelen = nl - namestr;
4154 	    x = nl + 1;
4155 	}
4156 	else {
4157 	    namelen = xend - namestr;
4158 	    x = xend;
4159 	}
4160 
4161 	othersvp = hv_fetch(hv, (char *)namestr, namelen, FALSE);
4162 	otherhv = MUTABLE_HV(SvRV(*othersvp));
4163 	otherbitssvp = hv_fetchs(otherhv, "BITS", FALSE);
4164 	otherbits = (STRLEN)SvUV(*otherbitssvp);
4165 
4166 	if (bits != otherbits || bits != 1) {
4167 	    Perl_croak(aTHX_ "panic: _swash_to_invlist only operates on boolean "
4168 		       "properties, bits=%"UVuf", otherbits=%"UVuf,
4169 		       (UV)bits, (UV)otherbits);
4170 	}
4171 
4172 	/* The "other" swatch must be destroyed after. */
4173 	other = _swash_to_invlist((SV *)*othersvp);
4174 
4175 	/* End of code copied from swatch_get() */
4176 	switch (opc) {
4177 	case '+':
4178 	    _invlist_union(invlist, other, &invlist);
4179 	    break;
4180 	case '!':
4181             _invlist_union_maybe_complement_2nd(invlist, other, TRUE, &invlist);
4182 	    break;
4183 	case '-':
4184 	    _invlist_subtract(invlist, other, &invlist);
4185 	    break;
4186 	case '&':
4187 	    _invlist_intersection(invlist, other, &invlist);
4188 	    break;
4189 	default:
4190 	    break;
4191 	}
4192 	sv_free(other); /* through with it! */
4193     }
4194 
4195     return invlist;
4196 }
4197 
4198 SV*
4199 Perl__get_swash_invlist(pTHX_ SV* const swash)
4200 {
4201     SV** ptr;
4202 
4203     PERL_ARGS_ASSERT__GET_SWASH_INVLIST;
4204 
4205     if (! SvROK(swash)) {
4206         return NULL;
4207     }
4208 
4209     /* If it really isn't a hash, it isn't really swash; must be an inversion
4210      * list */
4211     if (SvTYPE(SvRV(swash)) != SVt_PVHV) {
4212         return SvRV(swash);
4213     }
4214 
4215     ptr = hv_fetchs(MUTABLE_HV(SvRV(swash)), "V", FALSE);
4216     if (! ptr) {
4217         return NULL;
4218     }
4219 
4220     return *ptr;
4221 }
4222 
4223 /*
4224 =for apidoc uvchr_to_utf8
4225 
4226 Adds the UTF-8 representation of the Native code point C<uv> to the end
4227 of the string C<d>; C<d> should have at least C<UTF8_MAXBYTES+1> free
4228 bytes available. The return value is the pointer to the byte after the
4229 end of the new character. In other words,
4230 
4231     d = uvchr_to_utf8(d, uv);
4232 
4233 is the recommended wide native character-aware way of saying
4234 
4235     *(d++) = uv;
4236 
4237 =cut
4238 */
4239 
4240 /* On ASCII machines this is normally a macro but we want a
4241    real function in case XS code wants it
4242 */
4243 U8 *
4244 Perl_uvchr_to_utf8(pTHX_ U8 *d, UV uv)
4245 {
4246     PERL_ARGS_ASSERT_UVCHR_TO_UTF8;
4247 
4248     return Perl_uvuni_to_utf8_flags(aTHX_ d, NATIVE_TO_UNI(uv), 0);
4249 }
4250 
4251 U8 *
4252 Perl_uvchr_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags)
4253 {
4254     PERL_ARGS_ASSERT_UVCHR_TO_UTF8_FLAGS;
4255 
4256     return Perl_uvuni_to_utf8_flags(aTHX_ d, NATIVE_TO_UNI(uv), flags);
4257 }
4258 
4259 /*
4260 =for apidoc utf8n_to_uvchr
4261 
4262 Returns the native character value of the first character in the string
4263 C<s>
4264 which is assumed to be in UTF-8 encoding; C<retlen> will be set to the
4265 length, in bytes, of that character.
4266 
4267 C<length> and C<flags> are the same as L</utf8n_to_uvuni>().
4268 
4269 =cut
4270 */
4271 /* On ASCII machines this is normally a macro but we want
4272    a real function in case XS code wants it
4273 */
4274 UV
4275 Perl_utf8n_to_uvchr(pTHX_ const U8 *s, STRLEN curlen, STRLEN *retlen,
4276 U32 flags)
4277 {
4278     const UV uv = Perl_utf8n_to_uvuni(aTHX_ s, curlen, retlen, flags);
4279 
4280     PERL_ARGS_ASSERT_UTF8N_TO_UVCHR;
4281 
4282     return UNI_TO_NATIVE(uv);
4283 }
4284 
4285 bool
4286 Perl_check_utf8_print(pTHX_ const U8* s, const STRLEN len)
4287 {
4288     /* May change: warns if surrogates, non-character code points, or
4289      * non-Unicode code points are in s which has length len bytes.  Returns
4290      * TRUE if none found; FALSE otherwise.  The only other validity check is
4291      * to make sure that this won't exceed the string's length */
4292 
4293     const U8* const e = s + len;
4294     bool ok = TRUE;
4295 
4296     PERL_ARGS_ASSERT_CHECK_UTF8_PRINT;
4297 
4298     while (s < e) {
4299 	if (UTF8SKIP(s) > len) {
4300 	    Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
4301 			   "%s in %s", unees, PL_op ? OP_DESC(PL_op) : "print");
4302 	    return FALSE;
4303 	}
4304 	if (UNLIKELY(*s >= UTF8_FIRST_PROBLEMATIC_CODE_POINT_FIRST_BYTE)) {
4305 	    STRLEN char_len;
4306 	    if (UTF8_IS_SUPER(s)) {
4307 		if (ckWARN_d(WARN_NON_UNICODE)) {
4308 		    UV uv = utf8_to_uvchr_buf(s, e, &char_len);
4309 		    Perl_warner(aTHX_ packWARN(WARN_NON_UNICODE),
4310 			"Code point 0x%04"UVXf" is not Unicode, may not be portable", uv);
4311 		    ok = FALSE;
4312 		}
4313 	    }
4314 	    else if (UTF8_IS_SURROGATE(s)) {
4315 		if (ckWARN_d(WARN_SURROGATE)) {
4316 		    UV uv = utf8_to_uvchr_buf(s, e, &char_len);
4317 		    Perl_warner(aTHX_ packWARN(WARN_SURROGATE),
4318 			"Unicode surrogate U+%04"UVXf" is illegal in UTF-8", uv);
4319 		    ok = FALSE;
4320 		}
4321 	    }
4322 	    else if
4323 		((UTF8_IS_NONCHAR_GIVEN_THAT_NON_SUPER_AND_GE_PROBLEMATIC(s))
4324 		 && (ckWARN_d(WARN_NONCHAR)))
4325 	    {
4326 		UV uv = utf8_to_uvchr_buf(s, e, &char_len);
4327 		Perl_warner(aTHX_ packWARN(WARN_NONCHAR),
4328 		    "Unicode non-character U+%04"UVXf" is illegal for open interchange", uv);
4329 		ok = FALSE;
4330 	    }
4331 	}
4332 	s += UTF8SKIP(s);
4333     }
4334 
4335     return ok;
4336 }
4337 
4338 /*
4339 =for apidoc pv_uni_display
4340 
4341 Build to the scalar C<dsv> a displayable version of the string C<spv>,
4342 length C<len>, the displayable version being at most C<pvlim> bytes long
4343 (if longer, the rest is truncated and "..." will be appended).
4344 
4345 The C<flags> argument can have UNI_DISPLAY_ISPRINT set to display
4346 isPRINT()able characters as themselves, UNI_DISPLAY_BACKSLASH
4347 to display the \\[nrfta\\] as the backslashed versions (like '\n')
4348 (UNI_DISPLAY_BACKSLASH is preferred over UNI_DISPLAY_ISPRINT for \\).
4349 UNI_DISPLAY_QQ (and its alias UNI_DISPLAY_REGEX) have both
4350 UNI_DISPLAY_BACKSLASH and UNI_DISPLAY_ISPRINT turned on.
4351 
4352 The pointer to the PV of the C<dsv> is returned.
4353 
4354 =cut */
4355 char *
4356 Perl_pv_uni_display(pTHX_ SV *dsv, const U8 *spv, STRLEN len, STRLEN pvlim, UV flags)
4357 {
4358     int truncated = 0;
4359     const char *s, *e;
4360 
4361     PERL_ARGS_ASSERT_PV_UNI_DISPLAY;
4362 
4363     sv_setpvs(dsv, "");
4364     SvUTF8_off(dsv);
4365     for (s = (const char *)spv, e = s + len; s < e; s += UTF8SKIP(s)) {
4366 	 UV u;
4367 	  /* This serves double duty as a flag and a character to print after
4368 	     a \ when flags & UNI_DISPLAY_BACKSLASH is true.
4369 	  */
4370 	 char ok = 0;
4371 
4372 	 if (pvlim && SvCUR(dsv) >= pvlim) {
4373 	      truncated++;
4374 	      break;
4375 	 }
4376 	 u = utf8_to_uvchr_buf((U8*)s, (U8*)e, 0);
4377 	 if (u < 256) {
4378 	     const unsigned char c = (unsigned char)u & 0xFF;
4379 	     if (flags & UNI_DISPLAY_BACKSLASH) {
4380 	         switch (c) {
4381 		 case '\n':
4382 		     ok = 'n'; break;
4383 		 case '\r':
4384 		     ok = 'r'; break;
4385 		 case '\t':
4386 		     ok = 't'; break;
4387 		 case '\f':
4388 		     ok = 'f'; break;
4389 		 case '\a':
4390 		     ok = 'a'; break;
4391 		 case '\\':
4392 		     ok = '\\'; break;
4393 		 default: break;
4394 		 }
4395 		 if (ok) {
4396 		     const char string = ok;
4397 		     sv_catpvs(dsv, "\\");
4398 		     sv_catpvn(dsv, &string, 1);
4399 		 }
4400 	     }
4401 	     /* isPRINT() is the locale-blind version. */
4402 	     if (!ok && (flags & UNI_DISPLAY_ISPRINT) && isPRINT(c)) {
4403 		 const char string = c;
4404 		 sv_catpvn(dsv, &string, 1);
4405 		 ok = 1;
4406 	     }
4407 	 }
4408 	 if (!ok)
4409 	     Perl_sv_catpvf(aTHX_ dsv, "\\x{%"UVxf"}", u);
4410     }
4411     if (truncated)
4412 	 sv_catpvs(dsv, "...");
4413 
4414     return SvPVX(dsv);
4415 }
4416 
4417 /*
4418 =for apidoc sv_uni_display
4419 
4420 Build to the scalar C<dsv> a displayable version of the scalar C<sv>,
4421 the displayable version being at most C<pvlim> bytes long
4422 (if longer, the rest is truncated and "..." will be appended).
4423 
4424 The C<flags> argument is as in L</pv_uni_display>().
4425 
4426 The pointer to the PV of the C<dsv> is returned.
4427 
4428 =cut
4429 */
4430 char *
4431 Perl_sv_uni_display(pTHX_ SV *dsv, SV *ssv, STRLEN pvlim, UV flags)
4432 {
4433     const char * const ptr =
4434         isREGEXP(ssv) ? RX_WRAPPED((REGEXP*)ssv) : SvPVX_const(ssv);
4435 
4436     PERL_ARGS_ASSERT_SV_UNI_DISPLAY;
4437 
4438     return Perl_pv_uni_display(aTHX_ dsv, (const U8*)ptr,
4439 				SvCUR(ssv), pvlim, flags);
4440 }
4441 
4442 /*
4443 =for apidoc foldEQ_utf8
4444 
4445 Returns true if the leading portions of the strings C<s1> and C<s2> (either or both
4446 of which may be in UTF-8) are the same case-insensitively; false otherwise.
4447 How far into the strings to compare is determined by other input parameters.
4448 
4449 If C<u1> is true, the string C<s1> is assumed to be in UTF-8-encoded Unicode;
4450 otherwise it is assumed to be in native 8-bit encoding.  Correspondingly for C<u2>
4451 with respect to C<s2>.
4452 
4453 If the byte length C<l1> is non-zero, it says how far into C<s1> to check for fold
4454 equality.  In other words, C<s1>+C<l1> will be used as a goal to reach.  The
4455 scan will not be considered to be a match unless the goal is reached, and
4456 scanning won't continue past that goal.  Correspondingly for C<l2> with respect to
4457 C<s2>.
4458 
4459 If C<pe1> is non-NULL and the pointer it points to is not NULL, that pointer is
4460 considered an end pointer to the position 1 byte past the maximum point
4461 in C<s1> beyond which scanning will not continue under any circumstances.
4462 (This routine assumes that UTF-8 encoded input strings are not malformed;
4463 malformed input can cause it to read past C<pe1>).
4464 This means that if both C<l1> and C<pe1> are specified, and C<pe1>
4465 is less than C<s1>+C<l1>, the match will never be successful because it can
4466 never
4467 get as far as its goal (and in fact is asserted against).  Correspondingly for
4468 C<pe2> with respect to C<s2>.
4469 
4470 At least one of C<s1> and C<s2> must have a goal (at least one of C<l1> and
4471 C<l2> must be non-zero), and if both do, both have to be
4472 reached for a successful match.   Also, if the fold of a character is multiple
4473 characters, all of them must be matched (see tr21 reference below for
4474 'folding').
4475 
4476 Upon a successful match, if C<pe1> is non-NULL,
4477 it will be set to point to the beginning of the I<next> character of C<s1>
4478 beyond what was matched.  Correspondingly for C<pe2> and C<s2>.
4479 
4480 For case-insensitiveness, the "casefolding" of Unicode is used
4481 instead of upper/lowercasing both the characters, see
4482 L<http://www.unicode.org/unicode/reports/tr21/> (Case Mappings).
4483 
4484 =cut */
4485 
4486 /* A flags parameter has been added which may change, and hence isn't
4487  * externally documented.  Currently it is:
4488  *  0 for as-documented above
4489  *  FOLDEQ_UTF8_NOMIX_ASCII meaning that if a non-ASCII character folds to an
4490 			    ASCII one, to not match
4491  *  FOLDEQ_UTF8_LOCALE	    meaning that locale rules are to be used for code
4492  *			    points below 256; unicode rules for above 255; and
4493  *			    folds that cross those boundaries are disallowed,
4494  *			    like the NOMIX_ASCII option
4495  *  FOLDEQ_S1_ALREADY_FOLDED s1 has already been folded before calling this
4496  *                           routine.  This allows that step to be skipped.
4497  *  FOLDEQ_S2_ALREADY_FOLDED   Similarly.
4498  */
4499 I32
4500 Perl_foldEQ_utf8_flags(pTHX_ const char *s1, char **pe1, UV l1, bool u1, const char *s2, char **pe2, UV l2, bool u2, U32 flags)
4501 {
4502     dVAR;
4503     const U8 *p1  = (const U8*)s1; /* Point to current char */
4504     const U8 *p2  = (const U8*)s2;
4505     const U8 *g1 = NULL;       /* goal for s1 */
4506     const U8 *g2 = NULL;
4507     const U8 *e1 = NULL;       /* Don't scan s1 past this */
4508     U8 *f1 = NULL;             /* Point to current folded */
4509     const U8 *e2 = NULL;
4510     U8 *f2 = NULL;
4511     STRLEN n1 = 0, n2 = 0;              /* Number of bytes in current char */
4512     U8 foldbuf1[UTF8_MAXBYTES_CASE+1];
4513     U8 foldbuf2[UTF8_MAXBYTES_CASE+1];
4514 
4515     PERL_ARGS_ASSERT_FOLDEQ_UTF8_FLAGS;
4516 
4517     /* The algorithm requires that input with the flags on the first line of
4518      * the assert not be pre-folded. */
4519     assert( ! ((flags & (FOLDEQ_UTF8_NOMIX_ASCII | FOLDEQ_UTF8_LOCALE))
4520 	&& (flags & (FOLDEQ_S1_ALREADY_FOLDED | FOLDEQ_S2_ALREADY_FOLDED))));
4521 
4522     if (pe1) {
4523         e1 = *(U8**)pe1;
4524     }
4525 
4526     if (l1) {
4527         g1 = (const U8*)s1 + l1;
4528     }
4529 
4530     if (pe2) {
4531         e2 = *(U8**)pe2;
4532     }
4533 
4534     if (l2) {
4535         g2 = (const U8*)s2 + l2;
4536     }
4537 
4538     /* Must have at least one goal */
4539     assert(g1 || g2);
4540 
4541     if (g1) {
4542 
4543         /* Will never match if goal is out-of-bounds */
4544         assert(! e1  || e1 >= g1);
4545 
4546         /* Here, there isn't an end pointer, or it is beyond the goal.  We
4547         * only go as far as the goal */
4548         e1 = g1;
4549     }
4550     else {
4551 	assert(e1);    /* Must have an end for looking at s1 */
4552     }
4553 
4554     /* Same for goal for s2 */
4555     if (g2) {
4556         assert(! e2  || e2 >= g2);
4557         e2 = g2;
4558     }
4559     else {
4560 	assert(e2);
4561     }
4562 
4563     /* If both operands are already folded, we could just do a memEQ on the
4564      * whole strings at once, but it would be better if the caller realized
4565      * this and didn't even call us */
4566 
4567     /* Look through both strings, a character at a time */
4568     while (p1 < e1 && p2 < e2) {
4569 
4570         /* If at the beginning of a new character in s1, get its fold to use
4571 	 * and the length of the fold.  (exception: locale rules just get the
4572 	 * character to a single byte) */
4573         if (n1 == 0) {
4574 	    if (flags & FOLDEQ_S1_ALREADY_FOLDED) {
4575 		f1 = (U8 *) p1;
4576 		n1 = UTF8SKIP(f1);
4577 	    }
4578 	    else {
4579 		/* If in locale matching, we use two sets of rules, depending
4580 		 * on if the code point is above or below 255.  Here, we test
4581 		 * for and handle locale rules */
4582 		if ((flags & FOLDEQ_UTF8_LOCALE)
4583 		    && (! u1 || UTF8_IS_INVARIANT(*p1)
4584 			|| UTF8_IS_DOWNGRADEABLE_START(*p1)))
4585 		{
4586 		    /* There is no mixing of code points above and below 255. */
4587 		    if (u2 && (! UTF8_IS_INVARIANT(*p2)
4588 			&& ! UTF8_IS_DOWNGRADEABLE_START(*p2)))
4589 		    {
4590 			return 0;
4591 		    }
4592 
4593 		    /* We handle locale rules by converting, if necessary, the
4594 		     * code point to a single byte. */
4595 		    if (! u1 || UTF8_IS_INVARIANT(*p1)) {
4596 			*foldbuf1 = *p1;
4597 		    }
4598 		    else {
4599 			*foldbuf1 = TWO_BYTE_UTF8_TO_UNI(*p1, *(p1 + 1));
4600 		    }
4601 		    n1 = 1;
4602 		}
4603 		else if (isASCII(*p1)) {    /* Note, that here won't be both
4604 					       ASCII and using locale rules */
4605 
4606 		    /* If trying to mix non- with ASCII, and not supposed to,
4607 		     * fail */
4608 		    if ((flags & FOLDEQ_UTF8_NOMIX_ASCII) && ! isASCII(*p2)) {
4609 			return 0;
4610 		    }
4611 		    n1 = 1;
4612 		    *foldbuf1 = toLOWER(*p1);   /* Folds in the ASCII range are
4613 						   just lowercased */
4614 		}
4615 		else if (u1) {
4616 		    to_utf8_fold(p1, foldbuf1, &n1);
4617 		}
4618 		else {  /* Not utf8, get utf8 fold */
4619 		    to_uni_fold(NATIVE_TO_UNI(*p1), foldbuf1, &n1);
4620 		}
4621 		f1 = foldbuf1;
4622 	    }
4623         }
4624 
4625         if (n2 == 0) {    /* Same for s2 */
4626 	    if (flags & FOLDEQ_S2_ALREADY_FOLDED) {
4627 		f2 = (U8 *) p2;
4628 		n2 = UTF8SKIP(f2);
4629 	    }
4630 	    else {
4631 		if ((flags & FOLDEQ_UTF8_LOCALE)
4632 		    && (! u2 || UTF8_IS_INVARIANT(*p2) || UTF8_IS_DOWNGRADEABLE_START(*p2)))
4633 		{
4634 		    /* Here, the next char in s2 is < 256.  We've already
4635 		     * worked on s1, and if it isn't also < 256, can't match */
4636 		    if (u1 && (! UTF8_IS_INVARIANT(*p1)
4637 			&& ! UTF8_IS_DOWNGRADEABLE_START(*p1)))
4638 		    {
4639 			return 0;
4640 		    }
4641 		    if (! u2 || UTF8_IS_INVARIANT(*p2)) {
4642 			*foldbuf2 = *p2;
4643 		    }
4644 		    else {
4645 			*foldbuf2 = TWO_BYTE_UTF8_TO_UNI(*p2, *(p2 + 1));
4646 		    }
4647 
4648 		    /* Use another function to handle locale rules.  We've made
4649 		     * sure that both characters to compare are single bytes */
4650 		    if (! foldEQ_locale((char *) f1, (char *) foldbuf2, 1)) {
4651 			return 0;
4652 		    }
4653 		    n1 = n2 = 0;
4654 		}
4655 		else if (isASCII(*p2)) {
4656 		    if ((flags & FOLDEQ_UTF8_NOMIX_ASCII) && ! isASCII(*p1)) {
4657 			return 0;
4658 		    }
4659 		    n2 = 1;
4660 		    *foldbuf2 = toLOWER(*p2);
4661 		}
4662 		else if (u2) {
4663 		    to_utf8_fold(p2, foldbuf2, &n2);
4664 		}
4665 		else {
4666 		    to_uni_fold(NATIVE_TO_UNI(*p2), foldbuf2, &n2);
4667 		}
4668 		f2 = foldbuf2;
4669 	    }
4670         }
4671 
4672 	/* Here f1 and f2 point to the beginning of the strings to compare.
4673 	 * These strings are the folds of the next character from each input
4674 	 * string, stored in utf8. */
4675 
4676         /* While there is more to look for in both folds, see if they
4677         * continue to match */
4678         while (n1 && n2) {
4679             U8 fold_length = UTF8SKIP(f1);
4680             if (fold_length != UTF8SKIP(f2)
4681                 || (fold_length == 1 && *f1 != *f2) /* Short circuit memNE
4682                                                        function call for single
4683                                                        byte */
4684                 || memNE((char*)f1, (char*)f2, fold_length))
4685             {
4686                 return 0; /* mismatch */
4687             }
4688 
4689             /* Here, they matched, advance past them */
4690             n1 -= fold_length;
4691             f1 += fold_length;
4692             n2 -= fold_length;
4693             f2 += fold_length;
4694         }
4695 
4696         /* When reach the end of any fold, advance the input past it */
4697         if (n1 == 0) {
4698             p1 += u1 ? UTF8SKIP(p1) : 1;
4699         }
4700         if (n2 == 0) {
4701             p2 += u2 ? UTF8SKIP(p2) : 1;
4702         }
4703     } /* End of loop through both strings */
4704 
4705     /* A match is defined by each scan that specified an explicit length
4706     * reaching its final goal, and the other not having matched a partial
4707     * character (which can happen when the fold of a character is more than one
4708     * character). */
4709     if (! ((g1 == 0 || p1 == g1) && (g2 == 0 || p2 == g2)) || n1 || n2) {
4710         return 0;
4711     }
4712 
4713     /* Successful match.  Set output pointers */
4714     if (pe1) {
4715         *pe1 = (char*)p1;
4716     }
4717     if (pe2) {
4718         *pe2 = (char*)p2;
4719     }
4720     return 1;
4721 }
4722 
4723 /*
4724  * Local variables:
4725  * c-indentation-style: bsd
4726  * c-basic-offset: 4
4727  * indent-tabs-mode: nil
4728  * End:
4729  *
4730  * ex: set ts=8 sts=4 sw=4 et:
4731  */
4732