1 /* regexec.c 2 */ 3 4 /* 5 * One Ring to rule them all, One Ring to find them 6 * 7 * [p.v of _The Lord of the Rings_, opening poem] 8 * [p.50 of _The Lord of the Rings_, I/iii: "The Shadow of the Past"] 9 * [p.254 of _The Lord of the Rings_, II/ii: "The Council of Elrond"] 10 */ 11 12 /* This file contains functions for executing a regular expression. See 13 * also regcomp.c which funnily enough, contains functions for compiling 14 * a regular expression. 15 * 16 * This file is also copied at build time to ext/re/re_exec.c, where 17 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT. 18 * This causes the main functions to be compiled under new names and with 19 * debugging support added, which makes "use re 'debug'" work. 20 */ 21 22 /* NOTE: this is derived from Henry Spencer's regexp code, and should not 23 * confused with the original package (see point 3 below). Thanks, Henry! 24 */ 25 26 /* Additional note: this code is very heavily munged from Henry's version 27 * in places. In some spots I've traded clarity for efficiency, so don't 28 * blame Henry for some of the lack of readability. 29 */ 30 31 /* The names of the functions have been changed from regcomp and 32 * regexec to pregcomp and pregexec in order to avoid conflicts 33 * with the POSIX routines of the same names. 34 */ 35 36 #ifdef PERL_EXT_RE_BUILD 37 #include "re_top.h" 38 #endif 39 40 /* 41 * pregcomp and pregexec -- regsub and regerror are not used in perl 42 * 43 * Copyright (c) 1986 by University of Toronto. 44 * Written by Henry Spencer. Not derived from licensed software. 45 * 46 * Permission is granted to anyone to use this software for any 47 * purpose on any computer system, and to redistribute it freely, 48 * subject to the following restrictions: 49 * 50 * 1. The author is not responsible for the consequences of use of 51 * this software, no matter how awful, even if they arise 52 * from defects in it. 53 * 54 * 2. The origin of this software must not be misrepresented, either 55 * by explicit claim or by omission. 56 * 57 * 3. Altered versions must be plainly marked as such, and must not 58 * be misrepresented as being the original software. 59 * 60 **** Alterations to Henry's code are... 61 **** 62 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 63 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 64 **** by Larry Wall and others 65 **** 66 **** You may distribute under the terms of either the GNU General Public 67 **** License or the Artistic License, as specified in the README file. 68 * 69 * Beware that some of this code is subtly aware of the way operator 70 * precedence is structured in regular expressions. Serious changes in 71 * regular-expression syntax might require a total rethink. 72 */ 73 #include "EXTERN.h" 74 #define PERL_IN_REGEXEC_C 75 #include "perl.h" 76 77 #ifdef PERL_IN_XSUB_RE 78 # include "re_comp.h" 79 #else 80 # include "regcomp.h" 81 #endif 82 83 #include "invlist_inline.h" 84 #include "unicode_constants.h" 85 86 #define B_ON_NON_UTF8_LOCALE_IS_WRONG \ 87 "Use of \\b{} or \\B{} for non-UTF-8 locale is wrong. Assuming a UTF-8 locale" 88 89 static const char utf8_locale_required[] = 90 "Use of (?[ ]) for non-UTF-8 locale is wrong. Assuming a UTF-8 locale"; 91 92 #ifdef DEBUGGING 93 /* At least one required character in the target string is expressible only in 94 * UTF-8. */ 95 static const char* const non_utf8_target_but_utf8_required 96 = "Can't match, because target string needs to be in UTF-8\n"; 97 #endif 98 99 /* Returns a boolean as to whether the input unsigned number is a power of 2 100 * (2**0, 2**1, etc). In other words if it has just a single bit set. 101 * If not, subtracting 1 would leave the uppermost bit set, so the & would 102 * yield non-zero */ 103 #define isPOWER_OF_2(n) ((n & (n-1)) == 0) 104 105 #define NON_UTF8_TARGET_BUT_UTF8_REQUIRED(target) STMT_START { \ 106 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ "%s", non_utf8_target_but_utf8_required));\ 107 goto target; \ 108 } STMT_END 109 110 #define HAS_NONLATIN1_FOLD_CLOSURE(i) _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i) 111 112 #ifndef STATIC 113 #define STATIC static 114 #endif 115 116 /* Valid only if 'c', the character being looke-up, is an invariant under 117 * UTF-8: it avoids the reginclass call if there are no complications: i.e., if 118 * everything matchable is straight forward in the bitmap */ 119 #define REGINCLASS(prog,p,c,u) (ANYOF_FLAGS(p) \ 120 ? reginclass(prog,p,c,c+1,u) \ 121 : ANYOF_BITMAP_TEST(p,*(c))) 122 123 /* 124 * Forwards. 125 */ 126 127 #define CHR_SVLEN(sv) (utf8_target ? sv_len_utf8(sv) : SvCUR(sv)) 128 129 #define HOPc(pos,off) \ 130 (char *)(reginfo->is_utf8_target \ 131 ? reghop3((U8*)pos, off, \ 132 (U8*)(off >= 0 ? reginfo->strend : reginfo->strbeg)) \ 133 : (U8*)(pos + off)) 134 135 /* like HOPMAYBE3 but backwards. lim must be +ve. Returns NULL on overshoot */ 136 #define HOPBACK3(pos, off, lim) \ 137 (reginfo->is_utf8_target \ 138 ? reghopmaybe3((U8*)pos, (SSize_t)0-off, (U8*)(lim)) \ 139 : (pos - off >= lim) \ 140 ? (U8*)pos - off \ 141 : NULL) 142 143 #define HOPBACKc(pos, off) ((char*)HOPBACK3(pos, off, reginfo->strbeg)) 144 145 #define HOP3(pos,off,lim) (reginfo->is_utf8_target ? reghop3((U8*)(pos), off, (U8*)(lim)) : (U8*)(pos + off)) 146 #define HOP3c(pos,off,lim) ((char*)HOP3(pos,off,lim)) 147 148 /* lim must be +ve. Returns NULL on overshoot */ 149 #define HOPMAYBE3(pos,off,lim) \ 150 (reginfo->is_utf8_target \ 151 ? reghopmaybe3((U8*)pos, off, (U8*)(lim)) \ 152 : ((U8*)pos + off <= lim) \ 153 ? (U8*)pos + off \ 154 : NULL) 155 156 /* like HOP3, but limits the result to <= lim even for the non-utf8 case. 157 * off must be >=0; args should be vars rather than expressions */ 158 #define HOP3lim(pos,off,lim) (reginfo->is_utf8_target \ 159 ? reghop3((U8*)(pos), off, (U8*)(lim)) \ 160 : (U8*)((pos + off) > lim ? lim : (pos + off))) 161 #define HOP3clim(pos,off,lim) ((char*)HOP3lim(pos,off,lim)) 162 163 #define HOP4(pos,off,llim, rlim) (reginfo->is_utf8_target \ 164 ? reghop4((U8*)(pos), off, (U8*)(llim), (U8*)(rlim)) \ 165 : (U8*)(pos + off)) 166 #define HOP4c(pos,off,llim, rlim) ((char*)HOP4(pos,off,llim, rlim)) 167 168 #define NEXTCHR_EOS -10 /* nextchr has fallen off the end */ 169 #define NEXTCHR_IS_EOS (nextchr < 0) 170 171 #define SET_nextchr \ 172 nextchr = ((locinput < reginfo->strend) ? UCHARAT(locinput) : NEXTCHR_EOS) 173 174 #define SET_locinput(p) \ 175 locinput = (p); \ 176 SET_nextchr 177 178 #define PLACEHOLDER /* Something for the preprocessor to grab onto */ 179 /* TODO: Combine JUMPABLE and HAS_TEXT to cache OP(rn) */ 180 181 /* for use after a quantifier and before an EXACT-like node -- japhy */ 182 /* it would be nice to rework regcomp.sym to generate this stuff. sigh 183 * 184 * NOTE that *nothing* that affects backtracking should be in here, specifically 185 * VERBS must NOT be included. JUMPABLE is used to determine if we can ignore a 186 * node that is in between two EXACT like nodes when ascertaining what the required 187 * "follow" character is. This should probably be moved to regex compile time 188 * although it may be done at run time beause of the REF possibility - more 189 * investigation required. -- demerphq 190 */ 191 #define JUMPABLE(rn) ( \ 192 OP(rn) == OPEN || \ 193 (OP(rn) == CLOSE && \ 194 !EVAL_CLOSE_PAREN_IS(cur_eval,ARG(rn)) ) || \ 195 OP(rn) == EVAL || \ 196 OP(rn) == SUSPEND || OP(rn) == IFMATCH || \ 197 OP(rn) == PLUS || OP(rn) == MINMOD || \ 198 OP(rn) == KEEPS || \ 199 (PL_regkind[OP(rn)] == CURLY && ARG1(rn) > 0) \ 200 ) 201 #define IS_EXACT(rn) (PL_regkind[OP(rn)] == EXACT) 202 203 #define HAS_TEXT(rn) ( IS_EXACT(rn) || PL_regkind[OP(rn)] == REF ) 204 205 #if 0 206 /* Currently these are only used when PL_regkind[OP(rn)] == EXACT so 207 we don't need this definition. XXX These are now out-of-sync*/ 208 #define IS_TEXT(rn) ( OP(rn)==EXACT || OP(rn)==REF || OP(rn)==NREF ) 209 #define IS_TEXTF(rn) ( OP(rn)==EXACTFU || OP(rn)==EXACTFU_SS || OP(rn)==EXACTFAA || OP(rn)==EXACTFAA_NO_TRIE || OP(rn)==EXACTF || OP(rn)==REFF || OP(rn)==NREFF ) 210 #define IS_TEXTFL(rn) ( OP(rn)==EXACTFL || OP(rn)==REFFL || OP(rn)==NREFFL ) 211 212 #else 213 /* ... so we use this as its faster. */ 214 #define IS_TEXT(rn) ( OP(rn)==EXACT || OP(rn)==EXACTL ) 215 #define IS_TEXTFU(rn) ( OP(rn)==EXACTFU || OP(rn)==EXACTFLU8 || OP(rn)==EXACTFU_SS || OP(rn) == EXACTFAA || OP(rn) == EXACTFAA_NO_TRIE) 216 #define IS_TEXTF(rn) ( OP(rn)==EXACTF ) 217 #define IS_TEXTFL(rn) ( OP(rn)==EXACTFL ) 218 219 #endif 220 221 /* 222 Search for mandatory following text node; for lookahead, the text must 223 follow but for lookbehind (rn->flags != 0) we skip to the next step. 224 */ 225 #define FIND_NEXT_IMPT(rn) STMT_START { \ 226 while (JUMPABLE(rn)) { \ 227 const OPCODE type = OP(rn); \ 228 if (type == SUSPEND || PL_regkind[type] == CURLY) \ 229 rn = NEXTOPER(NEXTOPER(rn)); \ 230 else if (type == PLUS) \ 231 rn = NEXTOPER(rn); \ 232 else if (type == IFMATCH) \ 233 rn = (rn->flags == 0) ? NEXTOPER(NEXTOPER(rn)) : rn + ARG(rn); \ 234 else rn += NEXT_OFF(rn); \ 235 } \ 236 } STMT_END 237 238 #define SLAB_FIRST(s) (&(s)->states[0]) 239 #define SLAB_LAST(s) (&(s)->states[PERL_REGMATCH_SLAB_SLOTS-1]) 240 241 static void S_setup_eval_state(pTHX_ regmatch_info *const reginfo); 242 static void S_cleanup_regmatch_info_aux(pTHX_ void *arg); 243 static regmatch_state * S_push_slab(pTHX); 244 245 #define REGCP_PAREN_ELEMS 3 246 #define REGCP_OTHER_ELEMS 3 247 #define REGCP_FRAME_ELEMS 1 248 /* REGCP_FRAME_ELEMS are not part of the REGCP_OTHER_ELEMS and 249 * are needed for the regexp context stack bookkeeping. */ 250 251 STATIC CHECKPOINT 252 S_regcppush(pTHX_ const regexp *rex, I32 parenfloor, U32 maxopenparen _pDEPTH) 253 { 254 const int retval = PL_savestack_ix; 255 const int paren_elems_to_push = 256 (maxopenparen - parenfloor) * REGCP_PAREN_ELEMS; 257 const UV total_elems = paren_elems_to_push + REGCP_OTHER_ELEMS; 258 const UV elems_shifted = total_elems << SAVE_TIGHT_SHIFT; 259 I32 p; 260 GET_RE_DEBUG_FLAGS_DECL; 261 262 PERL_ARGS_ASSERT_REGCPPUSH; 263 264 if (paren_elems_to_push < 0) 265 Perl_croak(aTHX_ "panic: paren_elems_to_push, %i < 0, maxopenparen: %i parenfloor: %i REGCP_PAREN_ELEMS: %u", 266 (int)paren_elems_to_push, (int)maxopenparen, 267 (int)parenfloor, (unsigned)REGCP_PAREN_ELEMS); 268 269 if ((elems_shifted >> SAVE_TIGHT_SHIFT) != total_elems) 270 Perl_croak(aTHX_ "panic: paren_elems_to_push offset %" UVuf 271 " out of range (%lu-%ld)", 272 total_elems, 273 (unsigned long)maxopenparen, 274 (long)parenfloor); 275 276 SSGROW(total_elems + REGCP_FRAME_ELEMS); 277 278 DEBUG_BUFFERS_r( 279 if ((int)maxopenparen > (int)parenfloor) 280 Perl_re_exec_indentf( aTHX_ 281 "rex=0x%" UVxf " offs=0x%" UVxf ": saving capture indices:\n", 282 depth, 283 PTR2UV(rex), 284 PTR2UV(rex->offs) 285 ); 286 ); 287 for (p = parenfloor+1; p <= (I32)maxopenparen; p++) { 288 /* REGCP_PARENS_ELEMS are pushed per pairs of parentheses. */ 289 SSPUSHIV(rex->offs[p].end); 290 SSPUSHIV(rex->offs[p].start); 291 SSPUSHINT(rex->offs[p].start_tmp); 292 DEBUG_BUFFERS_r(Perl_re_exec_indentf( aTHX_ 293 " \\%" UVuf ": %" IVdf "(%" IVdf ")..%" IVdf "\n", 294 depth, 295 (UV)p, 296 (IV)rex->offs[p].start, 297 (IV)rex->offs[p].start_tmp, 298 (IV)rex->offs[p].end 299 )); 300 } 301 /* REGCP_OTHER_ELEMS are pushed in any case, parentheses or no. */ 302 SSPUSHINT(maxopenparen); 303 SSPUSHINT(rex->lastparen); 304 SSPUSHINT(rex->lastcloseparen); 305 SSPUSHUV(SAVEt_REGCONTEXT | elems_shifted); /* Magic cookie. */ 306 307 return retval; 308 } 309 310 /* These are needed since we do not localize EVAL nodes: */ 311 #define REGCP_SET(cp) \ 312 DEBUG_STATE_r( \ 313 Perl_re_exec_indentf( aTHX_ \ 314 "Setting an EVAL scope, savestack=%" IVdf ",\n", \ 315 depth, (IV)PL_savestack_ix \ 316 ) \ 317 ); \ 318 cp = PL_savestack_ix 319 320 #define REGCP_UNWIND(cp) \ 321 DEBUG_STATE_r( \ 322 if (cp != PL_savestack_ix) \ 323 Perl_re_exec_indentf( aTHX_ \ 324 "Clearing an EVAL scope, savestack=%" \ 325 IVdf "..%" IVdf "\n", \ 326 depth, (IV)(cp), (IV)PL_savestack_ix \ 327 ) \ 328 ); \ 329 regcpblow(cp) 330 331 #define UNWIND_PAREN(lp, lcp) \ 332 for (n = rex->lastparen; n > lp; n--) \ 333 rex->offs[n].end = -1; \ 334 rex->lastparen = n; \ 335 rex->lastcloseparen = lcp; 336 337 338 STATIC void 339 S_regcppop(pTHX_ regexp *rex, U32 *maxopenparen_p _pDEPTH) 340 { 341 UV i; 342 U32 paren; 343 GET_RE_DEBUG_FLAGS_DECL; 344 345 PERL_ARGS_ASSERT_REGCPPOP; 346 347 /* Pop REGCP_OTHER_ELEMS before the parentheses loop starts. */ 348 i = SSPOPUV; 349 assert((i & SAVE_MASK) == SAVEt_REGCONTEXT); /* Check that the magic cookie is there. */ 350 i >>= SAVE_TIGHT_SHIFT; /* Parentheses elements to pop. */ 351 rex->lastcloseparen = SSPOPINT; 352 rex->lastparen = SSPOPINT; 353 *maxopenparen_p = SSPOPINT; 354 355 i -= REGCP_OTHER_ELEMS; 356 /* Now restore the parentheses context. */ 357 DEBUG_BUFFERS_r( 358 if (i || rex->lastparen + 1 <= rex->nparens) 359 Perl_re_exec_indentf( aTHX_ 360 "rex=0x%" UVxf " offs=0x%" UVxf ": restoring capture indices to:\n", 361 depth, 362 PTR2UV(rex), 363 PTR2UV(rex->offs) 364 ); 365 ); 366 paren = *maxopenparen_p; 367 for ( ; i > 0; i -= REGCP_PAREN_ELEMS) { 368 SSize_t tmps; 369 rex->offs[paren].start_tmp = SSPOPINT; 370 rex->offs[paren].start = SSPOPIV; 371 tmps = SSPOPIV; 372 if (paren <= rex->lastparen) 373 rex->offs[paren].end = tmps; 374 DEBUG_BUFFERS_r( Perl_re_exec_indentf( aTHX_ 375 " \\%" UVuf ": %" IVdf "(%" IVdf ")..%" IVdf "%s\n", 376 depth, 377 (UV)paren, 378 (IV)rex->offs[paren].start, 379 (IV)rex->offs[paren].start_tmp, 380 (IV)rex->offs[paren].end, 381 (paren > rex->lastparen ? "(skipped)" : "")); 382 ); 383 paren--; 384 } 385 #if 1 386 /* It would seem that the similar code in regtry() 387 * already takes care of this, and in fact it is in 388 * a better location to since this code can #if 0-ed out 389 * but the code in regtry() is needed or otherwise tests 390 * requiring null fields (pat.t#187 and split.t#{13,14} 391 * (as of patchlevel 7877) will fail. Then again, 392 * this code seems to be necessary or otherwise 393 * this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/ 394 * --jhi updated by dapm */ 395 for (i = rex->lastparen + 1; i <= rex->nparens; i++) { 396 if (i > *maxopenparen_p) 397 rex->offs[i].start = -1; 398 rex->offs[i].end = -1; 399 DEBUG_BUFFERS_r( Perl_re_exec_indentf( aTHX_ 400 " \\%" UVuf ": %s ..-1 undeffing\n", 401 depth, 402 (UV)i, 403 (i > *maxopenparen_p) ? "-1" : " " 404 )); 405 } 406 #endif 407 } 408 409 /* restore the parens and associated vars at savestack position ix, 410 * but without popping the stack */ 411 412 STATIC void 413 S_regcp_restore(pTHX_ regexp *rex, I32 ix, U32 *maxopenparen_p _pDEPTH) 414 { 415 I32 tmpix = PL_savestack_ix; 416 PERL_ARGS_ASSERT_REGCP_RESTORE; 417 418 PL_savestack_ix = ix; 419 regcppop(rex, maxopenparen_p); 420 PL_savestack_ix = tmpix; 421 } 422 423 #define regcpblow(cp) LEAVE_SCOPE(cp) /* Ignores regcppush()ed data. */ 424 425 #ifndef PERL_IN_XSUB_RE 426 427 bool 428 Perl_isFOO_lc(pTHX_ const U8 classnum, const U8 character) 429 { 430 /* Returns a boolean as to whether or not 'character' is a member of the 431 * Posix character class given by 'classnum' that should be equivalent to a 432 * value in the typedef '_char_class_number'. 433 * 434 * Ideally this could be replaced by a just an array of function pointers 435 * to the C library functions that implement the macros this calls. 436 * However, to compile, the precise function signatures are required, and 437 * these may vary from platform to to platform. To avoid having to figure 438 * out what those all are on each platform, I (khw) am using this method, 439 * which adds an extra layer of function call overhead (unless the C 440 * optimizer strips it away). But we don't particularly care about 441 * performance with locales anyway. */ 442 443 switch ((_char_class_number) classnum) { 444 case _CC_ENUM_ALPHANUMERIC: return isALPHANUMERIC_LC(character); 445 case _CC_ENUM_ALPHA: return isALPHA_LC(character); 446 case _CC_ENUM_ASCII: return isASCII_LC(character); 447 case _CC_ENUM_BLANK: return isBLANK_LC(character); 448 case _CC_ENUM_CASED: return isLOWER_LC(character) 449 || isUPPER_LC(character); 450 case _CC_ENUM_CNTRL: return isCNTRL_LC(character); 451 case _CC_ENUM_DIGIT: return isDIGIT_LC(character); 452 case _CC_ENUM_GRAPH: return isGRAPH_LC(character); 453 case _CC_ENUM_LOWER: return isLOWER_LC(character); 454 case _CC_ENUM_PRINT: return isPRINT_LC(character); 455 case _CC_ENUM_PUNCT: return isPUNCT_LC(character); 456 case _CC_ENUM_SPACE: return isSPACE_LC(character); 457 case _CC_ENUM_UPPER: return isUPPER_LC(character); 458 case _CC_ENUM_WORDCHAR: return isWORDCHAR_LC(character); 459 case _CC_ENUM_XDIGIT: return isXDIGIT_LC(character); 460 default: /* VERTSPACE should never occur in locales */ 461 Perl_croak(aTHX_ "panic: isFOO_lc() has an unexpected character class '%d'", classnum); 462 } 463 464 NOT_REACHED; /* NOTREACHED */ 465 return FALSE; 466 } 467 468 #endif 469 470 STATIC bool 471 S_isFOO_utf8_lc(pTHX_ const U8 classnum, const U8* character, const U8* e) 472 { 473 /* Returns a boolean as to whether or not the (well-formed) UTF-8-encoded 474 * 'character' is a member of the Posix character class given by 'classnum' 475 * that should be equivalent to a value in the typedef 476 * '_char_class_number'. 477 * 478 * This just calls isFOO_lc on the code point for the character if it is in 479 * the range 0-255. Outside that range, all characters use Unicode 480 * rules, ignoring any locale. So use the Unicode function if this class 481 * requires a swash, and use the Unicode macro otherwise. */ 482 483 PERL_ARGS_ASSERT_ISFOO_UTF8_LC; 484 485 if (UTF8_IS_INVARIANT(*character)) { 486 return isFOO_lc(classnum, *character); 487 } 488 else if (UTF8_IS_DOWNGRADEABLE_START(*character)) { 489 return isFOO_lc(classnum, 490 EIGHT_BIT_UTF8_TO_NATIVE(*character, *(character + 1))); 491 } 492 493 _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(character, e); 494 495 switch ((_char_class_number) classnum) { 496 case _CC_ENUM_SPACE: return is_XPERLSPACE_high(character); 497 case _CC_ENUM_BLANK: return is_HORIZWS_high(character); 498 case _CC_ENUM_XDIGIT: return is_XDIGIT_high(character); 499 case _CC_ENUM_VERTSPACE: return is_VERTWS_high(character); 500 default: 501 return _invlist_contains_cp(PL_XPosix_ptrs[classnum], 502 utf8_to_uvchr_buf(character, e, NULL)); 503 } 504 505 return FALSE; /* Things like CNTRL are always below 256 */ 506 } 507 508 STATIC char * 509 S_find_next_ascii(char * s, const char * send, const bool utf8_target) 510 { 511 /* Returns the position of the first ASCII byte in the sequence between 's' 512 * and 'send-1' inclusive; returns 'send' if none found */ 513 514 PERL_ARGS_ASSERT_FIND_NEXT_ASCII; 515 516 #ifndef EBCDIC 517 518 if ((STRLEN) (send - s) >= PERL_WORDSIZE 519 520 /* This term is wordsize if subword; 0 if not */ 521 + PERL_WORDSIZE * PERL_IS_SUBWORD_ADDR(s) 522 523 /* 'offset' */ 524 - (PTR2nat(s) & PERL_WORD_BOUNDARY_MASK)) 525 { 526 527 /* Process per-byte until reach word boundary. XXX This loop could be 528 * eliminated if we knew that this platform had fast unaligned reads */ 529 while (PTR2nat(s) & PERL_WORD_BOUNDARY_MASK) { 530 if (isASCII(*s)) { 531 return s; 532 } 533 s++; /* khw didn't bother creating a separate loop for 534 utf8_target */ 535 } 536 537 /* Here, we know we have at least one full word to process. Process 538 * per-word as long as we have at least a full word left */ 539 do { 540 PERL_UINTMAX_T complemented = ~ * (PERL_UINTMAX_T *) s; 541 if (complemented & PERL_VARIANTS_WORD_MASK) { 542 543 # if BYTEORDER == 0x1234 || BYTEORDER == 0x12345678 \ 544 || BYTEORDER == 0x4321 || BYTEORDER == 0x87654321 545 546 s += _variant_byte_number(complemented); 547 return s; 548 549 # else /* If weird byte order, drop into next loop to do byte-at-a-time 550 checks. */ 551 552 break; 553 # endif 554 } 555 556 s += PERL_WORDSIZE; 557 558 } while (s + PERL_WORDSIZE <= send); 559 } 560 561 #endif 562 563 /* Process per-character */ 564 if (utf8_target) { 565 while (s < send) { 566 if (isASCII(*s)) { 567 return s; 568 } 569 s += UTF8SKIP(s); 570 } 571 } 572 else { 573 while (s < send) { 574 if (isASCII(*s)) { 575 return s; 576 } 577 s++; 578 } 579 } 580 581 return s; 582 } 583 584 STATIC char * 585 S_find_next_non_ascii(char * s, const char * send, const bool utf8_target) 586 { 587 /* Returns the position of the first non-ASCII byte in the sequence between 588 * 's' and 'send-1' inclusive; returns 'send' if none found */ 589 590 #ifdef EBCDIC 591 592 PERL_ARGS_ASSERT_FIND_NEXT_NON_ASCII; 593 594 if (utf8_target) { 595 while (s < send) { 596 if ( ! isASCII(*s)) { 597 return s; 598 } 599 s += UTF8SKIP(s); 600 } 601 } 602 else { 603 while (s < send) { 604 if ( ! isASCII(*s)) { 605 return s; 606 } 607 s++; 608 } 609 } 610 611 return s; 612 613 #else 614 615 const U8 * next_non_ascii = NULL; 616 617 PERL_ARGS_ASSERT_FIND_NEXT_NON_ASCII; 618 PERL_UNUSED_ARG(utf8_target); 619 620 /* On ASCII platforms invariants and ASCII are identical, so if the string 621 * is entirely invariants, there is no non-ASCII character */ 622 return (is_utf8_invariant_string_loc((U8 *) s, 623 (STRLEN) (send - s), 624 &next_non_ascii)) 625 ? (char *) send 626 : (char *) next_non_ascii; 627 628 #endif 629 630 } 631 632 STATIC U8 * 633 S_find_span_end(U8 * s, const U8 * send, const U8 span_byte) 634 { 635 /* Returns the position of the first byte in the sequence between 's' and 636 * 'send-1' inclusive that isn't 'span_byte'; returns 'send' if none found. 637 * */ 638 639 PERL_ARGS_ASSERT_FIND_SPAN_END; 640 641 assert(send >= s); 642 643 if ((STRLEN) (send - s) >= PERL_WORDSIZE 644 + PERL_WORDSIZE * PERL_IS_SUBWORD_ADDR(s) 645 - (PTR2nat(s) & PERL_WORD_BOUNDARY_MASK)) 646 { 647 PERL_UINTMAX_T span_word; 648 649 /* Process per-byte until reach word boundary. XXX This loop could be 650 * eliminated if we knew that this platform had fast unaligned reads */ 651 while (PTR2nat(s) & PERL_WORD_BOUNDARY_MASK) { 652 if (*s != span_byte) { 653 return s; 654 } 655 s++; 656 } 657 658 /* Create a word filled with the bytes we are spanning */ 659 span_word = PERL_COUNT_MULTIPLIER * span_byte; 660 661 /* Process per-word as long as we have at least a full word left */ 662 do { 663 664 /* Keep going if the whole word is composed of 'span_byte's */ 665 if ((* (PERL_UINTMAX_T *) s) == span_word) { 666 s += PERL_WORDSIZE; 667 continue; 668 } 669 670 /* Here, at least one byte in the word isn't 'span_byte'. */ 671 672 #ifdef EBCDIC 673 674 break; 675 676 #else 677 678 /* This xor leaves 1 bits only in those non-matching bytes */ 679 span_word ^= * (PERL_UINTMAX_T *) s; 680 681 /* Make sure the upper bit of each non-matching byte is set. This 682 * makes each such byte look like an ASCII platform variant byte */ 683 span_word |= span_word << 1; 684 span_word |= span_word << 2; 685 span_word |= span_word << 4; 686 687 /* That reduces the problem to what this function solves */ 688 return s + _variant_byte_number(span_word); 689 690 #endif 691 692 } while (s + PERL_WORDSIZE <= send); 693 } 694 695 /* Process the straggler bytes beyond the final word boundary */ 696 while (s < send) { 697 if (*s != span_byte) { 698 return s; 699 } 700 s++; 701 } 702 703 return s; 704 } 705 706 STATIC U8 * 707 S_find_next_masked(U8 * s, const U8 * send, const U8 byte, const U8 mask) 708 { 709 /* Returns the position of the first byte in the sequence between 's' 710 * and 'send-1' inclusive that when ANDed with 'mask' yields 'byte'; 711 * returns 'send' if none found. It uses word-level operations instead of 712 * byte to speed up the process */ 713 714 PERL_ARGS_ASSERT_FIND_NEXT_MASKED; 715 716 assert(send >= s); 717 assert((byte & mask) == byte); 718 719 #ifndef EBCDIC 720 721 if ((STRLEN) (send - s) >= PERL_WORDSIZE 722 + PERL_WORDSIZE * PERL_IS_SUBWORD_ADDR(s) 723 - (PTR2nat(s) & PERL_WORD_BOUNDARY_MASK)) 724 { 725 PERL_UINTMAX_T word_complemented, mask_word; 726 727 while (PTR2nat(s) & PERL_WORD_BOUNDARY_MASK) { 728 if (((*s) & mask) == byte) { 729 return s; 730 } 731 s++; 732 } 733 734 word_complemented = ~ (PERL_COUNT_MULTIPLIER * byte); 735 mask_word = PERL_COUNT_MULTIPLIER * mask; 736 737 do { 738 PERL_UINTMAX_T masked = (* (PERL_UINTMAX_T *) s) & mask_word; 739 740 /* If 'masked' contains 'byte' within it, anding with the 741 * complement will leave those 8 bits 0 */ 742 masked &= word_complemented; 743 744 /* This causes the most significant bit to be set to 1 for any 745 * bytes in the word that aren't completely 0 */ 746 masked |= masked << 1; 747 masked |= masked << 2; 748 masked |= masked << 4; 749 750 /* The msbits are the same as what marks a byte as variant, so we 751 * can use this mask. If all msbits are 1, the word doesn't 752 * contain 'byte' */ 753 if ((masked & PERL_VARIANTS_WORD_MASK) == PERL_VARIANTS_WORD_MASK) { 754 s += PERL_WORDSIZE; 755 continue; 756 } 757 758 /* Here, the msbit of bytes in the word that aren't 'byte' are 1, 759 * and any that are, are 0. Complement and re-AND to swap that */ 760 masked = ~ masked; 761 masked &= PERL_VARIANTS_WORD_MASK; 762 763 /* This reduces the problem to that solved by this function */ 764 s += _variant_byte_number(masked); 765 return s; 766 767 } while (s + PERL_WORDSIZE <= send); 768 } 769 770 #endif 771 772 while (s < send) { 773 if (((*s) & mask) == byte) { 774 return s; 775 } 776 s++; 777 } 778 779 return s; 780 } 781 782 STATIC U8 * 783 S_find_span_end_mask(U8 * s, const U8 * send, const U8 span_byte, const U8 mask) 784 { 785 /* Returns the position of the first byte in the sequence between 's' and 786 * 'send-1' inclusive that when ANDed with 'mask' isn't 'span_byte'. 787 * 'span_byte' should have been ANDed with 'mask' in the call of this 788 * function. Returns 'send' if none found. Works like find_span_end(), 789 * except for the AND */ 790 791 PERL_ARGS_ASSERT_FIND_SPAN_END_MASK; 792 793 assert(send >= s); 794 assert((span_byte & mask) == span_byte); 795 796 if ((STRLEN) (send - s) >= PERL_WORDSIZE 797 + PERL_WORDSIZE * PERL_IS_SUBWORD_ADDR(s) 798 - (PTR2nat(s) & PERL_WORD_BOUNDARY_MASK)) 799 { 800 PERL_UINTMAX_T span_word, mask_word; 801 802 while (PTR2nat(s) & PERL_WORD_BOUNDARY_MASK) { 803 if (((*s) & mask) != span_byte) { 804 return s; 805 } 806 s++; 807 } 808 809 span_word = PERL_COUNT_MULTIPLIER * span_byte; 810 mask_word = PERL_COUNT_MULTIPLIER * mask; 811 812 do { 813 PERL_UINTMAX_T masked = (* (PERL_UINTMAX_T *) s) & mask_word; 814 815 if (masked == span_word) { 816 s += PERL_WORDSIZE; 817 continue; 818 } 819 820 #ifdef EBCDIC 821 822 break; 823 824 #else 825 826 masked ^= span_word; 827 masked |= masked << 1; 828 masked |= masked << 2; 829 masked |= masked << 4; 830 return s + _variant_byte_number(masked); 831 832 #endif 833 834 } while (s + PERL_WORDSIZE <= send); 835 } 836 837 while (s < send) { 838 if (((*s) & mask) != span_byte) { 839 return s; 840 } 841 s++; 842 } 843 844 return s; 845 } 846 847 /* 848 * pregexec and friends 849 */ 850 851 #ifndef PERL_IN_XSUB_RE 852 /* 853 - pregexec - match a regexp against a string 854 */ 855 I32 856 Perl_pregexec(pTHX_ REGEXP * const prog, char* stringarg, char *strend, 857 char *strbeg, SSize_t minend, SV *screamer, U32 nosave) 858 /* stringarg: the point in the string at which to begin matching */ 859 /* strend: pointer to null at end of string */ 860 /* strbeg: real beginning of string */ 861 /* minend: end of match must be >= minend bytes after stringarg. */ 862 /* screamer: SV being matched: only used for utf8 flag, pos() etc; string 863 * itself is accessed via the pointers above */ 864 /* nosave: For optimizations. */ 865 { 866 PERL_ARGS_ASSERT_PREGEXEC; 867 868 return 869 regexec_flags(prog, stringarg, strend, strbeg, minend, screamer, NULL, 870 nosave ? 0 : REXEC_COPY_STR); 871 } 872 #endif 873 874 875 876 /* re_intuit_start(): 877 * 878 * Based on some optimiser hints, try to find the earliest position in the 879 * string where the regex could match. 880 * 881 * rx: the regex to match against 882 * sv: the SV being matched: only used for utf8 flag; the string 883 * itself is accessed via the pointers below. Note that on 884 * something like an overloaded SV, SvPOK(sv) may be false 885 * and the string pointers may point to something unrelated to 886 * the SV itself. 887 * strbeg: real beginning of string 888 * strpos: the point in the string at which to begin matching 889 * strend: pointer to the byte following the last char of the string 890 * flags currently unused; set to 0 891 * data: currently unused; set to NULL 892 * 893 * The basic idea of re_intuit_start() is to use some known information 894 * about the pattern, namely: 895 * 896 * a) the longest known anchored substring (i.e. one that's at a 897 * constant offset from the beginning of the pattern; but not 898 * necessarily at a fixed offset from the beginning of the 899 * string); 900 * b) the longest floating substring (i.e. one that's not at a constant 901 * offset from the beginning of the pattern); 902 * c) Whether the pattern is anchored to the string; either 903 * an absolute anchor: /^../, or anchored to \n: /^.../m, 904 * or anchored to pos(): /\G/; 905 * d) A start class: a real or synthetic character class which 906 * represents which characters are legal at the start of the pattern; 907 * 908 * to either quickly reject the match, or to find the earliest position 909 * within the string at which the pattern might match, thus avoiding 910 * running the full NFA engine at those earlier locations, only to 911 * eventually fail and retry further along. 912 * 913 * Returns NULL if the pattern can't match, or returns the address within 914 * the string which is the earliest place the match could occur. 915 * 916 * The longest of the anchored and floating substrings is called 'check' 917 * and is checked first. The other is called 'other' and is checked 918 * second. The 'other' substring may not be present. For example, 919 * 920 * /(abc|xyz)ABC\d{0,3}DEFG/ 921 * 922 * will have 923 * 924 * check substr (float) = "DEFG", offset 6..9 chars 925 * other substr (anchored) = "ABC", offset 3..3 chars 926 * stclass = [ax] 927 * 928 * Be aware that during the course of this function, sometimes 'anchored' 929 * refers to a substring being anchored relative to the start of the 930 * pattern, and sometimes to the pattern itself being anchored relative to 931 * the string. For example: 932 * 933 * /\dabc/: "abc" is anchored to the pattern; 934 * /^\dabc/: "abc" is anchored to the pattern and the string; 935 * /\d+abc/: "abc" is anchored to neither the pattern nor the string; 936 * /^\d+abc/: "abc" is anchored to neither the pattern nor the string, 937 * but the pattern is anchored to the string. 938 */ 939 940 char * 941 Perl_re_intuit_start(pTHX_ 942 REGEXP * const rx, 943 SV *sv, 944 const char * const strbeg, 945 char *strpos, 946 char *strend, 947 const U32 flags, 948 re_scream_pos_data *data) 949 { 950 struct regexp *const prog = ReANY(rx); 951 SSize_t start_shift = prog->check_offset_min; 952 /* Should be nonnegative! */ 953 SSize_t end_shift = 0; 954 /* current lowest pos in string where the regex can start matching */ 955 char *rx_origin = strpos; 956 SV *check; 957 const bool utf8_target = (sv && SvUTF8(sv)) ? 1 : 0; /* if no sv we have to assume bytes */ 958 U8 other_ix = 1 - prog->substrs->check_ix; 959 bool ml_anch = 0; 960 char *other_last = strpos;/* latest pos 'other' substr already checked to */ 961 char *check_at = NULL; /* check substr found at this pos */ 962 const I32 multiline = prog->extflags & RXf_PMf_MULTILINE; 963 RXi_GET_DECL(prog,progi); 964 regmatch_info reginfo_buf; /* create some info to pass to find_byclass */ 965 regmatch_info *const reginfo = ®info_buf; 966 GET_RE_DEBUG_FLAGS_DECL; 967 968 PERL_ARGS_ASSERT_RE_INTUIT_START; 969 PERL_UNUSED_ARG(flags); 970 PERL_UNUSED_ARG(data); 971 972 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ 973 "Intuit: trying to determine minimum start position...\n")); 974 975 /* for now, assume that all substr offsets are positive. If at some point 976 * in the future someone wants to do clever things with lookbehind and 977 * -ve offsets, they'll need to fix up any code in this function 978 * which uses these offsets. See the thread beginning 979 * <20140113145929.GF27210@iabyn.com> 980 */ 981 assert(prog->substrs->data[0].min_offset >= 0); 982 assert(prog->substrs->data[0].max_offset >= 0); 983 assert(prog->substrs->data[1].min_offset >= 0); 984 assert(prog->substrs->data[1].max_offset >= 0); 985 assert(prog->substrs->data[2].min_offset >= 0); 986 assert(prog->substrs->data[2].max_offset >= 0); 987 988 /* for now, assume that if both present, that the floating substring 989 * doesn't start before the anchored substring. 990 * If you break this assumption (e.g. doing better optimisations 991 * with lookahead/behind), then you'll need to audit the code in this 992 * function carefully first 993 */ 994 assert( 995 ! ( (prog->anchored_utf8 || prog->anchored_substr) 996 && (prog->float_utf8 || prog->float_substr)) 997 || (prog->float_min_offset >= prog->anchored_offset)); 998 999 /* byte rather than char calculation for efficiency. It fails 1000 * to quickly reject some cases that can't match, but will reject 1001 * them later after doing full char arithmetic */ 1002 if (prog->minlen > strend - strpos) { 1003 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ 1004 " String too short...\n")); 1005 goto fail; 1006 } 1007 1008 RXp_MATCH_UTF8_set(prog, utf8_target); 1009 reginfo->is_utf8_target = cBOOL(utf8_target); 1010 reginfo->info_aux = NULL; 1011 reginfo->strbeg = strbeg; 1012 reginfo->strend = strend; 1013 reginfo->is_utf8_pat = cBOOL(RX_UTF8(rx)); 1014 reginfo->intuit = 1; 1015 /* not actually used within intuit, but zero for safety anyway */ 1016 reginfo->poscache_maxiter = 0; 1017 1018 if (utf8_target) { 1019 if ((!prog->anchored_utf8 && prog->anchored_substr) 1020 || (!prog->float_utf8 && prog->float_substr)) 1021 to_utf8_substr(prog); 1022 check = prog->check_utf8; 1023 } else { 1024 if (!prog->check_substr && prog->check_utf8) { 1025 if (! to_byte_substr(prog)) { 1026 NON_UTF8_TARGET_BUT_UTF8_REQUIRED(fail); 1027 } 1028 } 1029 check = prog->check_substr; 1030 } 1031 1032 /* dump the various substring data */ 1033 DEBUG_OPTIMISE_MORE_r({ 1034 int i; 1035 for (i=0; i<=2; i++) { 1036 SV *sv = (utf8_target ? prog->substrs->data[i].utf8_substr 1037 : prog->substrs->data[i].substr); 1038 if (!sv) 1039 continue; 1040 1041 Perl_re_printf( aTHX_ 1042 " substrs[%d]: min=%" IVdf " max=%" IVdf " end shift=%" IVdf 1043 " useful=%" IVdf " utf8=%d [%s]\n", 1044 i, 1045 (IV)prog->substrs->data[i].min_offset, 1046 (IV)prog->substrs->data[i].max_offset, 1047 (IV)prog->substrs->data[i].end_shift, 1048 BmUSEFUL(sv), 1049 utf8_target ? 1 : 0, 1050 SvPEEK(sv)); 1051 } 1052 }); 1053 1054 if (prog->intflags & PREGf_ANCH) { /* Match at \G, beg-of-str or after \n */ 1055 1056 /* ml_anch: check after \n? 1057 * 1058 * A note about PREGf_IMPLICIT: on an un-anchored pattern beginning 1059 * with /.*.../, these flags will have been added by the 1060 * compiler: 1061 * /.*abc/, /.*abc/m: PREGf_IMPLICIT | PREGf_ANCH_MBOL 1062 * /.*abc/s: PREGf_IMPLICIT | PREGf_ANCH_SBOL 1063 */ 1064 ml_anch = (prog->intflags & PREGf_ANCH_MBOL) 1065 && !(prog->intflags & PREGf_IMPLICIT); 1066 1067 if (!ml_anch && !(prog->intflags & PREGf_IMPLICIT)) { 1068 /* we are only allowed to match at BOS or \G */ 1069 1070 /* trivially reject if there's a BOS anchor and we're not at BOS. 1071 * 1072 * Note that we don't try to do a similar quick reject for 1073 * \G, since generally the caller will have calculated strpos 1074 * based on pos() and gofs, so the string is already correctly 1075 * anchored by definition; and handling the exceptions would 1076 * be too fiddly (e.g. REXEC_IGNOREPOS). 1077 */ 1078 if ( strpos != strbeg 1079 && (prog->intflags & PREGf_ANCH_SBOL)) 1080 { 1081 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ 1082 " Not at start...\n")); 1083 goto fail; 1084 } 1085 1086 /* in the presence of an anchor, the anchored (relative to the 1087 * start of the regex) substr must also be anchored relative 1088 * to strpos. So quickly reject if substr isn't found there. 1089 * This works for \G too, because the caller will already have 1090 * subtracted gofs from pos, and gofs is the offset from the 1091 * \G to the start of the regex. For example, in /.abc\Gdef/, 1092 * where substr="abcdef", pos()=3, gofs=4, offset_min=1: 1093 * caller will have set strpos=pos()-4; we look for the substr 1094 * at position pos()-4+1, which lines up with the "a" */ 1095 1096 if (prog->check_offset_min == prog->check_offset_max) { 1097 /* Substring at constant offset from beg-of-str... */ 1098 SSize_t slen = SvCUR(check); 1099 char *s = HOP3c(strpos, prog->check_offset_min, strend); 1100 1101 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ 1102 " Looking for check substr at fixed offset %" IVdf "...\n", 1103 (IV)prog->check_offset_min)); 1104 1105 if (SvTAIL(check)) { 1106 /* In this case, the regex is anchored at the end too. 1107 * Unless it's a multiline match, the lengths must match 1108 * exactly, give or take a \n. NB: slen >= 1 since 1109 * the last char of check is \n */ 1110 if (!multiline 1111 && ( strend - s > slen 1112 || strend - s < slen - 1 1113 || (strend - s == slen && strend[-1] != '\n'))) 1114 { 1115 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ 1116 " String too long...\n")); 1117 goto fail_finish; 1118 } 1119 /* Now should match s[0..slen-2] */ 1120 slen--; 1121 } 1122 if (slen && (strend - s < slen 1123 || *SvPVX_const(check) != *s 1124 || (slen > 1 && (memNE(SvPVX_const(check), s, slen))))) 1125 { 1126 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ 1127 " String not equal...\n")); 1128 goto fail_finish; 1129 } 1130 1131 check_at = s; 1132 goto success_at_start; 1133 } 1134 } 1135 } 1136 1137 end_shift = prog->check_end_shift; 1138 1139 #ifdef DEBUGGING /* 7/99: reports of failure (with the older version) */ 1140 if (end_shift < 0) 1141 Perl_croak(aTHX_ "panic: end_shift: %" IVdf " pattern:\n%s\n ", 1142 (IV)end_shift, RX_PRECOMP(rx)); 1143 #endif 1144 1145 restart: 1146 1147 /* This is the (re)entry point of the main loop in this function. 1148 * The goal of this loop is to: 1149 * 1) find the "check" substring in the region rx_origin..strend 1150 * (adjusted by start_shift / end_shift). If not found, reject 1151 * immediately. 1152 * 2) If it exists, look for the "other" substr too if defined; for 1153 * example, if the check substr maps to the anchored substr, then 1154 * check the floating substr, and vice-versa. If not found, go 1155 * back to (1) with rx_origin suitably incremented. 1156 * 3) If we find an rx_origin position that doesn't contradict 1157 * either of the substrings, then check the possible additional 1158 * constraints on rx_origin of /^.../m or a known start class. 1159 * If these fail, then depending on which constraints fail, jump 1160 * back to here, or to various other re-entry points further along 1161 * that skip some of the first steps. 1162 * 4) If we pass all those tests, update the BmUSEFUL() count on the 1163 * substring. If the start position was determined to be at the 1164 * beginning of the string - so, not rejected, but not optimised, 1165 * since we have to run regmatch from position 0 - decrement the 1166 * BmUSEFUL() count. Otherwise increment it. 1167 */ 1168 1169 1170 /* first, look for the 'check' substring */ 1171 1172 { 1173 U8* start_point; 1174 U8* end_point; 1175 1176 DEBUG_OPTIMISE_MORE_r({ 1177 Perl_re_printf( aTHX_ 1178 " At restart: rx_origin=%" IVdf " Check offset min: %" IVdf 1179 " Start shift: %" IVdf " End shift %" IVdf 1180 " Real end Shift: %" IVdf "\n", 1181 (IV)(rx_origin - strbeg), 1182 (IV)prog->check_offset_min, 1183 (IV)start_shift, 1184 (IV)end_shift, 1185 (IV)prog->check_end_shift); 1186 }); 1187 1188 end_point = HOPBACK3(strend, end_shift, rx_origin); 1189 if (!end_point) 1190 goto fail_finish; 1191 start_point = HOPMAYBE3(rx_origin, start_shift, end_point); 1192 if (!start_point) 1193 goto fail_finish; 1194 1195 1196 /* If the regex is absolutely anchored to either the start of the 1197 * string (SBOL) or to pos() (ANCH_GPOS), then 1198 * check_offset_max represents an upper bound on the string where 1199 * the substr could start. For the ANCH_GPOS case, we assume that 1200 * the caller of intuit will have already set strpos to 1201 * pos()-gofs, so in this case strpos + offset_max will still be 1202 * an upper bound on the substr. 1203 */ 1204 if (!ml_anch 1205 && prog->intflags & PREGf_ANCH 1206 && prog->check_offset_max != SSize_t_MAX) 1207 { 1208 SSize_t check_len = SvCUR(check) - !!SvTAIL(check); 1209 const char * const anchor = 1210 (prog->intflags & PREGf_ANCH_GPOS ? strpos : strbeg); 1211 SSize_t targ_len = (char*)end_point - anchor; 1212 1213 if (check_len > targ_len) { 1214 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ 1215 "Target string too short to match required substring...\n")); 1216 goto fail_finish; 1217 } 1218 1219 /* do a bytes rather than chars comparison. It's conservative; 1220 * so it skips doing the HOP if the result can't possibly end 1221 * up earlier than the old value of end_point. 1222 */ 1223 assert(anchor + check_len <= (char *)end_point); 1224 if (prog->check_offset_max + check_len < targ_len) { 1225 end_point = HOP3lim((U8*)anchor, 1226 prog->check_offset_max, 1227 end_point - check_len 1228 ) 1229 + check_len; 1230 if (end_point < start_point) 1231 goto fail_finish; 1232 } 1233 } 1234 1235 check_at = fbm_instr( start_point, end_point, 1236 check, multiline ? FBMrf_MULTILINE : 0); 1237 1238 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ 1239 " doing 'check' fbm scan, [%" IVdf "..%" IVdf "] gave %" IVdf "\n", 1240 (IV)((char*)start_point - strbeg), 1241 (IV)((char*)end_point - strbeg), 1242 (IV)(check_at ? check_at - strbeg : -1) 1243 )); 1244 1245 /* Update the count-of-usability, remove useless subpatterns, 1246 unshift s. */ 1247 1248 DEBUG_EXECUTE_r({ 1249 RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0), 1250 SvPVX_const(check), RE_SV_DUMPLEN(check), 30); 1251 Perl_re_printf( aTHX_ " %s %s substr %s%s%s", 1252 (check_at ? "Found" : "Did not find"), 1253 (check == (utf8_target ? prog->anchored_utf8 : prog->anchored_substr) 1254 ? "anchored" : "floating"), 1255 quoted, 1256 RE_SV_TAIL(check), 1257 (check_at ? " at offset " : "...\n") ); 1258 }); 1259 1260 if (!check_at) 1261 goto fail_finish; 1262 /* set rx_origin to the minimum position where the regex could start 1263 * matching, given the constraint of the just-matched check substring. 1264 * But don't set it lower than previously. 1265 */ 1266 1267 if (check_at - rx_origin > prog->check_offset_max) 1268 rx_origin = HOP3c(check_at, -prog->check_offset_max, rx_origin); 1269 /* Finish the diagnostic message */ 1270 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ 1271 "%ld (rx_origin now %" IVdf ")...\n", 1272 (long)(check_at - strbeg), 1273 (IV)(rx_origin - strbeg) 1274 )); 1275 } 1276 1277 1278 /* now look for the 'other' substring if defined */ 1279 1280 if (utf8_target ? prog->substrs->data[other_ix].utf8_substr 1281 : prog->substrs->data[other_ix].substr) 1282 { 1283 /* Take into account the "other" substring. */ 1284 char *last, *last1; 1285 char *s; 1286 SV* must; 1287 struct reg_substr_datum *other; 1288 1289 do_other_substr: 1290 other = &prog->substrs->data[other_ix]; 1291 1292 /* if "other" is anchored: 1293 * we've previously found a floating substr starting at check_at. 1294 * This means that the regex origin must lie somewhere 1295 * between min (rx_origin): HOP3(check_at, -check_offset_max) 1296 * and max: HOP3(check_at, -check_offset_min) 1297 * (except that min will be >= strpos) 1298 * So the fixed substr must lie somewhere between 1299 * HOP3(min, anchored_offset) 1300 * HOP3(max, anchored_offset) + SvCUR(substr) 1301 */ 1302 1303 /* if "other" is floating 1304 * Calculate last1, the absolute latest point where the 1305 * floating substr could start in the string, ignoring any 1306 * constraints from the earlier fixed match. It is calculated 1307 * as follows: 1308 * 1309 * strend - prog->minlen (in chars) is the absolute latest 1310 * position within the string where the origin of the regex 1311 * could appear. The latest start point for the floating 1312 * substr is float_min_offset(*) on from the start of the 1313 * regex. last1 simply combines thee two offsets. 1314 * 1315 * (*) You might think the latest start point should be 1316 * float_max_offset from the regex origin, and technically 1317 * you'd be correct. However, consider 1318 * /a\d{2,4}bcd\w/ 1319 * Here, float min, max are 3,5 and minlen is 7. 1320 * This can match either 1321 * /a\d\dbcd\w/ 1322 * /a\d\d\dbcd\w/ 1323 * /a\d\d\d\dbcd\w/ 1324 * In the first case, the regex matches minlen chars; in the 1325 * second, minlen+1, in the third, minlen+2. 1326 * In the first case, the floating offset is 3 (which equals 1327 * float_min), in the second, 4, and in the third, 5 (which 1328 * equals float_max). In all cases, the floating string bcd 1329 * can never start more than 4 chars from the end of the 1330 * string, which equals minlen - float_min. As the substring 1331 * starts to match more than float_min from the start of the 1332 * regex, it makes the regex match more than minlen chars, 1333 * and the two cancel each other out. So we can always use 1334 * float_min - minlen, rather than float_max - minlen for the 1335 * latest position in the string. 1336 * 1337 * Note that -minlen + float_min_offset is equivalent (AFAIKT) 1338 * to CHR_SVLEN(must) - !!SvTAIL(must) + prog->float_end_shift 1339 */ 1340 1341 assert(prog->minlen >= other->min_offset); 1342 last1 = HOP3c(strend, 1343 other->min_offset - prog->minlen, strbeg); 1344 1345 if (other_ix) {/* i.e. if (other-is-float) */ 1346 /* last is the latest point where the floating substr could 1347 * start, *given* any constraints from the earlier fixed 1348 * match. This constraint is that the floating string starts 1349 * <= float_max_offset chars from the regex origin (rx_origin). 1350 * If this value is less than last1, use it instead. 1351 */ 1352 assert(rx_origin <= last1); 1353 last = 1354 /* this condition handles the offset==infinity case, and 1355 * is a short-cut otherwise. Although it's comparing a 1356 * byte offset to a char length, it does so in a safe way, 1357 * since 1 char always occupies 1 or more bytes, 1358 * so if a string range is (last1 - rx_origin) bytes, 1359 * it will be less than or equal to (last1 - rx_origin) 1360 * chars; meaning it errs towards doing the accurate HOP3 1361 * rather than just using last1 as a short-cut */ 1362 (last1 - rx_origin) < other->max_offset 1363 ? last1 1364 : (char*)HOP3lim(rx_origin, other->max_offset, last1); 1365 } 1366 else { 1367 assert(strpos + start_shift <= check_at); 1368 last = HOP4c(check_at, other->min_offset - start_shift, 1369 strbeg, strend); 1370 } 1371 1372 s = HOP3c(rx_origin, other->min_offset, strend); 1373 if (s < other_last) /* These positions already checked */ 1374 s = other_last; 1375 1376 must = utf8_target ? other->utf8_substr : other->substr; 1377 assert(SvPOK(must)); 1378 { 1379 char *from = s; 1380 char *to = last + SvCUR(must) - (SvTAIL(must)!=0); 1381 1382 if (to > strend) 1383 to = strend; 1384 if (from > to) { 1385 s = NULL; 1386 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ 1387 " skipping 'other' fbm scan: %" IVdf " > %" IVdf "\n", 1388 (IV)(from - strbeg), 1389 (IV)(to - strbeg) 1390 )); 1391 } 1392 else { 1393 s = fbm_instr( 1394 (unsigned char*)from, 1395 (unsigned char*)to, 1396 must, 1397 multiline ? FBMrf_MULTILINE : 0 1398 ); 1399 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ 1400 " doing 'other' fbm scan, [%" IVdf "..%" IVdf "] gave %" IVdf "\n", 1401 (IV)(from - strbeg), 1402 (IV)(to - strbeg), 1403 (IV)(s ? s - strbeg : -1) 1404 )); 1405 } 1406 } 1407 1408 DEBUG_EXECUTE_r({ 1409 RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0), 1410 SvPVX_const(must), RE_SV_DUMPLEN(must), 30); 1411 Perl_re_printf( aTHX_ " %s %s substr %s%s", 1412 s ? "Found" : "Contradicts", 1413 other_ix ? "floating" : "anchored", 1414 quoted, RE_SV_TAIL(must)); 1415 }); 1416 1417 1418 if (!s) { 1419 /* last1 is latest possible substr location. If we didn't 1420 * find it before there, we never will */ 1421 if (last >= last1) { 1422 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ 1423 "; giving up...\n")); 1424 goto fail_finish; 1425 } 1426 1427 /* try to find the check substr again at a later 1428 * position. Maybe next time we'll find the "other" substr 1429 * in range too */ 1430 other_last = HOP3c(last, 1, strend) /* highest failure */; 1431 rx_origin = 1432 other_ix /* i.e. if other-is-float */ 1433 ? HOP3c(rx_origin, 1, strend) 1434 : HOP4c(last, 1 - other->min_offset, strbeg, strend); 1435 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ 1436 "; about to retry %s at offset %ld (rx_origin now %" IVdf ")...\n", 1437 (other_ix ? "floating" : "anchored"), 1438 (long)(HOP3c(check_at, 1, strend) - strbeg), 1439 (IV)(rx_origin - strbeg) 1440 )); 1441 goto restart; 1442 } 1443 else { 1444 if (other_ix) { /* if (other-is-float) */ 1445 /* other_last is set to s, not s+1, since its possible for 1446 * a floating substr to fail first time, then succeed 1447 * second time at the same floating position; e.g.: 1448 * "-AB--AABZ" =~ /\wAB\d*Z/ 1449 * The first time round, anchored and float match at 1450 * "-(AB)--AAB(Z)" then fail on the initial \w character 1451 * class. Second time round, they match at "-AB--A(AB)(Z)". 1452 */ 1453 other_last = s; 1454 } 1455 else { 1456 rx_origin = HOP3c(s, -other->min_offset, strbeg); 1457 other_last = HOP3c(s, 1, strend); 1458 } 1459 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ 1460 " at offset %ld (rx_origin now %" IVdf ")...\n", 1461 (long)(s - strbeg), 1462 (IV)(rx_origin - strbeg) 1463 )); 1464 1465 } 1466 } 1467 else { 1468 DEBUG_OPTIMISE_MORE_r( 1469 Perl_re_printf( aTHX_ 1470 " Check-only match: offset min:%" IVdf " max:%" IVdf 1471 " check_at:%" IVdf " rx_origin:%" IVdf " rx_origin-check_at:%" IVdf 1472 " strend:%" IVdf "\n", 1473 (IV)prog->check_offset_min, 1474 (IV)prog->check_offset_max, 1475 (IV)(check_at-strbeg), 1476 (IV)(rx_origin-strbeg), 1477 (IV)(rx_origin-check_at), 1478 (IV)(strend-strbeg) 1479 ) 1480 ); 1481 } 1482 1483 postprocess_substr_matches: 1484 1485 /* handle the extra constraint of /^.../m if present */ 1486 1487 if (ml_anch && rx_origin != strbeg && rx_origin[-1] != '\n') { 1488 char *s; 1489 1490 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ 1491 " looking for /^/m anchor")); 1492 1493 /* we have failed the constraint of a \n before rx_origin. 1494 * Find the next \n, if any, even if it's beyond the current 1495 * anchored and/or floating substrings. Whether we should be 1496 * scanning ahead for the next \n or the next substr is debatable. 1497 * On the one hand you'd expect rare substrings to appear less 1498 * often than \n's. On the other hand, searching for \n means 1499 * we're effectively flipping between check_substr and "\n" on each 1500 * iteration as the current "rarest" string candidate, which 1501 * means for example that we'll quickly reject the whole string if 1502 * hasn't got a \n, rather than trying every substr position 1503 * first 1504 */ 1505 1506 s = HOP3c(strend, - prog->minlen, strpos); 1507 if (s <= rx_origin || 1508 ! ( rx_origin = (char *)memchr(rx_origin, '\n', s - rx_origin))) 1509 { 1510 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ 1511 " Did not find /%s^%s/m...\n", 1512 PL_colors[0], PL_colors[1])); 1513 goto fail_finish; 1514 } 1515 1516 /* earliest possible origin is 1 char after the \n. 1517 * (since *rx_origin == '\n', it's safe to ++ here rather than 1518 * HOP(rx_origin, 1)) */ 1519 rx_origin++; 1520 1521 if (prog->substrs->check_ix == 0 /* check is anchored */ 1522 || rx_origin >= HOP3c(check_at, - prog->check_offset_min, strpos)) 1523 { 1524 /* Position contradicts check-string; either because 1525 * check was anchored (and thus has no wiggle room), 1526 * or check was float and rx_origin is above the float range */ 1527 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ 1528 " Found /%s^%s/m, about to restart lookup for check-string with rx_origin %ld...\n", 1529 PL_colors[0], PL_colors[1], (long)(rx_origin - strbeg))); 1530 goto restart; 1531 } 1532 1533 /* if we get here, the check substr must have been float, 1534 * is in range, and we may or may not have had an anchored 1535 * "other" substr which still contradicts */ 1536 assert(prog->substrs->check_ix); /* check is float */ 1537 1538 if (utf8_target ? prog->anchored_utf8 : prog->anchored_substr) { 1539 /* whoops, the anchored "other" substr exists, so we still 1540 * contradict. On the other hand, the float "check" substr 1541 * didn't contradict, so just retry the anchored "other" 1542 * substr */ 1543 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ 1544 " Found /%s^%s/m, rescanning for anchored from offset %" IVdf " (rx_origin now %" IVdf ")...\n", 1545 PL_colors[0], PL_colors[1], 1546 (IV)(rx_origin - strbeg + prog->anchored_offset), 1547 (IV)(rx_origin - strbeg) 1548 )); 1549 goto do_other_substr; 1550 } 1551 1552 /* success: we don't contradict the found floating substring 1553 * (and there's no anchored substr). */ 1554 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ 1555 " Found /%s^%s/m with rx_origin %ld...\n", 1556 PL_colors[0], PL_colors[1], (long)(rx_origin - strbeg))); 1557 } 1558 else { 1559 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ 1560 " (multiline anchor test skipped)\n")); 1561 } 1562 1563 success_at_start: 1564 1565 1566 /* if we have a starting character class, then test that extra constraint. 1567 * (trie stclasses are too expensive to use here, we are better off to 1568 * leave it to regmatch itself) */ 1569 1570 if (progi->regstclass && PL_regkind[OP(progi->regstclass)]!=TRIE) { 1571 const U8* const str = (U8*)STRING(progi->regstclass); 1572 1573 /* XXX this value could be pre-computed */ 1574 const int cl_l = (PL_regkind[OP(progi->regstclass)] == EXACT 1575 ? (reginfo->is_utf8_pat 1576 ? utf8_distance(str + STR_LEN(progi->regstclass), str) 1577 : STR_LEN(progi->regstclass)) 1578 : 1); 1579 char * endpos; 1580 char *s; 1581 /* latest pos that a matching float substr constrains rx start to */ 1582 char *rx_max_float = NULL; 1583 1584 /* if the current rx_origin is anchored, either by satisfying an 1585 * anchored substring constraint, or a /^.../m constraint, then we 1586 * can reject the current origin if the start class isn't found 1587 * at the current position. If we have a float-only match, then 1588 * rx_origin is constrained to a range; so look for the start class 1589 * in that range. if neither, then look for the start class in the 1590 * whole rest of the string */ 1591 1592 /* XXX DAPM it's not clear what the minlen test is for, and why 1593 * it's not used in the floating case. Nothing in the test suite 1594 * causes minlen == 0 here. See <20140313134639.GS12844@iabyn.com>. 1595 * Here are some old comments, which may or may not be correct: 1596 * 1597 * minlen == 0 is possible if regstclass is \b or \B, 1598 * and the fixed substr is ''$. 1599 * Since minlen is already taken into account, rx_origin+1 is 1600 * before strend; accidentally, minlen >= 1 guaranties no false 1601 * positives at rx_origin + 1 even for \b or \B. But (minlen? 1 : 1602 * 0) below assumes that regstclass does not come from lookahead... 1603 * If regstclass takes bytelength more than 1: If charlength==1, OK. 1604 * This leaves EXACTF-ish only, which are dealt with in 1605 * find_byclass(). 1606 */ 1607 1608 if (prog->anchored_substr || prog->anchored_utf8 || ml_anch) 1609 endpos = HOP3clim(rx_origin, (prog->minlen ? cl_l : 0), strend); 1610 else if (prog->float_substr || prog->float_utf8) { 1611 rx_max_float = HOP3c(check_at, -start_shift, strbeg); 1612 endpos = HOP3clim(rx_max_float, cl_l, strend); 1613 } 1614 else 1615 endpos= strend; 1616 1617 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ 1618 " looking for class: start_shift: %" IVdf " check_at: %" IVdf 1619 " rx_origin: %" IVdf " endpos: %" IVdf "\n", 1620 (IV)start_shift, (IV)(check_at - strbeg), 1621 (IV)(rx_origin - strbeg), (IV)(endpos - strbeg))); 1622 1623 s = find_byclass(prog, progi->regstclass, rx_origin, endpos, 1624 reginfo); 1625 if (!s) { 1626 if (endpos == strend) { 1627 DEBUG_EXECUTE_r( Perl_re_printf( aTHX_ 1628 " Could not match STCLASS...\n") ); 1629 goto fail; 1630 } 1631 DEBUG_EXECUTE_r( Perl_re_printf( aTHX_ 1632 " This position contradicts STCLASS...\n") ); 1633 if ((prog->intflags & PREGf_ANCH) && !ml_anch 1634 && !(prog->intflags & PREGf_IMPLICIT)) 1635 goto fail; 1636 1637 /* Contradict one of substrings */ 1638 if (prog->anchored_substr || prog->anchored_utf8) { 1639 if (prog->substrs->check_ix == 1) { /* check is float */ 1640 /* Have both, check_string is floating */ 1641 assert(rx_origin + start_shift <= check_at); 1642 if (rx_origin + start_shift != check_at) { 1643 /* not at latest position float substr could match: 1644 * Recheck anchored substring, but not floating. 1645 * The condition above is in bytes rather than 1646 * chars for efficiency. It's conservative, in 1647 * that it errs on the side of doing 'goto 1648 * do_other_substr'. In this case, at worst, 1649 * an extra anchored search may get done, but in 1650 * practice the extra fbm_instr() is likely to 1651 * get skipped anyway. */ 1652 DEBUG_EXECUTE_r( Perl_re_printf( aTHX_ 1653 " about to retry anchored at offset %ld (rx_origin now %" IVdf ")...\n", 1654 (long)(other_last - strbeg), 1655 (IV)(rx_origin - strbeg) 1656 )); 1657 goto do_other_substr; 1658 } 1659 } 1660 } 1661 else { 1662 /* float-only */ 1663 1664 if (ml_anch) { 1665 /* In the presence of ml_anch, we might be able to 1666 * find another \n without breaking the current float 1667 * constraint. */ 1668 1669 /* strictly speaking this should be HOP3c(..., 1, ...), 1670 * but since we goto a block of code that's going to 1671 * search for the next \n if any, its safe here */ 1672 rx_origin++; 1673 DEBUG_EXECUTE_r( Perl_re_printf( aTHX_ 1674 " about to look for /%s^%s/m starting at rx_origin %ld...\n", 1675 PL_colors[0], PL_colors[1], 1676 (long)(rx_origin - strbeg)) ); 1677 goto postprocess_substr_matches; 1678 } 1679 1680 /* strictly speaking this can never be true; but might 1681 * be if we ever allow intuit without substrings */ 1682 if (!(utf8_target ? prog->float_utf8 : prog->float_substr)) 1683 goto fail; 1684 1685 rx_origin = rx_max_float; 1686 } 1687 1688 /* at this point, any matching substrings have been 1689 * contradicted. Start again... */ 1690 1691 rx_origin = HOP3c(rx_origin, 1, strend); 1692 1693 /* uses bytes rather than char calculations for efficiency. 1694 * It's conservative: it errs on the side of doing 'goto restart', 1695 * where there is code that does a proper char-based test */ 1696 if (rx_origin + start_shift + end_shift > strend) { 1697 DEBUG_EXECUTE_r( Perl_re_printf( aTHX_ 1698 " Could not match STCLASS...\n") ); 1699 goto fail; 1700 } 1701 DEBUG_EXECUTE_r( Perl_re_printf( aTHX_ 1702 " about to look for %s substr starting at offset %ld (rx_origin now %" IVdf ")...\n", 1703 (prog->substrs->check_ix ? "floating" : "anchored"), 1704 (long)(rx_origin + start_shift - strbeg), 1705 (IV)(rx_origin - strbeg) 1706 )); 1707 goto restart; 1708 } 1709 1710 /* Success !!! */ 1711 1712 if (rx_origin != s) { 1713 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ 1714 " By STCLASS: moving %ld --> %ld\n", 1715 (long)(rx_origin - strbeg), (long)(s - strbeg)) 1716 ); 1717 } 1718 else { 1719 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ 1720 " Does not contradict STCLASS...\n"); 1721 ); 1722 } 1723 } 1724 1725 /* Decide whether using the substrings helped */ 1726 1727 if (rx_origin != strpos) { 1728 /* Fixed substring is found far enough so that the match 1729 cannot start at strpos. */ 1730 1731 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ " try at offset...\n")); 1732 ++BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr); /* hooray/5 */ 1733 } 1734 else { 1735 /* The found rx_origin position does not prohibit matching at 1736 * strpos, so calling intuit didn't gain us anything. Decrement 1737 * the BmUSEFUL() count on the check substring, and if we reach 1738 * zero, free it. */ 1739 if (!(prog->intflags & PREGf_NAUGHTY) 1740 && (utf8_target ? ( 1741 prog->check_utf8 /* Could be deleted already */ 1742 && --BmUSEFUL(prog->check_utf8) < 0 1743 && (prog->check_utf8 == prog->float_utf8) 1744 ) : ( 1745 prog->check_substr /* Could be deleted already */ 1746 && --BmUSEFUL(prog->check_substr) < 0 1747 && (prog->check_substr == prog->float_substr) 1748 ))) 1749 { 1750 /* If flags & SOMETHING - do not do it many times on the same match */ 1751 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ " ... Disabling check substring...\n")); 1752 /* XXX Does the destruction order has to change with utf8_target? */ 1753 SvREFCNT_dec(utf8_target ? prog->check_utf8 : prog->check_substr); 1754 SvREFCNT_dec(utf8_target ? prog->check_substr : prog->check_utf8); 1755 prog->check_substr = prog->check_utf8 = NULL; /* disable */ 1756 prog->float_substr = prog->float_utf8 = NULL; /* clear */ 1757 check = NULL; /* abort */ 1758 /* XXXX This is a remnant of the old implementation. It 1759 looks wasteful, since now INTUIT can use many 1760 other heuristics. */ 1761 prog->extflags &= ~RXf_USE_INTUIT; 1762 } 1763 } 1764 1765 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ 1766 "Intuit: %sSuccessfully guessed:%s match at offset %ld\n", 1767 PL_colors[4], PL_colors[5], (long)(rx_origin - strbeg)) ); 1768 1769 return rx_origin; 1770 1771 fail_finish: /* Substring not found */ 1772 if (prog->check_substr || prog->check_utf8) /* could be removed already */ 1773 BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr) += 5; /* hooray */ 1774 fail: 1775 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ "%sMatch rejected by optimizer%s\n", 1776 PL_colors[4], PL_colors[5])); 1777 return NULL; 1778 } 1779 1780 1781 #define DECL_TRIE_TYPE(scan) \ 1782 const enum { trie_plain, trie_utf8, trie_utf8_fold, trie_latin_utf8_fold, \ 1783 trie_utf8_exactfa_fold, trie_latin_utf8_exactfa_fold, \ 1784 trie_utf8l, trie_flu8, trie_flu8_latin } \ 1785 trie_type = ((scan->flags == EXACT) \ 1786 ? (utf8_target ? trie_utf8 : trie_plain) \ 1787 : (scan->flags == EXACTL) \ 1788 ? (utf8_target ? trie_utf8l : trie_plain) \ 1789 : (scan->flags == EXACTFAA) \ 1790 ? (utf8_target \ 1791 ? trie_utf8_exactfa_fold \ 1792 : trie_latin_utf8_exactfa_fold) \ 1793 : (scan->flags == EXACTFLU8 \ 1794 ? (utf8_target \ 1795 ? trie_flu8 \ 1796 : trie_flu8_latin) \ 1797 : (utf8_target \ 1798 ? trie_utf8_fold \ 1799 : trie_latin_utf8_fold))) 1800 1801 /* 'uscan' is set to foldbuf, and incremented, so below the end of uscan is 1802 * 'foldbuf+sizeof(foldbuf)' */ 1803 #define REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc, uc_end, uscan, len, uvc, charid, foldlen, foldbuf, uniflags) \ 1804 STMT_START { \ 1805 STRLEN skiplen; \ 1806 U8 flags = FOLD_FLAGS_FULL; \ 1807 switch (trie_type) { \ 1808 case trie_flu8: \ 1809 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; \ 1810 if (UTF8_IS_ABOVE_LATIN1(*uc)) { \ 1811 _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(uc, uc_end - uc); \ 1812 } \ 1813 goto do_trie_utf8_fold; \ 1814 case trie_utf8_exactfa_fold: \ 1815 flags |= FOLD_FLAGS_NOMIX_ASCII; \ 1816 /* FALLTHROUGH */ \ 1817 case trie_utf8_fold: \ 1818 do_trie_utf8_fold: \ 1819 if ( foldlen>0 ) { \ 1820 uvc = utf8n_to_uvchr( (const U8*) uscan, foldlen, &len, uniflags ); \ 1821 foldlen -= len; \ 1822 uscan += len; \ 1823 len=0; \ 1824 } else { \ 1825 uvc = _toFOLD_utf8_flags( (const U8*) uc, uc_end, foldbuf, &foldlen, \ 1826 flags); \ 1827 len = UTF8SKIP(uc); \ 1828 skiplen = UVCHR_SKIP( uvc ); \ 1829 foldlen -= skiplen; \ 1830 uscan = foldbuf + skiplen; \ 1831 } \ 1832 break; \ 1833 case trie_flu8_latin: \ 1834 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; \ 1835 goto do_trie_latin_utf8_fold; \ 1836 case trie_latin_utf8_exactfa_fold: \ 1837 flags |= FOLD_FLAGS_NOMIX_ASCII; \ 1838 /* FALLTHROUGH */ \ 1839 case trie_latin_utf8_fold: \ 1840 do_trie_latin_utf8_fold: \ 1841 if ( foldlen>0 ) { \ 1842 uvc = utf8n_to_uvchr( (const U8*) uscan, foldlen, &len, uniflags ); \ 1843 foldlen -= len; \ 1844 uscan += len; \ 1845 len=0; \ 1846 } else { \ 1847 len = 1; \ 1848 uvc = _to_fold_latin1( (U8) *uc, foldbuf, &foldlen, flags); \ 1849 skiplen = UVCHR_SKIP( uvc ); \ 1850 foldlen -= skiplen; \ 1851 uscan = foldbuf + skiplen; \ 1852 } \ 1853 break; \ 1854 case trie_utf8l: \ 1855 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; \ 1856 if (utf8_target && UTF8_IS_ABOVE_LATIN1(*uc)) { \ 1857 _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(uc, uc + UTF8SKIP(uc)); \ 1858 } \ 1859 /* FALLTHROUGH */ \ 1860 case trie_utf8: \ 1861 uvc = utf8n_to_uvchr( (const U8*) uc, uc_end - uc, &len, uniflags ); \ 1862 break; \ 1863 case trie_plain: \ 1864 uvc = (UV)*uc; \ 1865 len = 1; \ 1866 } \ 1867 if (uvc < 256) { \ 1868 charid = trie->charmap[ uvc ]; \ 1869 } \ 1870 else { \ 1871 charid = 0; \ 1872 if (widecharmap) { \ 1873 SV** const svpp = hv_fetch(widecharmap, \ 1874 (char*)&uvc, sizeof(UV), 0); \ 1875 if (svpp) \ 1876 charid = (U16)SvIV(*svpp); \ 1877 } \ 1878 } \ 1879 } STMT_END 1880 1881 #define DUMP_EXEC_POS(li,s,doutf8,depth) \ 1882 dump_exec_pos(li,s,(reginfo->strend),(reginfo->strbeg), \ 1883 startpos, doutf8, depth) 1884 1885 #define REXEC_FBC_SCAN(UTF8, CODE) \ 1886 STMT_START { \ 1887 while (s < strend) { \ 1888 CODE \ 1889 s += ((UTF8) ? UTF8SKIP(s) : 1); \ 1890 } \ 1891 } STMT_END 1892 1893 #define REXEC_FBC_CLASS_SCAN(UTF8, COND) \ 1894 STMT_START { \ 1895 while (s < strend) { \ 1896 REXEC_FBC_CLASS_SCAN_GUTS(UTF8, COND) \ 1897 } \ 1898 } STMT_END 1899 1900 #define REXEC_FBC_CLASS_SCAN_GUTS(UTF8, COND) \ 1901 if (COND) { \ 1902 FBC_CHECK_AND_TRY \ 1903 s += ((UTF8) ? UTF8SKIP(s) : 1); \ 1904 previous_occurrence_end = s; \ 1905 } \ 1906 else { \ 1907 s += ((UTF8) ? UTF8SKIP(s) : 1); \ 1908 } 1909 1910 #define REXEC_FBC_CSCAN(CONDUTF8,COND) \ 1911 if (utf8_target) { \ 1912 REXEC_FBC_CLASS_SCAN(1, CONDUTF8); \ 1913 } \ 1914 else { \ 1915 REXEC_FBC_CLASS_SCAN(0, COND); \ 1916 } 1917 1918 /* We keep track of where the next character should start after an occurrence 1919 * of the one we're looking for. Knowing that, we can see right away if the 1920 * next occurrence is adjacent to the previous. When 'doevery' is FALSE, we 1921 * don't accept the 2nd and succeeding adjacent occurrences */ 1922 #define FBC_CHECK_AND_TRY \ 1923 if ( ( doevery \ 1924 || s != previous_occurrence_end) \ 1925 && (reginfo->intuit || regtry(reginfo, &s))) \ 1926 { \ 1927 goto got_it; \ 1928 } 1929 1930 1931 /* This differs from the above macros in that it calls a function which returns 1932 * the next occurrence of the thing being looked for in 's'; and 'strend' if 1933 * there is no such occurrence. */ 1934 #define REXEC_FBC_FIND_NEXT_SCAN(UTF8, f) \ 1935 while (s < strend) { \ 1936 s = (f); \ 1937 if (s >= strend) { \ 1938 break; \ 1939 } \ 1940 \ 1941 FBC_CHECK_AND_TRY \ 1942 s += (UTF8) ? UTF8SKIP(s) : 1; \ 1943 previous_occurrence_end = s; \ 1944 } 1945 1946 /* The three macros below are slightly different versions of the same logic. 1947 * 1948 * The first is for /a and /aa when the target string is UTF-8. This can only 1949 * match ascii, but it must advance based on UTF-8. The other two handle the 1950 * non-UTF-8 and the more generic UTF-8 cases. In all three, we are looking 1951 * for the boundary (or non-boundary) between a word and non-word character. 1952 * The utf8 and non-utf8 cases have the same logic, but the details must be 1953 * different. Find the "wordness" of the character just prior to this one, and 1954 * compare it with the wordness of this one. If they differ, we have a 1955 * boundary. At the beginning of the string, pretend that the previous 1956 * character was a new-line. 1957 * 1958 * All these macros uncleanly have side-effects with each other and outside 1959 * variables. So far it's been too much trouble to clean-up 1960 * 1961 * TEST_NON_UTF8 is the macro or function to call to test if its byte input is 1962 * a word character or not. 1963 * IF_SUCCESS is code to do if it finds that we are at a boundary between 1964 * word/non-word 1965 * IF_FAIL is code to do if we aren't at a boundary between word/non-word 1966 * 1967 * Exactly one of the two IF_FOO parameters is a no-op, depending on whether we 1968 * are looking for a boundary or for a non-boundary. If we are looking for a 1969 * boundary, we want IF_FAIL to be the no-op, and for IF_SUCCESS to go out and 1970 * see if this tentative match actually works, and if so, to quit the loop 1971 * here. And vice-versa if we are looking for a non-boundary. 1972 * 1973 * 'tmp' below in the next three macros in the REXEC_FBC_SCAN and 1974 * REXEC_FBC_SCAN loops is a loop invariant, a bool giving the return of 1975 * TEST_NON_UTF8(s-1). To see this, note that that's what it is defined to be 1976 * at entry to the loop, and to get to the IF_FAIL branch, tmp must equal 1977 * TEST_NON_UTF8(s), and in the opposite branch, IF_SUCCESS, tmp is that 1978 * complement. But in that branch we complement tmp, meaning that at the 1979 * bottom of the loop tmp is always going to be equal to TEST_NON_UTF8(s), 1980 * which means at the top of the loop in the next iteration, it is 1981 * TEST_NON_UTF8(s-1) */ 1982 #define FBC_UTF8_A(TEST_NON_UTF8, IF_SUCCESS, IF_FAIL) \ 1983 tmp = (s != reginfo->strbeg) ? UCHARAT(s - 1) : '\n'; \ 1984 tmp = TEST_NON_UTF8(tmp); \ 1985 REXEC_FBC_SCAN(1, /* 1=>is-utf8; advances s while s < strend */ \ 1986 if (tmp == ! TEST_NON_UTF8((U8) *s)) { \ 1987 tmp = !tmp; \ 1988 IF_SUCCESS; /* Is a boundary if values for s-1 and s differ */ \ 1989 } \ 1990 else { \ 1991 IF_FAIL; \ 1992 } \ 1993 ); \ 1994 1995 /* Like FBC_UTF8_A, but TEST_UV is a macro which takes a UV as its input, and 1996 * TEST_UTF8 is a macro that for the same input code points returns identically 1997 * to TEST_UV, but takes a pointer to a UTF-8 encoded string instead */ 1998 #define FBC_UTF8(TEST_UV, TEST_UTF8, IF_SUCCESS, IF_FAIL) \ 1999 if (s == reginfo->strbeg) { \ 2000 tmp = '\n'; \ 2001 } \ 2002 else { /* Back-up to the start of the previous character */ \ 2003 U8 * const r = reghop3((U8*)s, -1, (U8*)reginfo->strbeg); \ 2004 tmp = utf8n_to_uvchr(r, (U8*) reginfo->strend - r, \ 2005 0, UTF8_ALLOW_DEFAULT); \ 2006 } \ 2007 tmp = TEST_UV(tmp); \ 2008 REXEC_FBC_SCAN(1, /* 1=>is-utf8; advances s while s < strend */ \ 2009 if (tmp == ! (TEST_UTF8((U8 *) s, (U8 *) reginfo->strend))) { \ 2010 tmp = !tmp; \ 2011 IF_SUCCESS; \ 2012 } \ 2013 else { \ 2014 IF_FAIL; \ 2015 } \ 2016 ); 2017 2018 /* Like the above two macros. UTF8_CODE is the complete code for handling 2019 * UTF-8. Common to the BOUND and NBOUND cases, set-up by the FBC_BOUND, etc 2020 * macros below */ 2021 #define FBC_BOUND_COMMON(UTF8_CODE, TEST_NON_UTF8, IF_SUCCESS, IF_FAIL) \ 2022 if (utf8_target) { \ 2023 UTF8_CODE \ 2024 } \ 2025 else { /* Not utf8 */ \ 2026 tmp = (s != reginfo->strbeg) ? UCHARAT(s - 1) : '\n'; \ 2027 tmp = TEST_NON_UTF8(tmp); \ 2028 REXEC_FBC_SCAN(0, /* 0=>not-utf8; advances s while s < strend */ \ 2029 if (tmp == ! TEST_NON_UTF8((U8) *s)) { \ 2030 IF_SUCCESS; \ 2031 tmp = !tmp; \ 2032 } \ 2033 else { \ 2034 IF_FAIL; \ 2035 } \ 2036 ); \ 2037 } \ 2038 /* Here, things have been set up by the previous code so that tmp is the \ 2039 * return of TEST_NON_UTF(s-1) or TEST_UTF8(s-1) (depending on the \ 2040 * utf8ness of the target). We also have to check if this matches against \ 2041 * the EOS, which we treat as a \n (which is the same value in both UTF-8 \ 2042 * or non-UTF8, so can use the non-utf8 test condition even for a UTF-8 \ 2043 * string */ \ 2044 if (tmp == ! TEST_NON_UTF8('\n')) { \ 2045 IF_SUCCESS; \ 2046 } \ 2047 else { \ 2048 IF_FAIL; \ 2049 } 2050 2051 /* This is the macro to use when we want to see if something that looks like it 2052 * could match, actually does, and if so exits the loop */ 2053 #define REXEC_FBC_TRYIT \ 2054 if ((reginfo->intuit || regtry(reginfo, &s))) \ 2055 goto got_it 2056 2057 /* The only difference between the BOUND and NBOUND cases is that 2058 * REXEC_FBC_TRYIT is called when matched in BOUND, and when non-matched in 2059 * NBOUND. This is accomplished by passing it as either the if or else clause, 2060 * with the other one being empty (PLACEHOLDER is defined as empty). 2061 * 2062 * The TEST_FOO parameters are for operating on different forms of input, but 2063 * all should be ones that return identically for the same underlying code 2064 * points */ 2065 #define FBC_BOUND(TEST_NON_UTF8, TEST_UV, TEST_UTF8) \ 2066 FBC_BOUND_COMMON( \ 2067 FBC_UTF8(TEST_UV, TEST_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER), \ 2068 TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER) 2069 2070 #define FBC_BOUND_A(TEST_NON_UTF8) \ 2071 FBC_BOUND_COMMON( \ 2072 FBC_UTF8_A(TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER), \ 2073 TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER) 2074 2075 #define FBC_NBOUND(TEST_NON_UTF8, TEST_UV, TEST_UTF8) \ 2076 FBC_BOUND_COMMON( \ 2077 FBC_UTF8(TEST_UV, TEST_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT), \ 2078 TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT) 2079 2080 #define FBC_NBOUND_A(TEST_NON_UTF8) \ 2081 FBC_BOUND_COMMON( \ 2082 FBC_UTF8_A(TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT), \ 2083 TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT) 2084 2085 #ifdef DEBUGGING 2086 static IV 2087 S_get_break_val_cp_checked(SV* const invlist, const UV cp_in) { 2088 IV cp_out = Perl__invlist_search(invlist, cp_in); 2089 assert(cp_out >= 0); 2090 return cp_out; 2091 } 2092 # define _generic_GET_BREAK_VAL_CP_CHECKED(invlist, invmap, cp) \ 2093 invmap[S_get_break_val_cp_checked(invlist, cp)] 2094 #else 2095 # define _generic_GET_BREAK_VAL_CP_CHECKED(invlist, invmap, cp) \ 2096 invmap[_invlist_search(invlist, cp)] 2097 #endif 2098 2099 /* Takes a pointer to an inversion list, a pointer to its corresponding 2100 * inversion map, and a code point, and returns the code point's value 2101 * according to the two arrays. It assumes that all code points have a value. 2102 * This is used as the base macro for macros for particular properties */ 2103 #define _generic_GET_BREAK_VAL_CP(invlist, invmap, cp) \ 2104 _generic_GET_BREAK_VAL_CP_CHECKED(invlist, invmap, cp) 2105 2106 /* Same as above, but takes begin, end ptrs to a UTF-8 encoded string instead 2107 * of a code point, returning the value for the first code point in the string. 2108 * And it takes the particular macro name that finds the desired value given a 2109 * code point. Merely convert the UTF-8 to code point and call the cp macro */ 2110 #define _generic_GET_BREAK_VAL_UTF8(cp_macro, pos, strend) \ 2111 (__ASSERT_(pos < strend) \ 2112 /* Note assumes is valid UTF-8 */ \ 2113 (cp_macro(utf8_to_uvchr_buf((pos), (strend), NULL)))) 2114 2115 /* Returns the GCB value for the input code point */ 2116 #define getGCB_VAL_CP(cp) \ 2117 _generic_GET_BREAK_VAL_CP( \ 2118 PL_GCB_invlist, \ 2119 _Perl_GCB_invmap, \ 2120 (cp)) 2121 2122 /* Returns the GCB value for the first code point in the UTF-8 encoded string 2123 * bounded by pos and strend */ 2124 #define getGCB_VAL_UTF8(pos, strend) \ 2125 _generic_GET_BREAK_VAL_UTF8(getGCB_VAL_CP, pos, strend) 2126 2127 /* Returns the LB value for the input code point */ 2128 #define getLB_VAL_CP(cp) \ 2129 _generic_GET_BREAK_VAL_CP( \ 2130 PL_LB_invlist, \ 2131 _Perl_LB_invmap, \ 2132 (cp)) 2133 2134 /* Returns the LB value for the first code point in the UTF-8 encoded string 2135 * bounded by pos and strend */ 2136 #define getLB_VAL_UTF8(pos, strend) \ 2137 _generic_GET_BREAK_VAL_UTF8(getLB_VAL_CP, pos, strend) 2138 2139 2140 /* Returns the SB value for the input code point */ 2141 #define getSB_VAL_CP(cp) \ 2142 _generic_GET_BREAK_VAL_CP( \ 2143 PL_SB_invlist, \ 2144 _Perl_SB_invmap, \ 2145 (cp)) 2146 2147 /* Returns the SB value for the first code point in the UTF-8 encoded string 2148 * bounded by pos and strend */ 2149 #define getSB_VAL_UTF8(pos, strend) \ 2150 _generic_GET_BREAK_VAL_UTF8(getSB_VAL_CP, pos, strend) 2151 2152 /* Returns the WB value for the input code point */ 2153 #define getWB_VAL_CP(cp) \ 2154 _generic_GET_BREAK_VAL_CP( \ 2155 PL_WB_invlist, \ 2156 _Perl_WB_invmap, \ 2157 (cp)) 2158 2159 /* Returns the WB value for the first code point in the UTF-8 encoded string 2160 * bounded by pos and strend */ 2161 #define getWB_VAL_UTF8(pos, strend) \ 2162 _generic_GET_BREAK_VAL_UTF8(getWB_VAL_CP, pos, strend) 2163 2164 /* We know what class REx starts with. Try to find this position... */ 2165 /* if reginfo->intuit, its a dryrun */ 2166 /* annoyingly all the vars in this routine have different names from their counterparts 2167 in regmatch. /grrr */ 2168 STATIC char * 2169 S_find_byclass(pTHX_ regexp * prog, const regnode *c, char *s, 2170 const char *strend, regmatch_info *reginfo) 2171 { 2172 dVAR; 2173 2174 /* TRUE if x+ need not match at just the 1st pos of run of x's */ 2175 const I32 doevery = (prog->intflags & PREGf_SKIP) == 0; 2176 2177 char *pat_string; /* The pattern's exactish string */ 2178 char *pat_end; /* ptr to end char of pat_string */ 2179 re_fold_t folder; /* Function for computing non-utf8 folds */ 2180 const U8 *fold_array; /* array for folding ords < 256 */ 2181 STRLEN ln; 2182 STRLEN lnc; 2183 U8 c1; 2184 U8 c2; 2185 char *e; 2186 2187 /* In some cases we accept only the first occurence of 'x' in a sequence of 2188 * them. This variable points to just beyond the end of the previous 2189 * occurrence of 'x', hence we can tell if we are in a sequence. (Having 2190 * it point to beyond the 'x' allows us to work for UTF-8 without having to 2191 * hop back.) */ 2192 char * previous_occurrence_end = 0; 2193 2194 I32 tmp; /* Scratch variable */ 2195 const bool utf8_target = reginfo->is_utf8_target; 2196 UV utf8_fold_flags = 0; 2197 const bool is_utf8_pat = reginfo->is_utf8_pat; 2198 bool to_complement = FALSE; /* Invert the result? Taking the xor of this 2199 with a result inverts that result, as 0^1 = 2200 1 and 1^1 = 0 */ 2201 _char_class_number classnum; 2202 2203 RXi_GET_DECL(prog,progi); 2204 2205 PERL_ARGS_ASSERT_FIND_BYCLASS; 2206 2207 /* We know what class it must start with. */ 2208 switch (OP(c)) { 2209 case ANYOFL: 2210 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; 2211 2212 if (ANYOFL_UTF8_LOCALE_REQD(FLAGS(c)) && ! IN_UTF8_CTYPE_LOCALE) { 2213 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE), utf8_locale_required); 2214 } 2215 2216 /* FALLTHROUGH */ 2217 case ANYOFD: 2218 case ANYOF: 2219 if (utf8_target) { 2220 REXEC_FBC_CLASS_SCAN(1, /* 1=>is-utf8 */ 2221 reginclass(prog, c, (U8*)s, (U8*) strend, utf8_target)); 2222 } 2223 else if (ANYOF_FLAGS(c)) { 2224 REXEC_FBC_CLASS_SCAN(0, reginclass(prog,c, (U8*)s, (U8*)s+1, 0)); 2225 } 2226 else { 2227 REXEC_FBC_CLASS_SCAN(0, ANYOF_BITMAP_TEST(c, *((U8*)s))); 2228 } 2229 break; 2230 2231 case ANYOFM: /* ARG() is the base byte; FLAGS() the mask byte */ 2232 /* UTF-8ness doesn't matter, so use 0 */ 2233 REXEC_FBC_FIND_NEXT_SCAN(0, 2234 (char *) find_next_masked((U8 *) s, (U8 *) strend, 2235 (U8) ARG(c), FLAGS(c))); 2236 break; 2237 2238 case EXACTFAA_NO_TRIE: /* This node only generated for non-utf8 patterns */ 2239 assert(! is_utf8_pat); 2240 /* FALLTHROUGH */ 2241 case EXACTFAA: 2242 if (is_utf8_pat || utf8_target) { 2243 utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII; 2244 goto do_exactf_utf8; 2245 } 2246 fold_array = PL_fold_latin1; /* Latin1 folds are not affected by */ 2247 folder = foldEQ_latin1; /* /a, except the sharp s one which */ 2248 goto do_exactf_non_utf8; /* isn't dealt with by these */ 2249 2250 case EXACTF: /* This node only generated for non-utf8 patterns */ 2251 assert(! is_utf8_pat); 2252 if (utf8_target) { 2253 utf8_fold_flags = 0; 2254 goto do_exactf_utf8; 2255 } 2256 fold_array = PL_fold; 2257 folder = foldEQ; 2258 goto do_exactf_non_utf8; 2259 2260 case EXACTFL: 2261 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; 2262 if (is_utf8_pat || utf8_target || IN_UTF8_CTYPE_LOCALE) { 2263 utf8_fold_flags = FOLDEQ_LOCALE; 2264 goto do_exactf_utf8; 2265 } 2266 fold_array = PL_fold_locale; 2267 folder = foldEQ_locale; 2268 goto do_exactf_non_utf8; 2269 2270 case EXACTFU_SS: 2271 if (is_utf8_pat) { 2272 utf8_fold_flags = FOLDEQ_S2_ALREADY_FOLDED; 2273 } 2274 goto do_exactf_utf8; 2275 2276 case EXACTFLU8: 2277 if (! utf8_target) { /* All code points in this node require 2278 UTF-8 to express. */ 2279 break; 2280 } 2281 utf8_fold_flags = FOLDEQ_LOCALE | FOLDEQ_S2_ALREADY_FOLDED 2282 | FOLDEQ_S2_FOLDS_SANE; 2283 goto do_exactf_utf8; 2284 2285 case EXACTFU: 2286 if (is_utf8_pat || utf8_target) { 2287 utf8_fold_flags = is_utf8_pat ? FOLDEQ_S2_ALREADY_FOLDED : 0; 2288 goto do_exactf_utf8; 2289 } 2290 2291 /* Any 'ss' in the pattern should have been replaced by regcomp, 2292 * so we don't have to worry here about this single special case 2293 * in the Latin1 range */ 2294 fold_array = PL_fold_latin1; 2295 folder = foldEQ_latin1; 2296 2297 /* FALLTHROUGH */ 2298 2299 do_exactf_non_utf8: /* Neither pattern nor string are UTF8, and there 2300 are no glitches with fold-length differences 2301 between the target string and pattern */ 2302 2303 /* The idea in the non-utf8 EXACTF* cases is to first find the 2304 * first character of the EXACTF* node and then, if necessary, 2305 * case-insensitively compare the full text of the node. c1 is the 2306 * first character. c2 is its fold. This logic will not work for 2307 * Unicode semantics and the german sharp ss, which hence should 2308 * not be compiled into a node that gets here. */ 2309 pat_string = STRING(c); 2310 ln = STR_LEN(c); /* length to match in octets/bytes */ 2311 2312 /* We know that we have to match at least 'ln' bytes (which is the 2313 * same as characters, since not utf8). If we have to match 3 2314 * characters, and there are only 2 availabe, we know without 2315 * trying that it will fail; so don't start a match past the 2316 * required minimum number from the far end */ 2317 e = HOP3c(strend, -((SSize_t)ln), s); 2318 if (e < s) 2319 break; 2320 2321 c1 = *pat_string; 2322 c2 = fold_array[c1]; 2323 if (c1 == c2) { /* If char and fold are the same */ 2324 while (s <= e) { 2325 s = (char *) memchr(s, c1, e + 1 - s); 2326 if (s == NULL) { 2327 break; 2328 } 2329 2330 /* Check that the rest of the node matches */ 2331 if ( (ln == 1 || folder(s + 1, pat_string + 1, ln - 1)) 2332 && (reginfo->intuit || regtry(reginfo, &s)) ) 2333 { 2334 goto got_it; 2335 } 2336 s++; 2337 } 2338 } 2339 else { 2340 U8 bits_differing = c1 ^ c2; 2341 2342 /* If the folds differ in one bit position only, we can mask to 2343 * match either of them, and can use this faster find method. Both 2344 * ASCII and EBCDIC tend to have their case folds differ in only 2345 * one position, so this is very likely */ 2346 if (LIKELY(PL_bitcount[bits_differing] == 1)) { 2347 bits_differing = ~ bits_differing; 2348 while (s <= e) { 2349 s = (char *) find_next_masked((U8 *) s, (U8 *) e + 1, 2350 (c1 & bits_differing), bits_differing); 2351 if (s > e) { 2352 break; 2353 } 2354 2355 if ( (ln == 1 || folder(s + 1, pat_string + 1, ln - 1)) 2356 && (reginfo->intuit || regtry(reginfo, &s)) ) 2357 { 2358 goto got_it; 2359 } 2360 s++; 2361 } 2362 } 2363 else { /* Otherwise, stuck with looking byte-at-a-time. This 2364 should actually happen only in EXACTFL nodes */ 2365 while (s <= e) { 2366 if ( (*(U8*)s == c1 || *(U8*)s == c2) 2367 && (ln == 1 || folder(s + 1, pat_string + 1, ln - 1)) 2368 && (reginfo->intuit || regtry(reginfo, &s)) ) 2369 { 2370 goto got_it; 2371 } 2372 s++; 2373 } 2374 } 2375 } 2376 break; 2377 2378 do_exactf_utf8: 2379 { 2380 unsigned expansion; 2381 2382 /* If one of the operands is in utf8, we can't use the simpler folding 2383 * above, due to the fact that many different characters can have the 2384 * same fold, or portion of a fold, or different- length fold */ 2385 pat_string = STRING(c); 2386 ln = STR_LEN(c); /* length to match in octets/bytes */ 2387 pat_end = pat_string + ln; 2388 lnc = is_utf8_pat /* length to match in characters */ 2389 ? utf8_length((U8 *) pat_string, (U8 *) pat_end) 2390 : ln; 2391 2392 /* We have 'lnc' characters to match in the pattern, but because of 2393 * multi-character folding, each character in the target can match 2394 * up to 3 characters (Unicode guarantees it will never exceed 2395 * this) if it is utf8-encoded; and up to 2 if not (based on the 2396 * fact that the Latin 1 folds are already determined, and the 2397 * only multi-char fold in that range is the sharp-s folding to 2398 * 'ss'. Thus, a pattern character can match as little as 1/3 of a 2399 * string character. Adjust lnc accordingly, rounding up, so that 2400 * if we need to match at least 4+1/3 chars, that really is 5. */ 2401 expansion = (utf8_target) ? UTF8_MAX_FOLD_CHAR_EXPAND : 2; 2402 lnc = (lnc + expansion - 1) / expansion; 2403 2404 /* As in the non-UTF8 case, if we have to match 3 characters, and 2405 * only 2 are left, it's guaranteed to fail, so don't start a 2406 * match that would require us to go beyond the end of the string 2407 */ 2408 e = HOP3c(strend, -((SSize_t)lnc), s); 2409 2410 /* XXX Note that we could recalculate e to stop the loop earlier, 2411 * as the worst case expansion above will rarely be met, and as we 2412 * go along we would usually find that e moves further to the left. 2413 * This would happen only after we reached the point in the loop 2414 * where if there were no expansion we should fail. Unclear if 2415 * worth the expense */ 2416 2417 while (s <= e) { 2418 char *my_strend= (char *)strend; 2419 if (foldEQ_utf8_flags(s, &my_strend, 0, utf8_target, 2420 pat_string, NULL, ln, is_utf8_pat, utf8_fold_flags) 2421 && (reginfo->intuit || regtry(reginfo, &s)) ) 2422 { 2423 goto got_it; 2424 } 2425 s += (utf8_target) ? UTF8SKIP(s) : 1; 2426 } 2427 break; 2428 } 2429 2430 case BOUNDL: 2431 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; 2432 if (FLAGS(c) != TRADITIONAL_BOUND) { 2433 if (! IN_UTF8_CTYPE_LOCALE) { 2434 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE), 2435 B_ON_NON_UTF8_LOCALE_IS_WRONG); 2436 } 2437 goto do_boundu; 2438 } 2439 2440 FBC_BOUND(isWORDCHAR_LC, isWORDCHAR_LC_uvchr, isWORDCHAR_LC_utf8_safe); 2441 break; 2442 2443 case NBOUNDL: 2444 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; 2445 if (FLAGS(c) != TRADITIONAL_BOUND) { 2446 if (! IN_UTF8_CTYPE_LOCALE) { 2447 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE), 2448 B_ON_NON_UTF8_LOCALE_IS_WRONG); 2449 } 2450 goto do_nboundu; 2451 } 2452 2453 FBC_NBOUND(isWORDCHAR_LC, isWORDCHAR_LC_uvchr, isWORDCHAR_LC_utf8_safe); 2454 break; 2455 2456 case BOUND: /* regcomp.c makes sure that this only has the traditional \b 2457 meaning */ 2458 assert(FLAGS(c) == TRADITIONAL_BOUND); 2459 2460 FBC_BOUND(isWORDCHAR, isWORDCHAR_uni, isWORDCHAR_utf8_safe); 2461 break; 2462 2463 case BOUNDA: /* regcomp.c makes sure that this only has the traditional \b 2464 meaning */ 2465 assert(FLAGS(c) == TRADITIONAL_BOUND); 2466 2467 FBC_BOUND_A(isWORDCHAR_A); 2468 break; 2469 2470 case NBOUND: /* regcomp.c makes sure that this only has the traditional \b 2471 meaning */ 2472 assert(FLAGS(c) == TRADITIONAL_BOUND); 2473 2474 FBC_NBOUND(isWORDCHAR, isWORDCHAR_uni, isWORDCHAR_utf8_safe); 2475 break; 2476 2477 case NBOUNDA: /* regcomp.c makes sure that this only has the traditional \b 2478 meaning */ 2479 assert(FLAGS(c) == TRADITIONAL_BOUND); 2480 2481 FBC_NBOUND_A(isWORDCHAR_A); 2482 break; 2483 2484 case NBOUNDU: 2485 if ((bound_type) FLAGS(c) == TRADITIONAL_BOUND) { 2486 FBC_NBOUND(isWORDCHAR_L1, isWORDCHAR_uni, isWORDCHAR_utf8_safe); 2487 break; 2488 } 2489 2490 do_nboundu: 2491 2492 to_complement = 1; 2493 /* FALLTHROUGH */ 2494 2495 case BOUNDU: 2496 do_boundu: 2497 switch((bound_type) FLAGS(c)) { 2498 case TRADITIONAL_BOUND: 2499 FBC_BOUND(isWORDCHAR_L1, isWORDCHAR_uni, isWORDCHAR_utf8_safe); 2500 break; 2501 case GCB_BOUND: 2502 if (s == reginfo->strbeg) { 2503 if (reginfo->intuit || regtry(reginfo, &s)) 2504 { 2505 goto got_it; 2506 } 2507 2508 /* Didn't match. Try at the next position (if there is one) */ 2509 s += (utf8_target) ? UTF8SKIP(s) : 1; 2510 if (UNLIKELY(s >= reginfo->strend)) { 2511 break; 2512 } 2513 } 2514 2515 if (utf8_target) { 2516 GCB_enum before = getGCB_VAL_UTF8( 2517 reghop3((U8*)s, -1, 2518 (U8*)(reginfo->strbeg)), 2519 (U8*) reginfo->strend); 2520 while (s < strend) { 2521 GCB_enum after = getGCB_VAL_UTF8((U8*) s, 2522 (U8*) reginfo->strend); 2523 if ( (to_complement ^ isGCB(before, 2524 after, 2525 (U8*) reginfo->strbeg, 2526 (U8*) s, 2527 utf8_target)) 2528 && (reginfo->intuit || regtry(reginfo, &s))) 2529 { 2530 goto got_it; 2531 } 2532 before = after; 2533 s += UTF8SKIP(s); 2534 } 2535 } 2536 else { /* Not utf8. Everything is a GCB except between CR and 2537 LF */ 2538 while (s < strend) { 2539 if ((to_complement ^ ( UCHARAT(s - 1) != '\r' 2540 || UCHARAT(s) != '\n')) 2541 && (reginfo->intuit || regtry(reginfo, &s))) 2542 { 2543 goto got_it; 2544 } 2545 s++; 2546 } 2547 } 2548 2549 /* And, since this is a bound, it can match after the final 2550 * character in the string */ 2551 if ((reginfo->intuit || regtry(reginfo, &s))) { 2552 goto got_it; 2553 } 2554 break; 2555 2556 case LB_BOUND: 2557 if (s == reginfo->strbeg) { 2558 if (reginfo->intuit || regtry(reginfo, &s)) { 2559 goto got_it; 2560 } 2561 s += (utf8_target) ? UTF8SKIP(s) : 1; 2562 if (UNLIKELY(s >= reginfo->strend)) { 2563 break; 2564 } 2565 } 2566 2567 if (utf8_target) { 2568 LB_enum before = getLB_VAL_UTF8(reghop3((U8*)s, 2569 -1, 2570 (U8*)(reginfo->strbeg)), 2571 (U8*) reginfo->strend); 2572 while (s < strend) { 2573 LB_enum after = getLB_VAL_UTF8((U8*) s, (U8*) reginfo->strend); 2574 if (to_complement ^ isLB(before, 2575 after, 2576 (U8*) reginfo->strbeg, 2577 (U8*) s, 2578 (U8*) reginfo->strend, 2579 utf8_target) 2580 && (reginfo->intuit || regtry(reginfo, &s))) 2581 { 2582 goto got_it; 2583 } 2584 before = after; 2585 s += UTF8SKIP(s); 2586 } 2587 } 2588 else { /* Not utf8. */ 2589 LB_enum before = getLB_VAL_CP((U8) *(s -1)); 2590 while (s < strend) { 2591 LB_enum after = getLB_VAL_CP((U8) *s); 2592 if (to_complement ^ isLB(before, 2593 after, 2594 (U8*) reginfo->strbeg, 2595 (U8*) s, 2596 (U8*) reginfo->strend, 2597 utf8_target) 2598 && (reginfo->intuit || regtry(reginfo, &s))) 2599 { 2600 goto got_it; 2601 } 2602 before = after; 2603 s++; 2604 } 2605 } 2606 2607 if (reginfo->intuit || regtry(reginfo, &s)) { 2608 goto got_it; 2609 } 2610 2611 break; 2612 2613 case SB_BOUND: 2614 if (s == reginfo->strbeg) { 2615 if (reginfo->intuit || regtry(reginfo, &s)) { 2616 goto got_it; 2617 } 2618 s += (utf8_target) ? UTF8SKIP(s) : 1; 2619 if (UNLIKELY(s >= reginfo->strend)) { 2620 break; 2621 } 2622 } 2623 2624 if (utf8_target) { 2625 SB_enum before = getSB_VAL_UTF8(reghop3((U8*)s, 2626 -1, 2627 (U8*)(reginfo->strbeg)), 2628 (U8*) reginfo->strend); 2629 while (s < strend) { 2630 SB_enum after = getSB_VAL_UTF8((U8*) s, 2631 (U8*) reginfo->strend); 2632 if ((to_complement ^ isSB(before, 2633 after, 2634 (U8*) reginfo->strbeg, 2635 (U8*) s, 2636 (U8*) reginfo->strend, 2637 utf8_target)) 2638 && (reginfo->intuit || regtry(reginfo, &s))) 2639 { 2640 goto got_it; 2641 } 2642 before = after; 2643 s += UTF8SKIP(s); 2644 } 2645 } 2646 else { /* Not utf8. */ 2647 SB_enum before = getSB_VAL_CP((U8) *(s -1)); 2648 while (s < strend) { 2649 SB_enum after = getSB_VAL_CP((U8) *s); 2650 if ((to_complement ^ isSB(before, 2651 after, 2652 (U8*) reginfo->strbeg, 2653 (U8*) s, 2654 (U8*) reginfo->strend, 2655 utf8_target)) 2656 && (reginfo->intuit || regtry(reginfo, &s))) 2657 { 2658 goto got_it; 2659 } 2660 before = after; 2661 s++; 2662 } 2663 } 2664 2665 /* Here are at the final position in the target string. The SB 2666 * value is always true here, so matches, depending on other 2667 * constraints */ 2668 if (reginfo->intuit || regtry(reginfo, &s)) { 2669 goto got_it; 2670 } 2671 2672 break; 2673 2674 case WB_BOUND: 2675 if (s == reginfo->strbeg) { 2676 if (reginfo->intuit || regtry(reginfo, &s)) { 2677 goto got_it; 2678 } 2679 s += (utf8_target) ? UTF8SKIP(s) : 1; 2680 if (UNLIKELY(s >= reginfo->strend)) { 2681 break; 2682 } 2683 } 2684 2685 if (utf8_target) { 2686 /* We are at a boundary between char_sub_0 and char_sub_1. 2687 * We also keep track of the value for char_sub_-1 as we 2688 * loop through the line. Context may be needed to make a 2689 * determination, and if so, this can save having to 2690 * recalculate it */ 2691 WB_enum previous = WB_UNKNOWN; 2692 WB_enum before = getWB_VAL_UTF8( 2693 reghop3((U8*)s, 2694 -1, 2695 (U8*)(reginfo->strbeg)), 2696 (U8*) reginfo->strend); 2697 while (s < strend) { 2698 WB_enum after = getWB_VAL_UTF8((U8*) s, 2699 (U8*) reginfo->strend); 2700 if ((to_complement ^ isWB(previous, 2701 before, 2702 after, 2703 (U8*) reginfo->strbeg, 2704 (U8*) s, 2705 (U8*) reginfo->strend, 2706 utf8_target)) 2707 && (reginfo->intuit || regtry(reginfo, &s))) 2708 { 2709 goto got_it; 2710 } 2711 previous = before; 2712 before = after; 2713 s += UTF8SKIP(s); 2714 } 2715 } 2716 else { /* Not utf8. */ 2717 WB_enum previous = WB_UNKNOWN; 2718 WB_enum before = getWB_VAL_CP((U8) *(s -1)); 2719 while (s < strend) { 2720 WB_enum after = getWB_VAL_CP((U8) *s); 2721 if ((to_complement ^ isWB(previous, 2722 before, 2723 after, 2724 (U8*) reginfo->strbeg, 2725 (U8*) s, 2726 (U8*) reginfo->strend, 2727 utf8_target)) 2728 && (reginfo->intuit || regtry(reginfo, &s))) 2729 { 2730 goto got_it; 2731 } 2732 previous = before; 2733 before = after; 2734 s++; 2735 } 2736 } 2737 2738 if (reginfo->intuit || regtry(reginfo, &s)) { 2739 goto got_it; 2740 } 2741 } 2742 break; 2743 2744 case LNBREAK: 2745 REXEC_FBC_CSCAN(is_LNBREAK_utf8_safe(s, strend), 2746 is_LNBREAK_latin1_safe(s, strend) 2747 ); 2748 break; 2749 2750 case ASCII: 2751 REXEC_FBC_FIND_NEXT_SCAN(0, find_next_ascii(s, strend, utf8_target)); 2752 break; 2753 2754 case NASCII: 2755 if (utf8_target) { 2756 REXEC_FBC_FIND_NEXT_SCAN(1, find_next_non_ascii(s, strend, 2757 utf8_target)); 2758 } 2759 else { 2760 REXEC_FBC_FIND_NEXT_SCAN(0, find_next_non_ascii(s, strend, 2761 utf8_target)); 2762 } 2763 2764 break; 2765 2766 /* The argument to all the POSIX node types is the class number to pass to 2767 * _generic_isCC() to build a mask for searching in PL_charclass[] */ 2768 2769 case NPOSIXL: 2770 to_complement = 1; 2771 /* FALLTHROUGH */ 2772 2773 case POSIXL: 2774 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; 2775 REXEC_FBC_CSCAN(to_complement ^ cBOOL(isFOO_utf8_lc(FLAGS(c), (U8 *) s, (U8 *) strend)), 2776 to_complement ^ cBOOL(isFOO_lc(FLAGS(c), *s))); 2777 break; 2778 2779 case NPOSIXD: 2780 to_complement = 1; 2781 /* FALLTHROUGH */ 2782 2783 case POSIXD: 2784 if (utf8_target) { 2785 goto posix_utf8; 2786 } 2787 goto posixa; 2788 2789 case NPOSIXA: 2790 if (utf8_target) { 2791 /* The complement of something that matches only ASCII matches all 2792 * non-ASCII, plus everything in ASCII that isn't in the class. */ 2793 REXEC_FBC_CLASS_SCAN(1, ! isASCII_utf8_safe(s, strend) 2794 || ! _generic_isCC_A(*s, FLAGS(c))); 2795 break; 2796 } 2797 2798 to_complement = 1; 2799 goto posixa; 2800 2801 case POSIXA: 2802 /* Don't need to worry about utf8, as it can match only a single 2803 * byte invariant character. But we do anyway for performance reasons, 2804 * as otherwise we would have to examine all the continuation 2805 * characters */ 2806 if (utf8_target) { 2807 REXEC_FBC_CLASS_SCAN(1, _generic_isCC_A(*s, FLAGS(c))); 2808 break; 2809 } 2810 2811 posixa: 2812 REXEC_FBC_CLASS_SCAN(0, /* 0=>not-utf8 */ 2813 to_complement ^ cBOOL(_generic_isCC_A(*s, FLAGS(c)))); 2814 break; 2815 2816 case NPOSIXU: 2817 to_complement = 1; 2818 /* FALLTHROUGH */ 2819 2820 case POSIXU: 2821 if (! utf8_target) { 2822 REXEC_FBC_CLASS_SCAN(0, /* 0=>not-utf8 */ 2823 to_complement ^ cBOOL(_generic_isCC(*s, 2824 FLAGS(c)))); 2825 } 2826 else { 2827 2828 posix_utf8: 2829 classnum = (_char_class_number) FLAGS(c); 2830 switch (classnum) { 2831 default: 2832 REXEC_FBC_CLASS_SCAN(1, /* 1=>is-utf8 */ 2833 to_complement ^ cBOOL(_invlist_contains_cp( 2834 PL_XPosix_ptrs[classnum], 2835 utf8_to_uvchr_buf((U8 *) s, 2836 (U8 *) strend, 2837 NULL)))); 2838 break; 2839 case _CC_ENUM_SPACE: 2840 REXEC_FBC_CLASS_SCAN(1, /* 1=>is-utf8 */ 2841 to_complement ^ cBOOL(isSPACE_utf8_safe(s, strend))); 2842 break; 2843 2844 case _CC_ENUM_BLANK: 2845 REXEC_FBC_CLASS_SCAN(1, 2846 to_complement ^ cBOOL(isBLANK_utf8_safe(s, strend))); 2847 break; 2848 2849 case _CC_ENUM_XDIGIT: 2850 REXEC_FBC_CLASS_SCAN(1, 2851 to_complement ^ cBOOL(isXDIGIT_utf8_safe(s, strend))); 2852 break; 2853 2854 case _CC_ENUM_VERTSPACE: 2855 REXEC_FBC_CLASS_SCAN(1, 2856 to_complement ^ cBOOL(isVERTWS_utf8_safe(s, strend))); 2857 break; 2858 2859 case _CC_ENUM_CNTRL: 2860 REXEC_FBC_CLASS_SCAN(1, 2861 to_complement ^ cBOOL(isCNTRL_utf8_safe(s, strend))); 2862 break; 2863 } 2864 } 2865 break; 2866 2867 case AHOCORASICKC: 2868 case AHOCORASICK: 2869 { 2870 DECL_TRIE_TYPE(c); 2871 /* what trie are we using right now */ 2872 reg_ac_data *aho = (reg_ac_data*)progi->data->data[ ARG( c ) ]; 2873 reg_trie_data *trie = (reg_trie_data*)progi->data->data[ aho->trie ]; 2874 HV *widecharmap = MUTABLE_HV(progi->data->data[ aho->trie + 1 ]); 2875 2876 const char *last_start = strend - trie->minlen; 2877 #ifdef DEBUGGING 2878 const char *real_start = s; 2879 #endif 2880 STRLEN maxlen = trie->maxlen; 2881 SV *sv_points; 2882 U8 **points; /* map of where we were in the input string 2883 when reading a given char. For ASCII this 2884 is unnecessary overhead as the relationship 2885 is always 1:1, but for Unicode, especially 2886 case folded Unicode this is not true. */ 2887 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ]; 2888 U8 *bitmap=NULL; 2889 2890 2891 GET_RE_DEBUG_FLAGS_DECL; 2892 2893 /* We can't just allocate points here. We need to wrap it in 2894 * an SV so it gets freed properly if there is a croak while 2895 * running the match */ 2896 ENTER; 2897 SAVETMPS; 2898 sv_points=newSV(maxlen * sizeof(U8 *)); 2899 SvCUR_set(sv_points, 2900 maxlen * sizeof(U8 *)); 2901 SvPOK_on(sv_points); 2902 sv_2mortal(sv_points); 2903 points=(U8**)SvPV_nolen(sv_points ); 2904 if ( trie_type != trie_utf8_fold 2905 && (trie->bitmap || OP(c)==AHOCORASICKC) ) 2906 { 2907 if (trie->bitmap) 2908 bitmap=(U8*)trie->bitmap; 2909 else 2910 bitmap=(U8*)ANYOF_BITMAP(c); 2911 } 2912 /* this is the Aho-Corasick algorithm modified a touch 2913 to include special handling for long "unknown char" sequences. 2914 The basic idea being that we use AC as long as we are dealing 2915 with a possible matching char, when we encounter an unknown char 2916 (and we have not encountered an accepting state) we scan forward 2917 until we find a legal starting char. 2918 AC matching is basically that of trie matching, except that when 2919 we encounter a failing transition, we fall back to the current 2920 states "fail state", and try the current char again, a process 2921 we repeat until we reach the root state, state 1, or a legal 2922 transition. If we fail on the root state then we can either 2923 terminate if we have reached an accepting state previously, or 2924 restart the entire process from the beginning if we have not. 2925 2926 */ 2927 while (s <= last_start) { 2928 const U32 uniflags = UTF8_ALLOW_DEFAULT; 2929 U8 *uc = (U8*)s; 2930 U16 charid = 0; 2931 U32 base = 1; 2932 U32 state = 1; 2933 UV uvc = 0; 2934 STRLEN len = 0; 2935 STRLEN foldlen = 0; 2936 U8 *uscan = (U8*)NULL; 2937 U8 *leftmost = NULL; 2938 #ifdef DEBUGGING 2939 U32 accepted_word= 0; 2940 #endif 2941 U32 pointpos = 0; 2942 2943 while ( state && uc <= (U8*)strend ) { 2944 int failed=0; 2945 U32 word = aho->states[ state ].wordnum; 2946 2947 if( state==1 ) { 2948 if ( bitmap ) { 2949 DEBUG_TRIE_EXECUTE_r( 2950 if ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) { 2951 dump_exec_pos( (char *)uc, c, strend, real_start, 2952 (char *)uc, utf8_target, 0 ); 2953 Perl_re_printf( aTHX_ 2954 " Scanning for legal start char...\n"); 2955 } 2956 ); 2957 if (utf8_target) { 2958 while ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) { 2959 uc += UTF8SKIP(uc); 2960 } 2961 } else { 2962 while ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) { 2963 uc++; 2964 } 2965 } 2966 s= (char *)uc; 2967 } 2968 if (uc >(U8*)last_start) break; 2969 } 2970 2971 if ( word ) { 2972 U8 *lpos= points[ (pointpos - trie->wordinfo[word].len) % maxlen ]; 2973 if (!leftmost || lpos < leftmost) { 2974 DEBUG_r(accepted_word=word); 2975 leftmost= lpos; 2976 } 2977 if (base==0) break; 2978 2979 } 2980 points[pointpos++ % maxlen]= uc; 2981 if (foldlen || uc < (U8*)strend) { 2982 REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc, 2983 (U8 *) strend, uscan, len, uvc, 2984 charid, foldlen, foldbuf, 2985 uniflags); 2986 DEBUG_TRIE_EXECUTE_r({ 2987 dump_exec_pos( (char *)uc, c, strend, 2988 real_start, s, utf8_target, 0); 2989 Perl_re_printf( aTHX_ 2990 " Charid:%3u CP:%4" UVxf " ", 2991 charid, uvc); 2992 }); 2993 } 2994 else { 2995 len = 0; 2996 charid = 0; 2997 } 2998 2999 3000 do { 3001 #ifdef DEBUGGING 3002 word = aho->states[ state ].wordnum; 3003 #endif 3004 base = aho->states[ state ].trans.base; 3005 3006 DEBUG_TRIE_EXECUTE_r({ 3007 if (failed) 3008 dump_exec_pos( (char *)uc, c, strend, real_start, 3009 s, utf8_target, 0 ); 3010 Perl_re_printf( aTHX_ 3011 "%sState: %4" UVxf ", word=%" UVxf, 3012 failed ? " Fail transition to " : "", 3013 (UV)state, (UV)word); 3014 }); 3015 if ( base ) { 3016 U32 tmp; 3017 I32 offset; 3018 if (charid && 3019 ( ((offset = base + charid 3020 - 1 - trie->uniquecharcount)) >= 0) 3021 && ((U32)offset < trie->lasttrans) 3022 && trie->trans[offset].check == state 3023 && (tmp=trie->trans[offset].next)) 3024 { 3025 DEBUG_TRIE_EXECUTE_r( 3026 Perl_re_printf( aTHX_ " - legal\n")); 3027 state = tmp; 3028 break; 3029 } 3030 else { 3031 DEBUG_TRIE_EXECUTE_r( 3032 Perl_re_printf( aTHX_ " - fail\n")); 3033 failed = 1; 3034 state = aho->fail[state]; 3035 } 3036 } 3037 else { 3038 /* we must be accepting here */ 3039 DEBUG_TRIE_EXECUTE_r( 3040 Perl_re_printf( aTHX_ " - accepting\n")); 3041 failed = 1; 3042 break; 3043 } 3044 } while(state); 3045 uc += len; 3046 if (failed) { 3047 if (leftmost) 3048 break; 3049 if (!state) state = 1; 3050 } 3051 } 3052 if ( aho->states[ state ].wordnum ) { 3053 U8 *lpos = points[ (pointpos - trie->wordinfo[aho->states[ state ].wordnum].len) % maxlen ]; 3054 if (!leftmost || lpos < leftmost) { 3055 DEBUG_r(accepted_word=aho->states[ state ].wordnum); 3056 leftmost = lpos; 3057 } 3058 } 3059 if (leftmost) { 3060 s = (char*)leftmost; 3061 DEBUG_TRIE_EXECUTE_r({ 3062 Perl_re_printf( aTHX_ "Matches word #%" UVxf " at position %" IVdf ". Trying full pattern...\n", 3063 (UV)accepted_word, (IV)(s - real_start) 3064 ); 3065 }); 3066 if (reginfo->intuit || regtry(reginfo, &s)) { 3067 FREETMPS; 3068 LEAVE; 3069 goto got_it; 3070 } 3071 s = HOPc(s,1); 3072 DEBUG_TRIE_EXECUTE_r({ 3073 Perl_re_printf( aTHX_ "Pattern failed. Looking for new start point...\n"); 3074 }); 3075 } else { 3076 DEBUG_TRIE_EXECUTE_r( 3077 Perl_re_printf( aTHX_ "No match.\n")); 3078 break; 3079 } 3080 } 3081 FREETMPS; 3082 LEAVE; 3083 } 3084 break; 3085 default: 3086 Perl_croak(aTHX_ "panic: unknown regstclass %d", (int)OP(c)); 3087 } 3088 return 0; 3089 got_it: 3090 return s; 3091 } 3092 3093 /* set RX_SAVED_COPY, RX_SUBBEG etc. 3094 * flags have same meanings as with regexec_flags() */ 3095 3096 static void 3097 S_reg_set_capture_string(pTHX_ REGEXP * const rx, 3098 char *strbeg, 3099 char *strend, 3100 SV *sv, 3101 U32 flags, 3102 bool utf8_target) 3103 { 3104 struct regexp *const prog = ReANY(rx); 3105 3106 if (flags & REXEC_COPY_STR) { 3107 #ifdef PERL_ANY_COW 3108 if (SvCANCOW(sv)) { 3109 DEBUG_C(Perl_re_printf( aTHX_ 3110 "Copy on write: regexp capture, type %d\n", 3111 (int) SvTYPE(sv))); 3112 /* Create a new COW SV to share the match string and store 3113 * in saved_copy, unless the current COW SV in saved_copy 3114 * is valid and suitable for our purpose */ 3115 if (( prog->saved_copy 3116 && SvIsCOW(prog->saved_copy) 3117 && SvPOKp(prog->saved_copy) 3118 && SvIsCOW(sv) 3119 && SvPOKp(sv) 3120 && SvPVX(sv) == SvPVX(prog->saved_copy))) 3121 { 3122 /* just reuse saved_copy SV */ 3123 if (RXp_MATCH_COPIED(prog)) { 3124 Safefree(prog->subbeg); 3125 RXp_MATCH_COPIED_off(prog); 3126 } 3127 } 3128 else { 3129 /* create new COW SV to share string */ 3130 RXp_MATCH_COPY_FREE(prog); 3131 prog->saved_copy = sv_setsv_cow(prog->saved_copy, sv); 3132 } 3133 prog->subbeg = (char *)SvPVX_const(prog->saved_copy); 3134 assert (SvPOKp(prog->saved_copy)); 3135 prog->sublen = strend - strbeg; 3136 prog->suboffset = 0; 3137 prog->subcoffset = 0; 3138 } else 3139 #endif 3140 { 3141 SSize_t min = 0; 3142 SSize_t max = strend - strbeg; 3143 SSize_t sublen; 3144 3145 if ( (flags & REXEC_COPY_SKIP_POST) 3146 && !(prog->extflags & RXf_PMf_KEEPCOPY) /* //p */ 3147 && !(PL_sawampersand & SAWAMPERSAND_RIGHT) 3148 ) { /* don't copy $' part of string */ 3149 U32 n = 0; 3150 max = -1; 3151 /* calculate the right-most part of the string covered 3152 * by a capture. Due to lookahead, this may be to 3153 * the right of $&, so we have to scan all captures */ 3154 while (n <= prog->lastparen) { 3155 if (prog->offs[n].end > max) 3156 max = prog->offs[n].end; 3157 n++; 3158 } 3159 if (max == -1) 3160 max = (PL_sawampersand & SAWAMPERSAND_LEFT) 3161 ? prog->offs[0].start 3162 : 0; 3163 assert(max >= 0 && max <= strend - strbeg); 3164 } 3165 3166 if ( (flags & REXEC_COPY_SKIP_PRE) 3167 && !(prog->extflags & RXf_PMf_KEEPCOPY) /* //p */ 3168 && !(PL_sawampersand & SAWAMPERSAND_LEFT) 3169 ) { /* don't copy $` part of string */ 3170 U32 n = 0; 3171 min = max; 3172 /* calculate the left-most part of the string covered 3173 * by a capture. Due to lookbehind, this may be to 3174 * the left of $&, so we have to scan all captures */ 3175 while (min && n <= prog->lastparen) { 3176 if ( prog->offs[n].start != -1 3177 && prog->offs[n].start < min) 3178 { 3179 min = prog->offs[n].start; 3180 } 3181 n++; 3182 } 3183 if ((PL_sawampersand & SAWAMPERSAND_RIGHT) 3184 && min > prog->offs[0].end 3185 ) 3186 min = prog->offs[0].end; 3187 3188 } 3189 3190 assert(min >= 0 && min <= max && min <= strend - strbeg); 3191 sublen = max - min; 3192 3193 if (RXp_MATCH_COPIED(prog)) { 3194 if (sublen > prog->sublen) 3195 prog->subbeg = 3196 (char*)saferealloc(prog->subbeg, sublen+1); 3197 } 3198 else 3199 prog->subbeg = (char*)safemalloc(sublen+1); 3200 Copy(strbeg + min, prog->subbeg, sublen, char); 3201 prog->subbeg[sublen] = '\0'; 3202 prog->suboffset = min; 3203 prog->sublen = sublen; 3204 RXp_MATCH_COPIED_on(prog); 3205 } 3206 prog->subcoffset = prog->suboffset; 3207 if (prog->suboffset && utf8_target) { 3208 /* Convert byte offset to chars. 3209 * XXX ideally should only compute this if @-/@+ 3210 * has been seen, a la PL_sawampersand ??? */ 3211 3212 /* If there's a direct correspondence between the 3213 * string which we're matching and the original SV, 3214 * then we can use the utf8 len cache associated with 3215 * the SV. In particular, it means that under //g, 3216 * sv_pos_b2u() will use the previously cached 3217 * position to speed up working out the new length of 3218 * subcoffset, rather than counting from the start of 3219 * the string each time. This stops 3220 * $x = "\x{100}" x 1E6; 1 while $x =~ /(.)/g; 3221 * from going quadratic */ 3222 if (SvPOKp(sv) && SvPVX(sv) == strbeg) 3223 prog->subcoffset = sv_pos_b2u_flags(sv, prog->subcoffset, 3224 SV_GMAGIC|SV_CONST_RETURN); 3225 else 3226 prog->subcoffset = utf8_length((U8*)strbeg, 3227 (U8*)(strbeg+prog->suboffset)); 3228 } 3229 } 3230 else { 3231 RXp_MATCH_COPY_FREE(prog); 3232 prog->subbeg = strbeg; 3233 prog->suboffset = 0; 3234 prog->subcoffset = 0; 3235 prog->sublen = strend - strbeg; 3236 } 3237 } 3238 3239 3240 3241 3242 /* 3243 - regexec_flags - match a regexp against a string 3244 */ 3245 I32 3246 Perl_regexec_flags(pTHX_ REGEXP * const rx, char *stringarg, char *strend, 3247 char *strbeg, SSize_t minend, SV *sv, void *data, U32 flags) 3248 /* stringarg: the point in the string at which to begin matching */ 3249 /* strend: pointer to null at end of string */ 3250 /* strbeg: real beginning of string */ 3251 /* minend: end of match must be >= minend bytes after stringarg. */ 3252 /* sv: SV being matched: only used for utf8 flag, pos() etc; string 3253 * itself is accessed via the pointers above */ 3254 /* data: May be used for some additional optimizations. 3255 Currently unused. */ 3256 /* flags: For optimizations. See REXEC_* in regexp.h */ 3257 3258 { 3259 struct regexp *const prog = ReANY(rx); 3260 char *s; 3261 regnode *c; 3262 char *startpos; 3263 SSize_t minlen; /* must match at least this many chars */ 3264 SSize_t dontbother = 0; /* how many characters not to try at end */ 3265 const bool utf8_target = cBOOL(DO_UTF8(sv)); 3266 I32 multiline; 3267 RXi_GET_DECL(prog,progi); 3268 regmatch_info reginfo_buf; /* create some info to pass to regtry etc */ 3269 regmatch_info *const reginfo = ®info_buf; 3270 regexp_paren_pair *swap = NULL; 3271 I32 oldsave; 3272 GET_RE_DEBUG_FLAGS_DECL; 3273 3274 PERL_ARGS_ASSERT_REGEXEC_FLAGS; 3275 PERL_UNUSED_ARG(data); 3276 3277 /* Be paranoid... */ 3278 if (prog == NULL) { 3279 Perl_croak(aTHX_ "NULL regexp parameter"); 3280 } 3281 3282 DEBUG_EXECUTE_r( 3283 debug_start_match(rx, utf8_target, stringarg, strend, 3284 "Matching"); 3285 ); 3286 3287 startpos = stringarg; 3288 3289 /* set these early as they may be used by the HOP macros below */ 3290 reginfo->strbeg = strbeg; 3291 reginfo->strend = strend; 3292 reginfo->is_utf8_target = cBOOL(utf8_target); 3293 3294 if (prog->intflags & PREGf_GPOS_SEEN) { 3295 MAGIC *mg; 3296 3297 /* set reginfo->ganch, the position where \G can match */ 3298 3299 reginfo->ganch = 3300 (flags & REXEC_IGNOREPOS) 3301 ? stringarg /* use start pos rather than pos() */ 3302 : ((mg = mg_find_mglob(sv)) && mg->mg_len >= 0) 3303 /* Defined pos(): */ 3304 ? strbeg + MgBYTEPOS(mg, sv, strbeg, strend-strbeg) 3305 : strbeg; /* pos() not defined; use start of string */ 3306 3307 DEBUG_GPOS_r(Perl_re_printf( aTHX_ 3308 "GPOS ganch set to strbeg[%" IVdf "]\n", (IV)(reginfo->ganch - strbeg))); 3309 3310 /* in the presence of \G, we may need to start looking earlier in 3311 * the string than the suggested start point of stringarg: 3312 * if prog->gofs is set, then that's a known, fixed minimum 3313 * offset, such as 3314 * /..\G/: gofs = 2 3315 * /ab|c\G/: gofs = 1 3316 * or if the minimum offset isn't known, then we have to go back 3317 * to the start of the string, e.g. /w+\G/ 3318 */ 3319 3320 if (prog->intflags & PREGf_ANCH_GPOS) { 3321 if (prog->gofs) { 3322 startpos = HOPBACKc(reginfo->ganch, prog->gofs); 3323 if (!startpos || 3324 ((flags & REXEC_FAIL_ON_UNDERFLOW) && startpos < stringarg)) 3325 { 3326 DEBUG_r(Perl_re_printf( aTHX_ 3327 "fail: ganch-gofs before earliest possible start\n")); 3328 return 0; 3329 } 3330 } 3331 else 3332 startpos = reginfo->ganch; 3333 } 3334 else if (prog->gofs) { 3335 startpos = HOPBACKc(startpos, prog->gofs); 3336 if (!startpos) 3337 startpos = strbeg; 3338 } 3339 else if (prog->intflags & PREGf_GPOS_FLOAT) 3340 startpos = strbeg; 3341 } 3342 3343 minlen = prog->minlen; 3344 if ((startpos + minlen) > strend || startpos < strbeg) { 3345 DEBUG_r(Perl_re_printf( aTHX_ 3346 "Regex match can't succeed, so not even tried\n")); 3347 return 0; 3348 } 3349 3350 /* at the end of this function, we'll do a LEAVE_SCOPE(oldsave), 3351 * which will call destuctors to reset PL_regmatch_state, free higher 3352 * PL_regmatch_slabs, and clean up regmatch_info_aux and 3353 * regmatch_info_aux_eval */ 3354 3355 oldsave = PL_savestack_ix; 3356 3357 s = startpos; 3358 3359 if ((prog->extflags & RXf_USE_INTUIT) 3360 && !(flags & REXEC_CHECKED)) 3361 { 3362 s = re_intuit_start(rx, sv, strbeg, startpos, strend, 3363 flags, NULL); 3364 if (!s) 3365 return 0; 3366 3367 if (prog->extflags & RXf_CHECK_ALL) { 3368 /* we can match based purely on the result of INTUIT. 3369 * Set up captures etc just for $& and $-[0] 3370 * (an intuit-only match wont have $1,$2,..) */ 3371 assert(!prog->nparens); 3372 3373 /* s/// doesn't like it if $& is earlier than where we asked it to 3374 * start searching (which can happen on something like /.\G/) */ 3375 if ( (flags & REXEC_FAIL_ON_UNDERFLOW) 3376 && (s < stringarg)) 3377 { 3378 /* this should only be possible under \G */ 3379 assert(prog->intflags & PREGf_GPOS_SEEN); 3380 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ 3381 "matched, but failing for REXEC_FAIL_ON_UNDERFLOW\n")); 3382 goto phooey; 3383 } 3384 3385 /* match via INTUIT shouldn't have any captures. 3386 * Let @-, @+, $^N know */ 3387 prog->lastparen = prog->lastcloseparen = 0; 3388 RXp_MATCH_UTF8_set(prog, utf8_target); 3389 prog->offs[0].start = s - strbeg; 3390 prog->offs[0].end = utf8_target 3391 ? (char*)utf8_hop((U8*)s, prog->minlenret) - strbeg 3392 : s - strbeg + prog->minlenret; 3393 if ( !(flags & REXEC_NOT_FIRST) ) 3394 S_reg_set_capture_string(aTHX_ rx, 3395 strbeg, strend, 3396 sv, flags, utf8_target); 3397 3398 return 1; 3399 } 3400 } 3401 3402 multiline = prog->extflags & RXf_PMf_MULTILINE; 3403 3404 if (strend - s < (minlen+(prog->check_offset_min<0?prog->check_offset_min:0))) { 3405 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ 3406 "String too short [regexec_flags]...\n")); 3407 goto phooey; 3408 } 3409 3410 /* Check validity of program. */ 3411 if (UCHARAT(progi->program) != REG_MAGIC) { 3412 Perl_croak(aTHX_ "corrupted regexp program"); 3413 } 3414 3415 RXp_MATCH_TAINTED_off(prog); 3416 RXp_MATCH_UTF8_set(prog, utf8_target); 3417 3418 reginfo->prog = rx; /* Yes, sorry that this is confusing. */ 3419 reginfo->intuit = 0; 3420 reginfo->is_utf8_pat = cBOOL(RX_UTF8(rx)); 3421 reginfo->warned = FALSE; 3422 reginfo->sv = sv; 3423 reginfo->poscache_maxiter = 0; /* not yet started a countdown */ 3424 /* see how far we have to get to not match where we matched before */ 3425 reginfo->till = stringarg + minend; 3426 3427 if (prog->extflags & RXf_EVAL_SEEN && SvPADTMP(sv)) { 3428 /* SAVEFREESV, not sv_mortalcopy, as this SV must last until after 3429 S_cleanup_regmatch_info_aux has executed (registered by 3430 SAVEDESTRUCTOR_X below). S_cleanup_regmatch_info_aux modifies 3431 magic belonging to this SV. 3432 Not newSVsv, either, as it does not COW. 3433 */ 3434 reginfo->sv = newSV(0); 3435 SvSetSV_nosteal(reginfo->sv, sv); 3436 SAVEFREESV(reginfo->sv); 3437 } 3438 3439 /* reserve next 2 or 3 slots in PL_regmatch_state: 3440 * slot N+0: may currently be in use: skip it 3441 * slot N+1: use for regmatch_info_aux struct 3442 * slot N+2: use for regmatch_info_aux_eval struct if we have (?{})'s 3443 * slot N+3: ready for use by regmatch() 3444 */ 3445 3446 { 3447 regmatch_state *old_regmatch_state; 3448 regmatch_slab *old_regmatch_slab; 3449 int i, max = (prog->extflags & RXf_EVAL_SEEN) ? 2 : 1; 3450 3451 /* on first ever match, allocate first slab */ 3452 if (!PL_regmatch_slab) { 3453 Newx(PL_regmatch_slab, 1, regmatch_slab); 3454 PL_regmatch_slab->prev = NULL; 3455 PL_regmatch_slab->next = NULL; 3456 PL_regmatch_state = SLAB_FIRST(PL_regmatch_slab); 3457 } 3458 3459 old_regmatch_state = PL_regmatch_state; 3460 old_regmatch_slab = PL_regmatch_slab; 3461 3462 for (i=0; i <= max; i++) { 3463 if (i == 1) 3464 reginfo->info_aux = &(PL_regmatch_state->u.info_aux); 3465 else if (i ==2) 3466 reginfo->info_aux_eval = 3467 reginfo->info_aux->info_aux_eval = 3468 &(PL_regmatch_state->u.info_aux_eval); 3469 3470 if (++PL_regmatch_state > SLAB_LAST(PL_regmatch_slab)) 3471 PL_regmatch_state = S_push_slab(aTHX); 3472 } 3473 3474 /* note initial PL_regmatch_state position; at end of match we'll 3475 * pop back to there and free any higher slabs */ 3476 3477 reginfo->info_aux->old_regmatch_state = old_regmatch_state; 3478 reginfo->info_aux->old_regmatch_slab = old_regmatch_slab; 3479 reginfo->info_aux->poscache = NULL; 3480 3481 SAVEDESTRUCTOR_X(S_cleanup_regmatch_info_aux, reginfo->info_aux); 3482 3483 if ((prog->extflags & RXf_EVAL_SEEN)) 3484 S_setup_eval_state(aTHX_ reginfo); 3485 else 3486 reginfo->info_aux_eval = reginfo->info_aux->info_aux_eval = NULL; 3487 } 3488 3489 /* If there is a "must appear" string, look for it. */ 3490 3491 if (PL_curpm && (PM_GETRE(PL_curpm) == rx)) { 3492 /* We have to be careful. If the previous successful match 3493 was from this regex we don't want a subsequent partially 3494 successful match to clobber the old results. 3495 So when we detect this possibility we add a swap buffer 3496 to the re, and switch the buffer each match. If we fail, 3497 we switch it back; otherwise we leave it swapped. 3498 */ 3499 swap = prog->offs; 3500 /* do we need a save destructor here for eval dies? */ 3501 Newxz(prog->offs, (prog->nparens + 1), regexp_paren_pair); 3502 DEBUG_BUFFERS_r(Perl_re_exec_indentf( aTHX_ 3503 "rex=0x%" UVxf " saving offs: orig=0x%" UVxf " new=0x%" UVxf "\n", 3504 0, 3505 PTR2UV(prog), 3506 PTR2UV(swap), 3507 PTR2UV(prog->offs) 3508 )); 3509 } 3510 3511 if (prog->recurse_locinput) 3512 Zero(prog->recurse_locinput,prog->nparens + 1, char *); 3513 3514 /* Simplest case: anchored match need be tried only once, or with 3515 * MBOL, only at the beginning of each line. 3516 * 3517 * Note that /.*.../ sets PREGf_IMPLICIT|MBOL, while /.*.../s sets 3518 * PREGf_IMPLICIT|SBOL. The idea is that with /.*.../s, if it doesn't 3519 * match at the start of the string then it won't match anywhere else 3520 * either; while with /.*.../, if it doesn't match at the beginning, 3521 * the earliest it could match is at the start of the next line */ 3522 3523 if (prog->intflags & (PREGf_ANCH & ~PREGf_ANCH_GPOS)) { 3524 char *end; 3525 3526 if (regtry(reginfo, &s)) 3527 goto got_it; 3528 3529 if (!(prog->intflags & PREGf_ANCH_MBOL)) 3530 goto phooey; 3531 3532 /* didn't match at start, try at other newline positions */ 3533 3534 if (minlen) 3535 dontbother = minlen - 1; 3536 end = HOP3c(strend, -dontbother, strbeg) - 1; 3537 3538 /* skip to next newline */ 3539 3540 while (s <= end) { /* note it could be possible to match at the end of the string */ 3541 /* NB: newlines are the same in unicode as they are in latin */ 3542 if (*s++ != '\n') 3543 continue; 3544 if (prog->check_substr || prog->check_utf8) { 3545 /* note that with PREGf_IMPLICIT, intuit can only fail 3546 * or return the start position, so it's of limited utility. 3547 * Nevertheless, I made the decision that the potential for 3548 * quick fail was still worth it - DAPM */ 3549 s = re_intuit_start(rx, sv, strbeg, s, strend, flags, NULL); 3550 if (!s) 3551 goto phooey; 3552 } 3553 if (regtry(reginfo, &s)) 3554 goto got_it; 3555 } 3556 goto phooey; 3557 } /* end anchored search */ 3558 3559 if (prog->intflags & PREGf_ANCH_GPOS) 3560 { 3561 /* PREGf_ANCH_GPOS should never be true if PREGf_GPOS_SEEN is not true */ 3562 assert(prog->intflags & PREGf_GPOS_SEEN); 3563 /* For anchored \G, the only position it can match from is 3564 * (ganch-gofs); we already set startpos to this above; if intuit 3565 * moved us on from there, we can't possibly succeed */ 3566 assert(startpos == HOPBACKc(reginfo->ganch, prog->gofs)); 3567 if (s == startpos && regtry(reginfo, &s)) 3568 goto got_it; 3569 goto phooey; 3570 } 3571 3572 /* Messy cases: unanchored match. */ 3573 if ((prog->anchored_substr || prog->anchored_utf8) && prog->intflags & PREGf_SKIP) { 3574 /* we have /x+whatever/ */ 3575 /* it must be a one character string (XXXX Except is_utf8_pat?) */ 3576 char ch; 3577 #ifdef DEBUGGING 3578 int did_match = 0; 3579 #endif 3580 if (utf8_target) { 3581 if (! prog->anchored_utf8) { 3582 to_utf8_substr(prog); 3583 } 3584 ch = SvPVX_const(prog->anchored_utf8)[0]; 3585 REXEC_FBC_SCAN(0, /* 0=>not-utf8 */ 3586 if (*s == ch) { 3587 DEBUG_EXECUTE_r( did_match = 1 ); 3588 if (regtry(reginfo, &s)) goto got_it; 3589 s += UTF8SKIP(s); 3590 while (s < strend && *s == ch) 3591 s += UTF8SKIP(s); 3592 } 3593 ); 3594 3595 } 3596 else { 3597 if (! prog->anchored_substr) { 3598 if (! to_byte_substr(prog)) { 3599 NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey); 3600 } 3601 } 3602 ch = SvPVX_const(prog->anchored_substr)[0]; 3603 REXEC_FBC_SCAN(0, /* 0=>not-utf8 */ 3604 if (*s == ch) { 3605 DEBUG_EXECUTE_r( did_match = 1 ); 3606 if (regtry(reginfo, &s)) goto got_it; 3607 s++; 3608 while (s < strend && *s == ch) 3609 s++; 3610 } 3611 ); 3612 } 3613 DEBUG_EXECUTE_r(if (!did_match) 3614 Perl_re_printf( aTHX_ 3615 "Did not find anchored character...\n") 3616 ); 3617 } 3618 else if (prog->anchored_substr != NULL 3619 || prog->anchored_utf8 != NULL 3620 || ((prog->float_substr != NULL || prog->float_utf8 != NULL) 3621 && prog->float_max_offset < strend - s)) { 3622 SV *must; 3623 SSize_t back_max; 3624 SSize_t back_min; 3625 char *last; 3626 char *last1; /* Last position checked before */ 3627 #ifdef DEBUGGING 3628 int did_match = 0; 3629 #endif 3630 if (prog->anchored_substr || prog->anchored_utf8) { 3631 if (utf8_target) { 3632 if (! prog->anchored_utf8) { 3633 to_utf8_substr(prog); 3634 } 3635 must = prog->anchored_utf8; 3636 } 3637 else { 3638 if (! prog->anchored_substr) { 3639 if (! to_byte_substr(prog)) { 3640 NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey); 3641 } 3642 } 3643 must = prog->anchored_substr; 3644 } 3645 back_max = back_min = prog->anchored_offset; 3646 } else { 3647 if (utf8_target) { 3648 if (! prog->float_utf8) { 3649 to_utf8_substr(prog); 3650 } 3651 must = prog->float_utf8; 3652 } 3653 else { 3654 if (! prog->float_substr) { 3655 if (! to_byte_substr(prog)) { 3656 NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey); 3657 } 3658 } 3659 must = prog->float_substr; 3660 } 3661 back_max = prog->float_max_offset; 3662 back_min = prog->float_min_offset; 3663 } 3664 3665 if (back_min<0) { 3666 last = strend; 3667 } else { 3668 last = HOP3c(strend, /* Cannot start after this */ 3669 -(SSize_t)(CHR_SVLEN(must) 3670 - (SvTAIL(must) != 0) + back_min), strbeg); 3671 } 3672 if (s > reginfo->strbeg) 3673 last1 = HOPc(s, -1); 3674 else 3675 last1 = s - 1; /* bogus */ 3676 3677 /* XXXX check_substr already used to find "s", can optimize if 3678 check_substr==must. */ 3679 dontbother = 0; 3680 strend = HOPc(strend, -dontbother); 3681 while ( (s <= last) && 3682 (s = fbm_instr((unsigned char*)HOP4c(s, back_min, strbeg, strend), 3683 (unsigned char*)strend, must, 3684 multiline ? FBMrf_MULTILINE : 0)) ) { 3685 DEBUG_EXECUTE_r( did_match = 1 ); 3686 if (HOPc(s, -back_max) > last1) { 3687 last1 = HOPc(s, -back_min); 3688 s = HOPc(s, -back_max); 3689 } 3690 else { 3691 char * const t = (last1 >= reginfo->strbeg) 3692 ? HOPc(last1, 1) : last1 + 1; 3693 3694 last1 = HOPc(s, -back_min); 3695 s = t; 3696 } 3697 if (utf8_target) { 3698 while (s <= last1) { 3699 if (regtry(reginfo, &s)) 3700 goto got_it; 3701 if (s >= last1) { 3702 s++; /* to break out of outer loop */ 3703 break; 3704 } 3705 s += UTF8SKIP(s); 3706 } 3707 } 3708 else { 3709 while (s <= last1) { 3710 if (regtry(reginfo, &s)) 3711 goto got_it; 3712 s++; 3713 } 3714 } 3715 } 3716 DEBUG_EXECUTE_r(if (!did_match) { 3717 RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0), 3718 SvPVX_const(must), RE_SV_DUMPLEN(must), 30); 3719 Perl_re_printf( aTHX_ "Did not find %s substr %s%s...\n", 3720 ((must == prog->anchored_substr || must == prog->anchored_utf8) 3721 ? "anchored" : "floating"), 3722 quoted, RE_SV_TAIL(must)); 3723 }); 3724 goto phooey; 3725 } 3726 else if ( (c = progi->regstclass) ) { 3727 if (minlen) { 3728 const OPCODE op = OP(progi->regstclass); 3729 /* don't bother with what can't match */ 3730 if (PL_regkind[op] != EXACT && PL_regkind[op] != TRIE) 3731 strend = HOPc(strend, -(minlen - 1)); 3732 } 3733 DEBUG_EXECUTE_r({ 3734 SV * const prop = sv_newmortal(); 3735 regprop(prog, prop, c, reginfo, NULL); 3736 { 3737 RE_PV_QUOTED_DECL(quoted,utf8_target,PERL_DEBUG_PAD_ZERO(1), 3738 s,strend-s,PL_dump_re_max_len); 3739 Perl_re_printf( aTHX_ 3740 "Matching stclass %.*s against %s (%d bytes)\n", 3741 (int)SvCUR(prop), SvPVX_const(prop), 3742 quoted, (int)(strend - s)); 3743 } 3744 }); 3745 if (find_byclass(prog, c, s, strend, reginfo)) 3746 goto got_it; 3747 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ "Contradicts stclass... [regexec_flags]\n")); 3748 } 3749 else { 3750 dontbother = 0; 3751 if (prog->float_substr != NULL || prog->float_utf8 != NULL) { 3752 /* Trim the end. */ 3753 char *last= NULL; 3754 SV* float_real; 3755 STRLEN len; 3756 const char *little; 3757 3758 if (utf8_target) { 3759 if (! prog->float_utf8) { 3760 to_utf8_substr(prog); 3761 } 3762 float_real = prog->float_utf8; 3763 } 3764 else { 3765 if (! prog->float_substr) { 3766 if (! to_byte_substr(prog)) { 3767 NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey); 3768 } 3769 } 3770 float_real = prog->float_substr; 3771 } 3772 3773 little = SvPV_const(float_real, len); 3774 if (SvTAIL(float_real)) { 3775 /* This means that float_real contains an artificial \n on 3776 * the end due to the presence of something like this: 3777 * /foo$/ where we can match both "foo" and "foo\n" at the 3778 * end of the string. So we have to compare the end of the 3779 * string first against the float_real without the \n and 3780 * then against the full float_real with the string. We 3781 * have to watch out for cases where the string might be 3782 * smaller than the float_real or the float_real without 3783 * the \n. */ 3784 char *checkpos= strend - len; 3785 DEBUG_OPTIMISE_r( 3786 Perl_re_printf( aTHX_ 3787 "%sChecking for float_real.%s\n", 3788 PL_colors[4], PL_colors[5])); 3789 if (checkpos + 1 < strbeg) { 3790 /* can't match, even if we remove the trailing \n 3791 * string is too short to match */ 3792 DEBUG_EXECUTE_r( 3793 Perl_re_printf( aTHX_ 3794 "%sString shorter than required trailing substring, cannot match.%s\n", 3795 PL_colors[4], PL_colors[5])); 3796 goto phooey; 3797 } else if (memEQ(checkpos + 1, little, len - 1)) { 3798 /* can match, the end of the string matches without the 3799 * "\n" */ 3800 last = checkpos + 1; 3801 } else if (checkpos < strbeg) { 3802 /* cant match, string is too short when the "\n" is 3803 * included */ 3804 DEBUG_EXECUTE_r( 3805 Perl_re_printf( aTHX_ 3806 "%sString does not contain required trailing substring, cannot match.%s\n", 3807 PL_colors[4], PL_colors[5])); 3808 goto phooey; 3809 } else if (!multiline) { 3810 /* non multiline match, so compare with the "\n" at the 3811 * end of the string */ 3812 if (memEQ(checkpos, little, len)) { 3813 last= checkpos; 3814 } else { 3815 DEBUG_EXECUTE_r( 3816 Perl_re_printf( aTHX_ 3817 "%sString does not contain required trailing substring, cannot match.%s\n", 3818 PL_colors[4], PL_colors[5])); 3819 goto phooey; 3820 } 3821 } else { 3822 /* multiline match, so we have to search for a place 3823 * where the full string is located */ 3824 goto find_last; 3825 } 3826 } else { 3827 find_last: 3828 if (len) 3829 last = rninstr(s, strend, little, little + len); 3830 else 3831 last = strend; /* matching "$" */ 3832 } 3833 if (!last) { 3834 /* at one point this block contained a comment which was 3835 * probably incorrect, which said that this was a "should not 3836 * happen" case. Even if it was true when it was written I am 3837 * pretty sure it is not anymore, so I have removed the comment 3838 * and replaced it with this one. Yves */ 3839 DEBUG_EXECUTE_r( 3840 Perl_re_printf( aTHX_ 3841 "%sString does not contain required substring, cannot match.%s\n", 3842 PL_colors[4], PL_colors[5] 3843 )); 3844 goto phooey; 3845 } 3846 dontbother = strend - last + prog->float_min_offset; 3847 } 3848 if (minlen && (dontbother < minlen)) 3849 dontbother = minlen - 1; 3850 strend -= dontbother; /* this one's always in bytes! */ 3851 /* We don't know much -- general case. */ 3852 if (utf8_target) { 3853 for (;;) { 3854 if (regtry(reginfo, &s)) 3855 goto got_it; 3856 if (s >= strend) 3857 break; 3858 s += UTF8SKIP(s); 3859 }; 3860 } 3861 else { 3862 do { 3863 if (regtry(reginfo, &s)) 3864 goto got_it; 3865 } while (s++ < strend); 3866 } 3867 } 3868 3869 /* Failure. */ 3870 goto phooey; 3871 3872 got_it: 3873 /* s/// doesn't like it if $& is earlier than where we asked it to 3874 * start searching (which can happen on something like /.\G/) */ 3875 if ( (flags & REXEC_FAIL_ON_UNDERFLOW) 3876 && (prog->offs[0].start < stringarg - strbeg)) 3877 { 3878 /* this should only be possible under \G */ 3879 assert(prog->intflags & PREGf_GPOS_SEEN); 3880 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ 3881 "matched, but failing for REXEC_FAIL_ON_UNDERFLOW\n")); 3882 goto phooey; 3883 } 3884 3885 DEBUG_BUFFERS_r( 3886 if (swap) 3887 Perl_re_exec_indentf( aTHX_ 3888 "rex=0x%" UVxf " freeing offs: 0x%" UVxf "\n", 3889 0, 3890 PTR2UV(prog), 3891 PTR2UV(swap) 3892 ); 3893 ); 3894 Safefree(swap); 3895 3896 /* clean up; this will trigger destructors that will free all slabs 3897 * above the current one, and cleanup the regmatch_info_aux 3898 * and regmatch_info_aux_eval sructs */ 3899 3900 LEAVE_SCOPE(oldsave); 3901 3902 if (RXp_PAREN_NAMES(prog)) 3903 (void)hv_iterinit(RXp_PAREN_NAMES(prog)); 3904 3905 /* make sure $`, $&, $', and $digit will work later */ 3906 if ( !(flags & REXEC_NOT_FIRST) ) 3907 S_reg_set_capture_string(aTHX_ rx, 3908 strbeg, reginfo->strend, 3909 sv, flags, utf8_target); 3910 3911 return 1; 3912 3913 phooey: 3914 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ "%sMatch failed%s\n", 3915 PL_colors[4], PL_colors[5])); 3916 3917 /* clean up; this will trigger destructors that will free all slabs 3918 * above the current one, and cleanup the regmatch_info_aux 3919 * and regmatch_info_aux_eval sructs */ 3920 3921 LEAVE_SCOPE(oldsave); 3922 3923 if (swap) { 3924 /* we failed :-( roll it back */ 3925 DEBUG_BUFFERS_r(Perl_re_exec_indentf( aTHX_ 3926 "rex=0x%" UVxf " rolling back offs: freeing=0x%" UVxf " restoring=0x%" UVxf "\n", 3927 0, 3928 PTR2UV(prog), 3929 PTR2UV(prog->offs), 3930 PTR2UV(swap) 3931 )); 3932 Safefree(prog->offs); 3933 prog->offs = swap; 3934 } 3935 return 0; 3936 } 3937 3938 3939 /* Set which rex is pointed to by PL_reg_curpm, handling ref counting. 3940 * Do inc before dec, in case old and new rex are the same */ 3941 #define SET_reg_curpm(Re2) \ 3942 if (reginfo->info_aux_eval) { \ 3943 (void)ReREFCNT_inc(Re2); \ 3944 ReREFCNT_dec(PM_GETRE(PL_reg_curpm)); \ 3945 PM_SETRE((PL_reg_curpm), (Re2)); \ 3946 } 3947 3948 3949 /* 3950 - regtry - try match at specific point 3951 */ 3952 STATIC bool /* 0 failure, 1 success */ 3953 S_regtry(pTHX_ regmatch_info *reginfo, char **startposp) 3954 { 3955 CHECKPOINT lastcp; 3956 REGEXP *const rx = reginfo->prog; 3957 regexp *const prog = ReANY(rx); 3958 SSize_t result; 3959 #ifdef DEBUGGING 3960 U32 depth = 0; /* used by REGCP_SET */ 3961 #endif 3962 RXi_GET_DECL(prog,progi); 3963 GET_RE_DEBUG_FLAGS_DECL; 3964 3965 PERL_ARGS_ASSERT_REGTRY; 3966 3967 reginfo->cutpoint=NULL; 3968 3969 prog->offs[0].start = *startposp - reginfo->strbeg; 3970 prog->lastparen = 0; 3971 prog->lastcloseparen = 0; 3972 3973 /* XXXX What this code is doing here?!!! There should be no need 3974 to do this again and again, prog->lastparen should take care of 3975 this! --ilya*/ 3976 3977 /* Tests pat.t#187 and split.t#{13,14} seem to depend on this code. 3978 * Actually, the code in regcppop() (which Ilya may be meaning by 3979 * prog->lastparen), is not needed at all by the test suite 3980 * (op/regexp, op/pat, op/split), but that code is needed otherwise 3981 * this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/ 3982 * Meanwhile, this code *is* needed for the 3983 * above-mentioned test suite tests to succeed. The common theme 3984 * on those tests seems to be returning null fields from matches. 3985 * --jhi updated by dapm */ 3986 3987 /* After encountering a variant of the issue mentioned above I think 3988 * the point Ilya was making is that if we properly unwind whenever 3989 * we set lastparen to a smaller value then we should not need to do 3990 * this every time, only when needed. So if we have tests that fail if 3991 * we remove this, then it suggests somewhere else we are improperly 3992 * unwinding the lastparen/paren buffers. See UNWIND_PARENS() and 3993 * places it is called, and related regcp() routines. - Yves */ 3994 #if 1 3995 if (prog->nparens) { 3996 regexp_paren_pair *pp = prog->offs; 3997 I32 i; 3998 for (i = prog->nparens; i > (I32)prog->lastparen; i--) { 3999 ++pp; 4000 pp->start = -1; 4001 pp->end = -1; 4002 } 4003 } 4004 #endif 4005 REGCP_SET(lastcp); 4006 result = regmatch(reginfo, *startposp, progi->program + 1); 4007 if (result != -1) { 4008 prog->offs[0].end = result; 4009 return 1; 4010 } 4011 if (reginfo->cutpoint) 4012 *startposp= reginfo->cutpoint; 4013 REGCP_UNWIND(lastcp); 4014 return 0; 4015 } 4016 4017 4018 #define sayYES goto yes 4019 #define sayNO goto no 4020 #define sayNO_SILENT goto no_silent 4021 4022 /* we dont use STMT_START/END here because it leads to 4023 "unreachable code" warnings, which are bogus, but distracting. */ 4024 #define CACHEsayNO \ 4025 if (ST.cache_mask) \ 4026 reginfo->info_aux->poscache[ST.cache_offset] |= ST.cache_mask; \ 4027 sayNO 4028 4029 /* this is used to determine how far from the left messages like 4030 'failed...' are printed in regexec.c. It should be set such that 4031 messages are inline with the regop output that created them. 4032 */ 4033 #define REPORT_CODE_OFF 29 4034 #define INDENT_CHARS(depth) ((int)(depth) % 20) 4035 #ifdef DEBUGGING 4036 int 4037 Perl_re_exec_indentf(pTHX_ const char *fmt, U32 depth, ...) 4038 { 4039 va_list ap; 4040 int result; 4041 PerlIO *f= Perl_debug_log; 4042 PERL_ARGS_ASSERT_RE_EXEC_INDENTF; 4043 va_start(ap, depth); 4044 PerlIO_printf(f, "%*s|%4" UVuf "| %*s", REPORT_CODE_OFF, "", (UV)depth, INDENT_CHARS(depth), "" ); 4045 result = PerlIO_vprintf(f, fmt, ap); 4046 va_end(ap); 4047 return result; 4048 } 4049 #endif /* DEBUGGING */ 4050 4051 4052 #define CHRTEST_UNINIT -1001 /* c1/c2 haven't been calculated yet */ 4053 #define CHRTEST_VOID -1000 /* the c1/c2 "next char" test should be skipped */ 4054 #define CHRTEST_NOT_A_CP_1 -999 4055 #define CHRTEST_NOT_A_CP_2 -998 4056 4057 /* grab a new slab and return the first slot in it */ 4058 4059 STATIC regmatch_state * 4060 S_push_slab(pTHX) 4061 { 4062 regmatch_slab *s = PL_regmatch_slab->next; 4063 if (!s) { 4064 Newx(s, 1, regmatch_slab); 4065 s->prev = PL_regmatch_slab; 4066 s->next = NULL; 4067 PL_regmatch_slab->next = s; 4068 } 4069 PL_regmatch_slab = s; 4070 return SLAB_FIRST(s); 4071 } 4072 4073 4074 /* push a new state then goto it */ 4075 4076 #define PUSH_STATE_GOTO(state, node, input) \ 4077 pushinput = input; \ 4078 scan = node; \ 4079 st->resume_state = state; \ 4080 goto push_state; 4081 4082 /* push a new state with success backtracking, then goto it */ 4083 4084 #define PUSH_YES_STATE_GOTO(state, node, input) \ 4085 pushinput = input; \ 4086 scan = node; \ 4087 st->resume_state = state; \ 4088 goto push_yes_state; 4089 4090 4091 4092 4093 /* 4094 4095 regmatch() - main matching routine 4096 4097 This is basically one big switch statement in a loop. We execute an op, 4098 set 'next' to point the next op, and continue. If we come to a point which 4099 we may need to backtrack to on failure such as (A|B|C), we push a 4100 backtrack state onto the backtrack stack. On failure, we pop the top 4101 state, and re-enter the loop at the state indicated. If there are no more 4102 states to pop, we return failure. 4103 4104 Sometimes we also need to backtrack on success; for example /A+/, where 4105 after successfully matching one A, we need to go back and try to 4106 match another one; similarly for lookahead assertions: if the assertion 4107 completes successfully, we backtrack to the state just before the assertion 4108 and then carry on. In these cases, the pushed state is marked as 4109 'backtrack on success too'. This marking is in fact done by a chain of 4110 pointers, each pointing to the previous 'yes' state. On success, we pop to 4111 the nearest yes state, discarding any intermediate failure-only states. 4112 Sometimes a yes state is pushed just to force some cleanup code to be 4113 called at the end of a successful match or submatch; e.g. (??{$re}) uses 4114 it to free the inner regex. 4115 4116 Note that failure backtracking rewinds the cursor position, while 4117 success backtracking leaves it alone. 4118 4119 A pattern is complete when the END op is executed, while a subpattern 4120 such as (?=foo) is complete when the SUCCESS op is executed. Both of these 4121 ops trigger the "pop to last yes state if any, otherwise return true" 4122 behaviour. 4123 4124 A common convention in this function is to use A and B to refer to the two 4125 subpatterns (or to the first nodes thereof) in patterns like /A*B/: so A is 4126 the subpattern to be matched possibly multiple times, while B is the entire 4127 rest of the pattern. Variable and state names reflect this convention. 4128 4129 The states in the main switch are the union of ops and failure/success of 4130 substates associated with with that op. For example, IFMATCH is the op 4131 that does lookahead assertions /(?=A)B/ and so the IFMATCH state means 4132 'execute IFMATCH'; while IFMATCH_A is a state saying that we have just 4133 successfully matched A and IFMATCH_A_fail is a state saying that we have 4134 just failed to match A. Resume states always come in pairs. The backtrack 4135 state we push is marked as 'IFMATCH_A', but when that is popped, we resume 4136 at IFMATCH_A or IFMATCH_A_fail, depending on whether we are backtracking 4137 on success or failure. 4138 4139 The struct that holds a backtracking state is actually a big union, with 4140 one variant for each major type of op. The variable st points to the 4141 top-most backtrack struct. To make the code clearer, within each 4142 block of code we #define ST to alias the relevant union. 4143 4144 Here's a concrete example of a (vastly oversimplified) IFMATCH 4145 implementation: 4146 4147 switch (state) { 4148 .... 4149 4150 #define ST st->u.ifmatch 4151 4152 case IFMATCH: // we are executing the IFMATCH op, (?=A)B 4153 ST.foo = ...; // some state we wish to save 4154 ... 4155 // push a yes backtrack state with a resume value of 4156 // IFMATCH_A/IFMATCH_A_fail, then continue execution at the 4157 // first node of A: 4158 PUSH_YES_STATE_GOTO(IFMATCH_A, A, newinput); 4159 // NOTREACHED 4160 4161 case IFMATCH_A: // we have successfully executed A; now continue with B 4162 next = B; 4163 bar = ST.foo; // do something with the preserved value 4164 break; 4165 4166 case IFMATCH_A_fail: // A failed, so the assertion failed 4167 ...; // do some housekeeping, then ... 4168 sayNO; // propagate the failure 4169 4170 #undef ST 4171 4172 ... 4173 } 4174 4175 For any old-timers reading this who are familiar with the old recursive 4176 approach, the code above is equivalent to: 4177 4178 case IFMATCH: // we are executing the IFMATCH op, (?=A)B 4179 { 4180 int foo = ... 4181 ... 4182 if (regmatch(A)) { 4183 next = B; 4184 bar = foo; 4185 break; 4186 } 4187 ...; // do some housekeeping, then ... 4188 sayNO; // propagate the failure 4189 } 4190 4191 The topmost backtrack state, pointed to by st, is usually free. If you 4192 want to claim it, populate any ST.foo fields in it with values you wish to 4193 save, then do one of 4194 4195 PUSH_STATE_GOTO(resume_state, node, newinput); 4196 PUSH_YES_STATE_GOTO(resume_state, node, newinput); 4197 4198 which sets that backtrack state's resume value to 'resume_state', pushes a 4199 new free entry to the top of the backtrack stack, then goes to 'node'. 4200 On backtracking, the free slot is popped, and the saved state becomes the 4201 new free state. An ST.foo field in this new top state can be temporarily 4202 accessed to retrieve values, but once the main loop is re-entered, it 4203 becomes available for reuse. 4204 4205 Note that the depth of the backtrack stack constantly increases during the 4206 left-to-right execution of the pattern, rather than going up and down with 4207 the pattern nesting. For example the stack is at its maximum at Z at the 4208 end of the pattern, rather than at X in the following: 4209 4210 /(((X)+)+)+....(Y)+....Z/ 4211 4212 The only exceptions to this are lookahead/behind assertions and the cut, 4213 (?>A), which pop all the backtrack states associated with A before 4214 continuing. 4215 4216 Backtrack state structs are allocated in slabs of about 4K in size. 4217 PL_regmatch_state and st always point to the currently active state, 4218 and PL_regmatch_slab points to the slab currently containing 4219 PL_regmatch_state. The first time regmatch() is called, the first slab is 4220 allocated, and is never freed until interpreter destruction. When the slab 4221 is full, a new one is allocated and chained to the end. At exit from 4222 regmatch(), slabs allocated since entry are freed. 4223 4224 */ 4225 4226 4227 #define DEBUG_STATE_pp(pp) \ 4228 DEBUG_STATE_r({ \ 4229 DUMP_EXEC_POS(locinput, scan, utf8_target,depth); \ 4230 Perl_re_printf( aTHX_ \ 4231 "%*s" pp " %s%s%s%s%s\n", \ 4232 INDENT_CHARS(depth), "", \ 4233 PL_reg_name[st->resume_state], \ 4234 ((st==yes_state||st==mark_state) ? "[" : ""), \ 4235 ((st==yes_state) ? "Y" : ""), \ 4236 ((st==mark_state) ? "M" : ""), \ 4237 ((st==yes_state||st==mark_state) ? "]" : "") \ 4238 ); \ 4239 }); 4240 4241 4242 #define REG_NODE_NUM(x) ((x) ? (int)((x)-prog) : -1) 4243 4244 #ifdef DEBUGGING 4245 4246 STATIC void 4247 S_debug_start_match(pTHX_ const REGEXP *prog, const bool utf8_target, 4248 const char *start, const char *end, const char *blurb) 4249 { 4250 const bool utf8_pat = RX_UTF8(prog) ? 1 : 0; 4251 4252 PERL_ARGS_ASSERT_DEBUG_START_MATCH; 4253 4254 if (!PL_colorset) 4255 reginitcolors(); 4256 { 4257 RE_PV_QUOTED_DECL(s0, utf8_pat, PERL_DEBUG_PAD_ZERO(0), 4258 RX_PRECOMP_const(prog), RX_PRELEN(prog), PL_dump_re_max_len); 4259 4260 RE_PV_QUOTED_DECL(s1, utf8_target, PERL_DEBUG_PAD_ZERO(1), 4261 start, end - start, PL_dump_re_max_len); 4262 4263 Perl_re_printf( aTHX_ 4264 "%s%s REx%s %s against %s\n", 4265 PL_colors[4], blurb, PL_colors[5], s0, s1); 4266 4267 if (utf8_target||utf8_pat) 4268 Perl_re_printf( aTHX_ "UTF-8 %s%s%s...\n", 4269 utf8_pat ? "pattern" : "", 4270 utf8_pat && utf8_target ? " and " : "", 4271 utf8_target ? "string" : "" 4272 ); 4273 } 4274 } 4275 4276 STATIC void 4277 S_dump_exec_pos(pTHX_ const char *locinput, 4278 const regnode *scan, 4279 const char *loc_regeol, 4280 const char *loc_bostr, 4281 const char *loc_reg_starttry, 4282 const bool utf8_target, 4283 const U32 depth 4284 ) 4285 { 4286 const int docolor = *PL_colors[0] || *PL_colors[2] || *PL_colors[4]; 4287 const int taill = (docolor ? 10 : 7); /* 3 chars for "> <" */ 4288 int l = (loc_regeol - locinput) > taill ? taill : (loc_regeol - locinput); 4289 /* The part of the string before starttry has one color 4290 (pref0_len chars), between starttry and current 4291 position another one (pref_len - pref0_len chars), 4292 after the current position the third one. 4293 We assume that pref0_len <= pref_len, otherwise we 4294 decrease pref0_len. */ 4295 int pref_len = (locinput - loc_bostr) > (5 + taill) - l 4296 ? (5 + taill) - l : locinput - loc_bostr; 4297 int pref0_len; 4298 4299 PERL_ARGS_ASSERT_DUMP_EXEC_POS; 4300 4301 while (utf8_target && UTF8_IS_CONTINUATION(*(U8*)(locinput - pref_len))) 4302 pref_len++; 4303 pref0_len = pref_len - (locinput - loc_reg_starttry); 4304 if (l + pref_len < (5 + taill) && l < loc_regeol - locinput) 4305 l = ( loc_regeol - locinput > (5 + taill) - pref_len 4306 ? (5 + taill) - pref_len : loc_regeol - locinput); 4307 while (utf8_target && UTF8_IS_CONTINUATION(*(U8*)(locinput + l))) 4308 l--; 4309 if (pref0_len < 0) 4310 pref0_len = 0; 4311 if (pref0_len > pref_len) 4312 pref0_len = pref_len; 4313 { 4314 const int is_uni = utf8_target ? 1 : 0; 4315 4316 RE_PV_COLOR_DECL(s0,len0,is_uni,PERL_DEBUG_PAD(0), 4317 (locinput - pref_len),pref0_len, PL_dump_re_max_len, 4, 5); 4318 4319 RE_PV_COLOR_DECL(s1,len1,is_uni,PERL_DEBUG_PAD(1), 4320 (locinput - pref_len + pref0_len), 4321 pref_len - pref0_len, PL_dump_re_max_len, 2, 3); 4322 4323 RE_PV_COLOR_DECL(s2,len2,is_uni,PERL_DEBUG_PAD(2), 4324 locinput, loc_regeol - locinput, 10, 0, 1); 4325 4326 const STRLEN tlen=len0+len1+len2; 4327 Perl_re_printf( aTHX_ 4328 "%4" IVdf " <%.*s%.*s%s%.*s>%*s|%4u| ", 4329 (IV)(locinput - loc_bostr), 4330 len0, s0, 4331 len1, s1, 4332 (docolor ? "" : "> <"), 4333 len2, s2, 4334 (int)(tlen > 19 ? 0 : 19 - tlen), 4335 "", 4336 depth); 4337 } 4338 } 4339 4340 #endif 4341 4342 /* reg_check_named_buff_matched() 4343 * Checks to see if a named buffer has matched. The data array of 4344 * buffer numbers corresponding to the buffer is expected to reside 4345 * in the regexp->data->data array in the slot stored in the ARG() of 4346 * node involved. Note that this routine doesn't actually care about the 4347 * name, that information is not preserved from compilation to execution. 4348 * Returns the index of the leftmost defined buffer with the given name 4349 * or 0 if non of the buffers matched. 4350 */ 4351 STATIC I32 4352 S_reg_check_named_buff_matched(const regexp *rex, const regnode *scan) 4353 { 4354 I32 n; 4355 RXi_GET_DECL(rex,rexi); 4356 SV *sv_dat= MUTABLE_SV(rexi->data->data[ ARG( scan ) ]); 4357 I32 *nums=(I32*)SvPVX(sv_dat); 4358 4359 PERL_ARGS_ASSERT_REG_CHECK_NAMED_BUFF_MATCHED; 4360 4361 for ( n=0; n<SvIVX(sv_dat); n++ ) { 4362 if ((I32)rex->lastparen >= nums[n] && 4363 rex->offs[nums[n]].end != -1) 4364 { 4365 return nums[n]; 4366 } 4367 } 4368 return 0; 4369 } 4370 4371 4372 static bool 4373 S_setup_EXACTISH_ST_c1_c2(pTHX_ const regnode * const text_node, int *c1p, 4374 U8* c1_utf8, int *c2p, U8* c2_utf8, regmatch_info *reginfo) 4375 { 4376 /* This function determines if there are one or two characters that match 4377 * the first character of the passed-in EXACTish node <text_node>, and if 4378 * so, returns them in the passed-in pointers. 4379 * 4380 * If it determines that no possible character in the target string can 4381 * match, it returns FALSE; otherwise TRUE. (The FALSE situation occurs if 4382 * the first character in <text_node> requires UTF-8 to represent, and the 4383 * target string isn't in UTF-8.) 4384 * 4385 * If there are more than two characters that could match the beginning of 4386 * <text_node>, or if more context is required to determine a match or not, 4387 * it sets both *<c1p> and *<c2p> to CHRTEST_VOID. 4388 * 4389 * The motiviation behind this function is to allow the caller to set up 4390 * tight loops for matching. If <text_node> is of type EXACT, there is 4391 * only one possible character that can match its first character, and so 4392 * the situation is quite simple. But things get much more complicated if 4393 * folding is involved. It may be that the first character of an EXACTFish 4394 * node doesn't participate in any possible fold, e.g., punctuation, so it 4395 * can be matched only by itself. The vast majority of characters that are 4396 * in folds match just two things, their lower and upper-case equivalents. 4397 * But not all are like that; some have multiple possible matches, or match 4398 * sequences of more than one character. This function sorts all that out. 4399 * 4400 * Consider the patterns A*B or A*?B where A and B are arbitrary. In a 4401 * loop of trying to match A*, we know we can't exit where the thing 4402 * following it isn't a B. And something can't be a B unless it is the 4403 * beginning of B. By putting a quick test for that beginning in a tight 4404 * loop, we can rule out things that can't possibly be B without having to 4405 * break out of the loop, thus avoiding work. Similarly, if A is a single 4406 * character, we can make a tight loop matching A*, using the outputs of 4407 * this function. 4408 * 4409 * If the target string to match isn't in UTF-8, and there aren't 4410 * complications which require CHRTEST_VOID, *<c1p> and *<c2p> are set to 4411 * the one or two possible octets (which are characters in this situation) 4412 * that can match. In all cases, if there is only one character that can 4413 * match, *<c1p> and *<c2p> will be identical. 4414 * 4415 * If the target string is in UTF-8, the buffers pointed to by <c1_utf8> 4416 * and <c2_utf8> will contain the one or two UTF-8 sequences of bytes that 4417 * can match the beginning of <text_node>. They should be declared with at 4418 * least length UTF8_MAXBYTES+1. (If the target string isn't in UTF-8, it is 4419 * undefined what these contain.) If one or both of the buffers are 4420 * invariant under UTF-8, *<c1p>, and *<c2p> will also be set to the 4421 * corresponding invariant. If variant, the corresponding *<c1p> and/or 4422 * *<c2p> will be set to a negative number(s) that shouldn't match any code 4423 * point (unless inappropriately coerced to unsigned). *<c1p> will equal 4424 * *<c2p> if and only if <c1_utf8> and <c2_utf8> are the same. */ 4425 4426 const bool utf8_target = reginfo->is_utf8_target; 4427 4428 UV c1 = (UV)CHRTEST_NOT_A_CP_1; 4429 UV c2 = (UV)CHRTEST_NOT_A_CP_2; 4430 bool use_chrtest_void = FALSE; 4431 const bool is_utf8_pat = reginfo->is_utf8_pat; 4432 4433 /* Used when we have both utf8 input and utf8 output, to avoid converting 4434 * to/from code points */ 4435 bool utf8_has_been_setup = FALSE; 4436 4437 dVAR; 4438 4439 U8 *pat = (U8*)STRING(text_node); 4440 U8 folded[UTF8_MAX_FOLD_CHAR_EXPAND * UTF8_MAXBYTES_CASE + 1] = { '\0' }; 4441 4442 if (OP(text_node) == EXACT || OP(text_node) == EXACTL) { 4443 4444 /* In an exact node, only one thing can be matched, that first 4445 * character. If both the pat and the target are UTF-8, we can just 4446 * copy the input to the output, avoiding finding the code point of 4447 * that character */ 4448 if (!is_utf8_pat) { 4449 c2 = c1 = *pat; 4450 } 4451 else if (utf8_target) { 4452 Copy(pat, c1_utf8, UTF8SKIP(pat), U8); 4453 Copy(pat, c2_utf8, UTF8SKIP(pat), U8); 4454 utf8_has_been_setup = TRUE; 4455 } 4456 else { 4457 c2 = c1 = valid_utf8_to_uvchr(pat, NULL); 4458 } 4459 } 4460 else { /* an EXACTFish node */ 4461 U8 *pat_end = pat + STR_LEN(text_node); 4462 4463 /* An EXACTFL node has at least some characters unfolded, because what 4464 * they match is not known until now. So, now is the time to fold 4465 * the first few of them, as many as are needed to determine 'c1' and 4466 * 'c2' later in the routine. If the pattern isn't UTF-8, we only need 4467 * to fold if in a UTF-8 locale, and then only the Sharp S; everything 4468 * else is 1-1 and isn't assumed to be folded. In a UTF-8 pattern, we 4469 * need to fold as many characters as a single character can fold to, 4470 * so that later we can check if the first ones are such a multi-char 4471 * fold. But, in such a pattern only locale-problematic characters 4472 * aren't folded, so we can skip this completely if the first character 4473 * in the node isn't one of the tricky ones */ 4474 if (OP(text_node) == EXACTFL) { 4475 4476 if (! is_utf8_pat) { 4477 if (IN_UTF8_CTYPE_LOCALE && *pat == LATIN_SMALL_LETTER_SHARP_S) 4478 { 4479 folded[0] = folded[1] = 's'; 4480 pat = folded; 4481 pat_end = folded + 2; 4482 } 4483 } 4484 else if (is_PROBLEMATIC_LOCALE_FOLDEDS_START_utf8(pat)) { 4485 U8 *s = pat; 4486 U8 *d = folded; 4487 int i; 4488 4489 for (i = 0; i < UTF8_MAX_FOLD_CHAR_EXPAND && s < pat_end; i++) { 4490 if (isASCII(*s)) { 4491 *(d++) = (U8) toFOLD_LC(*s); 4492 s++; 4493 } 4494 else { 4495 STRLEN len; 4496 _toFOLD_utf8_flags(s, 4497 pat_end, 4498 d, 4499 &len, 4500 FOLD_FLAGS_FULL | FOLD_FLAGS_LOCALE); 4501 d += len; 4502 s += UTF8SKIP(s); 4503 } 4504 } 4505 4506 pat = folded; 4507 pat_end = d; 4508 } 4509 } 4510 4511 if ((is_utf8_pat && is_MULTI_CHAR_FOLD_utf8_safe(pat, pat_end)) 4512 || (!is_utf8_pat && is_MULTI_CHAR_FOLD_latin1_safe(pat, pat_end))) 4513 { 4514 /* Multi-character folds require more context to sort out. Also 4515 * PL_utf8_foldclosures used below doesn't handle them, so have to 4516 * be handled outside this routine */ 4517 use_chrtest_void = TRUE; 4518 } 4519 else { /* an EXACTFish node which doesn't begin with a multi-char fold */ 4520 c1 = is_utf8_pat ? valid_utf8_to_uvchr(pat, NULL) : *pat; 4521 if (c1 > 255) { 4522 const unsigned int * remaining_folds_to_list; 4523 unsigned int first_folds_to; 4524 4525 /* Look up what code points (besides c1) fold to c1; e.g., 4526 * [ 'K', KELVIN_SIGN ] both fold to 'k'. */ 4527 Size_t folds_to_count = _inverse_folds(c1, 4528 &first_folds_to, 4529 &remaining_folds_to_list); 4530 if (folds_to_count == 0) { 4531 c2 = c1; /* there is only a single character that could 4532 match */ 4533 } 4534 else if (folds_to_count != 1) { 4535 /* If there aren't exactly two folds to this (itself and 4536 * another), it is outside the scope of this function */ 4537 use_chrtest_void = TRUE; 4538 } 4539 else { /* There are two. We already have one, get the other */ 4540 c2 = first_folds_to; 4541 4542 /* Folds that cross the 255/256 boundary are forbidden if 4543 * EXACTFL (and isnt a UTF8 locale), or EXACTFAA and one is 4544 * ASCIII. The only other match to c1 is c2, and since c1 4545 * is above 255, c2 better be as well under these 4546 * circumstances. If it isn't, it means the only legal 4547 * match of c1 is itself. */ 4548 if ( c2 < 256 4549 && ( ( OP(text_node) == EXACTFL 4550 && ! IN_UTF8_CTYPE_LOCALE) 4551 || (( OP(text_node) == EXACTFAA 4552 || OP(text_node) == EXACTFAA_NO_TRIE) 4553 && (isASCII(c1) || isASCII(c2))))) 4554 { 4555 c2 = c1; 4556 } 4557 } 4558 } 4559 else /* Here, c1 is <= 255 */ 4560 if (utf8_target 4561 && HAS_NONLATIN1_FOLD_CLOSURE(c1) 4562 && ( ! (OP(text_node) == EXACTFL && ! IN_UTF8_CTYPE_LOCALE)) 4563 && ((OP(text_node) != EXACTFAA 4564 && OP(text_node) != EXACTFAA_NO_TRIE) 4565 || ! isASCII(c1))) 4566 { 4567 /* Here, there could be something above Latin1 in the target 4568 * which folds to this character in the pattern. All such 4569 * cases except LATIN SMALL LETTER Y WITH DIAERESIS have more 4570 * than two characters involved in their folds, so are outside 4571 * the scope of this function */ 4572 if (UNLIKELY(c1 == LATIN_SMALL_LETTER_Y_WITH_DIAERESIS)) { 4573 c2 = LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS; 4574 } 4575 else { 4576 use_chrtest_void = TRUE; 4577 } 4578 } 4579 else { /* Here nothing above Latin1 can fold to the pattern 4580 character */ 4581 switch (OP(text_node)) { 4582 4583 case EXACTFL: /* /l rules */ 4584 c2 = PL_fold_locale[c1]; 4585 break; 4586 4587 case EXACTF: /* This node only generated for non-utf8 4588 patterns */ 4589 assert(! is_utf8_pat); 4590 if (! utf8_target) { /* /d rules */ 4591 c2 = PL_fold[c1]; 4592 break; 4593 } 4594 /* FALLTHROUGH */ 4595 /* /u rules for all these. This happens to work for 4596 * EXACTFAA as nothing in Latin1 folds to ASCII */ 4597 case EXACTFAA_NO_TRIE: /* This node only generated for 4598 non-utf8 patterns */ 4599 assert(! is_utf8_pat); 4600 /* FALLTHROUGH */ 4601 case EXACTFAA: 4602 case EXACTFU_SS: 4603 case EXACTFU: 4604 c2 = PL_fold_latin1[c1]; 4605 break; 4606 4607 default: 4608 Perl_croak(aTHX_ "panic: Unexpected op %u", OP(text_node)); 4609 NOT_REACHED; /* NOTREACHED */ 4610 } 4611 } 4612 } 4613 } 4614 4615 /* Here have figured things out. Set up the returns */ 4616 if (use_chrtest_void) { 4617 *c2p = *c1p = CHRTEST_VOID; 4618 } 4619 else if (utf8_target) { 4620 if (! utf8_has_been_setup) { /* Don't have the utf8; must get it */ 4621 uvchr_to_utf8(c1_utf8, c1); 4622 uvchr_to_utf8(c2_utf8, c2); 4623 } 4624 4625 /* Invariants are stored in both the utf8 and byte outputs; Use 4626 * negative numbers otherwise for the byte ones. Make sure that the 4627 * byte ones are the same iff the utf8 ones are the same */ 4628 *c1p = (UTF8_IS_INVARIANT(*c1_utf8)) ? *c1_utf8 : CHRTEST_NOT_A_CP_1; 4629 *c2p = (UTF8_IS_INVARIANT(*c2_utf8)) 4630 ? *c2_utf8 4631 : (c1 == c2) 4632 ? CHRTEST_NOT_A_CP_1 4633 : CHRTEST_NOT_A_CP_2; 4634 } 4635 else if (c1 > 255) { 4636 if (c2 > 255) { /* both possibilities are above what a non-utf8 string 4637 can represent */ 4638 return FALSE; 4639 } 4640 4641 *c1p = *c2p = c2; /* c2 is the only representable value */ 4642 } 4643 else { /* c1 is representable; see about c2 */ 4644 *c1p = c1; 4645 *c2p = (c2 < 256) ? c2 : c1; 4646 } 4647 4648 return TRUE; 4649 } 4650 4651 STATIC bool 4652 S_isGCB(pTHX_ const GCB_enum before, const GCB_enum after, const U8 * const strbeg, const U8 * const curpos, const bool utf8_target) 4653 { 4654 /* returns a boolean indicating if there is a Grapheme Cluster Boundary 4655 * between the inputs. See http://www.unicode.org/reports/tr29/. */ 4656 4657 PERL_ARGS_ASSERT_ISGCB; 4658 4659 switch (GCB_table[before][after]) { 4660 case GCB_BREAKABLE: 4661 return TRUE; 4662 4663 case GCB_NOBREAK: 4664 return FALSE; 4665 4666 case GCB_RI_then_RI: 4667 { 4668 int RI_count = 1; 4669 U8 * temp_pos = (U8 *) curpos; 4670 4671 /* Do not break within emoji flag sequences. That is, do not 4672 * break between regional indicator (RI) symbols if there is an 4673 * odd number of RI characters before the break point. 4674 * GB12 sot (RI RI)* RI × RI 4675 * GB13 [^RI] (RI RI)* RI × RI */ 4676 4677 while (backup_one_GCB(strbeg, 4678 &temp_pos, 4679 utf8_target) == GCB_Regional_Indicator) 4680 { 4681 RI_count++; 4682 } 4683 4684 return RI_count % 2 != 1; 4685 } 4686 4687 case GCB_EX_then_EM: 4688 4689 /* GB10 ( E_Base | E_Base_GAZ ) Extend* × E_Modifier */ 4690 { 4691 U8 * temp_pos = (U8 *) curpos; 4692 GCB_enum prev; 4693 4694 do { 4695 prev = backup_one_GCB(strbeg, &temp_pos, utf8_target); 4696 } 4697 while (prev == GCB_Extend); 4698 4699 return prev != GCB_E_Base && prev != GCB_E_Base_GAZ; 4700 } 4701 4702 default: 4703 break; 4704 } 4705 4706 #ifdef DEBUGGING 4707 Perl_re_printf( aTHX_ "Unhandled GCB pair: GCB_table[%d, %d] = %d\n", 4708 before, after, GCB_table[before][after]); 4709 assert(0); 4710 #endif 4711 return TRUE; 4712 } 4713 4714 STATIC GCB_enum 4715 S_backup_one_GCB(pTHX_ const U8 * const strbeg, U8 ** curpos, const bool utf8_target) 4716 { 4717 GCB_enum gcb; 4718 4719 PERL_ARGS_ASSERT_BACKUP_ONE_GCB; 4720 4721 if (*curpos < strbeg) { 4722 return GCB_EDGE; 4723 } 4724 4725 if (utf8_target) { 4726 U8 * prev_char_pos = reghopmaybe3(*curpos, -1, strbeg); 4727 U8 * prev_prev_char_pos; 4728 4729 if (! prev_char_pos) { 4730 return GCB_EDGE; 4731 } 4732 4733 if ((prev_prev_char_pos = reghopmaybe3((U8 *) prev_char_pos, -1, strbeg))) { 4734 gcb = getGCB_VAL_UTF8(prev_prev_char_pos, prev_char_pos); 4735 *curpos = prev_char_pos; 4736 prev_char_pos = prev_prev_char_pos; 4737 } 4738 else { 4739 *curpos = (U8 *) strbeg; 4740 return GCB_EDGE; 4741 } 4742 } 4743 else { 4744 if (*curpos - 2 < strbeg) { 4745 *curpos = (U8 *) strbeg; 4746 return GCB_EDGE; 4747 } 4748 (*curpos)--; 4749 gcb = getGCB_VAL_CP(*(*curpos - 1)); 4750 } 4751 4752 return gcb; 4753 } 4754 4755 /* Combining marks attach to most classes that precede them, but this defines 4756 * the exceptions (from TR14) */ 4757 #define LB_CM_ATTACHES_TO(prev) ( ! ( prev == LB_EDGE \ 4758 || prev == LB_Mandatory_Break \ 4759 || prev == LB_Carriage_Return \ 4760 || prev == LB_Line_Feed \ 4761 || prev == LB_Next_Line \ 4762 || prev == LB_Space \ 4763 || prev == LB_ZWSpace)) 4764 4765 STATIC bool 4766 S_isLB(pTHX_ LB_enum before, 4767 LB_enum after, 4768 const U8 * const strbeg, 4769 const U8 * const curpos, 4770 const U8 * const strend, 4771 const bool utf8_target) 4772 { 4773 U8 * temp_pos = (U8 *) curpos; 4774 LB_enum prev = before; 4775 4776 /* Is the boundary between 'before' and 'after' line-breakable? 4777 * Most of this is just a table lookup of a generated table from Unicode 4778 * rules. But some rules require context to decide, and so have to be 4779 * implemented in code */ 4780 4781 PERL_ARGS_ASSERT_ISLB; 4782 4783 /* Rule numbers in the comments below are as of Unicode 9.0 */ 4784 4785 redo: 4786 before = prev; 4787 switch (LB_table[before][after]) { 4788 case LB_BREAKABLE: 4789 return TRUE; 4790 4791 case LB_NOBREAK: 4792 case LB_NOBREAK_EVEN_WITH_SP_BETWEEN: 4793 return FALSE; 4794 4795 case LB_SP_foo + LB_BREAKABLE: 4796 case LB_SP_foo + LB_NOBREAK: 4797 case LB_SP_foo + LB_NOBREAK_EVEN_WITH_SP_BETWEEN: 4798 4799 /* When we have something following a SP, we have to look at the 4800 * context in order to know what to do. 4801 * 4802 * SP SP should not reach here because LB7: Do not break before 4803 * spaces. (For two spaces in a row there is nothing that 4804 * overrides that) */ 4805 assert(after != LB_Space); 4806 4807 /* Here we have a space followed by a non-space. Mostly this is a 4808 * case of LB18: "Break after spaces". But there are complications 4809 * as the handling of spaces is somewhat tricky. They are in a 4810 * number of rules, which have to be applied in priority order, but 4811 * something earlier in the string can cause a rule to be skipped 4812 * and a lower priority rule invoked. A prime example is LB7 which 4813 * says don't break before a space. But rule LB8 (lower priority) 4814 * says that the first break opportunity after a ZW is after any 4815 * span of spaces immediately after it. If a ZW comes before a SP 4816 * in the input, rule LB8 applies, and not LB7. Other such rules 4817 * involve combining marks which are rules 9 and 10, but they may 4818 * override higher priority rules if they come earlier in the 4819 * string. Since we're doing random access into the middle of the 4820 * string, we have to look for rules that should get applied based 4821 * on both string position and priority. Combining marks do not 4822 * attach to either ZW nor SP, so we don't have to consider them 4823 * until later. 4824 * 4825 * To check for LB8, we have to find the first non-space character 4826 * before this span of spaces */ 4827 do { 4828 prev = backup_one_LB(strbeg, &temp_pos, utf8_target); 4829 } 4830 while (prev == LB_Space); 4831 4832 /* LB8 Break before any character following a zero-width space, 4833 * even if one or more spaces intervene. 4834 * ZW SP* ÷ 4835 * So if we have a ZW just before this span, and to get here this 4836 * is the final space in the span. */ 4837 if (prev == LB_ZWSpace) { 4838 return TRUE; 4839 } 4840 4841 /* Here, not ZW SP+. There are several rules that have higher 4842 * priority than LB18 and can be resolved now, as they don't depend 4843 * on anything earlier in the string (except ZW, which we have 4844 * already handled). One of these rules is LB11 Do not break 4845 * before Word joiner, but we have specially encoded that in the 4846 * lookup table so it is caught by the single test below which 4847 * catches the other ones. */ 4848 if (LB_table[LB_Space][after] - LB_SP_foo 4849 == LB_NOBREAK_EVEN_WITH_SP_BETWEEN) 4850 { 4851 return FALSE; 4852 } 4853 4854 /* If we get here, we have to XXX consider combining marks. */ 4855 if (prev == LB_Combining_Mark) { 4856 4857 /* What happens with these depends on the character they 4858 * follow. */ 4859 do { 4860 prev = backup_one_LB(strbeg, &temp_pos, utf8_target); 4861 } 4862 while (prev == LB_Combining_Mark); 4863 4864 /* Most times these attach to and inherit the characteristics 4865 * of that character, but not always, and when not, they are to 4866 * be treated as AL by rule LB10. */ 4867 if (! LB_CM_ATTACHES_TO(prev)) { 4868 prev = LB_Alphabetic; 4869 } 4870 } 4871 4872 /* Here, we have the character preceding the span of spaces all set 4873 * up. We follow LB18: "Break after spaces" unless the table shows 4874 * that is overriden */ 4875 return LB_table[prev][after] != LB_NOBREAK_EVEN_WITH_SP_BETWEEN; 4876 4877 case LB_CM_ZWJ_foo: 4878 4879 /* We don't know how to treat the CM except by looking at the first 4880 * non-CM character preceding it. ZWJ is treated as CM */ 4881 do { 4882 prev = backup_one_LB(strbeg, &temp_pos, utf8_target); 4883 } 4884 while (prev == LB_Combining_Mark || prev == LB_ZWJ); 4885 4886 /* Here, 'prev' is that first earlier non-CM character. If the CM 4887 * attatches to it, then it inherits the behavior of 'prev'. If it 4888 * doesn't attach, it is to be treated as an AL */ 4889 if (! LB_CM_ATTACHES_TO(prev)) { 4890 prev = LB_Alphabetic; 4891 } 4892 4893 goto redo; 4894 4895 case LB_HY_or_BA_then_foo + LB_BREAKABLE: 4896 case LB_HY_or_BA_then_foo + LB_NOBREAK: 4897 4898 /* LB21a Don't break after Hebrew + Hyphen. 4899 * HL (HY | BA) × */ 4900 4901 if (backup_one_LB(strbeg, &temp_pos, utf8_target) 4902 == LB_Hebrew_Letter) 4903 { 4904 return FALSE; 4905 } 4906 4907 return LB_table[prev][after] - LB_HY_or_BA_then_foo == LB_BREAKABLE; 4908 4909 case LB_PR_or_PO_then_OP_or_HY + LB_BREAKABLE: 4910 case LB_PR_or_PO_then_OP_or_HY + LB_NOBREAK: 4911 4912 /* LB25a (PR | PO) × ( OP | HY )? NU */ 4913 if (advance_one_LB(&temp_pos, strend, utf8_target) == LB_Numeric) { 4914 return FALSE; 4915 } 4916 4917 return LB_table[prev][after] - LB_PR_or_PO_then_OP_or_HY 4918 == LB_BREAKABLE; 4919 4920 case LB_SY_or_IS_then_various + LB_BREAKABLE: 4921 case LB_SY_or_IS_then_various + LB_NOBREAK: 4922 { 4923 /* LB25d NU (SY | IS)* × (NU | SY | IS | CL | CP ) */ 4924 4925 LB_enum temp = prev; 4926 do { 4927 temp = backup_one_LB(strbeg, &temp_pos, utf8_target); 4928 } 4929 while (temp == LB_Break_Symbols || temp == LB_Infix_Numeric); 4930 if (temp == LB_Numeric) { 4931 return FALSE; 4932 } 4933 4934 return LB_table[prev][after] - LB_SY_or_IS_then_various 4935 == LB_BREAKABLE; 4936 } 4937 4938 case LB_various_then_PO_or_PR + LB_BREAKABLE: 4939 case LB_various_then_PO_or_PR + LB_NOBREAK: 4940 { 4941 /* LB25e NU (SY | IS)* (CL | CP)? × (PO | PR) */ 4942 4943 LB_enum temp = prev; 4944 if (temp == LB_Close_Punctuation || temp == LB_Close_Parenthesis) 4945 { 4946 temp = backup_one_LB(strbeg, &temp_pos, utf8_target); 4947 } 4948 while (temp == LB_Break_Symbols || temp == LB_Infix_Numeric) { 4949 temp = backup_one_LB(strbeg, &temp_pos, utf8_target); 4950 } 4951 if (temp == LB_Numeric) { 4952 return FALSE; 4953 } 4954 return LB_various_then_PO_or_PR; 4955 } 4956 4957 case LB_RI_then_RI + LB_NOBREAK: 4958 case LB_RI_then_RI + LB_BREAKABLE: 4959 { 4960 int RI_count = 1; 4961 4962 /* LB30a Break between two regional indicator symbols if and 4963 * only if there are an even number of regional indicators 4964 * preceding the position of the break. 4965 * 4966 * sot (RI RI)* RI × RI 4967 * [^RI] (RI RI)* RI × RI */ 4968 4969 while (backup_one_LB(strbeg, 4970 &temp_pos, 4971 utf8_target) == LB_Regional_Indicator) 4972 { 4973 RI_count++; 4974 } 4975 4976 return RI_count % 2 == 0; 4977 } 4978 4979 default: 4980 break; 4981 } 4982 4983 #ifdef DEBUGGING 4984 Perl_re_printf( aTHX_ "Unhandled LB pair: LB_table[%d, %d] = %d\n", 4985 before, after, LB_table[before][after]); 4986 assert(0); 4987 #endif 4988 return TRUE; 4989 } 4990 4991 STATIC LB_enum 4992 S_advance_one_LB(pTHX_ U8 ** curpos, const U8 * const strend, const bool utf8_target) 4993 { 4994 LB_enum lb; 4995 4996 PERL_ARGS_ASSERT_ADVANCE_ONE_LB; 4997 4998 if (*curpos >= strend) { 4999 return LB_EDGE; 5000 } 5001 5002 if (utf8_target) { 5003 *curpos += UTF8SKIP(*curpos); 5004 if (*curpos >= strend) { 5005 return LB_EDGE; 5006 } 5007 lb = getLB_VAL_UTF8(*curpos, strend); 5008 } 5009 else { 5010 (*curpos)++; 5011 if (*curpos >= strend) { 5012 return LB_EDGE; 5013 } 5014 lb = getLB_VAL_CP(**curpos); 5015 } 5016 5017 return lb; 5018 } 5019 5020 STATIC LB_enum 5021 S_backup_one_LB(pTHX_ const U8 * const strbeg, U8 ** curpos, const bool utf8_target) 5022 { 5023 LB_enum lb; 5024 5025 PERL_ARGS_ASSERT_BACKUP_ONE_LB; 5026 5027 if (*curpos < strbeg) { 5028 return LB_EDGE; 5029 } 5030 5031 if (utf8_target) { 5032 U8 * prev_char_pos = reghopmaybe3(*curpos, -1, strbeg); 5033 U8 * prev_prev_char_pos; 5034 5035 if (! prev_char_pos) { 5036 return LB_EDGE; 5037 } 5038 5039 if ((prev_prev_char_pos = reghopmaybe3((U8 *) prev_char_pos, -1, strbeg))) { 5040 lb = getLB_VAL_UTF8(prev_prev_char_pos, prev_char_pos); 5041 *curpos = prev_char_pos; 5042 prev_char_pos = prev_prev_char_pos; 5043 } 5044 else { 5045 *curpos = (U8 *) strbeg; 5046 return LB_EDGE; 5047 } 5048 } 5049 else { 5050 if (*curpos - 2 < strbeg) { 5051 *curpos = (U8 *) strbeg; 5052 return LB_EDGE; 5053 } 5054 (*curpos)--; 5055 lb = getLB_VAL_CP(*(*curpos - 1)); 5056 } 5057 5058 return lb; 5059 } 5060 5061 STATIC bool 5062 S_isSB(pTHX_ SB_enum before, 5063 SB_enum after, 5064 const U8 * const strbeg, 5065 const U8 * const curpos, 5066 const U8 * const strend, 5067 const bool utf8_target) 5068 { 5069 /* returns a boolean indicating if there is a Sentence Boundary Break 5070 * between the inputs. See http://www.unicode.org/reports/tr29/ */ 5071 5072 U8 * lpos = (U8 *) curpos; 5073 bool has_para_sep = FALSE; 5074 bool has_sp = FALSE; 5075 5076 PERL_ARGS_ASSERT_ISSB; 5077 5078 /* Break at the start and end of text. 5079 SB1. sot ÷ 5080 SB2. ÷ eot 5081 But unstated in Unicode is don't break if the text is empty */ 5082 if (before == SB_EDGE || after == SB_EDGE) { 5083 return before != after; 5084 } 5085 5086 /* SB 3: Do not break within CRLF. */ 5087 if (before == SB_CR && after == SB_LF) { 5088 return FALSE; 5089 } 5090 5091 /* Break after paragraph separators. CR and LF are considered 5092 * so because Unicode views text as like word processing text where there 5093 * are no newlines except between paragraphs, and the word processor takes 5094 * care of wrapping without there being hard line-breaks in the text *./ 5095 SB4. Sep | CR | LF ÷ */ 5096 if (before == SB_Sep || before == SB_CR || before == SB_LF) { 5097 return TRUE; 5098 } 5099 5100 /* Ignore Format and Extend characters, except after sot, Sep, CR, or LF. 5101 * (See Section 6.2, Replacing Ignore Rules.) 5102 SB5. X (Extend | Format)* → X */ 5103 if (after == SB_Extend || after == SB_Format) { 5104 5105 /* Implied is that the these characters attach to everything 5106 * immediately prior to them except for those separator-type 5107 * characters. And the rules earlier have already handled the case 5108 * when one of those immediately precedes the extend char */ 5109 return FALSE; 5110 } 5111 5112 if (before == SB_Extend || before == SB_Format) { 5113 U8 * temp_pos = lpos; 5114 const SB_enum backup = backup_one_SB(strbeg, &temp_pos, utf8_target); 5115 if ( backup != SB_EDGE 5116 && backup != SB_Sep 5117 && backup != SB_CR 5118 && backup != SB_LF) 5119 { 5120 before = backup; 5121 lpos = temp_pos; 5122 } 5123 5124 /* Here, both 'before' and 'backup' are these types; implied is that we 5125 * don't break between them */ 5126 if (backup == SB_Extend || backup == SB_Format) { 5127 return FALSE; 5128 } 5129 } 5130 5131 /* Do not break after ambiguous terminators like period, if they are 5132 * immediately followed by a number or lowercase letter, if they are 5133 * between uppercase letters, if the first following letter (optionally 5134 * after certain punctuation) is lowercase, or if they are followed by 5135 * "continuation" punctuation such as comma, colon, or semicolon. For 5136 * example, a period may be an abbreviation or numeric period, and thus may 5137 * not mark the end of a sentence. 5138 5139 * SB6. ATerm × Numeric */ 5140 if (before == SB_ATerm && after == SB_Numeric) { 5141 return FALSE; 5142 } 5143 5144 /* SB7. (Upper | Lower) ATerm × Upper */ 5145 if (before == SB_ATerm && after == SB_Upper) { 5146 U8 * temp_pos = lpos; 5147 SB_enum backup = backup_one_SB(strbeg, &temp_pos, utf8_target); 5148 if (backup == SB_Upper || backup == SB_Lower) { 5149 return FALSE; 5150 } 5151 } 5152 5153 /* The remaining rules that aren't the final one, all require an STerm or 5154 * an ATerm after having backed up over some Close* Sp*, and in one case an 5155 * optional Paragraph separator, although one rule doesn't have any Sp's in it. 5156 * So do that backup now, setting flags if either Sp or a paragraph 5157 * separator are found */ 5158 5159 if (before == SB_Sep || before == SB_CR || before == SB_LF) { 5160 has_para_sep = TRUE; 5161 before = backup_one_SB(strbeg, &lpos, utf8_target); 5162 } 5163 5164 if (before == SB_Sp) { 5165 has_sp = TRUE; 5166 do { 5167 before = backup_one_SB(strbeg, &lpos, utf8_target); 5168 } 5169 while (before == SB_Sp); 5170 } 5171 5172 while (before == SB_Close) { 5173 before = backup_one_SB(strbeg, &lpos, utf8_target); 5174 } 5175 5176 /* The next few rules apply only when the backed-up-to is an ATerm, and in 5177 * most cases an STerm */ 5178 if (before == SB_STerm || before == SB_ATerm) { 5179 5180 /* So, here the lhs matches 5181 * (STerm | ATerm) Close* Sp* (Sep | CR | LF)? 5182 * and we have set flags if we found an Sp, or the optional Sep,CR,LF. 5183 * The rules that apply here are: 5184 * 5185 * SB8 ATerm Close* Sp* × ( ¬(OLetter | Upper | Lower | Sep | CR 5186 | LF | STerm | ATerm) )* Lower 5187 SB8a (STerm | ATerm) Close* Sp* × (SContinue | STerm | ATerm) 5188 SB9 (STerm | ATerm) Close* × (Close | Sp | Sep | CR | LF) 5189 SB10 (STerm | ATerm) Close* Sp* × (Sp | Sep | CR | LF) 5190 SB11 (STerm | ATerm) Close* Sp* (Sep | CR | LF)? ÷ 5191 */ 5192 5193 /* And all but SB11 forbid having seen a paragraph separator */ 5194 if (! has_para_sep) { 5195 if (before == SB_ATerm) { /* SB8 */ 5196 U8 * rpos = (U8 *) curpos; 5197 SB_enum later = after; 5198 5199 while ( later != SB_OLetter 5200 && later != SB_Upper 5201 && later != SB_Lower 5202 && later != SB_Sep 5203 && later != SB_CR 5204 && later != SB_LF 5205 && later != SB_STerm 5206 && later != SB_ATerm 5207 && later != SB_EDGE) 5208 { 5209 later = advance_one_SB(&rpos, strend, utf8_target); 5210 } 5211 if (later == SB_Lower) { 5212 return FALSE; 5213 } 5214 } 5215 5216 if ( after == SB_SContinue /* SB8a */ 5217 || after == SB_STerm 5218 || after == SB_ATerm) 5219 { 5220 return FALSE; 5221 } 5222 5223 if (! has_sp) { /* SB9 applies only if there was no Sp* */ 5224 if ( after == SB_Close 5225 || after == SB_Sp 5226 || after == SB_Sep 5227 || after == SB_CR 5228 || after == SB_LF) 5229 { 5230 return FALSE; 5231 } 5232 } 5233 5234 /* SB10. This and SB9 could probably be combined some way, but khw 5235 * has decided to follow the Unicode rule book precisely for 5236 * simplified maintenance */ 5237 if ( after == SB_Sp 5238 || after == SB_Sep 5239 || after == SB_CR 5240 || after == SB_LF) 5241 { 5242 return FALSE; 5243 } 5244 } 5245 5246 /* SB11. */ 5247 return TRUE; 5248 } 5249 5250 /* Otherwise, do not break. 5251 SB12. Any × Any */ 5252 5253 return FALSE; 5254 } 5255 5256 STATIC SB_enum 5257 S_advance_one_SB(pTHX_ U8 ** curpos, const U8 * const strend, const bool utf8_target) 5258 { 5259 SB_enum sb; 5260 5261 PERL_ARGS_ASSERT_ADVANCE_ONE_SB; 5262 5263 if (*curpos >= strend) { 5264 return SB_EDGE; 5265 } 5266 5267 if (utf8_target) { 5268 do { 5269 *curpos += UTF8SKIP(*curpos); 5270 if (*curpos >= strend) { 5271 return SB_EDGE; 5272 } 5273 sb = getSB_VAL_UTF8(*curpos, strend); 5274 } while (sb == SB_Extend || sb == SB_Format); 5275 } 5276 else { 5277 do { 5278 (*curpos)++; 5279 if (*curpos >= strend) { 5280 return SB_EDGE; 5281 } 5282 sb = getSB_VAL_CP(**curpos); 5283 } while (sb == SB_Extend || sb == SB_Format); 5284 } 5285 5286 return sb; 5287 } 5288 5289 STATIC SB_enum 5290 S_backup_one_SB(pTHX_ const U8 * const strbeg, U8 ** curpos, const bool utf8_target) 5291 { 5292 SB_enum sb; 5293 5294 PERL_ARGS_ASSERT_BACKUP_ONE_SB; 5295 5296 if (*curpos < strbeg) { 5297 return SB_EDGE; 5298 } 5299 5300 if (utf8_target) { 5301 U8 * prev_char_pos = reghopmaybe3(*curpos, -1, strbeg); 5302 if (! prev_char_pos) { 5303 return SB_EDGE; 5304 } 5305 5306 /* Back up over Extend and Format. curpos is always just to the right 5307 * of the characater whose value we are getting */ 5308 do { 5309 U8 * prev_prev_char_pos; 5310 if ((prev_prev_char_pos = reghopmaybe3((U8 *) prev_char_pos, -1, 5311 strbeg))) 5312 { 5313 sb = getSB_VAL_UTF8(prev_prev_char_pos, prev_char_pos); 5314 *curpos = prev_char_pos; 5315 prev_char_pos = prev_prev_char_pos; 5316 } 5317 else { 5318 *curpos = (U8 *) strbeg; 5319 return SB_EDGE; 5320 } 5321 } while (sb == SB_Extend || sb == SB_Format); 5322 } 5323 else { 5324 do { 5325 if (*curpos - 2 < strbeg) { 5326 *curpos = (U8 *) strbeg; 5327 return SB_EDGE; 5328 } 5329 (*curpos)--; 5330 sb = getSB_VAL_CP(*(*curpos - 1)); 5331 } while (sb == SB_Extend || sb == SB_Format); 5332 } 5333 5334 return sb; 5335 } 5336 5337 STATIC bool 5338 S_isWB(pTHX_ WB_enum previous, 5339 WB_enum before, 5340 WB_enum after, 5341 const U8 * const strbeg, 5342 const U8 * const curpos, 5343 const U8 * const strend, 5344 const bool utf8_target) 5345 { 5346 /* Return a boolean as to if the boundary between 'before' and 'after' is 5347 * a Unicode word break, using their published algorithm, but tailored for 5348 * Perl by treating spans of white space as one unit. Context may be 5349 * needed to make this determination. If the value for the character 5350 * before 'before' is known, it is passed as 'previous'; otherwise that 5351 * should be set to WB_UNKNOWN. The other input parameters give the 5352 * boundaries and current position in the matching of the string. That 5353 * is, 'curpos' marks the position where the character whose wb value is 5354 * 'after' begins. See http://www.unicode.org/reports/tr29/ */ 5355 5356 U8 * before_pos = (U8 *) curpos; 5357 U8 * after_pos = (U8 *) curpos; 5358 WB_enum prev = before; 5359 WB_enum next; 5360 5361 PERL_ARGS_ASSERT_ISWB; 5362 5363 /* Rule numbers in the comments below are as of Unicode 9.0 */ 5364 5365 redo: 5366 before = prev; 5367 switch (WB_table[before][after]) { 5368 case WB_BREAKABLE: 5369 return TRUE; 5370 5371 case WB_NOBREAK: 5372 return FALSE; 5373 5374 case WB_hs_then_hs: /* 2 horizontal spaces in a row */ 5375 next = advance_one_WB(&after_pos, strend, utf8_target, 5376 FALSE /* Don't skip Extend nor Format */ ); 5377 /* A space immediately preceeding an Extend or Format is attached 5378 * to by them, and hence gets separated from previous spaces. 5379 * Otherwise don't break between horizontal white space */ 5380 return next == WB_Extend || next == WB_Format; 5381 5382 /* WB4 Ignore Format and Extend characters, except when they appear at 5383 * the beginning of a region of text. This code currently isn't 5384 * general purpose, but it works as the rules are currently and likely 5385 * to be laid out. The reason it works is that when 'they appear at 5386 * the beginning of a region of text', the rule is to break before 5387 * them, just like any other character. Therefore, the default rule 5388 * applies and we don't have to look in more depth. Should this ever 5389 * change, we would have to have 2 'case' statements, like in the rules 5390 * below, and backup a single character (not spacing over the extend 5391 * ones) and then see if that is one of the region-end characters and 5392 * go from there */ 5393 case WB_Ex_or_FO_or_ZWJ_then_foo: 5394 prev = backup_one_WB(&previous, strbeg, &before_pos, utf8_target); 5395 goto redo; 5396 5397 case WB_DQ_then_HL + WB_BREAKABLE: 5398 case WB_DQ_then_HL + WB_NOBREAK: 5399 5400 /* WB7c Hebrew_Letter Double_Quote × Hebrew_Letter */ 5401 5402 if (backup_one_WB(&previous, strbeg, &before_pos, utf8_target) 5403 == WB_Hebrew_Letter) 5404 { 5405 return FALSE; 5406 } 5407 5408 return WB_table[before][after] - WB_DQ_then_HL == WB_BREAKABLE; 5409 5410 case WB_HL_then_DQ + WB_BREAKABLE: 5411 case WB_HL_then_DQ + WB_NOBREAK: 5412 5413 /* WB7b Hebrew_Letter × Double_Quote Hebrew_Letter */ 5414 5415 if (advance_one_WB(&after_pos, strend, utf8_target, 5416 TRUE /* Do skip Extend and Format */ ) 5417 == WB_Hebrew_Letter) 5418 { 5419 return FALSE; 5420 } 5421 5422 return WB_table[before][after] - WB_HL_then_DQ == WB_BREAKABLE; 5423 5424 case WB_LE_or_HL_then_MB_or_ML_or_SQ + WB_NOBREAK: 5425 case WB_LE_or_HL_then_MB_or_ML_or_SQ + WB_BREAKABLE: 5426 5427 /* WB6 (ALetter | Hebrew_Letter) × (MidLetter | MidNumLet 5428 * | Single_Quote) (ALetter | Hebrew_Letter) */ 5429 5430 next = advance_one_WB(&after_pos, strend, utf8_target, 5431 TRUE /* Do skip Extend and Format */ ); 5432 5433 if (next == WB_ALetter || next == WB_Hebrew_Letter) 5434 { 5435 return FALSE; 5436 } 5437 5438 return WB_table[before][after] 5439 - WB_LE_or_HL_then_MB_or_ML_or_SQ == WB_BREAKABLE; 5440 5441 case WB_MB_or_ML_or_SQ_then_LE_or_HL + WB_NOBREAK: 5442 case WB_MB_or_ML_or_SQ_then_LE_or_HL + WB_BREAKABLE: 5443 5444 /* WB7 (ALetter | Hebrew_Letter) (MidLetter | MidNumLet 5445 * | Single_Quote) × (ALetter | Hebrew_Letter) */ 5446 5447 prev = backup_one_WB(&previous, strbeg, &before_pos, utf8_target); 5448 if (prev == WB_ALetter || prev == WB_Hebrew_Letter) 5449 { 5450 return FALSE; 5451 } 5452 5453 return WB_table[before][after] 5454 - WB_MB_or_ML_or_SQ_then_LE_or_HL == WB_BREAKABLE; 5455 5456 case WB_MB_or_MN_or_SQ_then_NU + WB_NOBREAK: 5457 case WB_MB_or_MN_or_SQ_then_NU + WB_BREAKABLE: 5458 5459 /* WB11 Numeric (MidNum | (MidNumLet | Single_Quote)) × Numeric 5460 * */ 5461 5462 if (backup_one_WB(&previous, strbeg, &before_pos, utf8_target) 5463 == WB_Numeric) 5464 { 5465 return FALSE; 5466 } 5467 5468 return WB_table[before][after] 5469 - WB_MB_or_MN_or_SQ_then_NU == WB_BREAKABLE; 5470 5471 case WB_NU_then_MB_or_MN_or_SQ + WB_NOBREAK: 5472 case WB_NU_then_MB_or_MN_or_SQ + WB_BREAKABLE: 5473 5474 /* WB12 Numeric × (MidNum | MidNumLet | Single_Quote) Numeric */ 5475 5476 if (advance_one_WB(&after_pos, strend, utf8_target, 5477 TRUE /* Do skip Extend and Format */ ) 5478 == WB_Numeric) 5479 { 5480 return FALSE; 5481 } 5482 5483 return WB_table[before][after] 5484 - WB_NU_then_MB_or_MN_or_SQ == WB_BREAKABLE; 5485 5486 case WB_RI_then_RI + WB_NOBREAK: 5487 case WB_RI_then_RI + WB_BREAKABLE: 5488 { 5489 int RI_count = 1; 5490 5491 /* Do not break within emoji flag sequences. That is, do not 5492 * break between regional indicator (RI) symbols if there is an 5493 * odd number of RI characters before the potential break 5494 * point. 5495 * 5496 * WB15 sot (RI RI)* RI × RI 5497 * WB16 [^RI] (RI RI)* RI × RI */ 5498 5499 while (backup_one_WB(&previous, 5500 strbeg, 5501 &before_pos, 5502 utf8_target) == WB_Regional_Indicator) 5503 { 5504 RI_count++; 5505 } 5506 5507 return RI_count % 2 != 1; 5508 } 5509 5510 default: 5511 break; 5512 } 5513 5514 #ifdef DEBUGGING 5515 Perl_re_printf( aTHX_ "Unhandled WB pair: WB_table[%d, %d] = %d\n", 5516 before, after, WB_table[before][after]); 5517 assert(0); 5518 #endif 5519 return TRUE; 5520 } 5521 5522 STATIC WB_enum 5523 S_advance_one_WB(pTHX_ U8 ** curpos, 5524 const U8 * const strend, 5525 const bool utf8_target, 5526 const bool skip_Extend_Format) 5527 { 5528 WB_enum wb; 5529 5530 PERL_ARGS_ASSERT_ADVANCE_ONE_WB; 5531 5532 if (*curpos >= strend) { 5533 return WB_EDGE; 5534 } 5535 5536 if (utf8_target) { 5537 5538 /* Advance over Extend and Format */ 5539 do { 5540 *curpos += UTF8SKIP(*curpos); 5541 if (*curpos >= strend) { 5542 return WB_EDGE; 5543 } 5544 wb = getWB_VAL_UTF8(*curpos, strend); 5545 } while ( skip_Extend_Format 5546 && (wb == WB_Extend || wb == WB_Format)); 5547 } 5548 else { 5549 do { 5550 (*curpos)++; 5551 if (*curpos >= strend) { 5552 return WB_EDGE; 5553 } 5554 wb = getWB_VAL_CP(**curpos); 5555 } while ( skip_Extend_Format 5556 && (wb == WB_Extend || wb == WB_Format)); 5557 } 5558 5559 return wb; 5560 } 5561 5562 STATIC WB_enum 5563 S_backup_one_WB(pTHX_ WB_enum * previous, const U8 * const strbeg, U8 ** curpos, const bool utf8_target) 5564 { 5565 WB_enum wb; 5566 5567 PERL_ARGS_ASSERT_BACKUP_ONE_WB; 5568 5569 /* If we know what the previous character's break value is, don't have 5570 * to look it up */ 5571 if (*previous != WB_UNKNOWN) { 5572 wb = *previous; 5573 5574 /* But we need to move backwards by one */ 5575 if (utf8_target) { 5576 *curpos = reghopmaybe3(*curpos, -1, strbeg); 5577 if (! *curpos) { 5578 *previous = WB_EDGE; 5579 *curpos = (U8 *) strbeg; 5580 } 5581 else { 5582 *previous = WB_UNKNOWN; 5583 } 5584 } 5585 else { 5586 (*curpos)--; 5587 *previous = (*curpos <= strbeg) ? WB_EDGE : WB_UNKNOWN; 5588 } 5589 5590 /* And we always back up over these three types */ 5591 if (wb != WB_Extend && wb != WB_Format && wb != WB_ZWJ) { 5592 return wb; 5593 } 5594 } 5595 5596 if (*curpos < strbeg) { 5597 return WB_EDGE; 5598 } 5599 5600 if (utf8_target) { 5601 U8 * prev_char_pos = reghopmaybe3(*curpos, -1, strbeg); 5602 if (! prev_char_pos) { 5603 return WB_EDGE; 5604 } 5605 5606 /* Back up over Extend and Format. curpos is always just to the right 5607 * of the characater whose value we are getting */ 5608 do { 5609 U8 * prev_prev_char_pos; 5610 if ((prev_prev_char_pos = reghopmaybe3((U8 *) prev_char_pos, 5611 -1, 5612 strbeg))) 5613 { 5614 wb = getWB_VAL_UTF8(prev_prev_char_pos, prev_char_pos); 5615 *curpos = prev_char_pos; 5616 prev_char_pos = prev_prev_char_pos; 5617 } 5618 else { 5619 *curpos = (U8 *) strbeg; 5620 return WB_EDGE; 5621 } 5622 } while (wb == WB_Extend || wb == WB_Format || wb == WB_ZWJ); 5623 } 5624 else { 5625 do { 5626 if (*curpos - 2 < strbeg) { 5627 *curpos = (U8 *) strbeg; 5628 return WB_EDGE; 5629 } 5630 (*curpos)--; 5631 wb = getWB_VAL_CP(*(*curpos - 1)); 5632 } while (wb == WB_Extend || wb == WB_Format); 5633 } 5634 5635 return wb; 5636 } 5637 5638 #define EVAL_CLOSE_PAREN_IS(st,expr) \ 5639 ( \ 5640 ( ( st ) ) && \ 5641 ( ( st )->u.eval.close_paren ) && \ 5642 ( ( ( st )->u.eval.close_paren ) == ( (expr) + 1 ) ) \ 5643 ) 5644 5645 #define EVAL_CLOSE_PAREN_IS_TRUE(st,expr) \ 5646 ( \ 5647 ( ( st ) ) && \ 5648 ( ( st )->u.eval.close_paren ) && \ 5649 ( ( expr ) ) && \ 5650 ( ( ( st )->u.eval.close_paren ) == ( (expr) + 1 ) ) \ 5651 ) 5652 5653 5654 #define EVAL_CLOSE_PAREN_SET(st,expr) \ 5655 (st)->u.eval.close_paren = ( (expr) + 1 ) 5656 5657 #define EVAL_CLOSE_PAREN_CLEAR(st) \ 5658 (st)->u.eval.close_paren = 0 5659 5660 /* returns -1 on failure, $+[0] on success */ 5661 STATIC SSize_t 5662 S_regmatch(pTHX_ regmatch_info *reginfo, char *startpos, regnode *prog) 5663 { 5664 dVAR; 5665 const bool utf8_target = reginfo->is_utf8_target; 5666 const U32 uniflags = UTF8_ALLOW_DEFAULT; 5667 REGEXP *rex_sv = reginfo->prog; 5668 regexp *rex = ReANY(rex_sv); 5669 RXi_GET_DECL(rex,rexi); 5670 /* the current state. This is a cached copy of PL_regmatch_state */ 5671 regmatch_state *st; 5672 /* cache heavy used fields of st in registers */ 5673 regnode *scan; 5674 regnode *next; 5675 U32 n = 0; /* general value; init to avoid compiler warning */ 5676 SSize_t ln = 0; /* len or last; init to avoid compiler warning */ 5677 SSize_t endref = 0; /* offset of end of backref when ln is start */ 5678 char *locinput = startpos; 5679 char *pushinput; /* where to continue after a PUSH */ 5680 I32 nextchr; /* is always set to UCHARAT(locinput), or -1 at EOS */ 5681 5682 bool result = 0; /* return value of S_regmatch */ 5683 U32 depth = 0; /* depth of backtrack stack */ 5684 U32 nochange_depth = 0; /* depth of GOSUB recursion with nochange */ 5685 const U32 max_nochange_depth = 5686 (3 * rex->nparens > MAX_RECURSE_EVAL_NOCHANGE_DEPTH) ? 5687 3 * rex->nparens : MAX_RECURSE_EVAL_NOCHANGE_DEPTH; 5688 regmatch_state *yes_state = NULL; /* state to pop to on success of 5689 subpattern */ 5690 /* mark_state piggy backs on the yes_state logic so that when we unwind 5691 the stack on success we can update the mark_state as we go */ 5692 regmatch_state *mark_state = NULL; /* last mark state we have seen */ 5693 regmatch_state *cur_eval = NULL; /* most recent EVAL_AB state */ 5694 struct regmatch_state *cur_curlyx = NULL; /* most recent curlyx */ 5695 U32 state_num; 5696 bool no_final = 0; /* prevent failure from backtracking? */ 5697 bool do_cutgroup = 0; /* no_final only until next branch/trie entry */ 5698 char *startpoint = locinput; 5699 SV *popmark = NULL; /* are we looking for a mark? */ 5700 SV *sv_commit = NULL; /* last mark name seen in failure */ 5701 SV *sv_yes_mark = NULL; /* last mark name we have seen 5702 during a successful match */ 5703 U32 lastopen = 0; /* last open we saw */ 5704 bool has_cutgroup = RXp_HAS_CUTGROUP(rex) ? 1 : 0; 5705 SV* const oreplsv = GvSVn(PL_replgv); 5706 /* these three flags are set by various ops to signal information to 5707 * the very next op. They have a useful lifetime of exactly one loop 5708 * iteration, and are not preserved or restored by state pushes/pops 5709 */ 5710 bool sw = 0; /* the condition value in (?(cond)a|b) */ 5711 bool minmod = 0; /* the next "{n,m}" is a "{n,m}?" */ 5712 int logical = 0; /* the following EVAL is: 5713 0: (?{...}) 5714 1: (?(?{...})X|Y) 5715 2: (??{...}) 5716 or the following IFMATCH/UNLESSM is: 5717 false: plain (?=foo) 5718 true: used as a condition: (?(?=foo)) 5719 */ 5720 PAD* last_pad = NULL; 5721 dMULTICALL; 5722 U8 gimme = G_SCALAR; 5723 CV *caller_cv = NULL; /* who called us */ 5724 CV *last_pushed_cv = NULL; /* most recently called (?{}) CV */ 5725 U32 maxopenparen = 0; /* max '(' index seen so far */ 5726 int to_complement; /* Invert the result? */ 5727 _char_class_number classnum; 5728 bool is_utf8_pat = reginfo->is_utf8_pat; 5729 bool match = FALSE; 5730 I32 orig_savestack_ix = PL_savestack_ix; 5731 U8 * script_run_begin = NULL; 5732 5733 /* Solaris Studio 12.3 messes up fetching PL_charclass['\n'] */ 5734 #if (defined(__SUNPRO_C) && (__SUNPRO_C == 0x5120) && defined(__x86_64) && defined(USE_64_BIT_ALL)) 5735 # define SOLARIS_BAD_OPTIMIZER 5736 const U32 *pl_charclass_dup = PL_charclass; 5737 # define PL_charclass pl_charclass_dup 5738 #endif 5739 5740 #ifdef DEBUGGING 5741 GET_RE_DEBUG_FLAGS_DECL; 5742 #endif 5743 5744 /* protect against undef(*^R) */ 5745 SAVEFREESV(SvREFCNT_inc_simple_NN(oreplsv)); 5746 5747 /* shut up 'may be used uninitialized' compiler warnings for dMULTICALL */ 5748 multicall_oldcatch = 0; 5749 PERL_UNUSED_VAR(multicall_cop); 5750 5751 PERL_ARGS_ASSERT_REGMATCH; 5752 5753 st = PL_regmatch_state; 5754 5755 /* Note that nextchr is a byte even in UTF */ 5756 SET_nextchr; 5757 scan = prog; 5758 5759 DEBUG_OPTIMISE_r( DEBUG_EXECUTE_r({ 5760 DUMP_EXEC_POS( locinput, scan, utf8_target, depth ); 5761 Perl_re_printf( aTHX_ "regmatch start\n" ); 5762 })); 5763 5764 while (scan != NULL) { 5765 next = scan + NEXT_OFF(scan); 5766 if (next == scan) 5767 next = NULL; 5768 state_num = OP(scan); 5769 5770 reenter_switch: 5771 DEBUG_EXECUTE_r( 5772 if (state_num <= REGNODE_MAX) { 5773 SV * const prop = sv_newmortal(); 5774 regnode *rnext = regnext(scan); 5775 5776 DUMP_EXEC_POS( locinput, scan, utf8_target, depth ); 5777 regprop(rex, prop, scan, reginfo, NULL); 5778 Perl_re_printf( aTHX_ 5779 "%*s%" IVdf ":%s(%" IVdf ")\n", 5780 INDENT_CHARS(depth), "", 5781 (IV)(scan - rexi->program), 5782 SvPVX_const(prop), 5783 (PL_regkind[OP(scan)] == END || !rnext) ? 5784 0 : (IV)(rnext - rexi->program)); 5785 } 5786 ); 5787 5788 to_complement = 0; 5789 5790 SET_nextchr; 5791 assert(nextchr < 256 && (nextchr >= 0 || nextchr == NEXTCHR_EOS)); 5792 5793 switch (state_num) { 5794 case SBOL: /* /^../ and /\A../ */ 5795 if (locinput == reginfo->strbeg) 5796 break; 5797 sayNO; 5798 5799 case MBOL: /* /^../m */ 5800 if (locinput == reginfo->strbeg || 5801 (!NEXTCHR_IS_EOS && locinput[-1] == '\n')) 5802 { 5803 break; 5804 } 5805 sayNO; 5806 5807 case GPOS: /* \G */ 5808 if (locinput == reginfo->ganch) 5809 break; 5810 sayNO; 5811 5812 case KEEPS: /* \K */ 5813 /* update the startpoint */ 5814 st->u.keeper.val = rex->offs[0].start; 5815 rex->offs[0].start = locinput - reginfo->strbeg; 5816 PUSH_STATE_GOTO(KEEPS_next, next, locinput); 5817 NOT_REACHED; /* NOTREACHED */ 5818 5819 case KEEPS_next_fail: 5820 /* rollback the start point change */ 5821 rex->offs[0].start = st->u.keeper.val; 5822 sayNO_SILENT; 5823 NOT_REACHED; /* NOTREACHED */ 5824 5825 case MEOL: /* /..$/m */ 5826 if (!NEXTCHR_IS_EOS && nextchr != '\n') 5827 sayNO; 5828 break; 5829 5830 case SEOL: /* /..$/ */ 5831 if (!NEXTCHR_IS_EOS && nextchr != '\n') 5832 sayNO; 5833 if (reginfo->strend - locinput > 1) 5834 sayNO; 5835 break; 5836 5837 case EOS: /* \z */ 5838 if (!NEXTCHR_IS_EOS) 5839 sayNO; 5840 break; 5841 5842 case SANY: /* /./s */ 5843 if (NEXTCHR_IS_EOS) 5844 sayNO; 5845 goto increment_locinput; 5846 5847 case REG_ANY: /* /./ */ 5848 if ((NEXTCHR_IS_EOS) || nextchr == '\n') 5849 sayNO; 5850 goto increment_locinput; 5851 5852 5853 #undef ST 5854 #define ST st->u.trie 5855 case TRIEC: /* (ab|cd) with known charclass */ 5856 /* In this case the charclass data is available inline so 5857 we can fail fast without a lot of extra overhead. 5858 */ 5859 if(!NEXTCHR_IS_EOS && !ANYOF_BITMAP_TEST(scan, nextchr)) { 5860 DEBUG_EXECUTE_r( 5861 Perl_re_exec_indentf( aTHX_ "%sTRIE: failed to match trie start class...%s\n", 5862 depth, PL_colors[4], PL_colors[5]) 5863 ); 5864 sayNO_SILENT; 5865 NOT_REACHED; /* NOTREACHED */ 5866 } 5867 /* FALLTHROUGH */ 5868 case TRIE: /* (ab|cd) */ 5869 /* the basic plan of execution of the trie is: 5870 * At the beginning, run though all the states, and 5871 * find the longest-matching word. Also remember the position 5872 * of the shortest matching word. For example, this pattern: 5873 * 1 2 3 4 5 5874 * ab|a|x|abcd|abc 5875 * when matched against the string "abcde", will generate 5876 * accept states for all words except 3, with the longest 5877 * matching word being 4, and the shortest being 2 (with 5878 * the position being after char 1 of the string). 5879 * 5880 * Then for each matching word, in word order (i.e. 1,2,4,5), 5881 * we run the remainder of the pattern; on each try setting 5882 * the current position to the character following the word, 5883 * returning to try the next word on failure. 5884 * 5885 * We avoid having to build a list of words at runtime by 5886 * using a compile-time structure, wordinfo[].prev, which 5887 * gives, for each word, the previous accepting word (if any). 5888 * In the case above it would contain the mappings 1->2, 2->0, 5889 * 3->0, 4->5, 5->1. We can use this table to generate, from 5890 * the longest word (4 above), a list of all words, by 5891 * following the list of prev pointers; this gives us the 5892 * unordered list 4,5,1,2. Then given the current word we have 5893 * just tried, we can go through the list and find the 5894 * next-biggest word to try (so if we just failed on word 2, 5895 * the next in the list is 4). 5896 * 5897 * Since at runtime we don't record the matching position in 5898 * the string for each word, we have to work that out for 5899 * each word we're about to process. The wordinfo table holds 5900 * the character length of each word; given that we recorded 5901 * at the start: the position of the shortest word and its 5902 * length in chars, we just need to move the pointer the 5903 * difference between the two char lengths. Depending on 5904 * Unicode status and folding, that's cheap or expensive. 5905 * 5906 * This algorithm is optimised for the case where are only a 5907 * small number of accept states, i.e. 0,1, or maybe 2. 5908 * With lots of accepts states, and having to try all of them, 5909 * it becomes quadratic on number of accept states to find all 5910 * the next words. 5911 */ 5912 5913 { 5914 /* what type of TRIE am I? (utf8 makes this contextual) */ 5915 DECL_TRIE_TYPE(scan); 5916 5917 /* what trie are we using right now */ 5918 reg_trie_data * const trie 5919 = (reg_trie_data*)rexi->data->data[ ARG( scan ) ]; 5920 HV * widecharmap = MUTABLE_HV(rexi->data->data[ ARG( scan ) + 1 ]); 5921 U32 state = trie->startstate; 5922 5923 if (scan->flags == EXACTL || scan->flags == EXACTFLU8) { 5924 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; 5925 if (utf8_target 5926 && ! NEXTCHR_IS_EOS 5927 && UTF8_IS_ABOVE_LATIN1(nextchr) 5928 && scan->flags == EXACTL) 5929 { 5930 /* We only output for EXACTL, as we let the folder 5931 * output this message for EXACTFLU8 to avoid 5932 * duplication */ 5933 _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(locinput, 5934 reginfo->strend); 5935 } 5936 } 5937 if ( trie->bitmap 5938 && (NEXTCHR_IS_EOS || !TRIE_BITMAP_TEST(trie, nextchr))) 5939 { 5940 if (trie->states[ state ].wordnum) { 5941 DEBUG_EXECUTE_r( 5942 Perl_re_exec_indentf( aTHX_ "%sTRIE: matched empty string...%s\n", 5943 depth, PL_colors[4], PL_colors[5]) 5944 ); 5945 if (!trie->jump) 5946 break; 5947 } else { 5948 DEBUG_EXECUTE_r( 5949 Perl_re_exec_indentf( aTHX_ "%sTRIE: failed to match trie start class...%s\n", 5950 depth, PL_colors[4], PL_colors[5]) 5951 ); 5952 sayNO_SILENT; 5953 } 5954 } 5955 5956 { 5957 U8 *uc = ( U8* )locinput; 5958 5959 STRLEN len = 0; 5960 STRLEN foldlen = 0; 5961 U8 *uscan = (U8*)NULL; 5962 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ]; 5963 U32 charcount = 0; /* how many input chars we have matched */ 5964 U32 accepted = 0; /* have we seen any accepting states? */ 5965 5966 ST.jump = trie->jump; 5967 ST.me = scan; 5968 ST.firstpos = NULL; 5969 ST.longfold = FALSE; /* char longer if folded => it's harder */ 5970 ST.nextword = 0; 5971 5972 /* fully traverse the TRIE; note the position of the 5973 shortest accept state and the wordnum of the longest 5974 accept state */ 5975 5976 while ( state && uc <= (U8*)(reginfo->strend) ) { 5977 U32 base = trie->states[ state ].trans.base; 5978 UV uvc = 0; 5979 U16 charid = 0; 5980 U16 wordnum; 5981 wordnum = trie->states[ state ].wordnum; 5982 5983 if (wordnum) { /* it's an accept state */ 5984 if (!accepted) { 5985 accepted = 1; 5986 /* record first match position */ 5987 if (ST.longfold) { 5988 ST.firstpos = (U8*)locinput; 5989 ST.firstchars = 0; 5990 } 5991 else { 5992 ST.firstpos = uc; 5993 ST.firstchars = charcount; 5994 } 5995 } 5996 if (!ST.nextword || wordnum < ST.nextword) 5997 ST.nextword = wordnum; 5998 ST.topword = wordnum; 5999 } 6000 6001 DEBUG_TRIE_EXECUTE_r({ 6002 DUMP_EXEC_POS( (char *)uc, scan, utf8_target, depth ); 6003 /* HERE */ 6004 PerlIO_printf( Perl_debug_log, 6005 "%*s%sTRIE: State: %4" UVxf " Accepted: %c ", 6006 INDENT_CHARS(depth), "", PL_colors[4], 6007 (UV)state, (accepted ? 'Y' : 'N')); 6008 }); 6009 6010 /* read a char and goto next state */ 6011 if ( base && (foldlen || uc < (U8*)(reginfo->strend))) { 6012 I32 offset; 6013 REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc, 6014 (U8 *) reginfo->strend, uscan, 6015 len, uvc, charid, foldlen, 6016 foldbuf, uniflags); 6017 charcount++; 6018 if (foldlen>0) 6019 ST.longfold = TRUE; 6020 if (charid && 6021 ( ((offset = 6022 base + charid - 1 - trie->uniquecharcount)) >= 0) 6023 6024 && ((U32)offset < trie->lasttrans) 6025 && trie->trans[offset].check == state) 6026 { 6027 state = trie->trans[offset].next; 6028 } 6029 else { 6030 state = 0; 6031 } 6032 uc += len; 6033 6034 } 6035 else { 6036 state = 0; 6037 } 6038 DEBUG_TRIE_EXECUTE_r( 6039 Perl_re_printf( aTHX_ 6040 "TRIE: Charid:%3x CP:%4" UVxf " After State: %4" UVxf "%s\n", 6041 charid, uvc, (UV)state, PL_colors[5] ); 6042 ); 6043 } 6044 if (!accepted) 6045 sayNO; 6046 6047 /* calculate total number of accept states */ 6048 { 6049 U16 w = ST.topword; 6050 accepted = 0; 6051 while (w) { 6052 w = trie->wordinfo[w].prev; 6053 accepted++; 6054 } 6055 ST.accepted = accepted; 6056 } 6057 6058 DEBUG_EXECUTE_r( 6059 Perl_re_exec_indentf( aTHX_ "%sTRIE: got %" IVdf " possible matches%s\n", 6060 depth, 6061 PL_colors[4], (IV)ST.accepted, PL_colors[5] ); 6062 ); 6063 goto trie_first_try; /* jump into the fail handler */ 6064 }} 6065 NOT_REACHED; /* NOTREACHED */ 6066 6067 case TRIE_next_fail: /* we failed - try next alternative */ 6068 { 6069 U8 *uc; 6070 if ( ST.jump ) { 6071 /* undo any captures done in the tail part of a branch, 6072 * e.g. 6073 * /(?:X(.)(.)|Y(.)).../ 6074 * where the trie just matches X then calls out to do the 6075 * rest of the branch */ 6076 REGCP_UNWIND(ST.cp); 6077 UNWIND_PAREN(ST.lastparen, ST.lastcloseparen); 6078 } 6079 if (!--ST.accepted) { 6080 DEBUG_EXECUTE_r({ 6081 Perl_re_exec_indentf( aTHX_ "%sTRIE failed...%s\n", 6082 depth, 6083 PL_colors[4], 6084 PL_colors[5] ); 6085 }); 6086 sayNO_SILENT; 6087 } 6088 { 6089 /* Find next-highest word to process. Note that this code 6090 * is O(N^2) per trie run (O(N) per branch), so keep tight */ 6091 U16 min = 0; 6092 U16 word; 6093 U16 const nextword = ST.nextword; 6094 reg_trie_wordinfo * const wordinfo 6095 = ((reg_trie_data*)rexi->data->data[ARG(ST.me)])->wordinfo; 6096 for (word=ST.topword; word; word=wordinfo[word].prev) { 6097 if (word > nextword && (!min || word < min)) 6098 min = word; 6099 } 6100 ST.nextword = min; 6101 } 6102 6103 trie_first_try: 6104 if (do_cutgroup) { 6105 do_cutgroup = 0; 6106 no_final = 0; 6107 } 6108 6109 if ( ST.jump ) { 6110 ST.lastparen = rex->lastparen; 6111 ST.lastcloseparen = rex->lastcloseparen; 6112 REGCP_SET(ST.cp); 6113 } 6114 6115 /* find start char of end of current word */ 6116 { 6117 U32 chars; /* how many chars to skip */ 6118 reg_trie_data * const trie 6119 = (reg_trie_data*)rexi->data->data[ARG(ST.me)]; 6120 6121 assert((trie->wordinfo[ST.nextword].len - trie->prefixlen) 6122 >= ST.firstchars); 6123 chars = (trie->wordinfo[ST.nextword].len - trie->prefixlen) 6124 - ST.firstchars; 6125 uc = ST.firstpos; 6126 6127 if (ST.longfold) { 6128 /* the hard option - fold each char in turn and find 6129 * its folded length (which may be different */ 6130 U8 foldbuf[UTF8_MAXBYTES_CASE + 1]; 6131 STRLEN foldlen; 6132 STRLEN len; 6133 UV uvc; 6134 U8 *uscan; 6135 6136 while (chars) { 6137 if (utf8_target) { 6138 uvc = utf8n_to_uvchr((U8*)uc, UTF8_MAXLEN, &len, 6139 uniflags); 6140 uc += len; 6141 } 6142 else { 6143 uvc = *uc; 6144 uc++; 6145 } 6146 uvc = to_uni_fold(uvc, foldbuf, &foldlen); 6147 uscan = foldbuf; 6148 while (foldlen) { 6149 if (!--chars) 6150 break; 6151 uvc = utf8n_to_uvchr(uscan, foldlen, &len, 6152 uniflags); 6153 uscan += len; 6154 foldlen -= len; 6155 } 6156 } 6157 } 6158 else { 6159 if (utf8_target) 6160 while (chars--) 6161 uc += UTF8SKIP(uc); 6162 else 6163 uc += chars; 6164 } 6165 } 6166 6167 scan = ST.me + ((ST.jump && ST.jump[ST.nextword]) 6168 ? ST.jump[ST.nextword] 6169 : NEXT_OFF(ST.me)); 6170 6171 DEBUG_EXECUTE_r({ 6172 Perl_re_exec_indentf( aTHX_ "%sTRIE matched word #%d, continuing%s\n", 6173 depth, 6174 PL_colors[4], 6175 ST.nextword, 6176 PL_colors[5] 6177 ); 6178 }); 6179 6180 if ( ST.accepted > 1 || has_cutgroup || ST.jump ) { 6181 PUSH_STATE_GOTO(TRIE_next, scan, (char*)uc); 6182 NOT_REACHED; /* NOTREACHED */ 6183 } 6184 /* only one choice left - just continue */ 6185 DEBUG_EXECUTE_r({ 6186 AV *const trie_words 6187 = MUTABLE_AV(rexi->data->data[ARG(ST.me)+TRIE_WORDS_OFFSET]); 6188 SV ** const tmp = trie_words 6189 ? av_fetch(trie_words, ST.nextword - 1, 0) : NULL; 6190 SV *sv= tmp ? sv_newmortal() : NULL; 6191 6192 Perl_re_exec_indentf( aTHX_ "%sTRIE: only one match left, short-circuiting: #%d <%s>%s\n", 6193 depth, PL_colors[4], 6194 ST.nextword, 6195 tmp ? pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 0, 6196 PL_colors[0], PL_colors[1], 6197 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)|PERL_PV_ESCAPE_NONASCII 6198 ) 6199 : "not compiled under -Dr", 6200 PL_colors[5] ); 6201 }); 6202 6203 locinput = (char*)uc; 6204 continue; /* execute rest of RE */ 6205 /* NOTREACHED */ 6206 } 6207 #undef ST 6208 6209 case EXACTL: /* /abc/l */ 6210 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; 6211 6212 /* Complete checking would involve going through every character 6213 * matched by the string to see if any is above latin1. But the 6214 * comparision otherwise might very well be a fast assembly 6215 * language routine, and I (khw) don't think slowing things down 6216 * just to check for this warning is worth it. So this just checks 6217 * the first character */ 6218 if (utf8_target && UTF8_IS_ABOVE_LATIN1(*locinput)) { 6219 _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(locinput, reginfo->strend); 6220 } 6221 /* FALLTHROUGH */ 6222 case EXACT: { /* /abc/ */ 6223 char *s = STRING(scan); 6224 ln = STR_LEN(scan); 6225 if (utf8_target != is_utf8_pat) { 6226 /* The target and the pattern have differing utf8ness. */ 6227 char *l = locinput; 6228 const char * const e = s + ln; 6229 6230 if (utf8_target) { 6231 /* The target is utf8, the pattern is not utf8. 6232 * Above-Latin1 code points can't match the pattern; 6233 * invariants match exactly, and the other Latin1 ones need 6234 * to be downgraded to a single byte in order to do the 6235 * comparison. (If we could be confident that the target 6236 * is not malformed, this could be refactored to have fewer 6237 * tests by just assuming that if the first bytes match, it 6238 * is an invariant, but there are tests in the test suite 6239 * dealing with (??{...}) which violate this) */ 6240 while (s < e) { 6241 if (l >= reginfo->strend 6242 || UTF8_IS_ABOVE_LATIN1(* (U8*) l)) 6243 { 6244 sayNO; 6245 } 6246 if (UTF8_IS_INVARIANT(*(U8*)l)) { 6247 if (*l != *s) { 6248 sayNO; 6249 } 6250 l++; 6251 } 6252 else { 6253 if (EIGHT_BIT_UTF8_TO_NATIVE(*l, *(l+1)) != * (U8*) s) 6254 { 6255 sayNO; 6256 } 6257 l += 2; 6258 } 6259 s++; 6260 } 6261 } 6262 else { 6263 /* The target is not utf8, the pattern is utf8. */ 6264 while (s < e) { 6265 if (l >= reginfo->strend 6266 || UTF8_IS_ABOVE_LATIN1(* (U8*) s)) 6267 { 6268 sayNO; 6269 } 6270 if (UTF8_IS_INVARIANT(*(U8*)s)) { 6271 if (*s != *l) { 6272 sayNO; 6273 } 6274 s++; 6275 } 6276 else { 6277 if (EIGHT_BIT_UTF8_TO_NATIVE(*s, *(s+1)) != * (U8*) l) 6278 { 6279 sayNO; 6280 } 6281 s += 2; 6282 } 6283 l++; 6284 } 6285 } 6286 locinput = l; 6287 } 6288 else { 6289 /* The target and the pattern have the same utf8ness. */ 6290 /* Inline the first character, for speed. */ 6291 if (reginfo->strend - locinput < ln 6292 || UCHARAT(s) != nextchr 6293 || (ln > 1 && memNE(s, locinput, ln))) 6294 { 6295 sayNO; 6296 } 6297 locinput += ln; 6298 } 6299 break; 6300 } 6301 6302 case EXACTFL: { /* /abc/il */ 6303 re_fold_t folder; 6304 const U8 * fold_array; 6305 const char * s; 6306 U32 fold_utf8_flags; 6307 6308 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; 6309 folder = foldEQ_locale; 6310 fold_array = PL_fold_locale; 6311 fold_utf8_flags = FOLDEQ_LOCALE; 6312 goto do_exactf; 6313 6314 case EXACTFLU8: /* /abc/il; but all 'abc' are above 255, so 6315 is effectively /u; hence to match, target 6316 must be UTF-8. */ 6317 if (! utf8_target) { 6318 sayNO; 6319 } 6320 fold_utf8_flags = FOLDEQ_LOCALE | FOLDEQ_S1_ALREADY_FOLDED 6321 | FOLDEQ_S1_FOLDS_SANE; 6322 folder = foldEQ_latin1; 6323 fold_array = PL_fold_latin1; 6324 goto do_exactf; 6325 6326 case EXACTFU_SS: /* /\x{df}/iu */ 6327 case EXACTFU: /* /abc/iu */ 6328 folder = foldEQ_latin1; 6329 fold_array = PL_fold_latin1; 6330 fold_utf8_flags = is_utf8_pat ? FOLDEQ_S1_ALREADY_FOLDED : 0; 6331 goto do_exactf; 6332 6333 case EXACTFAA_NO_TRIE: /* This node only generated for non-utf8 6334 patterns */ 6335 assert(! is_utf8_pat); 6336 /* FALLTHROUGH */ 6337 case EXACTFAA: /* /abc/iaa */ 6338 folder = foldEQ_latin1; 6339 fold_array = PL_fold_latin1; 6340 fold_utf8_flags = FOLDEQ_UTF8_NOMIX_ASCII; 6341 goto do_exactf; 6342 6343 case EXACTF: /* /abc/i This node only generated for 6344 non-utf8 patterns */ 6345 assert(! is_utf8_pat); 6346 folder = foldEQ; 6347 fold_array = PL_fold; 6348 fold_utf8_flags = 0; 6349 6350 do_exactf: 6351 s = STRING(scan); 6352 ln = STR_LEN(scan); 6353 6354 if (utf8_target 6355 || is_utf8_pat 6356 || state_num == EXACTFU_SS 6357 || (state_num == EXACTFL && IN_UTF8_CTYPE_LOCALE)) 6358 { 6359 /* Either target or the pattern are utf8, or has the issue where 6360 * the fold lengths may differ. */ 6361 const char * const l = locinput; 6362 char *e = reginfo->strend; 6363 6364 if (! foldEQ_utf8_flags(s, 0, ln, is_utf8_pat, 6365 l, &e, 0, utf8_target, fold_utf8_flags)) 6366 { 6367 sayNO; 6368 } 6369 locinput = e; 6370 break; 6371 } 6372 6373 /* Neither the target nor the pattern are utf8 */ 6374 if (UCHARAT(s) != nextchr 6375 && !NEXTCHR_IS_EOS 6376 && UCHARAT(s) != fold_array[nextchr]) 6377 { 6378 sayNO; 6379 } 6380 if (reginfo->strend - locinput < ln) 6381 sayNO; 6382 if (ln > 1 && ! folder(s, locinput, ln)) 6383 sayNO; 6384 locinput += ln; 6385 break; 6386 } 6387 6388 case NBOUNDL: /* /\B/l */ 6389 to_complement = 1; 6390 /* FALLTHROUGH */ 6391 6392 case BOUNDL: /* /\b/l */ 6393 { 6394 bool b1, b2; 6395 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; 6396 6397 if (FLAGS(scan) != TRADITIONAL_BOUND) { 6398 if (! IN_UTF8_CTYPE_LOCALE) { 6399 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE), 6400 B_ON_NON_UTF8_LOCALE_IS_WRONG); 6401 } 6402 goto boundu; 6403 } 6404 6405 if (utf8_target) { 6406 if (locinput == reginfo->strbeg) 6407 b1 = isWORDCHAR_LC('\n'); 6408 else { 6409 b1 = isWORDCHAR_LC_utf8_safe(reghop3((U8*)locinput, -1, 6410 (U8*)(reginfo->strbeg)), 6411 (U8*)(reginfo->strend)); 6412 } 6413 b2 = (NEXTCHR_IS_EOS) 6414 ? isWORDCHAR_LC('\n') 6415 : isWORDCHAR_LC_utf8_safe((U8*) locinput, 6416 (U8*) reginfo->strend); 6417 } 6418 else { /* Here the string isn't utf8 */ 6419 b1 = (locinput == reginfo->strbeg) 6420 ? isWORDCHAR_LC('\n') 6421 : isWORDCHAR_LC(UCHARAT(locinput - 1)); 6422 b2 = (NEXTCHR_IS_EOS) 6423 ? isWORDCHAR_LC('\n') 6424 : isWORDCHAR_LC(nextchr); 6425 } 6426 if (to_complement ^ (b1 == b2)) { 6427 sayNO; 6428 } 6429 break; 6430 } 6431 6432 case NBOUND: /* /\B/ */ 6433 to_complement = 1; 6434 /* FALLTHROUGH */ 6435 6436 case BOUND: /* /\b/ */ 6437 if (utf8_target) { 6438 goto bound_utf8; 6439 } 6440 goto bound_ascii_match_only; 6441 6442 case NBOUNDA: /* /\B/a */ 6443 to_complement = 1; 6444 /* FALLTHROUGH */ 6445 6446 case BOUNDA: /* /\b/a */ 6447 { 6448 bool b1, b2; 6449 6450 bound_ascii_match_only: 6451 /* Here the string isn't utf8, or is utf8 and only ascii characters 6452 * are to match \w. In the latter case looking at the byte just 6453 * prior to the current one may be just the final byte of a 6454 * multi-byte character. This is ok. There are two cases: 6455 * 1) it is a single byte character, and then the test is doing 6456 * just what it's supposed to. 6457 * 2) it is a multi-byte character, in which case the final byte is 6458 * never mistakable for ASCII, and so the test will say it is 6459 * not a word character, which is the correct answer. */ 6460 b1 = (locinput == reginfo->strbeg) 6461 ? isWORDCHAR_A('\n') 6462 : isWORDCHAR_A(UCHARAT(locinput - 1)); 6463 b2 = (NEXTCHR_IS_EOS) 6464 ? isWORDCHAR_A('\n') 6465 : isWORDCHAR_A(nextchr); 6466 if (to_complement ^ (b1 == b2)) { 6467 sayNO; 6468 } 6469 break; 6470 } 6471 6472 case NBOUNDU: /* /\B/u */ 6473 to_complement = 1; 6474 /* FALLTHROUGH */ 6475 6476 case BOUNDU: /* /\b/u */ 6477 6478 boundu: 6479 if (UNLIKELY(reginfo->strbeg >= reginfo->strend)) { 6480 match = FALSE; 6481 } 6482 else if (utf8_target) { 6483 bound_utf8: 6484 switch((bound_type) FLAGS(scan)) { 6485 case TRADITIONAL_BOUND: 6486 { 6487 bool b1, b2; 6488 b1 = (locinput == reginfo->strbeg) 6489 ? 0 /* isWORDCHAR_L1('\n') */ 6490 : isWORDCHAR_utf8_safe( 6491 reghop3((U8*)locinput, 6492 -1, 6493 (U8*)(reginfo->strbeg)), 6494 (U8*) reginfo->strend); 6495 b2 = (NEXTCHR_IS_EOS) 6496 ? 0 /* isWORDCHAR_L1('\n') */ 6497 : isWORDCHAR_utf8_safe((U8*)locinput, 6498 (U8*) reginfo->strend); 6499 match = cBOOL(b1 != b2); 6500 break; 6501 } 6502 case GCB_BOUND: 6503 if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) { 6504 match = TRUE; /* GCB always matches at begin and 6505 end */ 6506 } 6507 else { 6508 /* Find the gcb values of previous and current 6509 * chars, then see if is a break point */ 6510 match = isGCB(getGCB_VAL_UTF8( 6511 reghop3((U8*)locinput, 6512 -1, 6513 (U8*)(reginfo->strbeg)), 6514 (U8*) reginfo->strend), 6515 getGCB_VAL_UTF8((U8*) locinput, 6516 (U8*) reginfo->strend), 6517 (U8*) reginfo->strbeg, 6518 (U8*) locinput, 6519 utf8_target); 6520 } 6521 break; 6522 6523 case LB_BOUND: 6524 if (locinput == reginfo->strbeg) { 6525 match = FALSE; 6526 } 6527 else if (NEXTCHR_IS_EOS) { 6528 match = TRUE; 6529 } 6530 else { 6531 match = isLB(getLB_VAL_UTF8( 6532 reghop3((U8*)locinput, 6533 -1, 6534 (U8*)(reginfo->strbeg)), 6535 (U8*) reginfo->strend), 6536 getLB_VAL_UTF8((U8*) locinput, 6537 (U8*) reginfo->strend), 6538 (U8*) reginfo->strbeg, 6539 (U8*) locinput, 6540 (U8*) reginfo->strend, 6541 utf8_target); 6542 } 6543 break; 6544 6545 case SB_BOUND: /* Always matches at begin and end */ 6546 if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) { 6547 match = TRUE; 6548 } 6549 else { 6550 match = isSB(getSB_VAL_UTF8( 6551 reghop3((U8*)locinput, 6552 -1, 6553 (U8*)(reginfo->strbeg)), 6554 (U8*) reginfo->strend), 6555 getSB_VAL_UTF8((U8*) locinput, 6556 (U8*) reginfo->strend), 6557 (U8*) reginfo->strbeg, 6558 (U8*) locinput, 6559 (U8*) reginfo->strend, 6560 utf8_target); 6561 } 6562 break; 6563 6564 case WB_BOUND: 6565 if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) { 6566 match = TRUE; 6567 } 6568 else { 6569 match = isWB(WB_UNKNOWN, 6570 getWB_VAL_UTF8( 6571 reghop3((U8*)locinput, 6572 -1, 6573 (U8*)(reginfo->strbeg)), 6574 (U8*) reginfo->strend), 6575 getWB_VAL_UTF8((U8*) locinput, 6576 (U8*) reginfo->strend), 6577 (U8*) reginfo->strbeg, 6578 (U8*) locinput, 6579 (U8*) reginfo->strend, 6580 utf8_target); 6581 } 6582 break; 6583 } 6584 } 6585 else { /* Not utf8 target */ 6586 switch((bound_type) FLAGS(scan)) { 6587 case TRADITIONAL_BOUND: 6588 { 6589 bool b1, b2; 6590 b1 = (locinput == reginfo->strbeg) 6591 ? 0 /* isWORDCHAR_L1('\n') */ 6592 : isWORDCHAR_L1(UCHARAT(locinput - 1)); 6593 b2 = (NEXTCHR_IS_EOS) 6594 ? 0 /* isWORDCHAR_L1('\n') */ 6595 : isWORDCHAR_L1(nextchr); 6596 match = cBOOL(b1 != b2); 6597 break; 6598 } 6599 6600 case GCB_BOUND: 6601 if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) { 6602 match = TRUE; /* GCB always matches at begin and 6603 end */ 6604 } 6605 else { /* Only CR-LF combo isn't a GCB in 0-255 6606 range */ 6607 match = UCHARAT(locinput - 1) != '\r' 6608 || UCHARAT(locinput) != '\n'; 6609 } 6610 break; 6611 6612 case LB_BOUND: 6613 if (locinput == reginfo->strbeg) { 6614 match = FALSE; 6615 } 6616 else if (NEXTCHR_IS_EOS) { 6617 match = TRUE; 6618 } 6619 else { 6620 match = isLB(getLB_VAL_CP(UCHARAT(locinput -1)), 6621 getLB_VAL_CP(UCHARAT(locinput)), 6622 (U8*) reginfo->strbeg, 6623 (U8*) locinput, 6624 (U8*) reginfo->strend, 6625 utf8_target); 6626 } 6627 break; 6628 6629 case SB_BOUND: /* Always matches at begin and end */ 6630 if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) { 6631 match = TRUE; 6632 } 6633 else { 6634 match = isSB(getSB_VAL_CP(UCHARAT(locinput -1)), 6635 getSB_VAL_CP(UCHARAT(locinput)), 6636 (U8*) reginfo->strbeg, 6637 (U8*) locinput, 6638 (U8*) reginfo->strend, 6639 utf8_target); 6640 } 6641 break; 6642 6643 case WB_BOUND: 6644 if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) { 6645 match = TRUE; 6646 } 6647 else { 6648 match = isWB(WB_UNKNOWN, 6649 getWB_VAL_CP(UCHARAT(locinput -1)), 6650 getWB_VAL_CP(UCHARAT(locinput)), 6651 (U8*) reginfo->strbeg, 6652 (U8*) locinput, 6653 (U8*) reginfo->strend, 6654 utf8_target); 6655 } 6656 break; 6657 } 6658 } 6659 6660 if (to_complement ^ ! match) { 6661 sayNO; 6662 } 6663 break; 6664 6665 case ANYOFL: /* /[abc]/l */ 6666 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; 6667 6668 if (ANYOFL_UTF8_LOCALE_REQD(FLAGS(scan)) && ! IN_UTF8_CTYPE_LOCALE) 6669 { 6670 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE), utf8_locale_required); 6671 } 6672 /* FALLTHROUGH */ 6673 case ANYOFD: /* /[abc]/d */ 6674 case ANYOF: /* /[abc]/ */ 6675 if (NEXTCHR_IS_EOS) 6676 sayNO; 6677 if (utf8_target && ! UTF8_IS_INVARIANT(*locinput)) { 6678 if (!reginclass(rex, scan, (U8*)locinput, (U8*)reginfo->strend, 6679 utf8_target)) 6680 sayNO; 6681 locinput += UTF8SKIP(locinput); 6682 } 6683 else { 6684 if (!REGINCLASS(rex, scan, (U8*)locinput, utf8_target)) 6685 sayNO; 6686 locinput++; 6687 } 6688 break; 6689 6690 case ANYOFM: 6691 if (NEXTCHR_IS_EOS || (UCHARAT(locinput) & FLAGS(scan)) != ARG(scan)) { 6692 sayNO; 6693 } 6694 locinput++; 6695 break; 6696 6697 case ASCII: 6698 if (NEXTCHR_IS_EOS || ! isASCII(UCHARAT(locinput))) { 6699 sayNO; 6700 } 6701 6702 locinput++; /* ASCII is always single byte */ 6703 break; 6704 6705 case NASCII: 6706 if (NEXTCHR_IS_EOS || isASCII(UCHARAT(locinput))) { 6707 sayNO; 6708 } 6709 6710 goto increment_locinput; 6711 break; 6712 6713 /* The argument (FLAGS) to all the POSIX node types is the class number 6714 * */ 6715 6716 case NPOSIXL: /* \W or [:^punct:] etc. under /l */ 6717 to_complement = 1; 6718 /* FALLTHROUGH */ 6719 6720 case POSIXL: /* \w or [:punct:] etc. under /l */ 6721 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; 6722 if (NEXTCHR_IS_EOS) 6723 sayNO; 6724 6725 /* Use isFOO_lc() for characters within Latin1. (Note that 6726 * UTF8_IS_INVARIANT works even on non-UTF-8 strings, or else 6727 * wouldn't be invariant) */ 6728 if (UTF8_IS_INVARIANT(nextchr) || ! utf8_target) { 6729 if (! (to_complement ^ cBOOL(isFOO_lc(FLAGS(scan), (U8) nextchr)))) { 6730 sayNO; 6731 } 6732 6733 locinput++; 6734 break; 6735 } 6736 6737 if (! UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(locinput, reginfo->strend)) { 6738 /* An above Latin-1 code point, or malformed */ 6739 _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(locinput, 6740 reginfo->strend); 6741 goto utf8_posix_above_latin1; 6742 } 6743 6744 /* Here is a UTF-8 variant code point below 256 and the target is 6745 * UTF-8 */ 6746 if (! (to_complement ^ cBOOL(isFOO_lc(FLAGS(scan), 6747 EIGHT_BIT_UTF8_TO_NATIVE(nextchr, 6748 *(locinput + 1)))))) 6749 { 6750 sayNO; 6751 } 6752 6753 goto increment_locinput; 6754 6755 case NPOSIXD: /* \W or [:^punct:] etc. under /d */ 6756 to_complement = 1; 6757 /* FALLTHROUGH */ 6758 6759 case POSIXD: /* \w or [:punct:] etc. under /d */ 6760 if (utf8_target) { 6761 goto utf8_posix; 6762 } 6763 goto posixa; 6764 6765 case NPOSIXA: /* \W or [:^punct:] etc. under /a */ 6766 6767 if (NEXTCHR_IS_EOS) { 6768 sayNO; 6769 } 6770 6771 /* All UTF-8 variants match */ 6772 if (! UTF8_IS_INVARIANT(nextchr)) { 6773 goto increment_locinput; 6774 } 6775 6776 to_complement = 1; 6777 goto join_nposixa; 6778 6779 case POSIXA: /* \w or [:punct:] etc. under /a */ 6780 6781 posixa: 6782 /* We get here through POSIXD, NPOSIXD, and NPOSIXA when not in 6783 * UTF-8, and also from NPOSIXA even in UTF-8 when the current 6784 * character is a single byte */ 6785 6786 if (NEXTCHR_IS_EOS) { 6787 sayNO; 6788 } 6789 6790 join_nposixa: 6791 6792 if (! (to_complement ^ cBOOL(_generic_isCC_A(nextchr, 6793 FLAGS(scan))))) 6794 { 6795 sayNO; 6796 } 6797 6798 /* Here we are either not in utf8, or we matched a utf8-invariant, 6799 * so the next char is the next byte */ 6800 locinput++; 6801 break; 6802 6803 case NPOSIXU: /* \W or [:^punct:] etc. under /u */ 6804 to_complement = 1; 6805 /* FALLTHROUGH */ 6806 6807 case POSIXU: /* \w or [:punct:] etc. under /u */ 6808 utf8_posix: 6809 if (NEXTCHR_IS_EOS) { 6810 sayNO; 6811 } 6812 6813 /* Use _generic_isCC() for characters within Latin1. (Note that 6814 * UTF8_IS_INVARIANT works even on non-UTF-8 strings, or else 6815 * wouldn't be invariant) */ 6816 if (UTF8_IS_INVARIANT(nextchr) || ! utf8_target) { 6817 if (! (to_complement ^ cBOOL(_generic_isCC(nextchr, 6818 FLAGS(scan))))) 6819 { 6820 sayNO; 6821 } 6822 locinput++; 6823 } 6824 else if (UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(locinput, reginfo->strend)) { 6825 if (! (to_complement 6826 ^ cBOOL(_generic_isCC(EIGHT_BIT_UTF8_TO_NATIVE(nextchr, 6827 *(locinput + 1)), 6828 FLAGS(scan))))) 6829 { 6830 sayNO; 6831 } 6832 locinput += 2; 6833 } 6834 else { /* Handle above Latin-1 code points */ 6835 utf8_posix_above_latin1: 6836 classnum = (_char_class_number) FLAGS(scan); 6837 switch (classnum) { 6838 default: 6839 if (! (to_complement 6840 ^ cBOOL(_invlist_contains_cp( 6841 PL_XPosix_ptrs[classnum], 6842 utf8_to_uvchr_buf((U8 *) locinput, 6843 (U8 *) reginfo->strend, 6844 NULL))))) 6845 { 6846 sayNO; 6847 } 6848 break; 6849 case _CC_ENUM_SPACE: 6850 if (! (to_complement 6851 ^ cBOOL(is_XPERLSPACE_high(locinput)))) 6852 { 6853 sayNO; 6854 } 6855 break; 6856 case _CC_ENUM_BLANK: 6857 if (! (to_complement 6858 ^ cBOOL(is_HORIZWS_high(locinput)))) 6859 { 6860 sayNO; 6861 } 6862 break; 6863 case _CC_ENUM_XDIGIT: 6864 if (! (to_complement 6865 ^ cBOOL(is_XDIGIT_high(locinput)))) 6866 { 6867 sayNO; 6868 } 6869 break; 6870 case _CC_ENUM_VERTSPACE: 6871 if (! (to_complement 6872 ^ cBOOL(is_VERTWS_high(locinput)))) 6873 { 6874 sayNO; 6875 } 6876 break; 6877 case _CC_ENUM_CNTRL: /* These can't match above Latin1 */ 6878 case _CC_ENUM_ASCII: 6879 if (! to_complement) { 6880 sayNO; 6881 } 6882 break; 6883 } 6884 locinput += UTF8SKIP(locinput); 6885 } 6886 break; 6887 6888 case CLUMP: /* Match \X: logical Unicode character. This is defined as 6889 a Unicode extended Grapheme Cluster */ 6890 if (NEXTCHR_IS_EOS) 6891 sayNO; 6892 if (! utf8_target) { 6893 6894 /* Match either CR LF or '.', as all the other possibilities 6895 * require utf8 */ 6896 locinput++; /* Match the . or CR */ 6897 if (nextchr == '\r' /* And if it was CR, and the next is LF, 6898 match the LF */ 6899 && locinput < reginfo->strend 6900 && UCHARAT(locinput) == '\n') 6901 { 6902 locinput++; 6903 } 6904 } 6905 else { 6906 6907 /* Get the gcb type for the current character */ 6908 GCB_enum prev_gcb = getGCB_VAL_UTF8((U8*) locinput, 6909 (U8*) reginfo->strend); 6910 6911 /* Then scan through the input until we get to the first 6912 * character whose type is supposed to be a gcb with the 6913 * current character. (There is always a break at the 6914 * end-of-input) */ 6915 locinput += UTF8SKIP(locinput); 6916 while (locinput < reginfo->strend) { 6917 GCB_enum cur_gcb = getGCB_VAL_UTF8((U8*) locinput, 6918 (U8*) reginfo->strend); 6919 if (isGCB(prev_gcb, cur_gcb, 6920 (U8*) reginfo->strbeg, (U8*) locinput, 6921 utf8_target)) 6922 { 6923 break; 6924 } 6925 6926 prev_gcb = cur_gcb; 6927 locinput += UTF8SKIP(locinput); 6928 } 6929 6930 6931 } 6932 break; 6933 6934 case NREFFL: /* /\g{name}/il */ 6935 { /* The capture buffer cases. The ones beginning with N for the 6936 named buffers just convert to the equivalent numbered and 6937 pretend they were called as the corresponding numbered buffer 6938 op. */ 6939 /* don't initialize these in the declaration, it makes C++ 6940 unhappy */ 6941 const char *s; 6942 char type; 6943 re_fold_t folder; 6944 const U8 *fold_array; 6945 UV utf8_fold_flags; 6946 6947 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; 6948 folder = foldEQ_locale; 6949 fold_array = PL_fold_locale; 6950 type = REFFL; 6951 utf8_fold_flags = FOLDEQ_LOCALE; 6952 goto do_nref; 6953 6954 case NREFFA: /* /\g{name}/iaa */ 6955 folder = foldEQ_latin1; 6956 fold_array = PL_fold_latin1; 6957 type = REFFA; 6958 utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII; 6959 goto do_nref; 6960 6961 case NREFFU: /* /\g{name}/iu */ 6962 folder = foldEQ_latin1; 6963 fold_array = PL_fold_latin1; 6964 type = REFFU; 6965 utf8_fold_flags = 0; 6966 goto do_nref; 6967 6968 case NREFF: /* /\g{name}/i */ 6969 folder = foldEQ; 6970 fold_array = PL_fold; 6971 type = REFF; 6972 utf8_fold_flags = 0; 6973 goto do_nref; 6974 6975 case NREF: /* /\g{name}/ */ 6976 type = REF; 6977 folder = NULL; 6978 fold_array = NULL; 6979 utf8_fold_flags = 0; 6980 do_nref: 6981 6982 /* For the named back references, find the corresponding buffer 6983 * number */ 6984 n = reg_check_named_buff_matched(rex,scan); 6985 6986 if ( ! n ) { 6987 sayNO; 6988 } 6989 goto do_nref_ref_common; 6990 6991 case REFFL: /* /\1/il */ 6992 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; 6993 folder = foldEQ_locale; 6994 fold_array = PL_fold_locale; 6995 utf8_fold_flags = FOLDEQ_LOCALE; 6996 goto do_ref; 6997 6998 case REFFA: /* /\1/iaa */ 6999 folder = foldEQ_latin1; 7000 fold_array = PL_fold_latin1; 7001 utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII; 7002 goto do_ref; 7003 7004 case REFFU: /* /\1/iu */ 7005 folder = foldEQ_latin1; 7006 fold_array = PL_fold_latin1; 7007 utf8_fold_flags = 0; 7008 goto do_ref; 7009 7010 case REFF: /* /\1/i */ 7011 folder = foldEQ; 7012 fold_array = PL_fold; 7013 utf8_fold_flags = 0; 7014 goto do_ref; 7015 7016 case REF: /* /\1/ */ 7017 folder = NULL; 7018 fold_array = NULL; 7019 utf8_fold_flags = 0; 7020 7021 do_ref: 7022 type = OP(scan); 7023 n = ARG(scan); /* which paren pair */ 7024 7025 do_nref_ref_common: 7026 ln = rex->offs[n].start; 7027 endref = rex->offs[n].end; 7028 reginfo->poscache_iter = reginfo->poscache_maxiter; /* Void cache */ 7029 if (rex->lastparen < n || ln == -1 || endref == -1) 7030 sayNO; /* Do not match unless seen CLOSEn. */ 7031 if (ln == endref) 7032 break; 7033 7034 s = reginfo->strbeg + ln; 7035 if (type != REF /* REF can do byte comparison */ 7036 && (utf8_target || type == REFFU || type == REFFL)) 7037 { 7038 char * limit = reginfo->strend; 7039 7040 /* This call case insensitively compares the entire buffer 7041 * at s, with the current input starting at locinput, but 7042 * not going off the end given by reginfo->strend, and 7043 * returns in <limit> upon success, how much of the 7044 * current input was matched */ 7045 if (! foldEQ_utf8_flags(s, NULL, endref - ln, utf8_target, 7046 locinput, &limit, 0, utf8_target, utf8_fold_flags)) 7047 { 7048 sayNO; 7049 } 7050 locinput = limit; 7051 break; 7052 } 7053 7054 /* Not utf8: Inline the first character, for speed. */ 7055 if (!NEXTCHR_IS_EOS && 7056 UCHARAT(s) != nextchr && 7057 (type == REF || 7058 UCHARAT(s) != fold_array[nextchr])) 7059 sayNO; 7060 ln = endref - ln; 7061 if (locinput + ln > reginfo->strend) 7062 sayNO; 7063 if (ln > 1 && (type == REF 7064 ? memNE(s, locinput, ln) 7065 : ! folder(s, locinput, ln))) 7066 sayNO; 7067 locinput += ln; 7068 break; 7069 } 7070 7071 case NOTHING: /* null op; e.g. the 'nothing' following 7072 * the '*' in m{(a+|b)*}' */ 7073 break; 7074 case TAIL: /* placeholder while compiling (A|B|C) */ 7075 break; 7076 7077 #undef ST 7078 #define ST st->u.eval 7079 #define CUR_EVAL cur_eval->u.eval 7080 7081 { 7082 SV *ret; 7083 REGEXP *re_sv; 7084 regexp *re; 7085 regexp_internal *rei; 7086 regnode *startpoint; 7087 U32 arg; 7088 7089 case GOSUB: /* /(...(?1))/ /(...(?&foo))/ */ 7090 arg= (U32)ARG(scan); 7091 if (cur_eval && cur_eval->locinput == locinput) { 7092 if ( ++nochange_depth > max_nochange_depth ) 7093 Perl_croak(aTHX_ 7094 "Pattern subroutine nesting without pos change" 7095 " exceeded limit in regex"); 7096 } else { 7097 nochange_depth = 0; 7098 } 7099 re_sv = rex_sv; 7100 re = rex; 7101 rei = rexi; 7102 startpoint = scan + ARG2L(scan); 7103 EVAL_CLOSE_PAREN_SET( st, arg ); 7104 /* Detect infinite recursion 7105 * 7106 * A pattern like /(?R)foo/ or /(?<x>(?&y)foo)(?<y>(?&x)bar)/ 7107 * or "a"=~/(.(?2))((?<=(?=(?1)).))/ could recurse forever. 7108 * So we track the position in the string we are at each time 7109 * we recurse and if we try to enter the same routine twice from 7110 * the same position we throw an error. 7111 */ 7112 if ( rex->recurse_locinput[arg] == locinput ) { 7113 /* FIXME: we should show the regop that is failing as part 7114 * of the error message. */ 7115 Perl_croak(aTHX_ "Infinite recursion in regex"); 7116 } else { 7117 ST.prev_recurse_locinput= rex->recurse_locinput[arg]; 7118 rex->recurse_locinput[arg]= locinput; 7119 7120 DEBUG_r({ 7121 GET_RE_DEBUG_FLAGS_DECL; 7122 DEBUG_STACK_r({ 7123 Perl_re_exec_indentf( aTHX_ 7124 "entering GOSUB, prev_recurse_locinput=%p recurse_locinput[%d]=%p\n", 7125 depth, ST.prev_recurse_locinput, arg, rex->recurse_locinput[arg] 7126 ); 7127 }); 7128 }); 7129 } 7130 7131 /* Save all the positions seen so far. */ 7132 ST.cp = regcppush(rex, 0, maxopenparen); 7133 REGCP_SET(ST.lastcp); 7134 7135 /* and then jump to the code we share with EVAL */ 7136 goto eval_recurse_doit; 7137 /* NOTREACHED */ 7138 7139 case EVAL: /* /(?{...})B/ /(??{A})B/ and /(?(?{...})X|Y)B/ */ 7140 if (cur_eval && cur_eval->locinput==locinput) { 7141 if ( ++nochange_depth > max_nochange_depth ) 7142 Perl_croak(aTHX_ "EVAL without pos change exceeded limit in regex"); 7143 } else { 7144 nochange_depth = 0; 7145 } 7146 { 7147 /* execute the code in the {...} */ 7148 7149 dSP; 7150 IV before; 7151 OP * const oop = PL_op; 7152 COP * const ocurcop = PL_curcop; 7153 OP *nop; 7154 CV *newcv; 7155 7156 /* save *all* paren positions */ 7157 regcppush(rex, 0, maxopenparen); 7158 REGCP_SET(ST.lastcp); 7159 7160 if (!caller_cv) 7161 caller_cv = find_runcv(NULL); 7162 7163 n = ARG(scan); 7164 7165 if (rexi->data->what[n] == 'r') { /* code from an external qr */ 7166 newcv = (ReANY( 7167 (REGEXP*)(rexi->data->data[n]) 7168 ))->qr_anoncv; 7169 nop = (OP*)rexi->data->data[n+1]; 7170 } 7171 else if (rexi->data->what[n] == 'l') { /* literal code */ 7172 newcv = caller_cv; 7173 nop = (OP*)rexi->data->data[n]; 7174 assert(CvDEPTH(newcv)); 7175 } 7176 else { 7177 /* literal with own CV */ 7178 assert(rexi->data->what[n] == 'L'); 7179 newcv = rex->qr_anoncv; 7180 nop = (OP*)rexi->data->data[n]; 7181 } 7182 7183 /* Some notes about MULTICALL and the context and save stacks. 7184 * 7185 * In something like 7186 * /...(?{ my $x)}...(?{ my $y)}...(?{ my $z)}.../ 7187 * since codeblocks don't introduce a new scope (so that 7188 * local() etc accumulate), at the end of a successful 7189 * match there will be a SAVEt_CLEARSV on the savestack 7190 * for each of $x, $y, $z. If the three code blocks above 7191 * happen to have come from different CVs (e.g. via 7192 * embedded qr//s), then we must ensure that during any 7193 * savestack unwinding, PL_comppad always points to the 7194 * right pad at each moment. We achieve this by 7195 * interleaving SAVEt_COMPPAD's on the savestack whenever 7196 * there is a change of pad. 7197 * In theory whenever we call a code block, we should 7198 * push a CXt_SUB context, then pop it on return from 7199 * that code block. This causes a bit of an issue in that 7200 * normally popping a context also clears the savestack 7201 * back to cx->blk_oldsaveix, but here we specifically 7202 * don't want to clear the save stack on exit from the 7203 * code block. 7204 * Also for efficiency we don't want to keep pushing and 7205 * popping the single SUB context as we backtrack etc. 7206 * So instead, we push a single context the first time 7207 * we need, it, then hang onto it until the end of this 7208 * function. Whenever we encounter a new code block, we 7209 * update the CV etc if that's changed. During the times 7210 * in this function where we're not executing a code 7211 * block, having the SUB context still there is a bit 7212 * naughty - but we hope that no-one notices. 7213 * When the SUB context is initially pushed, we fake up 7214 * cx->blk_oldsaveix to be as if we'd pushed this context 7215 * on first entry to S_regmatch rather than at some random 7216 * point during the regexe execution. That way if we 7217 * croak, popping the context stack will ensure that 7218 * *everything* SAVEd by this function is undone and then 7219 * the context popped, rather than e.g., popping the 7220 * context (and restoring the original PL_comppad) then 7221 * popping more of the savestack and restoring a bad 7222 * PL_comppad. 7223 */ 7224 7225 /* If this is the first EVAL, push a MULTICALL. On 7226 * subsequent calls, if we're executing a different CV, or 7227 * if PL_comppad has got messed up from backtracking 7228 * through SAVECOMPPADs, then refresh the context. 7229 */ 7230 if (newcv != last_pushed_cv || PL_comppad != last_pad) 7231 { 7232 U8 flags = (CXp_SUB_RE | 7233 ((newcv == caller_cv) ? CXp_SUB_RE_FAKE : 0)); 7234 SAVECOMPPAD(); 7235 if (last_pushed_cv) { 7236 CHANGE_MULTICALL_FLAGS(newcv, flags); 7237 } 7238 else { 7239 PUSH_MULTICALL_FLAGS(newcv, flags); 7240 } 7241 /* see notes above */ 7242 CX_CUR()->blk_oldsaveix = orig_savestack_ix; 7243 7244 last_pushed_cv = newcv; 7245 } 7246 else { 7247 /* these assignments are just to silence compiler 7248 * warnings */ 7249 multicall_cop = NULL; 7250 } 7251 last_pad = PL_comppad; 7252 7253 /* the initial nextstate you would normally execute 7254 * at the start of an eval (which would cause error 7255 * messages to come from the eval), may be optimised 7256 * away from the execution path in the regex code blocks; 7257 * so manually set PL_curcop to it initially */ 7258 { 7259 OP *o = cUNOPx(nop)->op_first; 7260 assert(o->op_type == OP_NULL); 7261 if (o->op_targ == OP_SCOPE) { 7262 o = cUNOPo->op_first; 7263 } 7264 else { 7265 assert(o->op_targ == OP_LEAVE); 7266 o = cUNOPo->op_first; 7267 assert(o->op_type == OP_ENTER); 7268 o = OpSIBLING(o); 7269 } 7270 7271 if (o->op_type != OP_STUB) { 7272 assert( o->op_type == OP_NEXTSTATE 7273 || o->op_type == OP_DBSTATE 7274 || (o->op_type == OP_NULL 7275 && ( o->op_targ == OP_NEXTSTATE 7276 || o->op_targ == OP_DBSTATE 7277 ) 7278 ) 7279 ); 7280 PL_curcop = (COP*)o; 7281 } 7282 } 7283 nop = nop->op_next; 7284 7285 DEBUG_STATE_r( Perl_re_printf( aTHX_ 7286 " re EVAL PL_op=0x%" UVxf "\n", PTR2UV(nop)) ); 7287 7288 rex->offs[0].end = locinput - reginfo->strbeg; 7289 if (reginfo->info_aux_eval->pos_magic) 7290 MgBYTEPOS_set(reginfo->info_aux_eval->pos_magic, 7291 reginfo->sv, reginfo->strbeg, 7292 locinput - reginfo->strbeg); 7293 7294 if (sv_yes_mark) { 7295 SV *sv_mrk = get_sv("REGMARK", 1); 7296 sv_setsv(sv_mrk, sv_yes_mark); 7297 } 7298 7299 /* we don't use MULTICALL here as we want to call the 7300 * first op of the block of interest, rather than the 7301 * first op of the sub. Also, we don't want to free 7302 * the savestack frame */ 7303 before = (IV)(SP-PL_stack_base); 7304 PL_op = nop; 7305 CALLRUNOPS(aTHX); /* Scalar context. */ 7306 SPAGAIN; 7307 if ((IV)(SP-PL_stack_base) == before) 7308 ret = &PL_sv_undef; /* protect against empty (?{}) blocks. */ 7309 else { 7310 ret = POPs; 7311 PUTBACK; 7312 } 7313 7314 /* before restoring everything, evaluate the returned 7315 * value, so that 'uninit' warnings don't use the wrong 7316 * PL_op or pad. Also need to process any magic vars 7317 * (e.g. $1) *before* parentheses are restored */ 7318 7319 PL_op = NULL; 7320 7321 re_sv = NULL; 7322 if (logical == 0) /* (?{})/ */ 7323 sv_setsv(save_scalar(PL_replgv), ret); /* $^R */ 7324 else if (logical == 1) { /* /(?(?{...})X|Y)/ */ 7325 sw = cBOOL(SvTRUE_NN(ret)); 7326 logical = 0; 7327 } 7328 else { /* /(??{}) */ 7329 /* if its overloaded, let the regex compiler handle 7330 * it; otherwise extract regex, or stringify */ 7331 if (SvGMAGICAL(ret)) 7332 ret = sv_mortalcopy(ret); 7333 if (!SvAMAGIC(ret)) { 7334 SV *sv = ret; 7335 if (SvROK(sv)) 7336 sv = SvRV(sv); 7337 if (SvTYPE(sv) == SVt_REGEXP) 7338 re_sv = (REGEXP*) sv; 7339 else if (SvSMAGICAL(ret)) { 7340 MAGIC *mg = mg_find(ret, PERL_MAGIC_qr); 7341 if (mg) 7342 re_sv = (REGEXP *) mg->mg_obj; 7343 } 7344 7345 /* force any undef warnings here */ 7346 if (!re_sv && !SvPOK(ret) && !SvNIOK(ret)) { 7347 ret = sv_mortalcopy(ret); 7348 (void) SvPV_force_nolen(ret); 7349 } 7350 } 7351 7352 } 7353 7354 /* *** Note that at this point we don't restore 7355 * PL_comppad, (or pop the CxSUB) on the assumption it may 7356 * be used again soon. This is safe as long as nothing 7357 * in the regexp code uses the pad ! */ 7358 PL_op = oop; 7359 PL_curcop = ocurcop; 7360 regcp_restore(rex, ST.lastcp, &maxopenparen); 7361 PL_curpm_under = PL_curpm; 7362 PL_curpm = PL_reg_curpm; 7363 7364 if (logical != 2) { 7365 PUSH_STATE_GOTO(EVAL_B, next, locinput); 7366 /* NOTREACHED */ 7367 } 7368 } 7369 7370 /* only /(??{})/ from now on */ 7371 logical = 0; 7372 { 7373 /* extract RE object from returned value; compiling if 7374 * necessary */ 7375 7376 if (re_sv) { 7377 re_sv = reg_temp_copy(NULL, re_sv); 7378 } 7379 else { 7380 U32 pm_flags = 0; 7381 7382 if (SvUTF8(ret) && IN_BYTES) { 7383 /* In use 'bytes': make a copy of the octet 7384 * sequence, but without the flag on */ 7385 STRLEN len; 7386 const char *const p = SvPV(ret, len); 7387 ret = newSVpvn_flags(p, len, SVs_TEMP); 7388 } 7389 if (rex->intflags & PREGf_USE_RE_EVAL) 7390 pm_flags |= PMf_USE_RE_EVAL; 7391 7392 /* if we got here, it should be an engine which 7393 * supports compiling code blocks and stuff */ 7394 assert(rex->engine && rex->engine->op_comp); 7395 assert(!(scan->flags & ~RXf_PMf_COMPILETIME)); 7396 re_sv = rex->engine->op_comp(aTHX_ &ret, 1, NULL, 7397 rex->engine, NULL, NULL, 7398 /* copy /msixn etc to inner pattern */ 7399 ARG2L(scan), 7400 pm_flags); 7401 7402 if (!(SvFLAGS(ret) 7403 & (SVs_TEMP | SVs_GMG | SVf_ROK)) 7404 && (!SvPADTMP(ret) || SvREADONLY(ret))) { 7405 /* This isn't a first class regexp. Instead, it's 7406 caching a regexp onto an existing, Perl visible 7407 scalar. */ 7408 sv_magic(ret, MUTABLE_SV(re_sv), PERL_MAGIC_qr, 0, 0); 7409 } 7410 } 7411 SAVEFREESV(re_sv); 7412 re = ReANY(re_sv); 7413 } 7414 RXp_MATCH_COPIED_off(re); 7415 re->subbeg = rex->subbeg; 7416 re->sublen = rex->sublen; 7417 re->suboffset = rex->suboffset; 7418 re->subcoffset = rex->subcoffset; 7419 re->lastparen = 0; 7420 re->lastcloseparen = 0; 7421 rei = RXi_GET(re); 7422 DEBUG_EXECUTE_r( 7423 debug_start_match(re_sv, utf8_target, locinput, 7424 reginfo->strend, "EVAL/GOSUB: Matching embedded"); 7425 ); 7426 startpoint = rei->program + 1; 7427 EVAL_CLOSE_PAREN_CLEAR(st); /* ST.close_paren = 0; 7428 * close_paren only for GOSUB */ 7429 ST.prev_recurse_locinput= NULL; /* only used for GOSUB */ 7430 /* Save all the seen positions so far. */ 7431 ST.cp = regcppush(rex, 0, maxopenparen); 7432 REGCP_SET(ST.lastcp); 7433 /* and set maxopenparen to 0, since we are starting a "fresh" match */ 7434 maxopenparen = 0; 7435 /* run the pattern returned from (??{...}) */ 7436 7437 eval_recurse_doit: /* Share code with GOSUB below this line 7438 * At this point we expect the stack context to be 7439 * set up correctly */ 7440 7441 /* invalidate the S-L poscache. We're now executing a 7442 * different set of WHILEM ops (and their associated 7443 * indexes) against the same string, so the bits in the 7444 * cache are meaningless. Setting maxiter to zero forces 7445 * the cache to be invalidated and zeroed before reuse. 7446 * XXX This is too dramatic a measure. Ideally we should 7447 * save the old cache and restore when running the outer 7448 * pattern again */ 7449 reginfo->poscache_maxiter = 0; 7450 7451 /* the new regexp might have a different is_utf8_pat than we do */ 7452 is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(re_sv)); 7453 7454 ST.prev_rex = rex_sv; 7455 ST.prev_curlyx = cur_curlyx; 7456 rex_sv = re_sv; 7457 SET_reg_curpm(rex_sv); 7458 rex = re; 7459 rexi = rei; 7460 cur_curlyx = NULL; 7461 ST.B = next; 7462 ST.prev_eval = cur_eval; 7463 cur_eval = st; 7464 /* now continue from first node in postoned RE */ 7465 PUSH_YES_STATE_GOTO(EVAL_postponed_AB, startpoint, locinput); 7466 NOT_REACHED; /* NOTREACHED */ 7467 } 7468 7469 case EVAL_postponed_AB: /* cleanup after a successful (??{A})B */ 7470 /* note: this is called twice; first after popping B, then A */ 7471 DEBUG_STACK_r({ 7472 Perl_re_exec_indentf( aTHX_ "EVAL_AB cur_eval=%p prev_eval=%p\n", 7473 depth, cur_eval, ST.prev_eval); 7474 }); 7475 7476 #define SET_RECURSE_LOCINPUT(STR,VAL)\ 7477 if ( cur_eval && CUR_EVAL.close_paren ) {\ 7478 DEBUG_STACK_r({ \ 7479 Perl_re_exec_indentf( aTHX_ STR " GOSUB%d ce=%p recurse_locinput=%p\n",\ 7480 depth, \ 7481 CUR_EVAL.close_paren - 1,\ 7482 cur_eval, \ 7483 VAL); \ 7484 }); \ 7485 rex->recurse_locinput[CUR_EVAL.close_paren - 1] = VAL;\ 7486 } 7487 7488 SET_RECURSE_LOCINPUT("EVAL_AB[before]", CUR_EVAL.prev_recurse_locinput); 7489 7490 rex_sv = ST.prev_rex; 7491 is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(rex_sv)); 7492 SET_reg_curpm(rex_sv); 7493 rex = ReANY(rex_sv); 7494 rexi = RXi_GET(rex); 7495 { 7496 /* preserve $^R across LEAVE's. See Bug 121070. */ 7497 SV *save_sv= GvSV(PL_replgv); 7498 SvREFCNT_inc(save_sv); 7499 regcpblow(ST.cp); /* LEAVE in disguise */ 7500 sv_setsv(GvSV(PL_replgv), save_sv); 7501 SvREFCNT_dec(save_sv); 7502 } 7503 cur_eval = ST.prev_eval; 7504 cur_curlyx = ST.prev_curlyx; 7505 7506 /* Invalidate cache. See "invalidate" comment above. */ 7507 reginfo->poscache_maxiter = 0; 7508 if ( nochange_depth ) 7509 nochange_depth--; 7510 7511 SET_RECURSE_LOCINPUT("EVAL_AB[after]", cur_eval->locinput); 7512 sayYES; 7513 7514 7515 case EVAL_B_fail: /* unsuccessful B in (?{...})B */ 7516 REGCP_UNWIND(ST.lastcp); 7517 sayNO; 7518 7519 case EVAL_postponed_AB_fail: /* unsuccessfully ran A or B in (??{A})B */ 7520 /* note: this is called twice; first after popping B, then A */ 7521 DEBUG_STACK_r({ 7522 Perl_re_exec_indentf( aTHX_ "EVAL_AB_fail cur_eval=%p prev_eval=%p\n", 7523 depth, cur_eval, ST.prev_eval); 7524 }); 7525 7526 SET_RECURSE_LOCINPUT("EVAL_AB_fail[before]", CUR_EVAL.prev_recurse_locinput); 7527 7528 rex_sv = ST.prev_rex; 7529 is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(rex_sv)); 7530 SET_reg_curpm(rex_sv); 7531 rex = ReANY(rex_sv); 7532 rexi = RXi_GET(rex); 7533 7534 REGCP_UNWIND(ST.lastcp); 7535 regcppop(rex, &maxopenparen); 7536 cur_eval = ST.prev_eval; 7537 cur_curlyx = ST.prev_curlyx; 7538 7539 /* Invalidate cache. See "invalidate" comment above. */ 7540 reginfo->poscache_maxiter = 0; 7541 if ( nochange_depth ) 7542 nochange_depth--; 7543 7544 SET_RECURSE_LOCINPUT("EVAL_AB_fail[after]", cur_eval->locinput); 7545 sayNO_SILENT; 7546 #undef ST 7547 7548 case OPEN: /* ( */ 7549 n = ARG(scan); /* which paren pair */ 7550 rex->offs[n].start_tmp = locinput - reginfo->strbeg; 7551 if (n > maxopenparen) 7552 maxopenparen = n; 7553 DEBUG_BUFFERS_r(Perl_re_exec_indentf( aTHX_ 7554 "OPEN: rex=0x%" UVxf " offs=0x%" UVxf ": \\%" UVuf ": set %" IVdf " tmp; maxopenparen=%" UVuf "\n", 7555 depth, 7556 PTR2UV(rex), 7557 PTR2UV(rex->offs), 7558 (UV)n, 7559 (IV)rex->offs[n].start_tmp, 7560 (UV)maxopenparen 7561 )); 7562 lastopen = n; 7563 break; 7564 7565 case SROPEN: /* (*SCRIPT_RUN: */ 7566 script_run_begin = (U8 *) locinput; 7567 break; 7568 7569 /* XXX really need to log other places start/end are set too */ 7570 #define CLOSE_CAPTURE \ 7571 rex->offs[n].start = rex->offs[n].start_tmp; \ 7572 rex->offs[n].end = locinput - reginfo->strbeg; \ 7573 DEBUG_BUFFERS_r(Perl_re_exec_indentf( aTHX_ \ 7574 "CLOSE: rex=0x%" UVxf " offs=0x%" UVxf ": \\%" UVuf ": set %" IVdf "..%" IVdf "\n", \ 7575 depth, \ 7576 PTR2UV(rex), \ 7577 PTR2UV(rex->offs), \ 7578 (UV)n, \ 7579 (IV)rex->offs[n].start, \ 7580 (IV)rex->offs[n].end \ 7581 )) 7582 7583 case CLOSE: /* ) */ 7584 n = ARG(scan); /* which paren pair */ 7585 CLOSE_CAPTURE; 7586 if (n > rex->lastparen) 7587 rex->lastparen = n; 7588 rex->lastcloseparen = n; 7589 if ( EVAL_CLOSE_PAREN_IS( cur_eval, n ) ) 7590 goto fake_end; 7591 7592 break; 7593 7594 case SRCLOSE: /* (*SCRIPT_RUN: ... ) */ 7595 7596 if (! isSCRIPT_RUN(script_run_begin, (U8 *) locinput, utf8_target)) 7597 { 7598 sayNO; 7599 } 7600 7601 break; 7602 7603 7604 case ACCEPT: /* (*ACCEPT) */ 7605 if (scan->flags) 7606 sv_yes_mark = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]); 7607 if (ARG2L(scan)){ 7608 regnode *cursor; 7609 for (cursor=scan; 7610 cursor && OP(cursor)!=END; 7611 cursor=regnext(cursor)) 7612 { 7613 if ( OP(cursor)==CLOSE ){ 7614 n = ARG(cursor); 7615 if ( n <= lastopen ) { 7616 CLOSE_CAPTURE; 7617 if (n > rex->lastparen) 7618 rex->lastparen = n; 7619 rex->lastcloseparen = n; 7620 if ( n == ARG(scan) || EVAL_CLOSE_PAREN_IS(cur_eval, n) ) 7621 break; 7622 } 7623 } 7624 } 7625 } 7626 goto fake_end; 7627 /* NOTREACHED */ 7628 7629 case GROUPP: /* (?(1)) */ 7630 n = ARG(scan); /* which paren pair */ 7631 sw = cBOOL(rex->lastparen >= n && rex->offs[n].end != -1); 7632 break; 7633 7634 case NGROUPP: /* (?(<name>)) */ 7635 /* reg_check_named_buff_matched returns 0 for no match */ 7636 sw = cBOOL(0 < reg_check_named_buff_matched(rex,scan)); 7637 break; 7638 7639 case INSUBP: /* (?(R)) */ 7640 n = ARG(scan); 7641 /* this does not need to use EVAL_CLOSE_PAREN macros, as the arg 7642 * of SCAN is already set up as matches a eval.close_paren */ 7643 sw = cur_eval && (n == 0 || CUR_EVAL.close_paren == n); 7644 break; 7645 7646 case DEFINEP: /* (?(DEFINE)) */ 7647 sw = 0; 7648 break; 7649 7650 case IFTHEN: /* (?(cond)A|B) */ 7651 reginfo->poscache_iter = reginfo->poscache_maxiter; /* Void cache */ 7652 if (sw) 7653 next = NEXTOPER(NEXTOPER(scan)); 7654 else { 7655 next = scan + ARG(scan); 7656 if (OP(next) == IFTHEN) /* Fake one. */ 7657 next = NEXTOPER(NEXTOPER(next)); 7658 } 7659 break; 7660 7661 case LOGICAL: /* modifier for EVAL and IFMATCH */ 7662 logical = scan->flags; 7663 break; 7664 7665 /******************************************************************* 7666 7667 The CURLYX/WHILEM pair of ops handle the most generic case of the /A*B/ 7668 pattern, where A and B are subpatterns. (For simple A, CURLYM or 7669 STAR/PLUS/CURLY/CURLYN are used instead.) 7670 7671 A*B is compiled as <CURLYX><A><WHILEM><B> 7672 7673 On entry to the subpattern, CURLYX is called. This pushes a CURLYX 7674 state, which contains the current count, initialised to -1. It also sets 7675 cur_curlyx to point to this state, with any previous value saved in the 7676 state block. 7677 7678 CURLYX then jumps straight to the WHILEM op, rather than executing A, 7679 since the pattern may possibly match zero times (i.e. it's a while {} loop 7680 rather than a do {} while loop). 7681 7682 Each entry to WHILEM represents a successful match of A. The count in the 7683 CURLYX block is incremented, another WHILEM state is pushed, and execution 7684 passes to A or B depending on greediness and the current count. 7685 7686 For example, if matching against the string a1a2a3b (where the aN are 7687 substrings that match /A/), then the match progresses as follows: (the 7688 pushed states are interspersed with the bits of strings matched so far): 7689 7690 <CURLYX cnt=-1> 7691 <CURLYX cnt=0><WHILEM> 7692 <CURLYX cnt=1><WHILEM> a1 <WHILEM> 7693 <CURLYX cnt=2><WHILEM> a1 <WHILEM> a2 <WHILEM> 7694 <CURLYX cnt=3><WHILEM> a1 <WHILEM> a2 <WHILEM> a3 <WHILEM> 7695 <CURLYX cnt=3><WHILEM> a1 <WHILEM> a2 <WHILEM> a3 <WHILEM> b 7696 7697 (Contrast this with something like CURLYM, which maintains only a single 7698 backtrack state: 7699 7700 <CURLYM cnt=0> a1 7701 a1 <CURLYM cnt=1> a2 7702 a1 a2 <CURLYM cnt=2> a3 7703 a1 a2 a3 <CURLYM cnt=3> b 7704 ) 7705 7706 Each WHILEM state block marks a point to backtrack to upon partial failure 7707 of A or B, and also contains some minor state data related to that 7708 iteration. The CURLYX block, pointed to by cur_curlyx, contains the 7709 overall state, such as the count, and pointers to the A and B ops. 7710 7711 This is complicated slightly by nested CURLYX/WHILEM's. Since cur_curlyx 7712 must always point to the *current* CURLYX block, the rules are: 7713 7714 When executing CURLYX, save the old cur_curlyx in the CURLYX state block, 7715 and set cur_curlyx to point the new block. 7716 7717 When popping the CURLYX block after a successful or unsuccessful match, 7718 restore the previous cur_curlyx. 7719 7720 When WHILEM is about to execute B, save the current cur_curlyx, and set it 7721 to the outer one saved in the CURLYX block. 7722 7723 When popping the WHILEM block after a successful or unsuccessful B match, 7724 restore the previous cur_curlyx. 7725 7726 Here's an example for the pattern (AI* BI)*BO 7727 I and O refer to inner and outer, C and W refer to CURLYX and WHILEM: 7728 7729 cur_ 7730 curlyx backtrack stack 7731 ------ --------------- 7732 NULL 7733 CO <CO prev=NULL> <WO> 7734 CI <CO prev=NULL> <WO> <CI prev=CO> <WI> ai 7735 CO <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi 7736 NULL <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi <WO prev=CO> bo 7737 7738 At this point the pattern succeeds, and we work back down the stack to 7739 clean up, restoring as we go: 7740 7741 CO <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi 7742 CI <CO prev=NULL> <WO> <CI prev=CO> <WI> ai 7743 CO <CO prev=NULL> <WO> 7744 NULL 7745 7746 *******************************************************************/ 7747 7748 #define ST st->u.curlyx 7749 7750 case CURLYX: /* start of /A*B/ (for complex A) */ 7751 { 7752 /* No need to save/restore up to this paren */ 7753 I32 parenfloor = scan->flags; 7754 7755 assert(next); /* keep Coverity happy */ 7756 if (OP(PREVOPER(next)) == NOTHING) /* LONGJMP */ 7757 next += ARG(next); 7758 7759 /* XXXX Probably it is better to teach regpush to support 7760 parenfloor > maxopenparen ... */ 7761 if (parenfloor > (I32)rex->lastparen) 7762 parenfloor = rex->lastparen; /* Pessimization... */ 7763 7764 ST.prev_curlyx= cur_curlyx; 7765 cur_curlyx = st; 7766 ST.cp = PL_savestack_ix; 7767 7768 /* these fields contain the state of the current curly. 7769 * they are accessed by subsequent WHILEMs */ 7770 ST.parenfloor = parenfloor; 7771 ST.me = scan; 7772 ST.B = next; 7773 ST.minmod = minmod; 7774 minmod = 0; 7775 ST.count = -1; /* this will be updated by WHILEM */ 7776 ST.lastloc = NULL; /* this will be updated by WHILEM */ 7777 7778 PUSH_YES_STATE_GOTO(CURLYX_end, PREVOPER(next), locinput); 7779 NOT_REACHED; /* NOTREACHED */ 7780 } 7781 7782 case CURLYX_end: /* just finished matching all of A*B */ 7783 cur_curlyx = ST.prev_curlyx; 7784 sayYES; 7785 NOT_REACHED; /* NOTREACHED */ 7786 7787 case CURLYX_end_fail: /* just failed to match all of A*B */ 7788 regcpblow(ST.cp); 7789 cur_curlyx = ST.prev_curlyx; 7790 sayNO; 7791 NOT_REACHED; /* NOTREACHED */ 7792 7793 7794 #undef ST 7795 #define ST st->u.whilem 7796 7797 case WHILEM: /* just matched an A in /A*B/ (for complex A) */ 7798 { 7799 /* see the discussion above about CURLYX/WHILEM */ 7800 I32 n; 7801 int min, max; 7802 regnode *A; 7803 7804 assert(cur_curlyx); /* keep Coverity happy */ 7805 7806 min = ARG1(cur_curlyx->u.curlyx.me); 7807 max = ARG2(cur_curlyx->u.curlyx.me); 7808 A = NEXTOPER(cur_curlyx->u.curlyx.me) + EXTRA_STEP_2ARGS; 7809 n = ++cur_curlyx->u.curlyx.count; /* how many A's matched */ 7810 ST.save_lastloc = cur_curlyx->u.curlyx.lastloc; 7811 ST.cache_offset = 0; 7812 ST.cache_mask = 0; 7813 7814 7815 DEBUG_EXECUTE_r( Perl_re_exec_indentf( aTHX_ "WHILEM: matched %ld out of %d..%d\n", 7816 depth, (long)n, min, max) 7817 ); 7818 7819 /* First just match a string of min A's. */ 7820 7821 if (n < min) { 7822 ST.cp = regcppush(rex, cur_curlyx->u.curlyx.parenfloor, maxopenparen); 7823 cur_curlyx->u.curlyx.lastloc = locinput; 7824 REGCP_SET(ST.lastcp); 7825 7826 PUSH_STATE_GOTO(WHILEM_A_pre, A, locinput); 7827 NOT_REACHED; /* NOTREACHED */ 7828 } 7829 7830 /* If degenerate A matches "", assume A done. */ 7831 7832 if (locinput == cur_curlyx->u.curlyx.lastloc) { 7833 DEBUG_EXECUTE_r( Perl_re_exec_indentf( aTHX_ "WHILEM: empty match detected, trying continuation...\n", 7834 depth) 7835 ); 7836 goto do_whilem_B_max; 7837 } 7838 7839 /* super-linear cache processing. 7840 * 7841 * The idea here is that for certain types of CURLYX/WHILEM - 7842 * principally those whose upper bound is infinity (and 7843 * excluding regexes that have things like \1 and other very 7844 * non-regular expresssiony things), then if a pattern like 7845 * /....A*.../ fails and we backtrack to the WHILEM, then we 7846 * make a note that this particular WHILEM op was at string 7847 * position 47 (say) when the rest of pattern failed. Then, if 7848 * we ever find ourselves back at that WHILEM, and at string 7849 * position 47 again, we can just fail immediately rather than 7850 * running the rest of the pattern again. 7851 * 7852 * This is very handy when patterns start to go 7853 * 'super-linear', like in (a+)*(a+)*(a+)*, where you end up 7854 * with a combinatorial explosion of backtracking. 7855 * 7856 * The cache is implemented as a bit array, with one bit per 7857 * string byte position per WHILEM op (up to 16) - so its 7858 * between 0.25 and 2x the string size. 7859 * 7860 * To avoid allocating a poscache buffer every time, we do an 7861 * initially countdown; only after we have executed a WHILEM 7862 * op (string-length x #WHILEMs) times do we allocate the 7863 * cache. 7864 * 7865 * The top 4 bits of scan->flags byte say how many different 7866 * relevant CURLLYX/WHILEM op pairs there are, while the 7867 * bottom 4-bits is the identifying index number of this 7868 * WHILEM. 7869 */ 7870 7871 if (scan->flags) { 7872 7873 if (!reginfo->poscache_maxiter) { 7874 /* start the countdown: Postpone detection until we 7875 * know the match is not *that* much linear. */ 7876 reginfo->poscache_maxiter 7877 = (reginfo->strend - reginfo->strbeg + 1) 7878 * (scan->flags>>4); 7879 /* possible overflow for long strings and many CURLYX's */ 7880 if (reginfo->poscache_maxiter < 0) 7881 reginfo->poscache_maxiter = I32_MAX; 7882 reginfo->poscache_iter = reginfo->poscache_maxiter; 7883 } 7884 7885 if (reginfo->poscache_iter-- == 0) { 7886 /* initialise cache */ 7887 const SSize_t size = (reginfo->poscache_maxiter + 7)/8; 7888 regmatch_info_aux *const aux = reginfo->info_aux; 7889 if (aux->poscache) { 7890 if ((SSize_t)reginfo->poscache_size < size) { 7891 Renew(aux->poscache, size, char); 7892 reginfo->poscache_size = size; 7893 } 7894 Zero(aux->poscache, size, char); 7895 } 7896 else { 7897 reginfo->poscache_size = size; 7898 Newxz(aux->poscache, size, char); 7899 } 7900 DEBUG_EXECUTE_r( Perl_re_printf( aTHX_ 7901 "%sWHILEM: Detected a super-linear match, switching on caching%s...\n", 7902 PL_colors[4], PL_colors[5]) 7903 ); 7904 } 7905 7906 if (reginfo->poscache_iter < 0) { 7907 /* have we already failed at this position? */ 7908 SSize_t offset, mask; 7909 7910 reginfo->poscache_iter = -1; /* stop eventual underflow */ 7911 offset = (scan->flags & 0xf) - 1 7912 + (locinput - reginfo->strbeg) 7913 * (scan->flags>>4); 7914 mask = 1 << (offset % 8); 7915 offset /= 8; 7916 if (reginfo->info_aux->poscache[offset] & mask) { 7917 DEBUG_EXECUTE_r( Perl_re_exec_indentf( aTHX_ "WHILEM: (cache) already tried at this position...\n", 7918 depth) 7919 ); 7920 cur_curlyx->u.curlyx.count--; 7921 sayNO; /* cache records failure */ 7922 } 7923 ST.cache_offset = offset; 7924 ST.cache_mask = mask; 7925 } 7926 } 7927 7928 /* Prefer B over A for minimal matching. */ 7929 7930 if (cur_curlyx->u.curlyx.minmod) { 7931 ST.save_curlyx = cur_curlyx; 7932 cur_curlyx = cur_curlyx->u.curlyx.prev_curlyx; 7933 PUSH_YES_STATE_GOTO(WHILEM_B_min, ST.save_curlyx->u.curlyx.B, 7934 locinput); 7935 NOT_REACHED; /* NOTREACHED */ 7936 } 7937 7938 /* Prefer A over B for maximal matching. */ 7939 7940 if (n < max) { /* More greed allowed? */ 7941 ST.cp = regcppush(rex, cur_curlyx->u.curlyx.parenfloor, 7942 maxopenparen); 7943 cur_curlyx->u.curlyx.lastloc = locinput; 7944 REGCP_SET(ST.lastcp); 7945 PUSH_STATE_GOTO(WHILEM_A_max, A, locinput); 7946 NOT_REACHED; /* NOTREACHED */ 7947 } 7948 goto do_whilem_B_max; 7949 } 7950 NOT_REACHED; /* NOTREACHED */ 7951 7952 case WHILEM_B_min: /* just matched B in a minimal match */ 7953 case WHILEM_B_max: /* just matched B in a maximal match */ 7954 cur_curlyx = ST.save_curlyx; 7955 sayYES; 7956 NOT_REACHED; /* NOTREACHED */ 7957 7958 case WHILEM_B_max_fail: /* just failed to match B in a maximal match */ 7959 cur_curlyx = ST.save_curlyx; 7960 cur_curlyx->u.curlyx.lastloc = ST.save_lastloc; 7961 cur_curlyx->u.curlyx.count--; 7962 CACHEsayNO; 7963 NOT_REACHED; /* NOTREACHED */ 7964 7965 case WHILEM_A_min_fail: /* just failed to match A in a minimal match */ 7966 /* FALLTHROUGH */ 7967 case WHILEM_A_pre_fail: /* just failed to match even minimal A */ 7968 REGCP_UNWIND(ST.lastcp); 7969 regcppop(rex, &maxopenparen); 7970 cur_curlyx->u.curlyx.lastloc = ST.save_lastloc; 7971 cur_curlyx->u.curlyx.count--; 7972 CACHEsayNO; 7973 NOT_REACHED; /* NOTREACHED */ 7974 7975 case WHILEM_A_max_fail: /* just failed to match A in a maximal match */ 7976 REGCP_UNWIND(ST.lastcp); 7977 regcppop(rex, &maxopenparen); /* Restore some previous $<digit>s? */ 7978 DEBUG_EXECUTE_r(Perl_re_exec_indentf( aTHX_ "WHILEM: failed, trying continuation...\n", 7979 depth) 7980 ); 7981 do_whilem_B_max: 7982 if (cur_curlyx->u.curlyx.count >= REG_INFTY 7983 && ckWARN(WARN_REGEXP) 7984 && !reginfo->warned) 7985 { 7986 reginfo->warned = TRUE; 7987 Perl_warner(aTHX_ packWARN(WARN_REGEXP), 7988 "Complex regular subexpression recursion limit (%d) " 7989 "exceeded", 7990 REG_INFTY - 1); 7991 } 7992 7993 /* now try B */ 7994 ST.save_curlyx = cur_curlyx; 7995 cur_curlyx = cur_curlyx->u.curlyx.prev_curlyx; 7996 PUSH_YES_STATE_GOTO(WHILEM_B_max, ST.save_curlyx->u.curlyx.B, 7997 locinput); 7998 NOT_REACHED; /* NOTREACHED */ 7999 8000 case WHILEM_B_min_fail: /* just failed to match B in a minimal match */ 8001 cur_curlyx = ST.save_curlyx; 8002 8003 if (cur_curlyx->u.curlyx.count >= /*max*/ARG2(cur_curlyx->u.curlyx.me)) { 8004 /* Maximum greed exceeded */ 8005 if (cur_curlyx->u.curlyx.count >= REG_INFTY 8006 && ckWARN(WARN_REGEXP) 8007 && !reginfo->warned) 8008 { 8009 reginfo->warned = TRUE; 8010 Perl_warner(aTHX_ packWARN(WARN_REGEXP), 8011 "Complex regular subexpression recursion " 8012 "limit (%d) exceeded", 8013 REG_INFTY - 1); 8014 } 8015 cur_curlyx->u.curlyx.count--; 8016 CACHEsayNO; 8017 } 8018 8019 DEBUG_EXECUTE_r(Perl_re_exec_indentf( aTHX_ "WHILEM: B min fail: trying longer...\n", depth) 8020 ); 8021 /* Try grabbing another A and see if it helps. */ 8022 cur_curlyx->u.curlyx.lastloc = locinput; 8023 ST.cp = regcppush(rex, cur_curlyx->u.curlyx.parenfloor, 8024 maxopenparen); 8025 REGCP_SET(ST.lastcp); 8026 PUSH_STATE_GOTO(WHILEM_A_min, 8027 /*A*/ NEXTOPER(ST.save_curlyx->u.curlyx.me) + EXTRA_STEP_2ARGS, 8028 locinput); 8029 NOT_REACHED; /* NOTREACHED */ 8030 8031 #undef ST 8032 #define ST st->u.branch 8033 8034 case BRANCHJ: /* /(...|A|...)/ with long next pointer */ 8035 next = scan + ARG(scan); 8036 if (next == scan) 8037 next = NULL; 8038 scan = NEXTOPER(scan); 8039 /* FALLTHROUGH */ 8040 8041 case BRANCH: /* /(...|A|...)/ */ 8042 scan = NEXTOPER(scan); /* scan now points to inner node */ 8043 ST.lastparen = rex->lastparen; 8044 ST.lastcloseparen = rex->lastcloseparen; 8045 ST.next_branch = next; 8046 REGCP_SET(ST.cp); 8047 8048 /* Now go into the branch */ 8049 if (has_cutgroup) { 8050 PUSH_YES_STATE_GOTO(BRANCH_next, scan, locinput); 8051 } else { 8052 PUSH_STATE_GOTO(BRANCH_next, scan, locinput); 8053 } 8054 NOT_REACHED; /* NOTREACHED */ 8055 8056 case CUTGROUP: /* /(*THEN)/ */ 8057 sv_yes_mark = st->u.mark.mark_name = scan->flags 8058 ? MUTABLE_SV(rexi->data->data[ ARG( scan ) ]) 8059 : NULL; 8060 PUSH_STATE_GOTO(CUTGROUP_next, next, locinput); 8061 NOT_REACHED; /* NOTREACHED */ 8062 8063 case CUTGROUP_next_fail: 8064 do_cutgroup = 1; 8065 no_final = 1; 8066 if (st->u.mark.mark_name) 8067 sv_commit = st->u.mark.mark_name; 8068 sayNO; 8069 NOT_REACHED; /* NOTREACHED */ 8070 8071 case BRANCH_next: 8072 sayYES; 8073 NOT_REACHED; /* NOTREACHED */ 8074 8075 case BRANCH_next_fail: /* that branch failed; try the next, if any */ 8076 if (do_cutgroup) { 8077 do_cutgroup = 0; 8078 no_final = 0; 8079 } 8080 REGCP_UNWIND(ST.cp); 8081 UNWIND_PAREN(ST.lastparen, ST.lastcloseparen); 8082 scan = ST.next_branch; 8083 /* no more branches? */ 8084 if (!scan || (OP(scan) != BRANCH && OP(scan) != BRANCHJ)) { 8085 DEBUG_EXECUTE_r({ 8086 Perl_re_exec_indentf( aTHX_ "%sBRANCH failed...%s\n", 8087 depth, 8088 PL_colors[4], 8089 PL_colors[5] ); 8090 }); 8091 sayNO_SILENT; 8092 } 8093 continue; /* execute next BRANCH[J] op */ 8094 /* NOTREACHED */ 8095 8096 case MINMOD: /* next op will be non-greedy, e.g. A*? */ 8097 minmod = 1; 8098 break; 8099 8100 #undef ST 8101 #define ST st->u.curlym 8102 8103 case CURLYM: /* /A{m,n}B/ where A is fixed-length */ 8104 8105 /* This is an optimisation of CURLYX that enables us to push 8106 * only a single backtracking state, no matter how many matches 8107 * there are in {m,n}. It relies on the pattern being constant 8108 * length, with no parens to influence future backrefs 8109 */ 8110 8111 ST.me = scan; 8112 scan = NEXTOPER(scan) + NODE_STEP_REGNODE; 8113 8114 ST.lastparen = rex->lastparen; 8115 ST.lastcloseparen = rex->lastcloseparen; 8116 8117 /* if paren positive, emulate an OPEN/CLOSE around A */ 8118 if (ST.me->flags) { 8119 U32 paren = ST.me->flags; 8120 if (paren > maxopenparen) 8121 maxopenparen = paren; 8122 scan += NEXT_OFF(scan); /* Skip former OPEN. */ 8123 } 8124 ST.A = scan; 8125 ST.B = next; 8126 ST.alen = 0; 8127 ST.count = 0; 8128 ST.minmod = minmod; 8129 minmod = 0; 8130 ST.c1 = CHRTEST_UNINIT; 8131 REGCP_SET(ST.cp); 8132 8133 if (!(ST.minmod ? ARG1(ST.me) : ARG2(ST.me))) /* min/max */ 8134 goto curlym_do_B; 8135 8136 curlym_do_A: /* execute the A in /A{m,n}B/ */ 8137 PUSH_YES_STATE_GOTO(CURLYM_A, ST.A, locinput); /* match A */ 8138 NOT_REACHED; /* NOTREACHED */ 8139 8140 case CURLYM_A: /* we've just matched an A */ 8141 ST.count++; 8142 /* after first match, determine A's length: u.curlym.alen */ 8143 if (ST.count == 1) { 8144 if (reginfo->is_utf8_target) { 8145 char *s = st->locinput; 8146 while (s < locinput) { 8147 ST.alen++; 8148 s += UTF8SKIP(s); 8149 } 8150 } 8151 else { 8152 ST.alen = locinput - st->locinput; 8153 } 8154 if (ST.alen == 0) 8155 ST.count = ST.minmod ? ARG1(ST.me) : ARG2(ST.me); 8156 } 8157 DEBUG_EXECUTE_r( 8158 Perl_re_exec_indentf( aTHX_ "CURLYM now matched %" IVdf " times, len=%" IVdf "...\n", 8159 depth, (IV) ST.count, (IV)ST.alen) 8160 ); 8161 8162 if (EVAL_CLOSE_PAREN_IS_TRUE(cur_eval,(U32)ST.me->flags)) 8163 goto fake_end; 8164 8165 { 8166 I32 max = (ST.minmod ? ARG1(ST.me) : ARG2(ST.me)); 8167 if ( max == REG_INFTY || ST.count < max ) 8168 goto curlym_do_A; /* try to match another A */ 8169 } 8170 goto curlym_do_B; /* try to match B */ 8171 8172 case CURLYM_A_fail: /* just failed to match an A */ 8173 REGCP_UNWIND(ST.cp); 8174 8175 8176 if (ST.minmod || ST.count < ARG1(ST.me) /* min*/ 8177 || EVAL_CLOSE_PAREN_IS_TRUE(cur_eval,(U32)ST.me->flags)) 8178 sayNO; 8179 8180 curlym_do_B: /* execute the B in /A{m,n}B/ */ 8181 if (ST.c1 == CHRTEST_UNINIT) { 8182 /* calculate c1 and c2 for possible match of 1st char 8183 * following curly */ 8184 ST.c1 = ST.c2 = CHRTEST_VOID; 8185 assert(ST.B); 8186 if (HAS_TEXT(ST.B) || JUMPABLE(ST.B)) { 8187 regnode *text_node = ST.B; 8188 if (! HAS_TEXT(text_node)) 8189 FIND_NEXT_IMPT(text_node); 8190 /* this used to be 8191 8192 (HAS_TEXT(text_node) && PL_regkind[OP(text_node)] == EXACT) 8193 8194 But the former is redundant in light of the latter. 8195 8196 if this changes back then the macro for 8197 IS_TEXT and friends need to change. 8198 */ 8199 if (PL_regkind[OP(text_node)] == EXACT) { 8200 if (! S_setup_EXACTISH_ST_c1_c2(aTHX_ 8201 text_node, &ST.c1, ST.c1_utf8, &ST.c2, ST.c2_utf8, 8202 reginfo)) 8203 { 8204 sayNO; 8205 } 8206 } 8207 } 8208 } 8209 8210 DEBUG_EXECUTE_r( 8211 Perl_re_exec_indentf( aTHX_ "CURLYM trying tail with matches=%" IVdf "...\n", 8212 depth, (IV)ST.count) 8213 ); 8214 if (! NEXTCHR_IS_EOS && ST.c1 != CHRTEST_VOID) { 8215 if (! UTF8_IS_INVARIANT(nextchr) && utf8_target) { 8216 if (memNE(locinput, ST.c1_utf8, UTF8SKIP(locinput)) 8217 && memNE(locinput, ST.c2_utf8, UTF8SKIP(locinput))) 8218 { 8219 /* simulate B failing */ 8220 DEBUG_OPTIMISE_r( 8221 Perl_re_exec_indentf( aTHX_ "CURLYM Fast bail next target=0x%" UVXf " c1=0x%" UVXf " c2=0x%" UVXf "\n", 8222 depth, 8223 valid_utf8_to_uvchr((U8 *) locinput, NULL), 8224 valid_utf8_to_uvchr(ST.c1_utf8, NULL), 8225 valid_utf8_to_uvchr(ST.c2_utf8, NULL)) 8226 ); 8227 state_num = CURLYM_B_fail; 8228 goto reenter_switch; 8229 } 8230 } 8231 else if (nextchr != ST.c1 && nextchr != ST.c2) { 8232 /* simulate B failing */ 8233 DEBUG_OPTIMISE_r( 8234 Perl_re_exec_indentf( aTHX_ "CURLYM Fast bail next target=0x%X c1=0x%X c2=0x%X\n", 8235 depth, 8236 (int) nextchr, ST.c1, ST.c2) 8237 ); 8238 state_num = CURLYM_B_fail; 8239 goto reenter_switch; 8240 } 8241 } 8242 8243 if (ST.me->flags) { 8244 /* emulate CLOSE: mark current A as captured */ 8245 I32 paren = ST.me->flags; 8246 if (ST.count) { 8247 rex->offs[paren].start 8248 = HOPc(locinput, -ST.alen) - reginfo->strbeg; 8249 rex->offs[paren].end = locinput - reginfo->strbeg; 8250 if ((U32)paren > rex->lastparen) 8251 rex->lastparen = paren; 8252 rex->lastcloseparen = paren; 8253 } 8254 else 8255 rex->offs[paren].end = -1; 8256 8257 if (EVAL_CLOSE_PAREN_IS_TRUE(cur_eval,(U32)ST.me->flags)) 8258 { 8259 if (ST.count) 8260 goto fake_end; 8261 else 8262 sayNO; 8263 } 8264 } 8265 8266 PUSH_STATE_GOTO(CURLYM_B, ST.B, locinput); /* match B */ 8267 NOT_REACHED; /* NOTREACHED */ 8268 8269 case CURLYM_B_fail: /* just failed to match a B */ 8270 REGCP_UNWIND(ST.cp); 8271 UNWIND_PAREN(ST.lastparen, ST.lastcloseparen); 8272 if (ST.minmod) { 8273 I32 max = ARG2(ST.me); 8274 if (max != REG_INFTY && ST.count == max) 8275 sayNO; 8276 goto curlym_do_A; /* try to match a further A */ 8277 } 8278 /* backtrack one A */ 8279 if (ST.count == ARG1(ST.me) /* min */) 8280 sayNO; 8281 ST.count--; 8282 SET_locinput(HOPc(locinput, -ST.alen)); 8283 goto curlym_do_B; /* try to match B */ 8284 8285 #undef ST 8286 #define ST st->u.curly 8287 8288 #define CURLY_SETPAREN(paren, success) \ 8289 if (paren) { \ 8290 if (success) { \ 8291 rex->offs[paren].start = HOPc(locinput, -1) - reginfo->strbeg; \ 8292 rex->offs[paren].end = locinput - reginfo->strbeg; \ 8293 if (paren > rex->lastparen) \ 8294 rex->lastparen = paren; \ 8295 rex->lastcloseparen = paren; \ 8296 } \ 8297 else { \ 8298 rex->offs[paren].end = -1; \ 8299 rex->lastparen = ST.lastparen; \ 8300 rex->lastcloseparen = ST.lastcloseparen; \ 8301 } \ 8302 } 8303 8304 case STAR: /* /A*B/ where A is width 1 char */ 8305 ST.paren = 0; 8306 ST.min = 0; 8307 ST.max = REG_INFTY; 8308 scan = NEXTOPER(scan); 8309 goto repeat; 8310 8311 case PLUS: /* /A+B/ where A is width 1 char */ 8312 ST.paren = 0; 8313 ST.min = 1; 8314 ST.max = REG_INFTY; 8315 scan = NEXTOPER(scan); 8316 goto repeat; 8317 8318 case CURLYN: /* /(A){m,n}B/ where A is width 1 char */ 8319 ST.paren = scan->flags; /* Which paren to set */ 8320 ST.lastparen = rex->lastparen; 8321 ST.lastcloseparen = rex->lastcloseparen; 8322 if (ST.paren > maxopenparen) 8323 maxopenparen = ST.paren; 8324 ST.min = ARG1(scan); /* min to match */ 8325 ST.max = ARG2(scan); /* max to match */ 8326 if (EVAL_CLOSE_PAREN_IS_TRUE(cur_eval,(U32)ST.paren)) 8327 { 8328 ST.min=1; 8329 ST.max=1; 8330 } 8331 scan = regnext(NEXTOPER(scan) + NODE_STEP_REGNODE); 8332 goto repeat; 8333 8334 case CURLY: /* /A{m,n}B/ where A is width 1 char */ 8335 ST.paren = 0; 8336 ST.min = ARG1(scan); /* min to match */ 8337 ST.max = ARG2(scan); /* max to match */ 8338 scan = NEXTOPER(scan) + NODE_STEP_REGNODE; 8339 repeat: 8340 /* 8341 * Lookahead to avoid useless match attempts 8342 * when we know what character comes next. 8343 * 8344 * Used to only do .*x and .*?x, but now it allows 8345 * for )'s, ('s and (?{ ... })'s to be in the way 8346 * of the quantifier and the EXACT-like node. -- japhy 8347 */ 8348 8349 assert(ST.min <= ST.max); 8350 if (! HAS_TEXT(next) && ! JUMPABLE(next)) { 8351 ST.c1 = ST.c2 = CHRTEST_VOID; 8352 } 8353 else { 8354 regnode *text_node = next; 8355 8356 if (! HAS_TEXT(text_node)) 8357 FIND_NEXT_IMPT(text_node); 8358 8359 if (! HAS_TEXT(text_node)) 8360 ST.c1 = ST.c2 = CHRTEST_VOID; 8361 else { 8362 if ( PL_regkind[OP(text_node)] != EXACT ) { 8363 ST.c1 = ST.c2 = CHRTEST_VOID; 8364 } 8365 else { 8366 8367 /* Currently we only get here when 8368 8369 PL_rekind[OP(text_node)] == EXACT 8370 8371 if this changes back then the macro for IS_TEXT and 8372 friends need to change. */ 8373 if (! S_setup_EXACTISH_ST_c1_c2(aTHX_ 8374 text_node, &ST.c1, ST.c1_utf8, &ST.c2, ST.c2_utf8, 8375 reginfo)) 8376 { 8377 sayNO; 8378 } 8379 } 8380 } 8381 } 8382 8383 ST.A = scan; 8384 ST.B = next; 8385 if (minmod) { 8386 char *li = locinput; 8387 minmod = 0; 8388 if (ST.min && 8389 regrepeat(rex, &li, ST.A, reginfo, ST.min) 8390 < ST.min) 8391 sayNO; 8392 SET_locinput(li); 8393 ST.count = ST.min; 8394 REGCP_SET(ST.cp); 8395 if (ST.c1 == CHRTEST_VOID) 8396 goto curly_try_B_min; 8397 8398 ST.oldloc = locinput; 8399 8400 /* set ST.maxpos to the furthest point along the 8401 * string that could possibly match */ 8402 if (ST.max == REG_INFTY) { 8403 ST.maxpos = reginfo->strend - 1; 8404 if (utf8_target) 8405 while (UTF8_IS_CONTINUATION(*(U8*)ST.maxpos)) 8406 ST.maxpos--; 8407 } 8408 else if (utf8_target) { 8409 int m = ST.max - ST.min; 8410 for (ST.maxpos = locinput; 8411 m >0 && ST.maxpos < reginfo->strend; m--) 8412 ST.maxpos += UTF8SKIP(ST.maxpos); 8413 } 8414 else { 8415 ST.maxpos = locinput + ST.max - ST.min; 8416 if (ST.maxpos >= reginfo->strend) 8417 ST.maxpos = reginfo->strend - 1; 8418 } 8419 goto curly_try_B_min_known; 8420 8421 } 8422 else { 8423 /* avoid taking address of locinput, so it can remain 8424 * a register var */ 8425 char *li = locinput; 8426 ST.count = regrepeat(rex, &li, ST.A, reginfo, ST.max); 8427 if (ST.count < ST.min) 8428 sayNO; 8429 SET_locinput(li); 8430 if ((ST.count > ST.min) 8431 && (PL_regkind[OP(ST.B)] == EOL) && (OP(ST.B) != MEOL)) 8432 { 8433 /* A{m,n} must come at the end of the string, there's 8434 * no point in backing off ... */ 8435 ST.min = ST.count; 8436 /* ...except that $ and \Z can match before *and* after 8437 newline at the end. Consider "\n\n" =~ /\n+\Z\n/. 8438 We may back off by one in this case. */ 8439 if (UCHARAT(locinput - 1) == '\n' && OP(ST.B) != EOS) 8440 ST.min--; 8441 } 8442 REGCP_SET(ST.cp); 8443 goto curly_try_B_max; 8444 } 8445 NOT_REACHED; /* NOTREACHED */ 8446 8447 case CURLY_B_min_known_fail: 8448 /* failed to find B in a non-greedy match where c1,c2 valid */ 8449 8450 REGCP_UNWIND(ST.cp); 8451 if (ST.paren) { 8452 UNWIND_PAREN(ST.lastparen, ST.lastcloseparen); 8453 } 8454 /* Couldn't or didn't -- move forward. */ 8455 ST.oldloc = locinput; 8456 if (utf8_target) 8457 locinput += UTF8SKIP(locinput); 8458 else 8459 locinput++; 8460 ST.count++; 8461 curly_try_B_min_known: 8462 /* find the next place where 'B' could work, then call B */ 8463 { 8464 int n; 8465 if (utf8_target) { 8466 n = (ST.oldloc == locinput) ? 0 : 1; 8467 if (ST.c1 == ST.c2) { 8468 /* set n to utf8_distance(oldloc, locinput) */ 8469 while (locinput <= ST.maxpos 8470 && memNE(locinput, ST.c1_utf8, UTF8SKIP(locinput))) 8471 { 8472 locinput += UTF8SKIP(locinput); 8473 n++; 8474 } 8475 } 8476 else { 8477 /* set n to utf8_distance(oldloc, locinput) */ 8478 while (locinput <= ST.maxpos 8479 && memNE(locinput, ST.c1_utf8, UTF8SKIP(locinput)) 8480 && memNE(locinput, ST.c2_utf8, UTF8SKIP(locinput))) 8481 { 8482 locinput += UTF8SKIP(locinput); 8483 n++; 8484 } 8485 } 8486 } 8487 else { /* Not utf8_target */ 8488 if (ST.c1 == ST.c2) { 8489 locinput = (char *) memchr(locinput, 8490 ST.c1, 8491 ST.maxpos + 1 - locinput); 8492 if (! locinput) { 8493 locinput = ST.maxpos + 1; 8494 } 8495 } 8496 else { 8497 U8 c1_c2_bits_differing = ST.c1 ^ ST.c2; 8498 8499 if (! isPOWER_OF_2(c1_c2_bits_differing)) { 8500 while ( locinput <= ST.maxpos 8501 && UCHARAT(locinput) != ST.c1 8502 && UCHARAT(locinput) != ST.c2) 8503 { 8504 locinput++; 8505 } 8506 } 8507 else { 8508 /* If c1 and c2 only differ by a single bit, we can 8509 * avoid a conditional each time through the loop, 8510 * at the expense of a little preliminary setup and 8511 * an extra mask each iteration. By masking out 8512 * that bit, we match exactly two characters, c1 8513 * and c2, and so we don't have to test for both. 8514 * On both ASCII and EBCDIC platforms, most of the 8515 * ASCII-range and Latin1-range folded equivalents 8516 * differ only in a single bit, so this is actually 8517 * the most common case. (e.g. 'A' 0x41 vs 'a' 8518 * 0x61). */ 8519 U8 c1_masked = ST.c1 &~ c1_c2_bits_differing; 8520 U8 c1_c2_mask = ~ c1_c2_bits_differing; 8521 while ( locinput <= ST.maxpos 8522 && (UCHARAT(locinput) & c1_c2_mask) 8523 != c1_masked) 8524 { 8525 locinput++; 8526 } 8527 } 8528 } 8529 n = locinput - ST.oldloc; 8530 } 8531 if (locinput > ST.maxpos) 8532 sayNO; 8533 if (n) { 8534 /* In /a{m,n}b/, ST.oldloc is at "a" x m, locinput is 8535 * at b; check that everything between oldloc and 8536 * locinput matches */ 8537 char *li = ST.oldloc; 8538 ST.count += n; 8539 if (regrepeat(rex, &li, ST.A, reginfo, n) < n) 8540 sayNO; 8541 assert(n == REG_INFTY || locinput == li); 8542 } 8543 CURLY_SETPAREN(ST.paren, ST.count); 8544 if (EVAL_CLOSE_PAREN_IS_TRUE(cur_eval,(U32)ST.paren)) 8545 goto fake_end; 8546 PUSH_STATE_GOTO(CURLY_B_min_known, ST.B, locinput); 8547 } 8548 NOT_REACHED; /* NOTREACHED */ 8549 8550 case CURLY_B_min_fail: 8551 /* failed to find B in a non-greedy match where c1,c2 invalid */ 8552 8553 REGCP_UNWIND(ST.cp); 8554 if (ST.paren) { 8555 UNWIND_PAREN(ST.lastparen, ST.lastcloseparen); 8556 } 8557 /* failed -- move forward one */ 8558 { 8559 char *li = locinput; 8560 if (!regrepeat(rex, &li, ST.A, reginfo, 1)) { 8561 sayNO; 8562 } 8563 locinput = li; 8564 } 8565 { 8566 ST.count++; 8567 if (ST.count <= ST.max || (ST.max == REG_INFTY && 8568 ST.count > 0)) /* count overflow ? */ 8569 { 8570 curly_try_B_min: 8571 CURLY_SETPAREN(ST.paren, ST.count); 8572 if (EVAL_CLOSE_PAREN_IS_TRUE(cur_eval,(U32)ST.paren)) 8573 goto fake_end; 8574 PUSH_STATE_GOTO(CURLY_B_min, ST.B, locinput); 8575 } 8576 } 8577 sayNO; 8578 NOT_REACHED; /* NOTREACHED */ 8579 8580 curly_try_B_max: 8581 /* a successful greedy match: now try to match B */ 8582 if (EVAL_CLOSE_PAREN_IS_TRUE(cur_eval,(U32)ST.paren)) 8583 goto fake_end; 8584 { 8585 bool could_match = locinput < reginfo->strend; 8586 8587 /* If it could work, try it. */ 8588 if (ST.c1 != CHRTEST_VOID && could_match) { 8589 if (! UTF8_IS_INVARIANT(UCHARAT(locinput)) && utf8_target) 8590 { 8591 could_match = memEQ(locinput, 8592 ST.c1_utf8, 8593 UTF8SKIP(locinput)) 8594 || memEQ(locinput, 8595 ST.c2_utf8, 8596 UTF8SKIP(locinput)); 8597 } 8598 else { 8599 could_match = UCHARAT(locinput) == ST.c1 8600 || UCHARAT(locinput) == ST.c2; 8601 } 8602 } 8603 if (ST.c1 == CHRTEST_VOID || could_match) { 8604 CURLY_SETPAREN(ST.paren, ST.count); 8605 PUSH_STATE_GOTO(CURLY_B_max, ST.B, locinput); 8606 NOT_REACHED; /* NOTREACHED */ 8607 } 8608 } 8609 /* FALLTHROUGH */ 8610 8611 case CURLY_B_max_fail: 8612 /* failed to find B in a greedy match */ 8613 8614 REGCP_UNWIND(ST.cp); 8615 if (ST.paren) { 8616 UNWIND_PAREN(ST.lastparen, ST.lastcloseparen); 8617 } 8618 /* back up. */ 8619 if (--ST.count < ST.min) 8620 sayNO; 8621 locinput = HOPc(locinput, -1); 8622 goto curly_try_B_max; 8623 8624 #undef ST 8625 8626 case END: /* last op of main pattern */ 8627 fake_end: 8628 if (cur_eval) { 8629 /* we've just finished A in /(??{A})B/; now continue with B */ 8630 SET_RECURSE_LOCINPUT("FAKE-END[before]", CUR_EVAL.prev_recurse_locinput); 8631 st->u.eval.prev_rex = rex_sv; /* inner */ 8632 8633 /* Save *all* the positions. */ 8634 st->u.eval.cp = regcppush(rex, 0, maxopenparen); 8635 rex_sv = CUR_EVAL.prev_rex; 8636 is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(rex_sv)); 8637 SET_reg_curpm(rex_sv); 8638 rex = ReANY(rex_sv); 8639 rexi = RXi_GET(rex); 8640 8641 st->u.eval.prev_curlyx = cur_curlyx; 8642 cur_curlyx = CUR_EVAL.prev_curlyx; 8643 8644 REGCP_SET(st->u.eval.lastcp); 8645 8646 /* Restore parens of the outer rex without popping the 8647 * savestack */ 8648 regcp_restore(rex, CUR_EVAL.lastcp, &maxopenparen); 8649 8650 st->u.eval.prev_eval = cur_eval; 8651 cur_eval = CUR_EVAL.prev_eval; 8652 DEBUG_EXECUTE_r( 8653 Perl_re_exec_indentf( aTHX_ "END: EVAL trying tail ... (cur_eval=%p)\n", 8654 depth, cur_eval);); 8655 if ( nochange_depth ) 8656 nochange_depth--; 8657 8658 SET_RECURSE_LOCINPUT("FAKE-END[after]", cur_eval->locinput); 8659 8660 PUSH_YES_STATE_GOTO(EVAL_postponed_AB, st->u.eval.prev_eval->u.eval.B, 8661 locinput); /* match B */ 8662 } 8663 8664 if (locinput < reginfo->till) { 8665 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ 8666 "%sEND: Match possible, but length=%ld is smaller than requested=%ld, failing!%s\n", 8667 PL_colors[4], 8668 (long)(locinput - startpos), 8669 (long)(reginfo->till - startpos), 8670 PL_colors[5])); 8671 8672 sayNO_SILENT; /* Cannot match: too short. */ 8673 } 8674 sayYES; /* Success! */ 8675 8676 case SUCCEED: /* successful SUSPEND/UNLESSM/IFMATCH/CURLYM */ 8677 DEBUG_EXECUTE_r( 8678 Perl_re_exec_indentf( aTHX_ "%sSUCCEED: subpattern success...%s\n", 8679 depth, PL_colors[4], PL_colors[5])); 8680 sayYES; /* Success! */ 8681 8682 #undef ST 8683 #define ST st->u.ifmatch 8684 8685 { 8686 char *newstart; 8687 8688 case SUSPEND: /* (?>A) */ 8689 ST.wanted = 1; 8690 newstart = locinput; 8691 goto do_ifmatch; 8692 8693 case UNLESSM: /* -ve lookaround: (?!A), or with flags, (?<!A) */ 8694 ST.wanted = 0; 8695 goto ifmatch_trivial_fail_test; 8696 8697 case IFMATCH: /* +ve lookaround: (?=A), or with flags, (?<=A) */ 8698 ST.wanted = 1; 8699 ifmatch_trivial_fail_test: 8700 if (scan->flags) { 8701 char * const s = HOPBACKc(locinput, scan->flags); 8702 if (!s) { 8703 /* trivial fail */ 8704 if (logical) { 8705 logical = 0; 8706 sw = 1 - cBOOL(ST.wanted); 8707 } 8708 else if (ST.wanted) 8709 sayNO; 8710 next = scan + ARG(scan); 8711 if (next == scan) 8712 next = NULL; 8713 break; 8714 } 8715 newstart = s; 8716 } 8717 else 8718 newstart = locinput; 8719 8720 do_ifmatch: 8721 ST.me = scan; 8722 ST.logical = logical; 8723 logical = 0; /* XXX: reset state of logical once it has been saved into ST */ 8724 8725 /* execute body of (?...A) */ 8726 PUSH_YES_STATE_GOTO(IFMATCH_A, NEXTOPER(NEXTOPER(scan)), newstart); 8727 NOT_REACHED; /* NOTREACHED */ 8728 } 8729 8730 case IFMATCH_A_fail: /* body of (?...A) failed */ 8731 ST.wanted = !ST.wanted; 8732 /* FALLTHROUGH */ 8733 8734 case IFMATCH_A: /* body of (?...A) succeeded */ 8735 if (ST.logical) { 8736 sw = cBOOL(ST.wanted); 8737 } 8738 else if (!ST.wanted) 8739 sayNO; 8740 8741 if (OP(ST.me) != SUSPEND) { 8742 /* restore old position except for (?>...) */ 8743 locinput = st->locinput; 8744 } 8745 scan = ST.me + ARG(ST.me); 8746 if (scan == ST.me) 8747 scan = NULL; 8748 continue; /* execute B */ 8749 8750 #undef ST 8751 8752 case LONGJMP: /* alternative with many branches compiles to 8753 * (BRANCHJ; EXACT ...; LONGJMP ) x N */ 8754 next = scan + ARG(scan); 8755 if (next == scan) 8756 next = NULL; 8757 break; 8758 8759 case COMMIT: /* (*COMMIT) */ 8760 reginfo->cutpoint = reginfo->strend; 8761 /* FALLTHROUGH */ 8762 8763 case PRUNE: /* (*PRUNE) */ 8764 if (scan->flags) 8765 sv_yes_mark = sv_commit = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]); 8766 PUSH_STATE_GOTO(COMMIT_next, next, locinput); 8767 NOT_REACHED; /* NOTREACHED */ 8768 8769 case COMMIT_next_fail: 8770 no_final = 1; 8771 /* FALLTHROUGH */ 8772 sayNO; 8773 NOT_REACHED; /* NOTREACHED */ 8774 8775 case OPFAIL: /* (*FAIL) */ 8776 if (scan->flags) 8777 sv_commit = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]); 8778 if (logical) { 8779 /* deal with (?(?!)X|Y) properly, 8780 * make sure we trigger the no branch 8781 * of the trailing IFTHEN structure*/ 8782 sw= 0; 8783 break; 8784 } else { 8785 sayNO; 8786 } 8787 NOT_REACHED; /* NOTREACHED */ 8788 8789 #define ST st->u.mark 8790 case MARKPOINT: /* (*MARK:foo) */ 8791 ST.prev_mark = mark_state; 8792 ST.mark_name = sv_commit = sv_yes_mark 8793 = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]); 8794 mark_state = st; 8795 ST.mark_loc = locinput; 8796 PUSH_YES_STATE_GOTO(MARKPOINT_next, next, locinput); 8797 NOT_REACHED; /* NOTREACHED */ 8798 8799 case MARKPOINT_next: 8800 mark_state = ST.prev_mark; 8801 sayYES; 8802 NOT_REACHED; /* NOTREACHED */ 8803 8804 case MARKPOINT_next_fail: 8805 if (popmark && sv_eq(ST.mark_name,popmark)) 8806 { 8807 if (ST.mark_loc > startpoint) 8808 reginfo->cutpoint = HOPBACKc(ST.mark_loc, 1); 8809 popmark = NULL; /* we found our mark */ 8810 sv_commit = ST.mark_name; 8811 8812 DEBUG_EXECUTE_r({ 8813 Perl_re_exec_indentf( aTHX_ "%sMARKPOINT: next fail: setting cutpoint to mark:%" SVf "...%s\n", 8814 depth, 8815 PL_colors[4], SVfARG(sv_commit), PL_colors[5]); 8816 }); 8817 } 8818 mark_state = ST.prev_mark; 8819 sv_yes_mark = mark_state ? 8820 mark_state->u.mark.mark_name : NULL; 8821 sayNO; 8822 NOT_REACHED; /* NOTREACHED */ 8823 8824 case SKIP: /* (*SKIP) */ 8825 if (!scan->flags) { 8826 /* (*SKIP) : if we fail we cut here*/ 8827 ST.mark_name = NULL; 8828 ST.mark_loc = locinput; 8829 PUSH_STATE_GOTO(SKIP_next,next, locinput); 8830 } else { 8831 /* (*SKIP:NAME) : if there is a (*MARK:NAME) fail where it was, 8832 otherwise do nothing. Meaning we need to scan 8833 */ 8834 regmatch_state *cur = mark_state; 8835 SV *find = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]); 8836 8837 while (cur) { 8838 if ( sv_eq( cur->u.mark.mark_name, 8839 find ) ) 8840 { 8841 ST.mark_name = find; 8842 PUSH_STATE_GOTO( SKIP_next, next, locinput); 8843 } 8844 cur = cur->u.mark.prev_mark; 8845 } 8846 } 8847 /* Didn't find our (*MARK:NAME) so ignore this (*SKIP:NAME) */ 8848 break; 8849 8850 case SKIP_next_fail: 8851 if (ST.mark_name) { 8852 /* (*CUT:NAME) - Set up to search for the name as we 8853 collapse the stack*/ 8854 popmark = ST.mark_name; 8855 } else { 8856 /* (*CUT) - No name, we cut here.*/ 8857 if (ST.mark_loc > startpoint) 8858 reginfo->cutpoint = HOPBACKc(ST.mark_loc, 1); 8859 /* but we set sv_commit to latest mark_name if there 8860 is one so they can test to see how things lead to this 8861 cut */ 8862 if (mark_state) 8863 sv_commit=mark_state->u.mark.mark_name; 8864 } 8865 no_final = 1; 8866 sayNO; 8867 NOT_REACHED; /* NOTREACHED */ 8868 #undef ST 8869 8870 case LNBREAK: /* \R */ 8871 if ((n=is_LNBREAK_safe(locinput, reginfo->strend, utf8_target))) { 8872 locinput += n; 8873 } else 8874 sayNO; 8875 break; 8876 8877 default: 8878 PerlIO_printf(Perl_error_log, "%" UVxf " %d\n", 8879 PTR2UV(scan), OP(scan)); 8880 Perl_croak(aTHX_ "regexp memory corruption"); 8881 8882 /* this is a point to jump to in order to increment 8883 * locinput by one character */ 8884 increment_locinput: 8885 assert(!NEXTCHR_IS_EOS); 8886 if (utf8_target) { 8887 locinput += PL_utf8skip[nextchr]; 8888 /* locinput is allowed to go 1 char off the end (signifying 8889 * EOS), but not 2+ */ 8890 if (locinput > reginfo->strend) 8891 sayNO; 8892 } 8893 else 8894 locinput++; 8895 break; 8896 8897 } /* end switch */ 8898 8899 /* switch break jumps here */ 8900 scan = next; /* prepare to execute the next op and ... */ 8901 continue; /* ... jump back to the top, reusing st */ 8902 /* NOTREACHED */ 8903 8904 push_yes_state: 8905 /* push a state that backtracks on success */ 8906 st->u.yes.prev_yes_state = yes_state; 8907 yes_state = st; 8908 /* FALLTHROUGH */ 8909 push_state: 8910 /* push a new regex state, then continue at scan */ 8911 { 8912 regmatch_state *newst; 8913 8914 DEBUG_STACK_r({ 8915 regmatch_state *cur = st; 8916 regmatch_state *curyes = yes_state; 8917 U32 i; 8918 regmatch_slab *slab = PL_regmatch_slab; 8919 for (i = 0; i < 3 && i <= depth; cur--,i++) { 8920 if (cur < SLAB_FIRST(slab)) { 8921 slab = slab->prev; 8922 cur = SLAB_LAST(slab); 8923 } 8924 Perl_re_exec_indentf( aTHX_ "%4s #%-3d %-10s %s\n", 8925 depth, 8926 i ? " " : "push", 8927 depth - i, PL_reg_name[cur->resume_state], 8928 (curyes == cur) ? "yes" : "" 8929 ); 8930 if (curyes == cur) 8931 curyes = cur->u.yes.prev_yes_state; 8932 } 8933 } else 8934 DEBUG_STATE_pp("push") 8935 ); 8936 depth++; 8937 st->locinput = locinput; 8938 newst = st+1; 8939 if (newst > SLAB_LAST(PL_regmatch_slab)) 8940 newst = S_push_slab(aTHX); 8941 PL_regmatch_state = newst; 8942 8943 locinput = pushinput; 8944 st = newst; 8945 continue; 8946 /* NOTREACHED */ 8947 } 8948 } 8949 #ifdef SOLARIS_BAD_OPTIMIZER 8950 # undef PL_charclass 8951 #endif 8952 8953 /* 8954 * We get here only if there's trouble -- normally "case END" is 8955 * the terminating point. 8956 */ 8957 Perl_croak(aTHX_ "corrupted regexp pointers"); 8958 NOT_REACHED; /* NOTREACHED */ 8959 8960 yes: 8961 if (yes_state) { 8962 /* we have successfully completed a subexpression, but we must now 8963 * pop to the state marked by yes_state and continue from there */ 8964 assert(st != yes_state); 8965 #ifdef DEBUGGING 8966 while (st != yes_state) { 8967 st--; 8968 if (st < SLAB_FIRST(PL_regmatch_slab)) { 8969 PL_regmatch_slab = PL_regmatch_slab->prev; 8970 st = SLAB_LAST(PL_regmatch_slab); 8971 } 8972 DEBUG_STATE_r({ 8973 if (no_final) { 8974 DEBUG_STATE_pp("pop (no final)"); 8975 } else { 8976 DEBUG_STATE_pp("pop (yes)"); 8977 } 8978 }); 8979 depth--; 8980 } 8981 #else 8982 while (yes_state < SLAB_FIRST(PL_regmatch_slab) 8983 || yes_state > SLAB_LAST(PL_regmatch_slab)) 8984 { 8985 /* not in this slab, pop slab */ 8986 depth -= (st - SLAB_FIRST(PL_regmatch_slab) + 1); 8987 PL_regmatch_slab = PL_regmatch_slab->prev; 8988 st = SLAB_LAST(PL_regmatch_slab); 8989 } 8990 depth -= (st - yes_state); 8991 #endif 8992 st = yes_state; 8993 yes_state = st->u.yes.prev_yes_state; 8994 PL_regmatch_state = st; 8995 8996 if (no_final) 8997 locinput= st->locinput; 8998 state_num = st->resume_state + no_final; 8999 goto reenter_switch; 9000 } 9001 9002 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ "%sMatch successful!%s\n", 9003 PL_colors[4], PL_colors[5])); 9004 9005 if (reginfo->info_aux_eval) { 9006 /* each successfully executed (?{...}) block does the equivalent of 9007 * local $^R = do {...} 9008 * When popping the save stack, all these locals would be undone; 9009 * bypass this by setting the outermost saved $^R to the latest 9010 * value */ 9011 /* I dont know if this is needed or works properly now. 9012 * see code related to PL_replgv elsewhere in this file. 9013 * Yves 9014 */ 9015 if (oreplsv != GvSV(PL_replgv)) 9016 sv_setsv(oreplsv, GvSV(PL_replgv)); 9017 } 9018 result = 1; 9019 goto final_exit; 9020 9021 no: 9022 DEBUG_EXECUTE_r( 9023 Perl_re_exec_indentf( aTHX_ "%sfailed...%s\n", 9024 depth, 9025 PL_colors[4], PL_colors[5]) 9026 ); 9027 9028 no_silent: 9029 if (no_final) { 9030 if (yes_state) { 9031 goto yes; 9032 } else { 9033 goto final_exit; 9034 } 9035 } 9036 if (depth) { 9037 /* there's a previous state to backtrack to */ 9038 st--; 9039 if (st < SLAB_FIRST(PL_regmatch_slab)) { 9040 PL_regmatch_slab = PL_regmatch_slab->prev; 9041 st = SLAB_LAST(PL_regmatch_slab); 9042 } 9043 PL_regmatch_state = st; 9044 locinput= st->locinput; 9045 9046 DEBUG_STATE_pp("pop"); 9047 depth--; 9048 if (yes_state == st) 9049 yes_state = st->u.yes.prev_yes_state; 9050 9051 state_num = st->resume_state + 1; /* failure = success + 1 */ 9052 PERL_ASYNC_CHECK(); 9053 goto reenter_switch; 9054 } 9055 result = 0; 9056 9057 final_exit: 9058 if (rex->intflags & PREGf_VERBARG_SEEN) { 9059 SV *sv_err = get_sv("REGERROR", 1); 9060 SV *sv_mrk = get_sv("REGMARK", 1); 9061 if (result) { 9062 sv_commit = &PL_sv_no; 9063 if (!sv_yes_mark) 9064 sv_yes_mark = &PL_sv_yes; 9065 } else { 9066 if (!sv_commit) 9067 sv_commit = &PL_sv_yes; 9068 sv_yes_mark = &PL_sv_no; 9069 } 9070 assert(sv_err); 9071 assert(sv_mrk); 9072 sv_setsv(sv_err, sv_commit); 9073 sv_setsv(sv_mrk, sv_yes_mark); 9074 } 9075 9076 9077 if (last_pushed_cv) { 9078 dSP; 9079 /* see "Some notes about MULTICALL" above */ 9080 POP_MULTICALL; 9081 PERL_UNUSED_VAR(SP); 9082 } 9083 else 9084 LEAVE_SCOPE(orig_savestack_ix); 9085 9086 assert(!result || locinput - reginfo->strbeg >= 0); 9087 return result ? locinput - reginfo->strbeg : -1; 9088 } 9089 9090 /* 9091 - regrepeat - repeatedly match something simple, report how many 9092 * 9093 * What 'simple' means is a node which can be the operand of a quantifier like 9094 * '+', or {1,3} 9095 * 9096 * startposp - pointer a pointer to the start position. This is updated 9097 * to point to the byte following the highest successful 9098 * match. 9099 * p - the regnode to be repeatedly matched against. 9100 * reginfo - struct holding match state, such as strend 9101 * max - maximum number of things to match. 9102 * depth - (for debugging) backtracking depth. 9103 */ 9104 STATIC I32 9105 S_regrepeat(pTHX_ regexp *prog, char **startposp, const regnode *p, 9106 regmatch_info *const reginfo, I32 max _pDEPTH) 9107 { 9108 char *scan; /* Pointer to current position in target string */ 9109 I32 c; 9110 char *loceol = reginfo->strend; /* local version */ 9111 I32 hardcount = 0; /* How many matches so far */ 9112 bool utf8_target = reginfo->is_utf8_target; 9113 unsigned int to_complement = 0; /* Invert the result? */ 9114 UV utf8_flags; 9115 _char_class_number classnum; 9116 9117 PERL_ARGS_ASSERT_REGREPEAT; 9118 9119 scan = *startposp; 9120 if (max == REG_INFTY) 9121 max = I32_MAX; 9122 else if (! utf8_target && loceol - scan > max) 9123 loceol = scan + max; 9124 9125 /* Here, for the case of a non-UTF-8 target we have adjusted <loceol> down 9126 * to the maximum of how far we should go in it (leaving it set to the real 9127 * end, if the maximum permissible would take us beyond that). This allows 9128 * us to make the loop exit condition that we haven't gone past <loceol> to 9129 * also mean that we haven't exceeded the max permissible count, saving a 9130 * test each time through the loop. But it assumes that the OP matches a 9131 * single byte, which is true for most of the OPs below when applied to a 9132 * non-UTF-8 target. Those relatively few OPs that don't have this 9133 * characteristic will have to compensate. 9134 * 9135 * There is no adjustment for UTF-8 targets, as the number of bytes per 9136 * character varies. OPs will have to test both that the count is less 9137 * than the max permissible (using <hardcount> to keep track), and that we 9138 * are still within the bounds of the string (using <loceol>. A few OPs 9139 * match a single byte no matter what the encoding. They can omit the max 9140 * test if, for the UTF-8 case, they do the adjustment that was skipped 9141 * above. 9142 * 9143 * Thus, the code above sets things up for the common case; and exceptional 9144 * cases need extra work; the common case is to make sure <scan> doesn't 9145 * go past <loceol>, and for UTF-8 to also use <hardcount> to make sure the 9146 * count doesn't exceed the maximum permissible */ 9147 9148 switch (OP(p)) { 9149 case REG_ANY: 9150 if (utf8_target) { 9151 while (scan < loceol && hardcount < max && *scan != '\n') { 9152 scan += UTF8SKIP(scan); 9153 hardcount++; 9154 } 9155 } else { 9156 scan = (char *) memchr(scan, '\n', loceol - scan); 9157 if (! scan) { 9158 scan = loceol; 9159 } 9160 } 9161 break; 9162 case SANY: 9163 if (utf8_target) { 9164 while (scan < loceol && hardcount < max) { 9165 scan += UTF8SKIP(scan); 9166 hardcount++; 9167 } 9168 } 9169 else 9170 scan = loceol; 9171 break; 9172 case EXACTL: 9173 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; 9174 if (utf8_target && UTF8_IS_ABOVE_LATIN1(*scan)) { 9175 _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(scan, loceol); 9176 } 9177 /* FALLTHROUGH */ 9178 case EXACT: 9179 assert(STR_LEN(p) == reginfo->is_utf8_pat ? UTF8SKIP(STRING(p)) : 1); 9180 9181 c = (U8)*STRING(p); 9182 9183 /* Can use a simple find if the pattern char to match on is invariant 9184 * under UTF-8, or both target and pattern aren't UTF-8. Note that we 9185 * can use UTF8_IS_INVARIANT() even if the pattern isn't UTF-8, as it's 9186 * true iff it doesn't matter if the argument is in UTF-8 or not */ 9187 if (UTF8_IS_INVARIANT(c) || (! utf8_target && ! reginfo->is_utf8_pat)) { 9188 if (utf8_target && loceol - scan > max) { 9189 /* We didn't adjust <loceol> because is UTF-8, but ok to do so, 9190 * since here, to match at all, 1 char == 1 byte */ 9191 loceol = scan + max; 9192 } 9193 scan = (char *) find_span_end((U8 *) scan, (U8 *) loceol, (U8) c); 9194 } 9195 else if (reginfo->is_utf8_pat) { 9196 if (utf8_target) { 9197 STRLEN scan_char_len; 9198 9199 /* When both target and pattern are UTF-8, we have to do 9200 * string EQ */ 9201 while (hardcount < max 9202 && scan < loceol 9203 && (scan_char_len = UTF8SKIP(scan)) <= STR_LEN(p) 9204 && memEQ(scan, STRING(p), scan_char_len)) 9205 { 9206 scan += scan_char_len; 9207 hardcount++; 9208 } 9209 } 9210 else if (! UTF8_IS_ABOVE_LATIN1(c)) { 9211 9212 /* Target isn't utf8; convert the character in the UTF-8 9213 * pattern to non-UTF8, and do a simple find */ 9214 c = EIGHT_BIT_UTF8_TO_NATIVE(c, *(STRING(p) + 1)); 9215 scan = (char *) find_span_end((U8 *) scan, (U8 *) loceol, (U8) c); 9216 } /* else pattern char is above Latin1, can't possibly match the 9217 non-UTF-8 target */ 9218 } 9219 else { 9220 9221 /* Here, the string must be utf8; pattern isn't, and <c> is 9222 * different in utf8 than not, so can't compare them directly. 9223 * Outside the loop, find the two utf8 bytes that represent c, and 9224 * then look for those in sequence in the utf8 string */ 9225 U8 high = UTF8_TWO_BYTE_HI(c); 9226 U8 low = UTF8_TWO_BYTE_LO(c); 9227 9228 while (hardcount < max 9229 && scan + 1 < loceol 9230 && UCHARAT(scan) == high 9231 && UCHARAT(scan + 1) == low) 9232 { 9233 scan += 2; 9234 hardcount++; 9235 } 9236 } 9237 break; 9238 9239 case EXACTFAA_NO_TRIE: /* This node only generated for non-utf8 patterns */ 9240 assert(! reginfo->is_utf8_pat); 9241 /* FALLTHROUGH */ 9242 case EXACTFAA: 9243 utf8_flags = FOLDEQ_UTF8_NOMIX_ASCII; 9244 goto do_exactf; 9245 9246 case EXACTFL: 9247 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; 9248 utf8_flags = FOLDEQ_LOCALE; 9249 goto do_exactf; 9250 9251 case EXACTF: /* This node only generated for non-utf8 patterns */ 9252 assert(! reginfo->is_utf8_pat); 9253 utf8_flags = 0; 9254 goto do_exactf; 9255 9256 case EXACTFLU8: 9257 if (! utf8_target) { 9258 break; 9259 } 9260 utf8_flags = FOLDEQ_LOCALE | FOLDEQ_S2_ALREADY_FOLDED 9261 | FOLDEQ_S2_FOLDS_SANE; 9262 goto do_exactf; 9263 9264 case EXACTFU_SS: 9265 case EXACTFU: 9266 utf8_flags = reginfo->is_utf8_pat ? FOLDEQ_S2_ALREADY_FOLDED : 0; 9267 9268 do_exactf: { 9269 int c1, c2; 9270 U8 c1_utf8[UTF8_MAXBYTES+1], c2_utf8[UTF8_MAXBYTES+1]; 9271 9272 assert(STR_LEN(p) == reginfo->is_utf8_pat ? UTF8SKIP(STRING(p)) : 1); 9273 9274 if (S_setup_EXACTISH_ST_c1_c2(aTHX_ p, &c1, c1_utf8, &c2, c2_utf8, 9275 reginfo)) 9276 { 9277 if (c1 == CHRTEST_VOID) { 9278 /* Use full Unicode fold matching */ 9279 char *tmpeol = reginfo->strend; 9280 STRLEN pat_len = reginfo->is_utf8_pat ? UTF8SKIP(STRING(p)) : 1; 9281 while (hardcount < max 9282 && foldEQ_utf8_flags(scan, &tmpeol, 0, utf8_target, 9283 STRING(p), NULL, pat_len, 9284 reginfo->is_utf8_pat, utf8_flags)) 9285 { 9286 scan = tmpeol; 9287 tmpeol = reginfo->strend; 9288 hardcount++; 9289 } 9290 } 9291 else if (utf8_target) { 9292 if (c1 == c2) { 9293 while (scan < loceol 9294 && hardcount < max 9295 && memEQ(scan, c1_utf8, UTF8SKIP(scan))) 9296 { 9297 scan += UTF8SKIP(scan); 9298 hardcount++; 9299 } 9300 } 9301 else { 9302 while (scan < loceol 9303 && hardcount < max 9304 && (memEQ(scan, c1_utf8, UTF8SKIP(scan)) 9305 || memEQ(scan, c2_utf8, UTF8SKIP(scan)))) 9306 { 9307 scan += UTF8SKIP(scan); 9308 hardcount++; 9309 } 9310 } 9311 } 9312 else if (c1 == c2) { 9313 scan = (char *) find_span_end((U8 *) scan, (U8 *) loceol, (U8) c1); 9314 } 9315 else { 9316 /* See comments in regmatch() CURLY_B_min_known_fail. We avoid 9317 * a conditional each time through the loop if the characters 9318 * differ only in a single bit, as is the usual situation */ 9319 U8 c1_c2_bits_differing = c1 ^ c2; 9320 9321 if (isPOWER_OF_2(c1_c2_bits_differing)) { 9322 U8 c1_c2_mask = ~ c1_c2_bits_differing; 9323 9324 scan = (char *) find_span_end_mask((U8 *) scan, 9325 (U8 *) loceol, 9326 c1 & c1_c2_mask, 9327 c1_c2_mask); 9328 } 9329 else { 9330 while ( scan < loceol 9331 && (UCHARAT(scan) == c1 || UCHARAT(scan) == c2)) 9332 { 9333 scan++; 9334 } 9335 } 9336 } 9337 } 9338 break; 9339 } 9340 case ANYOFL: 9341 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; 9342 9343 if (ANYOFL_UTF8_LOCALE_REQD(FLAGS(p)) && ! IN_UTF8_CTYPE_LOCALE) { 9344 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE), utf8_locale_required); 9345 } 9346 /* FALLTHROUGH */ 9347 case ANYOFD: 9348 case ANYOF: 9349 if (utf8_target) { 9350 while (hardcount < max 9351 && scan < loceol 9352 && reginclass(prog, p, (U8*)scan, (U8*) loceol, utf8_target)) 9353 { 9354 scan += UTF8SKIP(scan); 9355 hardcount++; 9356 } 9357 } 9358 else if (ANYOF_FLAGS(p)) { 9359 while (scan < loceol 9360 && reginclass(prog, p, (U8*)scan, (U8*)scan+1, 0)) 9361 scan++; 9362 } 9363 else { 9364 while (scan < loceol && ANYOF_BITMAP_TEST(p, *((U8*)scan))) 9365 scan++; 9366 } 9367 break; 9368 9369 case ANYOFM: 9370 if (utf8_target && loceol - scan > max) { 9371 9372 /* We didn't adjust <loceol> at the beginning of this routine 9373 * because is UTF-8, but it is actually ok to do so, since here, to 9374 * match, 1 char == 1 byte. */ 9375 loceol = scan + max; 9376 } 9377 9378 scan = (char *) find_span_end_mask((U8 *) scan, (U8 *) loceol, (U8) ARG(p), FLAGS(p)); 9379 break; 9380 9381 case ASCII: 9382 if (utf8_target && loceol - scan > max) { 9383 loceol = scan + max; 9384 } 9385 9386 scan = find_next_non_ascii(scan, loceol, utf8_target); 9387 break; 9388 9389 case NASCII: 9390 if (utf8_target) { 9391 while ( hardcount < max 9392 && scan < loceol 9393 && ! isASCII_utf8_safe(scan, loceol)) 9394 { 9395 scan += UTF8SKIP(scan); 9396 hardcount++; 9397 } 9398 } 9399 else { 9400 scan = find_next_ascii(scan, loceol, utf8_target); 9401 } 9402 break; 9403 9404 /* The argument (FLAGS) to all the POSIX node types is the class number */ 9405 9406 case NPOSIXL: 9407 to_complement = 1; 9408 /* FALLTHROUGH */ 9409 9410 case POSIXL: 9411 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; 9412 if (! utf8_target) { 9413 while (scan < loceol && to_complement ^ cBOOL(isFOO_lc(FLAGS(p), 9414 *scan))) 9415 { 9416 scan++; 9417 } 9418 } else { 9419 while (hardcount < max && scan < loceol 9420 && to_complement ^ cBOOL(isFOO_utf8_lc(FLAGS(p), 9421 (U8 *) scan, 9422 (U8 *) loceol))) 9423 { 9424 scan += UTF8SKIP(scan); 9425 hardcount++; 9426 } 9427 } 9428 break; 9429 9430 case POSIXD: 9431 if (utf8_target) { 9432 goto utf8_posix; 9433 } 9434 /* FALLTHROUGH */ 9435 9436 case POSIXA: 9437 if (utf8_target && loceol - scan > max) { 9438 9439 /* We didn't adjust <loceol> at the beginning of this routine 9440 * because is UTF-8, but it is actually ok to do so, since here, to 9441 * match, 1 char == 1 byte. */ 9442 loceol = scan + max; 9443 } 9444 while (scan < loceol && _generic_isCC_A((U8) *scan, FLAGS(p))) { 9445 scan++; 9446 } 9447 break; 9448 9449 case NPOSIXD: 9450 if (utf8_target) { 9451 to_complement = 1; 9452 goto utf8_posix; 9453 } 9454 /* FALLTHROUGH */ 9455 9456 case NPOSIXA: 9457 if (! utf8_target) { 9458 while (scan < loceol && ! _generic_isCC_A((U8) *scan, FLAGS(p))) { 9459 scan++; 9460 } 9461 } 9462 else { 9463 9464 /* The complement of something that matches only ASCII matches all 9465 * non-ASCII, plus everything in ASCII that isn't in the class. */ 9466 while (hardcount < max && scan < loceol 9467 && ( ! isASCII_utf8_safe(scan, reginfo->strend) 9468 || ! _generic_isCC_A((U8) *scan, FLAGS(p)))) 9469 { 9470 scan += UTF8SKIP(scan); 9471 hardcount++; 9472 } 9473 } 9474 break; 9475 9476 case NPOSIXU: 9477 to_complement = 1; 9478 /* FALLTHROUGH */ 9479 9480 case POSIXU: 9481 if (! utf8_target) { 9482 while (scan < loceol && to_complement 9483 ^ cBOOL(_generic_isCC((U8) *scan, FLAGS(p)))) 9484 { 9485 scan++; 9486 } 9487 } 9488 else { 9489 utf8_posix: 9490 classnum = (_char_class_number) FLAGS(p); 9491 switch (classnum) { 9492 default: 9493 while ( hardcount < max && scan < loceol 9494 && to_complement ^ cBOOL(_invlist_contains_cp( 9495 PL_XPosix_ptrs[classnum], 9496 utf8_to_uvchr_buf((U8 *) scan, 9497 (U8 *) loceol, 9498 NULL)))) 9499 { 9500 scan += UTF8SKIP(scan); 9501 hardcount++; 9502 } 9503 break; 9504 9505 /* For the classes below, the knowledge of how to handle 9506 * every code point is compiled in to Perl via a macro. 9507 * This code is written for making the loops as tight as 9508 * possible. It could be refactored to save space instead. 9509 * */ 9510 9511 case _CC_ENUM_SPACE: 9512 while (hardcount < max 9513 && scan < loceol 9514 && (to_complement 9515 ^ cBOOL(isSPACE_utf8_safe(scan, loceol)))) 9516 { 9517 scan += UTF8SKIP(scan); 9518 hardcount++; 9519 } 9520 break; 9521 case _CC_ENUM_BLANK: 9522 while (hardcount < max 9523 && scan < loceol 9524 && (to_complement 9525 ^ cBOOL(isBLANK_utf8_safe(scan, loceol)))) 9526 { 9527 scan += UTF8SKIP(scan); 9528 hardcount++; 9529 } 9530 break; 9531 case _CC_ENUM_XDIGIT: 9532 while (hardcount < max 9533 && scan < loceol 9534 && (to_complement 9535 ^ cBOOL(isXDIGIT_utf8_safe(scan, loceol)))) 9536 { 9537 scan += UTF8SKIP(scan); 9538 hardcount++; 9539 } 9540 break; 9541 case _CC_ENUM_VERTSPACE: 9542 while (hardcount < max 9543 && scan < loceol 9544 && (to_complement 9545 ^ cBOOL(isVERTWS_utf8_safe(scan, loceol)))) 9546 { 9547 scan += UTF8SKIP(scan); 9548 hardcount++; 9549 } 9550 break; 9551 case _CC_ENUM_CNTRL: 9552 while (hardcount < max 9553 && scan < loceol 9554 && (to_complement 9555 ^ cBOOL(isCNTRL_utf8_safe(scan, loceol)))) 9556 { 9557 scan += UTF8SKIP(scan); 9558 hardcount++; 9559 } 9560 break; 9561 } 9562 } 9563 break; 9564 9565 case LNBREAK: 9566 if (utf8_target) { 9567 while (hardcount < max && scan < loceol && 9568 (c=is_LNBREAK_utf8_safe(scan, loceol))) { 9569 scan += c; 9570 hardcount++; 9571 } 9572 } else { 9573 /* LNBREAK can match one or two latin chars, which is ok, but we 9574 * have to use hardcount in this situation, and throw away the 9575 * adjustment to <loceol> done before the switch statement */ 9576 loceol = reginfo->strend; 9577 while (scan < loceol && (c=is_LNBREAK_latin1_safe(scan, loceol))) { 9578 scan+=c; 9579 hardcount++; 9580 } 9581 } 9582 break; 9583 9584 case BOUNDL: 9585 case NBOUNDL: 9586 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; 9587 /* FALLTHROUGH */ 9588 case BOUND: 9589 case BOUNDA: 9590 case BOUNDU: 9591 case EOS: 9592 case GPOS: 9593 case KEEPS: 9594 case NBOUND: 9595 case NBOUNDA: 9596 case NBOUNDU: 9597 case OPFAIL: 9598 case SBOL: 9599 case SEOL: 9600 /* These are all 0 width, so match right here or not at all. */ 9601 break; 9602 9603 default: 9604 Perl_croak(aTHX_ "panic: regrepeat() called with unrecognized node type %d='%s'", OP(p), PL_reg_name[OP(p)]); 9605 NOT_REACHED; /* NOTREACHED */ 9606 9607 } 9608 9609 if (hardcount) 9610 c = hardcount; 9611 else 9612 c = scan - *startposp; 9613 *startposp = scan; 9614 9615 DEBUG_r({ 9616 GET_RE_DEBUG_FLAGS_DECL; 9617 DEBUG_EXECUTE_r({ 9618 SV * const prop = sv_newmortal(); 9619 regprop(prog, prop, p, reginfo, NULL); 9620 Perl_re_exec_indentf( aTHX_ "%s can match %" IVdf " times out of %" IVdf "...\n", 9621 depth, SvPVX_const(prop),(IV)c,(IV)max); 9622 }); 9623 }); 9624 9625 return(c); 9626 } 9627 9628 9629 #if !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION) 9630 /* 9631 - regclass_swash - prepare the utf8 swash. Wraps the shared core version to 9632 create a copy so that changes the caller makes won't change the shared one. 9633 If <altsvp> is non-null, will return NULL in it, for back-compat. 9634 */ 9635 SV * 9636 Perl_regclass_swash(pTHX_ const regexp *prog, const regnode* node, bool doinit, SV** listsvp, SV **altsvp) 9637 { 9638 PERL_ARGS_ASSERT_REGCLASS_SWASH; 9639 9640 if (altsvp) { 9641 *altsvp = NULL; 9642 } 9643 9644 return newSVsv(_get_regclass_nonbitmap_data(prog, node, doinit, listsvp, NULL, NULL)); 9645 } 9646 9647 #endif /* !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION) */ 9648 9649 /* 9650 - reginclass - determine if a character falls into a character class 9651 9652 n is the ANYOF-type regnode 9653 p is the target string 9654 p_end points to one byte beyond the end of the target string 9655 utf8_target tells whether p is in UTF-8. 9656 9657 Returns true if matched; false otherwise. 9658 9659 Note that this can be a synthetic start class, a combination of various 9660 nodes, so things you think might be mutually exclusive, such as locale, 9661 aren't. It can match both locale and non-locale 9662 9663 */ 9664 9665 STATIC bool 9666 S_reginclass(pTHX_ regexp * const prog, const regnode * const n, const U8* const p, const U8* const p_end, const bool utf8_target) 9667 { 9668 dVAR; 9669 const char flags = ANYOF_FLAGS(n); 9670 bool match = FALSE; 9671 UV c = *p; 9672 9673 PERL_ARGS_ASSERT_REGINCLASS; 9674 9675 /* If c is not already the code point, get it. Note that 9676 * UTF8_IS_INVARIANT() works even if not in UTF-8 */ 9677 if (! UTF8_IS_INVARIANT(c) && utf8_target) { 9678 STRLEN c_len = 0; 9679 const U32 utf8n_flags = UTF8_ALLOW_DEFAULT; 9680 c = utf8n_to_uvchr(p, p_end - p, &c_len, utf8n_flags | UTF8_CHECK_ONLY); 9681 if (c_len == (STRLEN)-1) { 9682 _force_out_malformed_utf8_message(p, p_end, 9683 utf8n_flags, 9684 1 /* 1 means die */ ); 9685 NOT_REACHED; /* NOTREACHED */ 9686 } 9687 if (c > 255 && OP(n) == ANYOFL && ! ANYOFL_UTF8_LOCALE_REQD(flags)) { 9688 _CHECK_AND_OUTPUT_WIDE_LOCALE_CP_MSG(c); 9689 } 9690 } 9691 9692 /* If this character is potentially in the bitmap, check it */ 9693 if (c < NUM_ANYOF_CODE_POINTS) { 9694 if (ANYOF_BITMAP_TEST(n, c)) 9695 match = TRUE; 9696 else if ((flags 9697 & ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER) 9698 && OP(n) == ANYOFD 9699 && ! utf8_target 9700 && ! isASCII(c)) 9701 { 9702 match = TRUE; 9703 } 9704 else if (flags & ANYOF_LOCALE_FLAGS) { 9705 if ((flags & ANYOFL_FOLD) 9706 && c < 256 9707 && ANYOF_BITMAP_TEST(n, PL_fold_locale[c])) 9708 { 9709 match = TRUE; 9710 } 9711 else if (ANYOF_POSIXL_TEST_ANY_SET(n) 9712 && c < 256 9713 ) { 9714 9715 /* The data structure is arranged so bits 0, 2, 4, ... are set 9716 * if the class includes the Posix character class given by 9717 * bit/2; and 1, 3, 5, ... are set if the class includes the 9718 * complemented Posix class given by int(bit/2). So we loop 9719 * through the bits, each time changing whether we complement 9720 * the result or not. Suppose for the sake of illustration 9721 * that bits 0-3 mean respectively, \w, \W, \s, \S. If bit 0 9722 * is set, it means there is a match for this ANYOF node if the 9723 * character is in the class given by the expression (0 / 2 = 0 9724 * = \w). If it is in that class, isFOO_lc() will return 1, 9725 * and since 'to_complement' is 0, the result will stay TRUE, 9726 * and we exit the loop. Suppose instead that bit 0 is 0, but 9727 * bit 1 is 1. That means there is a match if the character 9728 * matches \W. We won't bother to call isFOO_lc() on bit 0, 9729 * but will on bit 1. On the second iteration 'to_complement' 9730 * will be 1, so the exclusive or will reverse things, so we 9731 * are testing for \W. On the third iteration, 'to_complement' 9732 * will be 0, and we would be testing for \s; the fourth 9733 * iteration would test for \S, etc. 9734 * 9735 * Note that this code assumes that all the classes are closed 9736 * under folding. For example, if a character matches \w, then 9737 * its fold does too; and vice versa. This should be true for 9738 * any well-behaved locale for all the currently defined Posix 9739 * classes, except for :lower: and :upper:, which are handled 9740 * by the pseudo-class :cased: which matches if either of the 9741 * other two does. To get rid of this assumption, an outer 9742 * loop could be used below to iterate over both the source 9743 * character, and its fold (if different) */ 9744 9745 int count = 0; 9746 int to_complement = 0; 9747 9748 while (count < ANYOF_MAX) { 9749 if (ANYOF_POSIXL_TEST(n, count) 9750 && to_complement ^ cBOOL(isFOO_lc(count/2, (U8) c))) 9751 { 9752 match = TRUE; 9753 break; 9754 } 9755 count++; 9756 to_complement ^= 1; 9757 } 9758 } 9759 } 9760 } 9761 9762 9763 /* If the bitmap didn't (or couldn't) match, and something outside the 9764 * bitmap could match, try that. */ 9765 if (!match) { 9766 if (c >= NUM_ANYOF_CODE_POINTS 9767 && (flags & ANYOF_MATCHES_ALL_ABOVE_BITMAP)) 9768 { 9769 match = TRUE; /* Everything above the bitmap matches */ 9770 } 9771 /* Here doesn't match everything above the bitmap. If there is 9772 * some information available beyond the bitmap, we may find a 9773 * match in it. If so, this is most likely because the code point 9774 * is outside the bitmap range. But rarely, it could be because of 9775 * some other reason. If so, various flags are set to indicate 9776 * this possibility. On ANYOFD nodes, there may be matches that 9777 * happen only when the target string is UTF-8; or for other node 9778 * types, because runtime lookup is needed, regardless of the 9779 * UTF-8ness of the target string. Finally, under /il, there may 9780 * be some matches only possible if the locale is a UTF-8 one. */ 9781 else if ( ARG(n) != ANYOF_ONLY_HAS_BITMAP 9782 && ( c >= NUM_ANYOF_CODE_POINTS 9783 || ( (flags & ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP) 9784 && ( UNLIKELY(OP(n) != ANYOFD) 9785 || (utf8_target && ! isASCII_uni(c) 9786 # if NUM_ANYOF_CODE_POINTS > 256 9787 && c < 256 9788 # endif 9789 ))) 9790 || ( ANYOFL_SOME_FOLDS_ONLY_IN_UTF8_LOCALE(flags) 9791 && IN_UTF8_CTYPE_LOCALE))) 9792 { 9793 SV* only_utf8_locale = NULL; 9794 SV * const sw = _get_regclass_nonbitmap_data(prog, n, TRUE, 0, 9795 &only_utf8_locale, NULL); 9796 if (sw) { 9797 U8 utf8_buffer[2]; 9798 U8 * utf8_p; 9799 if (utf8_target) { 9800 utf8_p = (U8 *) p; 9801 } else { /* Convert to utf8 */ 9802 utf8_p = utf8_buffer; 9803 append_utf8_from_native_byte(*p, &utf8_p); 9804 utf8_p = utf8_buffer; 9805 } 9806 9807 if (swash_fetch(sw, utf8_p, TRUE)) { 9808 match = TRUE; 9809 } 9810 } 9811 if (! match && only_utf8_locale && IN_UTF8_CTYPE_LOCALE) { 9812 match = _invlist_contains_cp(only_utf8_locale, c); 9813 } 9814 } 9815 9816 if (UNICODE_IS_SUPER(c) 9817 && (flags 9818 & ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER) 9819 && OP(n) != ANYOFD 9820 && ckWARN_d(WARN_NON_UNICODE)) 9821 { 9822 Perl_warner(aTHX_ packWARN(WARN_NON_UNICODE), 9823 "Matched non-Unicode code point 0x%04" UVXf " against Unicode property; may not be portable", c); 9824 } 9825 } 9826 9827 #if ANYOF_INVERT != 1 9828 /* Depending on compiler optimization cBOOL takes time, so if don't have to 9829 * use it, don't */ 9830 # error ANYOF_INVERT needs to be set to 1, or guarded with cBOOL below, 9831 #endif 9832 9833 /* The xor complements the return if to invert: 1^1 = 0, 1^0 = 1 */ 9834 return (flags & ANYOF_INVERT) ^ match; 9835 } 9836 9837 STATIC U8 * 9838 S_reghop3(U8 *s, SSize_t off, const U8* lim) 9839 { 9840 /* return the position 'off' UTF-8 characters away from 's', forward if 9841 * 'off' >= 0, backwards if negative. But don't go outside of position 9842 * 'lim', which better be < s if off < 0 */ 9843 9844 PERL_ARGS_ASSERT_REGHOP3; 9845 9846 if (off >= 0) { 9847 while (off-- && s < lim) { 9848 /* XXX could check well-formedness here */ 9849 U8 *new_s = s + UTF8SKIP(s); 9850 if (new_s > lim) /* lim may be in the middle of a long character */ 9851 return s; 9852 s = new_s; 9853 } 9854 } 9855 else { 9856 while (off++ && s > lim) { 9857 s--; 9858 if (UTF8_IS_CONTINUED(*s)) { 9859 while (s > lim && UTF8_IS_CONTINUATION(*s)) 9860 s--; 9861 if (! UTF8_IS_START(*s)) { 9862 Perl_croak_nocontext("Malformed UTF-8 character (fatal)"); 9863 } 9864 } 9865 /* XXX could check well-formedness here */ 9866 } 9867 } 9868 return s; 9869 } 9870 9871 STATIC U8 * 9872 S_reghop4(U8 *s, SSize_t off, const U8* llim, const U8* rlim) 9873 { 9874 PERL_ARGS_ASSERT_REGHOP4; 9875 9876 if (off >= 0) { 9877 while (off-- && s < rlim) { 9878 /* XXX could check well-formedness here */ 9879 s += UTF8SKIP(s); 9880 } 9881 } 9882 else { 9883 while (off++ && s > llim) { 9884 s--; 9885 if (UTF8_IS_CONTINUED(*s)) { 9886 while (s > llim && UTF8_IS_CONTINUATION(*s)) 9887 s--; 9888 if (! UTF8_IS_START(*s)) { 9889 Perl_croak_nocontext("Malformed UTF-8 character (fatal)"); 9890 } 9891 } 9892 /* XXX could check well-formedness here */ 9893 } 9894 } 9895 return s; 9896 } 9897 9898 /* like reghop3, but returns NULL on overrun, rather than returning last 9899 * char pos */ 9900 9901 STATIC U8 * 9902 S_reghopmaybe3(U8* s, SSize_t off, const U8* const lim) 9903 { 9904 PERL_ARGS_ASSERT_REGHOPMAYBE3; 9905 9906 if (off >= 0) { 9907 while (off-- && s < lim) { 9908 /* XXX could check well-formedness here */ 9909 s += UTF8SKIP(s); 9910 } 9911 if (off >= 0) 9912 return NULL; 9913 } 9914 else { 9915 while (off++ && s > lim) { 9916 s--; 9917 if (UTF8_IS_CONTINUED(*s)) { 9918 while (s > lim && UTF8_IS_CONTINUATION(*s)) 9919 s--; 9920 if (! UTF8_IS_START(*s)) { 9921 Perl_croak_nocontext("Malformed UTF-8 character (fatal)"); 9922 } 9923 } 9924 /* XXX could check well-formedness here */ 9925 } 9926 if (off <= 0) 9927 return NULL; 9928 } 9929 return s; 9930 } 9931 9932 9933 /* when executing a regex that may have (?{}), extra stuff needs setting 9934 up that will be visible to the called code, even before the current 9935 match has finished. In particular: 9936 9937 * $_ is localised to the SV currently being matched; 9938 * pos($_) is created if necessary, ready to be updated on each call-out 9939 to code; 9940 * a fake PMOP is created that can be set to PL_curpm (normally PL_curpm 9941 isn't set until the current pattern is successfully finished), so that 9942 $1 etc of the match-so-far can be seen; 9943 * save the old values of subbeg etc of the current regex, and set then 9944 to the current string (again, this is normally only done at the end 9945 of execution) 9946 */ 9947 9948 static void 9949 S_setup_eval_state(pTHX_ regmatch_info *const reginfo) 9950 { 9951 MAGIC *mg; 9952 regexp *const rex = ReANY(reginfo->prog); 9953 regmatch_info_aux_eval *eval_state = reginfo->info_aux_eval; 9954 9955 eval_state->rex = rex; 9956 9957 if (reginfo->sv) { 9958 /* Make $_ available to executed code. */ 9959 if (reginfo->sv != DEFSV) { 9960 SAVE_DEFSV; 9961 DEFSV_set(reginfo->sv); 9962 } 9963 9964 if (!(mg = mg_find_mglob(reginfo->sv))) { 9965 /* prepare for quick setting of pos */ 9966 mg = sv_magicext_mglob(reginfo->sv); 9967 mg->mg_len = -1; 9968 } 9969 eval_state->pos_magic = mg; 9970 eval_state->pos = mg->mg_len; 9971 eval_state->pos_flags = mg->mg_flags; 9972 } 9973 else 9974 eval_state->pos_magic = NULL; 9975 9976 if (!PL_reg_curpm) { 9977 /* PL_reg_curpm is a fake PMOP that we can attach the current 9978 * regex to and point PL_curpm at, so that $1 et al are visible 9979 * within a /(?{})/. It's just allocated once per interpreter the 9980 * first time its needed */ 9981 Newxz(PL_reg_curpm, 1, PMOP); 9982 #ifdef USE_ITHREADS 9983 { 9984 SV* const repointer = &PL_sv_undef; 9985 /* this regexp is also owned by the new PL_reg_curpm, which 9986 will try to free it. */ 9987 av_push(PL_regex_padav, repointer); 9988 PL_reg_curpm->op_pmoffset = av_tindex(PL_regex_padav); 9989 PL_regex_pad = AvARRAY(PL_regex_padav); 9990 } 9991 #endif 9992 } 9993 SET_reg_curpm(reginfo->prog); 9994 eval_state->curpm = PL_curpm; 9995 PL_curpm_under = PL_curpm; 9996 PL_curpm = PL_reg_curpm; 9997 if (RXp_MATCH_COPIED(rex)) { 9998 /* Here is a serious problem: we cannot rewrite subbeg, 9999 since it may be needed if this match fails. Thus 10000 $` inside (?{}) could fail... */ 10001 eval_state->subbeg = rex->subbeg; 10002 eval_state->sublen = rex->sublen; 10003 eval_state->suboffset = rex->suboffset; 10004 eval_state->subcoffset = rex->subcoffset; 10005 #ifdef PERL_ANY_COW 10006 eval_state->saved_copy = rex->saved_copy; 10007 #endif 10008 RXp_MATCH_COPIED_off(rex); 10009 } 10010 else 10011 eval_state->subbeg = NULL; 10012 rex->subbeg = (char *)reginfo->strbeg; 10013 rex->suboffset = 0; 10014 rex->subcoffset = 0; 10015 rex->sublen = reginfo->strend - reginfo->strbeg; 10016 } 10017 10018 10019 /* destructor to clear up regmatch_info_aux and regmatch_info_aux_eval */ 10020 10021 static void 10022 S_cleanup_regmatch_info_aux(pTHX_ void *arg) 10023 { 10024 regmatch_info_aux *aux = (regmatch_info_aux *) arg; 10025 regmatch_info_aux_eval *eval_state = aux->info_aux_eval; 10026 regmatch_slab *s; 10027 10028 Safefree(aux->poscache); 10029 10030 if (eval_state) { 10031 10032 /* undo the effects of S_setup_eval_state() */ 10033 10034 if (eval_state->subbeg) { 10035 regexp * const rex = eval_state->rex; 10036 rex->subbeg = eval_state->subbeg; 10037 rex->sublen = eval_state->sublen; 10038 rex->suboffset = eval_state->suboffset; 10039 rex->subcoffset = eval_state->subcoffset; 10040 #ifdef PERL_ANY_COW 10041 rex->saved_copy = eval_state->saved_copy; 10042 #endif 10043 RXp_MATCH_COPIED_on(rex); 10044 } 10045 if (eval_state->pos_magic) 10046 { 10047 eval_state->pos_magic->mg_len = eval_state->pos; 10048 eval_state->pos_magic->mg_flags = 10049 (eval_state->pos_magic->mg_flags & ~MGf_BYTES) 10050 | (eval_state->pos_flags & MGf_BYTES); 10051 } 10052 10053 PL_curpm = eval_state->curpm; 10054 } 10055 10056 PL_regmatch_state = aux->old_regmatch_state; 10057 PL_regmatch_slab = aux->old_regmatch_slab; 10058 10059 /* free all slabs above current one - this must be the last action 10060 * of this function, as aux and eval_state are allocated within 10061 * slabs and may be freed here */ 10062 10063 s = PL_regmatch_slab->next; 10064 if (s) { 10065 PL_regmatch_slab->next = NULL; 10066 while (s) { 10067 regmatch_slab * const osl = s; 10068 s = s->next; 10069 Safefree(osl); 10070 } 10071 } 10072 } 10073 10074 10075 STATIC void 10076 S_to_utf8_substr(pTHX_ regexp *prog) 10077 { 10078 /* Converts substr fields in prog from bytes to UTF-8, calling fbm_compile 10079 * on the converted value */ 10080 10081 int i = 1; 10082 10083 PERL_ARGS_ASSERT_TO_UTF8_SUBSTR; 10084 10085 do { 10086 if (prog->substrs->data[i].substr 10087 && !prog->substrs->data[i].utf8_substr) { 10088 SV* const sv = newSVsv(prog->substrs->data[i].substr); 10089 prog->substrs->data[i].utf8_substr = sv; 10090 sv_utf8_upgrade(sv); 10091 if (SvVALID(prog->substrs->data[i].substr)) { 10092 if (SvTAIL(prog->substrs->data[i].substr)) { 10093 /* Trim the trailing \n that fbm_compile added last 10094 time. */ 10095 SvCUR_set(sv, SvCUR(sv) - 1); 10096 /* Whilst this makes the SV technically "invalid" (as its 10097 buffer is no longer followed by "\0") when fbm_compile() 10098 adds the "\n" back, a "\0" is restored. */ 10099 fbm_compile(sv, FBMcf_TAIL); 10100 } else 10101 fbm_compile(sv, 0); 10102 } 10103 if (prog->substrs->data[i].substr == prog->check_substr) 10104 prog->check_utf8 = sv; 10105 } 10106 } while (i--); 10107 } 10108 10109 STATIC bool 10110 S_to_byte_substr(pTHX_ regexp *prog) 10111 { 10112 /* Converts substr fields in prog from UTF-8 to bytes, calling fbm_compile 10113 * on the converted value; returns FALSE if can't be converted. */ 10114 10115 int i = 1; 10116 10117 PERL_ARGS_ASSERT_TO_BYTE_SUBSTR; 10118 10119 do { 10120 if (prog->substrs->data[i].utf8_substr 10121 && !prog->substrs->data[i].substr) { 10122 SV* sv = newSVsv(prog->substrs->data[i].utf8_substr); 10123 if (! sv_utf8_downgrade(sv, TRUE)) { 10124 return FALSE; 10125 } 10126 if (SvVALID(prog->substrs->data[i].utf8_substr)) { 10127 if (SvTAIL(prog->substrs->data[i].utf8_substr)) { 10128 /* Trim the trailing \n that fbm_compile added last 10129 time. */ 10130 SvCUR_set(sv, SvCUR(sv) - 1); 10131 fbm_compile(sv, FBMcf_TAIL); 10132 } else 10133 fbm_compile(sv, 0); 10134 } 10135 prog->substrs->data[i].substr = sv; 10136 if (prog->substrs->data[i].utf8_substr == prog->check_utf8) 10137 prog->check_substr = sv; 10138 } 10139 } while (i--); 10140 10141 return TRUE; 10142 } 10143 10144 #ifndef PERL_IN_XSUB_RE 10145 10146 bool 10147 Perl__is_grapheme(pTHX_ const U8 * strbeg, const U8 * s, const U8 * strend, const UV cp) 10148 { 10149 /* Temporary helper function for toke.c. Verify that the code point 'cp' 10150 * is a stand-alone grapheme. The UTF-8 for 'cp' begins at position 's' in 10151 * the larger string bounded by 'strbeg' and 'strend'. 10152 * 10153 * 'cp' needs to be assigned (if not a future version of the Unicode 10154 * Standard could make it something that combines with adjacent characters, 10155 * so code using it would then break), and there has to be a GCB break 10156 * before and after the character. */ 10157 10158 GCB_enum cp_gcb_val, prev_cp_gcb_val, next_cp_gcb_val; 10159 const U8 * prev_cp_start; 10160 10161 PERL_ARGS_ASSERT__IS_GRAPHEME; 10162 10163 /* Unassigned code points are forbidden */ 10164 if (UNLIKELY(! ELEMENT_RANGE_MATCHES_INVLIST( 10165 _invlist_search(PL_Assigned_invlist, cp)))) 10166 { 10167 return FALSE; 10168 } 10169 10170 cp_gcb_val = getGCB_VAL_CP(cp); 10171 10172 /* Find the GCB value of the previous code point in the input */ 10173 prev_cp_start = utf8_hop_back(s, -1, strbeg); 10174 if (UNLIKELY(prev_cp_start == s)) { 10175 prev_cp_gcb_val = GCB_EDGE; 10176 } 10177 else { 10178 prev_cp_gcb_val = getGCB_VAL_UTF8(prev_cp_start, strend); 10179 } 10180 10181 /* And check that is a grapheme boundary */ 10182 if (! isGCB(prev_cp_gcb_val, cp_gcb_val, strbeg, s, 10183 TRUE /* is UTF-8 encoded */ )) 10184 { 10185 return FALSE; 10186 } 10187 10188 /* Similarly verify there is a break between the current character and the 10189 * following one */ 10190 s += UTF8SKIP(s); 10191 if (s >= strend) { 10192 next_cp_gcb_val = GCB_EDGE; 10193 } 10194 else { 10195 next_cp_gcb_val = getGCB_VAL_UTF8(s, strend); 10196 } 10197 10198 return isGCB(cp_gcb_val, next_cp_gcb_val, strbeg, s, TRUE); 10199 } 10200 10201 /* 10202 =head1 Unicode Support 10203 10204 =for apidoc isSCRIPT_RUN 10205 10206 Returns a bool as to whether or not the sequence of bytes from C<s> up to but 10207 not including C<send> form a "script run". C<utf8_target> is TRUE iff the 10208 sequence starting at C<s> is to be treated as UTF-8. To be precise, except for 10209 two degenerate cases given below, this function returns TRUE iff all code 10210 points in it come from any combination of three "scripts" given by the Unicode 10211 "Script Extensions" property: Common, Inherited, and possibly one other. 10212 Additionally all decimal digits must come from the same consecutive sequence of 10213 10. 10214 10215 For example, if all the characters in the sequence are Greek, or Common, or 10216 Inherited, this function will return TRUE, provided any decimal digits in it 10217 are from the same block of digits in Common. (These are the ASCII digits 10218 "0".."9" and additionally a block for full width forms of these, and several 10219 others used in mathematical notation.) For scripts (unlike Greek) that have 10220 their own digits defined this will accept either digits from that set or from 10221 one of the Common digit sets, but not a combination of the two. Some scripts, 10222 such as Arabic, have more than one set of digits. All digits must come from 10223 the same set for this function to return TRUE. 10224 10225 C<*ret_script>, if C<ret_script> is not NULL, will on return of TRUE 10226 contain the script found, using the C<SCX_enum> typedef. Its value will be 10227 C<SCX_INVALID> if the function returns FALSE. 10228 10229 If the sequence is empty, TRUE is returned, but C<*ret_script> (if asked for) 10230 will be C<SCX_INVALID>. 10231 10232 If the sequence contains a single code point which is unassigned to a character 10233 in the version of Unicode being used, the function will return TRUE, and the 10234 script will be C<SCX_Unknown>. Any other combination of unassigned code points 10235 in the input sequence will result in the function treating the input as not 10236 being a script run. 10237 10238 The returned script will be C<SCX_Inherited> iff all the code points in it are 10239 from the Inherited script. 10240 10241 Otherwise, the returned script will be C<SCX_Common> iff all the code points in 10242 it are from the Inherited or Common scripts. 10243 10244 =cut 10245 10246 */ 10247 10248 bool 10249 Perl_isSCRIPT_RUN(pTHX_ const U8 * s, const U8 * send, const bool utf8_target) 10250 { 10251 /* Basically, it looks at each character in the sequence to see if the 10252 * above conditions are met; if not it fails. It uses an inversion map to 10253 * find the enum corresponding to the script of each character. But this 10254 * is complicated by the fact that a few code points can be in any of 10255 * several scripts. The data has been constructed so that there are 10256 * additional enum values (all negative) for these situations. The 10257 * absolute value of those is an index into another table which contains 10258 * pointers to auxiliary tables for each such situation. Each aux array 10259 * lists all the scripts for the given situation. There is another, 10260 * parallel, table that gives the number of entries in each aux table. 10261 * These are all defined in charclass_invlists.h */ 10262 10263 /* XXX Here are the additional things UTS 39 says could be done: 10264 * 10265 * Forbid sequences of the same nonspacing mark 10266 * 10267 * Check to see that all the characters are in the sets of exemplar 10268 * characters for at least one language in the Unicode Common Locale Data 10269 * Repository [CLDR]. */ 10270 10271 dVAR; 10272 10273 /* Things that match /\d/u */ 10274 SV * decimals_invlist = PL_XPosix_ptrs[_CC_DIGIT]; 10275 UV * decimals_array = invlist_array(decimals_invlist); 10276 10277 /* What code point is the digit '0' of the script run? (0 meaning FALSE if 10278 * not currently known) */ 10279 UV zero_of_run = 0; 10280 10281 SCX_enum script_of_run = SCX_INVALID; /* Illegal value */ 10282 SCX_enum script_of_char = SCX_INVALID; 10283 10284 /* If the script remains not fully determined from iteration to iteration, 10285 * this is the current intersection of the possiblities. */ 10286 SCX_enum * intersection = NULL; 10287 PERL_UINT_FAST8_T intersection_len = 0; 10288 10289 bool retval = TRUE; 10290 SCX_enum * ret_script = NULL; 10291 10292 assert(send >= s); 10293 10294 PERL_ARGS_ASSERT_ISSCRIPT_RUN; 10295 10296 /* All code points in 0..255 are either Common or Latin, so must be a 10297 * script run. We can return immediately unless we need to know which 10298 * script it is. */ 10299 if (! utf8_target && LIKELY(send > s)) { 10300 if (ret_script == NULL) { 10301 return TRUE; 10302 } 10303 10304 /* If any character is Latin, the run is Latin */ 10305 while (s < send) { 10306 if (isALPHA_L1(*s) && LIKELY(*s != MICRO_SIGN_NATIVE)) { 10307 *ret_script = SCX_Latin; 10308 return TRUE; 10309 } 10310 } 10311 10312 /* Here, all are Common */ 10313 *ret_script = SCX_Common; 10314 return TRUE; 10315 } 10316 10317 /* Look at each character in the sequence */ 10318 while (s < send) { 10319 /* If the current character being examined is a digit, this is the code 10320 * point of the zero for its sequence of 10 */ 10321 UV zero_of_char; 10322 10323 UV cp; 10324 10325 /* The code allows all scripts to use the ASCII digits. This is 10326 * because they are in the Common script. Hence any ASCII ones found 10327 * are ok, unless and until a digit from another set has already been 10328 * encountered. digit ranges in Common are not similarly blessed) */ 10329 if (UNLIKELY(isDIGIT(*s))) { 10330 if (UNLIKELY(script_of_run == SCX_Unknown)) { 10331 retval = FALSE; 10332 break; 10333 } 10334 if (zero_of_run) { 10335 if (zero_of_run != '0') { 10336 retval = FALSE; 10337 break; 10338 } 10339 } 10340 else { 10341 zero_of_run = '0'; 10342 } 10343 s++; 10344 continue; 10345 } 10346 10347 /* Here, isn't an ASCII digit. Find the code point of the character */ 10348 if (! UTF8_IS_INVARIANT(*s)) { 10349 Size_t len; 10350 cp = valid_utf8_to_uvchr((U8 *) s, &len); 10351 s += len; 10352 } 10353 else { 10354 cp = *(s++); 10355 } 10356 10357 /* If is within the range [+0 .. +9] of the script's zero, it also is a 10358 * digit in that script. We can skip the rest of this code for this 10359 * character. */ 10360 if (UNLIKELY( zero_of_run 10361 && cp >= zero_of_run 10362 && cp - zero_of_run <= 9)) 10363 { 10364 continue; 10365 } 10366 10367 /* Find the character's script. The correct values are hard-coded here 10368 * for small-enough code points. */ 10369 if (cp < 0x2B9) { /* From inspection of Unicode db; extremely 10370 unlikely to change */ 10371 if ( cp > 255 10372 || ( isALPHA_L1(cp) 10373 && LIKELY(cp != MICRO_SIGN_NATIVE))) 10374 { 10375 script_of_char = SCX_Latin; 10376 } 10377 else { 10378 script_of_char = SCX_Common; 10379 } 10380 } 10381 else { 10382 script_of_char = _Perl_SCX_invmap[ 10383 _invlist_search(PL_SCX_invlist, cp)]; 10384 } 10385 10386 /* We arbitrarily accept a single unassigned character, but not in 10387 * combination with anything else, and not a run of them. */ 10388 if ( UNLIKELY(script_of_run == SCX_Unknown) 10389 || UNLIKELY( script_of_run != SCX_INVALID 10390 && script_of_char == SCX_Unknown)) 10391 { 10392 retval = FALSE; 10393 break; 10394 } 10395 10396 /* For the first character, or the run is inherited, the run's script 10397 * is set to the char's */ 10398 if ( UNLIKELY(script_of_run == SCX_INVALID) 10399 || UNLIKELY(script_of_run == SCX_Inherited)) 10400 { 10401 script_of_run = script_of_char; 10402 } 10403 10404 /* For the character's script to be Unknown, it must be the first 10405 * character in the sequence (for otherwise a test above would have 10406 * prevented us from reaching here), and we have set the run's script 10407 * to it. Nothing further to be done for this character */ 10408 if (UNLIKELY(script_of_char == SCX_Unknown)) { 10409 continue; 10410 } 10411 10412 /* We accept 'inherited' script characters currently even at the 10413 * beginning. (We know that no characters in Inherited are digits, or 10414 * we'd have to check for that) */ 10415 if (UNLIKELY(script_of_char == SCX_Inherited)) { 10416 continue; 10417 } 10418 10419 /* If the run so far is Common, and the new character isn't, change the 10420 * run's script to that of this character */ 10421 if (script_of_run == SCX_Common && script_of_char != SCX_Common) { 10422 script_of_run = script_of_char; 10423 } 10424 10425 /* Now we can see if the script of the new character is the same as 10426 * that of the run */ 10427 if (LIKELY(script_of_char == script_of_run)) { 10428 /* By far the most common case */ 10429 goto scripts_match; 10430 } 10431 10432 /* Here, the script of the run isn't Common. But characters in Common 10433 * match any script */ 10434 if (script_of_char == SCX_Common) { 10435 goto scripts_match; 10436 } 10437 10438 #ifndef HAS_SCX_AUX_TABLES 10439 10440 /* Too early a Unicode version to have a code point belonging to more 10441 * than one script, so, if the scripts don't exactly match, fail */ 10442 PERL_UNUSED_VAR(intersection_len); 10443 retval = FALSE; 10444 break; 10445 10446 #else 10447 10448 /* Here there is no exact match between the character's script and the 10449 * run's. And we've handled the special cases of scripts Unknown, 10450 * Inherited, and Common. 10451 * 10452 * Negative script numbers signify that the value may be any of several 10453 * scripts, and we need to look at auxiliary information to make our 10454 * deterimination. But if both are non-negative, we can fail now */ 10455 if (LIKELY(script_of_char >= 0)) { 10456 const SCX_enum * search_in; 10457 PERL_UINT_FAST8_T search_in_len; 10458 PERL_UINT_FAST8_T i; 10459 10460 if (LIKELY(script_of_run >= 0)) { 10461 retval = FALSE; 10462 break; 10463 } 10464 10465 /* Use the previously constructed set of possible scripts, if any. 10466 * */ 10467 if (intersection) { 10468 search_in = intersection; 10469 search_in_len = intersection_len; 10470 } 10471 else { 10472 search_in = SCX_AUX_TABLE_ptrs[-script_of_run]; 10473 search_in_len = SCX_AUX_TABLE_lengths[-script_of_run]; 10474 } 10475 10476 for (i = 0; i < search_in_len; i++) { 10477 if (search_in[i] == script_of_char) { 10478 script_of_run = script_of_char; 10479 goto scripts_match; 10480 } 10481 } 10482 10483 retval = FALSE; 10484 break; 10485 } 10486 else if (LIKELY(script_of_run >= 0)) { 10487 /* script of character could be one of several, but run is a single 10488 * script */ 10489 const SCX_enum * search_in = SCX_AUX_TABLE_ptrs[-script_of_char]; 10490 const PERL_UINT_FAST8_T search_in_len 10491 = SCX_AUX_TABLE_lengths[-script_of_char]; 10492 PERL_UINT_FAST8_T i; 10493 10494 for (i = 0; i < search_in_len; i++) { 10495 if (search_in[i] == script_of_run) { 10496 script_of_char = script_of_run; 10497 goto scripts_match; 10498 } 10499 } 10500 10501 retval = FALSE; 10502 break; 10503 } 10504 else { 10505 /* Both run and char could be in one of several scripts. If the 10506 * intersection is empty, then this character isn't in this script 10507 * run. Otherwise, we need to calculate the intersection to use 10508 * for future iterations of the loop, unless we are already at the 10509 * final character */ 10510 const SCX_enum * search_char = SCX_AUX_TABLE_ptrs[-script_of_char]; 10511 const PERL_UINT_FAST8_T char_len 10512 = SCX_AUX_TABLE_lengths[-script_of_char]; 10513 const SCX_enum * search_run; 10514 PERL_UINT_FAST8_T run_len; 10515 10516 SCX_enum * new_overlap = NULL; 10517 PERL_UINT_FAST8_T i, j; 10518 10519 if (intersection) { 10520 search_run = intersection; 10521 run_len = intersection_len; 10522 } 10523 else { 10524 search_run = SCX_AUX_TABLE_ptrs[-script_of_run]; 10525 run_len = SCX_AUX_TABLE_lengths[-script_of_run]; 10526 } 10527 10528 intersection_len = 0; 10529 10530 for (i = 0; i < run_len; i++) { 10531 for (j = 0; j < char_len; j++) { 10532 if (search_run[i] == search_char[j]) { 10533 10534 /* Here, the script at i,j matches. That means this 10535 * character is in the run. But continue on to find 10536 * the complete intersection, for the next loop 10537 * iteration, and for the digit check after it. 10538 * 10539 * On the first found common script, we malloc space 10540 * for the intersection list for the worst case of the 10541 * intersection, which is the minimum of the number of 10542 * scripts remaining in each set. */ 10543 if (intersection_len == 0) { 10544 Newx(new_overlap, 10545 MIN(run_len - i, char_len - j), 10546 SCX_enum); 10547 } 10548 new_overlap[intersection_len++] = search_run[i]; 10549 } 10550 } 10551 } 10552 10553 /* Here we've looked through everything. If they have no scripts 10554 * in common, not a run */ 10555 if (intersection_len == 0) { 10556 retval = FALSE; 10557 break; 10558 } 10559 10560 /* If there is only a single script in common, set to that. 10561 * Otherwise, use the intersection going forward */ 10562 Safefree(intersection); 10563 intersection = NULL; 10564 if (intersection_len == 1) { 10565 script_of_run = script_of_char = new_overlap[0]; 10566 Safefree(new_overlap); 10567 new_overlap = NULL; 10568 } 10569 else { 10570 intersection = new_overlap; 10571 } 10572 } 10573 10574 #endif 10575 10576 scripts_match: 10577 10578 /* Here, the script of the character is compatible with that of the 10579 * run. That means that in most cases, it continues the script run. 10580 * Either it and the run match exactly, or one or both can be in any of 10581 * several scripts, and the intersection is not empty. However, if the 10582 * character is a decimal digit, it could still mean failure if it is 10583 * from the wrong sequence of 10. So, we need to look at if it's a 10584 * digit. We've already handled the 10 decimal digits, and the next 10585 * lowest one is this one: */ 10586 if (cp < FIRST_NON_ASCII_DECIMAL_DIGIT) { 10587 continue; /* Not a digit; this character is part of the run */ 10588 } 10589 10590 /* If we have a definitive '0' for the script of this character, we 10591 * know that for this to be a digit, it must be in the range of +0..+9 10592 * of that zero. */ 10593 if ( script_of_char >= 0 10594 && (zero_of_char = script_zeros[script_of_char])) 10595 { 10596 if ( cp < zero_of_char 10597 || cp > zero_of_char + 9) 10598 { 10599 continue; /* Not a digit; this character is part of the run 10600 */ 10601 } 10602 10603 } 10604 else { /* Need to look up if this character is a digit or not */ 10605 SSize_t index_of_zero_of_char; 10606 index_of_zero_of_char = _invlist_search(decimals_invlist, cp); 10607 if ( UNLIKELY(index_of_zero_of_char < 0) 10608 || ! ELEMENT_RANGE_MATCHES_INVLIST(index_of_zero_of_char)) 10609 { 10610 continue; /* Not a digit; this character is part of the run. 10611 */ 10612 } 10613 10614 zero_of_char = decimals_array[index_of_zero_of_char]; 10615 } 10616 10617 /* Here, the character is a decimal digit, and the zero of its sequence 10618 * of 10 is in 'zero_of_char'. If we already have a zero for this run, 10619 * they better be the same. */ 10620 if (zero_of_run) { 10621 if (zero_of_run != zero_of_char) { 10622 retval = FALSE; 10623 break; 10624 } 10625 } 10626 else { /* Otherwise we now have a zero for this run */ 10627 zero_of_run = zero_of_char; 10628 } 10629 } /* end of looping through CLOSESR text */ 10630 10631 Safefree(intersection); 10632 10633 if (ret_script != NULL) { 10634 if (retval) { 10635 *ret_script = script_of_run; 10636 } 10637 else { 10638 *ret_script = SCX_INVALID; 10639 } 10640 } 10641 10642 return retval; 10643 } 10644 10645 #endif /* ifndef PERL_IN_XSUB_RE */ 10646 10647 /* 10648 * ex: set ts=8 sts=4 sw=4 et: 10649 */ 10650