xref: /openbsd-src/gnu/usr.bin/perl/time64.c (revision 50b7afb2c2c0993b0894d4e34bf857cb13ed9c80)
1 /*
2 
3 Copyright (c) 2007-2008  Michael G Schwern
4 
5 This software originally derived from Paul Sheer's pivotal_gmtime_r.c.
6 
7 The MIT License:
8 
9 Permission is hereby granted, free of charge, to any person obtaining a copy
10 of this software and associated documentation files (the "Software"), to deal
11 in the Software without restriction, including without limitation the rights
12 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13 copies of the Software, and to permit persons to whom the Software is
14 furnished to do so, subject to the following conditions:
15 
16 The above copyright notice and this permission notice shall be included in
17 all copies or substantial portions of the Software.
18 
19 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
22 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 THE SOFTWARE.
26 
27 */
28 
29 /*
30 
31 Programmers who have available to them 64-bit time values as a 'long
32 long' type can use localtime64_r() and gmtime64_r() which correctly
33 converts the time even on 32-bit systems. Whether you have 64-bit time
34 values will depend on the operating system.
35 
36 S_localtime64_r() is a 64-bit equivalent of localtime_r().
37 
38 S_gmtime64_r() is a 64-bit equivalent of gmtime_r().
39 
40 */
41 
42 #include "time64.h"
43 
44 static const int days_in_month[2][12] = {
45     {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
46     {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
47 };
48 
49 static const int julian_days_by_month[2][12] = {
50     {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334},
51     {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335},
52 };
53 
54 static const int length_of_year[2] = { 365, 366 };
55 
56 /* Number of days in a 400 year Gregorian cycle */
57 static const Year years_in_gregorian_cycle = 400;
58 static const int days_in_gregorian_cycle  = (365 * 400) + 100 - 4 + 1;
59 
60 /* 28 year calendar cycle between 2010 and 2037 */
61 #define SOLAR_CYCLE_LENGTH 28
62 static const int safe_years[SOLAR_CYCLE_LENGTH] = {
63     2016, 2017, 2018, 2019,
64     2020, 2021, 2022, 2023,
65     2024, 2025, 2026, 2027,
66     2028, 2029, 2030, 2031,
67     2032, 2033, 2034, 2035,
68     2036, 2037, 2010, 2011,
69     2012, 2013, 2014, 2015
70 };
71 
72 static const int dow_year_start[SOLAR_CYCLE_LENGTH] = {
73     5, 0, 1, 2,     /* 0       2016 - 2019 */
74     3, 5, 6, 0,     /* 4  */
75     1, 3, 4, 5,     /* 8  */
76     6, 1, 2, 3,     /* 12 */
77     4, 6, 0, 1,     /* 16 */
78     2, 4, 5, 6,     /* 20      2036, 2037, 2010, 2011 */
79     0, 2, 3, 4      /* 24      2012, 2013, 2014, 2015 */
80 };
81 
82 /* Let's assume people are going to be looking for dates in the future.
83    Let's provide some cheats so you can skip ahead.
84    This has a 4x speed boost when near 2008.
85 */
86 /* Number of days since epoch on Jan 1st, 2008 GMT */
87 #define CHEAT_DAYS  (1199145600 / 24 / 60 / 60)
88 #define CHEAT_YEARS 108
89 
90 #define IS_LEAP(n)	((!(((n) + 1900) % 400) || (!(((n) + 1900) % 4) && (((n) + 1900) % 100))) != 0)
91 #define WRAP(a,b,m)	((a) = ((a) <  0  ) ? ((b)--, (a) + (m)) : (a))
92 
93 #ifdef USE_SYSTEM_LOCALTIME
94 #    define SHOULD_USE_SYSTEM_LOCALTIME(a)  (       \
95     (a) <= SYSTEM_LOCALTIME_MAX &&              \
96     (a) >= SYSTEM_LOCALTIME_MIN                 \
97 )
98 #else
99 #    define SHOULD_USE_SYSTEM_LOCALTIME(a)      (0)
100 #endif
101 
102 #ifdef USE_SYSTEM_GMTIME
103 #    define SHOULD_USE_SYSTEM_GMTIME(a)     (       \
104     (a) <= SYSTEM_GMTIME_MAX    &&              \
105     (a) >= SYSTEM_GMTIME_MIN                    \
106 )
107 #else
108 #    define SHOULD_USE_SYSTEM_GMTIME(a)         (0)
109 #endif
110 
111 /* Multi varadic macros are a C99 thing, alas */
112 #ifdef TIME_64_DEBUG
113 #    define TIME64_TRACE(format) (fprintf(stderr, format))
114 #    define TIME64_TRACE1(format, var1)    (fprintf(stderr, format, var1))
115 #    define TIME64_TRACE2(format, var1, var2)    (fprintf(stderr, format, var1, var2))
116 #    define TIME64_TRACE3(format, var1, var2, var3)    (fprintf(stderr, format, var1, var2, var3))
117 #else
118 #    define TIME64_TRACE(format) ((void)0)
119 #    define TIME64_TRACE1(format, var1) ((void)0)
120 #    define TIME64_TRACE2(format, var1, var2) ((void)0)
121 #    define TIME64_TRACE3(format, var1, var2, var3) ((void)0)
122 #endif
123 
124 static int S_is_exception_century(Year year)
125 {
126     int is_exception = ((year % 100 == 0) && !(year % 400 == 0));
127     TIME64_TRACE1("# is_exception_century: %s\n", is_exception ? "yes" : "no");
128 
129     return(is_exception);
130 }
131 
132 
133 static Time64_T S_timegm64(struct TM *date) {
134     int      days    = 0;
135     Time64_T seconds = 0;
136     Year     year;
137 
138     if( date->tm_year > 70 ) {
139         year = 70;
140         while( year < date->tm_year ) {
141             days += length_of_year[IS_LEAP(year)];
142             year++;
143         }
144     }
145     else if ( date->tm_year < 70 ) {
146         year = 69;
147         do {
148             days -= length_of_year[IS_LEAP(year)];
149             year--;
150         } while( year >= date->tm_year );
151     }
152 
153     days += julian_days_by_month[IS_LEAP(date->tm_year)][date->tm_mon];
154     days += date->tm_mday - 1;
155 
156     /* Avoid overflowing the days integer */
157     seconds = days;
158     seconds = seconds * 60 * 60 * 24;
159 
160     seconds += date->tm_hour * 60 * 60;
161     seconds += date->tm_min * 60;
162     seconds += date->tm_sec;
163 
164     return(seconds);
165 }
166 
167 
168 #ifdef DEBUGGING
169 static int S_check_tm(struct TM *tm)
170 {
171     /* Don't forget leap seconds */
172     assert(tm->tm_sec >= 0);
173     assert(tm->tm_sec <= 61);
174 
175     assert(tm->tm_min >= 0);
176     assert(tm->tm_min <= 59);
177 
178     assert(tm->tm_hour >= 0);
179     assert(tm->tm_hour <= 23);
180 
181     assert(tm->tm_mday >= 1);
182     assert(tm->tm_mday <= days_in_month[IS_LEAP(tm->tm_year)][tm->tm_mon]);
183 
184     assert(tm->tm_mon  >= 0);
185     assert(tm->tm_mon  <= 11);
186 
187     assert(tm->tm_wday >= 0);
188     assert(tm->tm_wday <= 6);
189 
190     assert(tm->tm_yday >= 0);
191     assert(tm->tm_yday <= length_of_year[IS_LEAP(tm->tm_year)]);
192 
193 #ifdef HAS_TM_TM_GMTOFF
194     assert(tm->tm_gmtoff >= -24 * 60 * 60);
195     assert(tm->tm_gmtoff <=  24 * 60 * 60);
196 #endif
197 
198     return 1;
199 }
200 #endif
201 
202 
203 /* The exceptional centuries without leap years cause the cycle to
204    shift by 16
205 */
206 static Year S_cycle_offset(Year year)
207 {
208     const Year start_year = 2000;
209     Year year_diff  = year - start_year;
210     Year exceptions;
211 
212     if( year > start_year )
213         year_diff--;
214 
215     exceptions  = year_diff / 100;
216     exceptions -= year_diff / 400;
217 
218     TIME64_TRACE3("# year: %lld, exceptions: %lld, year_diff: %lld\n",
219           year, exceptions, year_diff);
220 
221     return exceptions * 16;
222 }
223 
224 /* For a given year after 2038, pick the latest possible matching
225    year in the 28 year calendar cycle.
226 
227    A matching year...
228    1) Starts on the same day of the week.
229    2) Has the same leap year status.
230 
231    This is so the calendars match up.
232 
233    Also the previous year must match.  When doing Jan 1st you might
234    wind up on Dec 31st the previous year when doing a -UTC time zone.
235 
236    Finally, the next year must have the same start day of week.  This
237    is for Dec 31st with a +UTC time zone.
238    It doesn't need the same leap year status since we only care about
239    January 1st.
240 */
241 static int S_safe_year(Year year)
242 {
243     int safe_year;
244     Year year_cycle = year + S_cycle_offset(year);
245 
246     /* Change non-leap xx00 years to an equivalent */
247     if( S_is_exception_century(year) )
248         year_cycle += 11;
249 
250     /* Also xx01 years, since the previous year will be wrong */
251     if( S_is_exception_century(year - 1) )
252         year_cycle += 17;
253 
254     year_cycle %= SOLAR_CYCLE_LENGTH;
255     if( year_cycle < 0 )
256         year_cycle = SOLAR_CYCLE_LENGTH + year_cycle;
257 
258     assert( year_cycle >= 0 );
259     assert( year_cycle < SOLAR_CYCLE_LENGTH );
260     safe_year = safe_years[year_cycle];
261 
262     assert(safe_year <= 2037 && safe_year >= 2010);
263 
264     TIME64_TRACE3("# year: %lld, year_cycle: %lld, safe_year: %d\n",
265           year, year_cycle, safe_year);
266 
267     return safe_year;
268 }
269 
270 
271 static void S_copy_little_tm_to_big_TM(const struct tm *src, struct TM *dest) {
272     assert(src);
273     assert(dest);
274 #ifdef USE_TM64
275     dest->tm_sec        = src->tm_sec;
276     dest->tm_min        = src->tm_min;
277     dest->tm_hour       = src->tm_hour;
278     dest->tm_mday       = src->tm_mday;
279     dest->tm_mon        = src->tm_mon;
280     dest->tm_year       = (Year)src->tm_year;
281     dest->tm_wday       = src->tm_wday;
282     dest->tm_yday       = src->tm_yday;
283     dest->tm_isdst      = src->tm_isdst;
284 
285 #  ifdef HAS_TM_TM_GMTOFF
286     dest->tm_gmtoff     = src->tm_gmtoff;
287 #  endif
288 
289 #  ifdef HAS_TM_TM_ZONE
290     dest->tm_zone       = src->tm_zone;
291 #  endif
292 
293 #else
294     /* They're the same type */
295     memcpy(dest, src, sizeof(*dest));
296 #endif
297 }
298 
299 
300 #ifndef HAS_LOCALTIME_R
301 /* Simulate localtime_r() to the best of our ability */
302 static struct tm * S_localtime_r(const time_t *clock, struct tm *result) {
303 #ifdef VMS
304     dTHX;    /* in case the following is defined as Perl_my_localtime(aTHX_ ...) */
305 #endif
306     const struct tm *static_result = localtime(clock);
307 
308     assert(result != NULL);
309 
310     if( static_result == NULL ) {
311         memset(result, 0, sizeof(*result));
312         return NULL;
313     }
314     else {
315         memcpy(result, static_result, sizeof(*result));
316         return result;
317     }
318 }
319 #endif
320 
321 #ifndef HAS_GMTIME_R
322 /* Simulate gmtime_r() to the best of our ability */
323 static struct tm * S_gmtime_r(const time_t *clock, struct tm *result) {
324     dTHX;    /* in case the following is defined as Perl_my_gmtime(aTHX_ ...) */
325     const struct tm *static_result = gmtime(clock);
326 
327     assert(result != NULL);
328 
329     if( static_result == NULL ) {
330         memset(result, 0, sizeof(*result));
331         return NULL;
332     }
333     else {
334         memcpy(result, static_result, sizeof(*result));
335         return result;
336     }
337 }
338 #endif
339 
340 static struct TM *S_gmtime64_r (const Time64_T *in_time, struct TM *p)
341 {
342     int v_tm_sec, v_tm_min, v_tm_hour, v_tm_mon, v_tm_wday;
343     Time64_T v_tm_tday;
344     int leap;
345     Time64_T m;
346     Time64_T time = *in_time;
347     Year year = 70;
348     int cycles = 0;
349 
350     assert(p != NULL);
351 
352     /* Use the system gmtime() if time_t is small enough */
353     if( SHOULD_USE_SYSTEM_GMTIME(*in_time) ) {
354         time_t safe_time = (time_t)*in_time;
355         struct tm safe_date;
356         GMTIME_R(&safe_time, &safe_date);
357 
358         S_copy_little_tm_to_big_TM(&safe_date, p);
359         assert(S_check_tm(p));
360 
361         return p;
362     }
363 
364 #ifdef HAS_TM_TM_GMTOFF
365     p->tm_gmtoff = 0;
366 #endif
367     p->tm_isdst  = 0;
368 
369 #ifdef HAS_TM_TM_ZONE
370     p->tm_zone   = (char *)"UTC";
371 #endif
372 
373     v_tm_sec  = (int)fmod(time, 60.0);
374     time      = time >= 0 ? floor(time / 60.0) : ceil(time / 60.0);
375     v_tm_min  = (int)fmod(time, 60.0);
376     time      = time >= 0 ? floor(time / 60.0) : ceil(time / 60.0);
377     v_tm_hour = (int)fmod(time, 24.0);
378     time      = time >= 0 ? floor(time / 24.0) : ceil(time / 24.0);
379     v_tm_tday = time;
380 
381     WRAP (v_tm_sec, v_tm_min, 60);
382     WRAP (v_tm_min, v_tm_hour, 60);
383     WRAP (v_tm_hour, v_tm_tday, 24);
384 
385     v_tm_wday = (int)fmod((v_tm_tday + 4.0), 7.0);
386     if (v_tm_wday < 0)
387         v_tm_wday += 7;
388     m = v_tm_tday;
389 
390     if (m >= CHEAT_DAYS) {
391         year = CHEAT_YEARS;
392         m -= CHEAT_DAYS;
393     }
394 
395     if (m >= 0) {
396         /* Gregorian cycles, this is huge optimization for distant times */
397         cycles = (int)floor(m / (Time64_T) days_in_gregorian_cycle);
398         if( cycles ) {
399             m -= (cycles * (Time64_T) days_in_gregorian_cycle);
400             year += (cycles * years_in_gregorian_cycle);
401         }
402 
403         /* Years */
404         leap = IS_LEAP (year);
405         while (m >= (Time64_T) length_of_year[leap]) {
406             m -= (Time64_T) length_of_year[leap];
407             year++;
408             leap = IS_LEAP (year);
409         }
410 
411         /* Months */
412         v_tm_mon = 0;
413         while (m >= (Time64_T) days_in_month[leap][v_tm_mon]) {
414             m -= (Time64_T) days_in_month[leap][v_tm_mon];
415             v_tm_mon++;
416         }
417     } else {
418         year--;
419 
420         /* Gregorian cycles */
421         cycles = (int)ceil((m / (Time64_T) days_in_gregorian_cycle) + 1);
422         if( cycles ) {
423             m -= (cycles * (Time64_T) days_in_gregorian_cycle);
424             year += (cycles * years_in_gregorian_cycle);
425         }
426 
427         /* Years */
428         leap = IS_LEAP (year);
429         while (m < (Time64_T) -length_of_year[leap]) {
430             m += (Time64_T) length_of_year[leap];
431             year--;
432             leap = IS_LEAP (year);
433         }
434 
435         /* Months */
436         v_tm_mon = 11;
437         while (m < (Time64_T) -days_in_month[leap][v_tm_mon]) {
438             m += (Time64_T) days_in_month[leap][v_tm_mon];
439             v_tm_mon--;
440         }
441         m += (Time64_T) days_in_month[leap][v_tm_mon];
442     }
443 
444     p->tm_year = year;
445     if( p->tm_year != year ) {
446 #ifdef EOVERFLOW
447         errno = EOVERFLOW;
448 #endif
449         return NULL;
450     }
451 
452     /* At this point m is less than a year so casting to an int is safe */
453     p->tm_mday = (int) m + 1;
454     p->tm_yday = julian_days_by_month[leap][v_tm_mon] + (int)m;
455     p->tm_sec  = v_tm_sec;
456     p->tm_min  = v_tm_min;
457     p->tm_hour = v_tm_hour;
458     p->tm_mon  = v_tm_mon;
459     p->tm_wday = v_tm_wday;
460 
461     assert(S_check_tm(p));
462 
463     return p;
464 }
465 
466 
467 static struct TM *S_localtime64_r (const Time64_T *time, struct TM *local_tm)
468 {
469     time_t safe_time;
470     struct tm safe_date;
471     struct TM gm_tm;
472     Year orig_year;
473     int month_diff;
474 
475     assert(local_tm != NULL);
476 
477     /* Use the system localtime() if time_t is small enough */
478     if( SHOULD_USE_SYSTEM_LOCALTIME(*time) ) {
479         safe_time = (time_t)*time;
480 
481         TIME64_TRACE1("Using system localtime for %lld\n", *time);
482 
483         LOCALTIME_R(&safe_time, &safe_date);
484 
485         S_copy_little_tm_to_big_TM(&safe_date, local_tm);
486         assert(S_check_tm(local_tm));
487 
488         return local_tm;
489     }
490 
491     if( S_gmtime64_r(time, &gm_tm) == NULL ) {
492         TIME64_TRACE1("gmtime64_r returned null for %lld\n", *time);
493         return NULL;
494     }
495 
496     orig_year = gm_tm.tm_year;
497 
498     if (gm_tm.tm_year > (2037 - 1900) ||
499         gm_tm.tm_year < (1970 - 1900)
500        )
501     {
502         TIME64_TRACE1("Mapping tm_year %lld to safe_year\n", (Year)gm_tm.tm_year);
503         gm_tm.tm_year = S_safe_year((Year)(gm_tm.tm_year + 1900)) - 1900;
504     }
505 
506     safe_time = (time_t)S_timegm64(&gm_tm);
507     if( LOCALTIME_R(&safe_time, &safe_date) == NULL ) {
508         TIME64_TRACE1("localtime_r(%d) returned NULL\n", (int)safe_time);
509         return NULL;
510     }
511 
512     S_copy_little_tm_to_big_TM(&safe_date, local_tm);
513 
514     local_tm->tm_year = orig_year;
515     if( local_tm->tm_year != orig_year ) {
516         TIME64_TRACE2("tm_year overflow: tm_year %lld, orig_year %lld\n",
517               (Year)local_tm->tm_year, (Year)orig_year);
518 
519 #ifdef EOVERFLOW
520         errno = EOVERFLOW;
521 #endif
522         return NULL;
523     }
524 
525 
526     month_diff = local_tm->tm_mon - gm_tm.tm_mon;
527 
528     /*  When localtime is Dec 31st previous year and
529         gmtime is Jan 1st next year.
530     */
531     if( month_diff == 11 ) {
532         local_tm->tm_year--;
533     }
534 
535     /*  When localtime is Jan 1st, next year and
536         gmtime is Dec 31st, previous year.
537     */
538     if( month_diff == -11 ) {
539         local_tm->tm_year++;
540     }
541 
542     /* GMT is Jan 1st, xx01 year, but localtime is still Dec 31st
543        in a non-leap xx00.  There is one point in the cycle
544        we can't account for which the safe xx00 year is a leap
545        year.  So we need to correct for Dec 31st coming out as
546        the 366th day of the year.
547     */
548     if( !IS_LEAP(local_tm->tm_year) && local_tm->tm_yday == 365 )
549         local_tm->tm_yday--;
550 
551     assert(S_check_tm(local_tm));
552 
553     return local_tm;
554 }
555