1 /* regcomp.c 2 */ 3 4 /* 5 * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee 6 * 7 * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"] 8 */ 9 10 /* This file contains functions for compiling a regular expression. See 11 * also regexec.c which funnily enough, contains functions for executing 12 * a regular expression. 13 * 14 * This file is also copied at build time to ext/re/re_comp.c, where 15 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT. 16 * This causes the main functions to be compiled under new names and with 17 * debugging support added, which makes "use re 'debug'" work. 18 */ 19 20 /* NOTE: this is derived from Henry Spencer's regexp code, and should not 21 * confused with the original package (see point 3 below). Thanks, Henry! 22 */ 23 24 /* Additional note: this code is very heavily munged from Henry's version 25 * in places. In some spots I've traded clarity for efficiency, so don't 26 * blame Henry for some of the lack of readability. 27 */ 28 29 /* The names of the functions have been changed from regcomp and 30 * regexec to pregcomp and pregexec in order to avoid conflicts 31 * with the POSIX routines of the same names. 32 */ 33 34 #ifdef PERL_EXT_RE_BUILD 35 #include "re_top.h" 36 #endif 37 38 /* 39 * pregcomp and pregexec -- regsub and regerror are not used in perl 40 * 41 * Copyright (c) 1986 by University of Toronto. 42 * Written by Henry Spencer. Not derived from licensed software. 43 * 44 * Permission is granted to anyone to use this software for any 45 * purpose on any computer system, and to redistribute it freely, 46 * subject to the following restrictions: 47 * 48 * 1. The author is not responsible for the consequences of use of 49 * this software, no matter how awful, even if they arise 50 * from defects in it. 51 * 52 * 2. The origin of this software must not be misrepresented, either 53 * by explicit claim or by omission. 54 * 55 * 3. Altered versions must be plainly marked as such, and must not 56 * be misrepresented as being the original software. 57 * 58 * 59 **** Alterations to Henry's code are... 60 **** 61 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 62 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 63 **** by Larry Wall and others 64 **** 65 **** You may distribute under the terms of either the GNU General Public 66 **** License or the Artistic License, as specified in the README file. 67 68 * 69 * Beware that some of this code is subtly aware of the way operator 70 * precedence is structured in regular expressions. Serious changes in 71 * regular-expression syntax might require a total rethink. 72 */ 73 #include "EXTERN.h" 74 #define PERL_IN_REGCOMP_C 75 #include "perl.h" 76 77 #ifndef PERL_IN_XSUB_RE 78 # include "INTERN.h" 79 #endif 80 81 #define REG_COMP_C 82 #ifdef PERL_IN_XSUB_RE 83 # include "re_comp.h" 84 extern const struct regexp_engine my_reg_engine; 85 #else 86 # include "regcomp.h" 87 #endif 88 89 #include "dquote_static.c" 90 #include "charclass_invlists.h" 91 #include "inline_invlist.c" 92 #include "unicode_constants.h" 93 94 #define HAS_NONLATIN1_FOLD_CLOSURE(i) _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i) 95 #define IS_NON_FINAL_FOLD(c) _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c) 96 #define IS_IN_SOME_FOLD_L1(c) _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c) 97 98 #ifdef op 99 #undef op 100 #endif /* op */ 101 102 #ifdef MSDOS 103 # if defined(BUGGY_MSC6) 104 /* MSC 6.00A breaks on op/regexp.t test 85 unless we turn this off */ 105 # pragma optimize("a",off) 106 /* But MSC 6.00A is happy with 'w', for aliases only across function calls*/ 107 # pragma optimize("w",on ) 108 # endif /* BUGGY_MSC6 */ 109 #endif /* MSDOS */ 110 111 #ifndef STATIC 112 #define STATIC static 113 #endif 114 115 116 typedef struct RExC_state_t { 117 U32 flags; /* RXf_* are we folding, multilining? */ 118 U32 pm_flags; /* PMf_* stuff from the calling PMOP */ 119 char *precomp; /* uncompiled string. */ 120 REGEXP *rx_sv; /* The SV that is the regexp. */ 121 regexp *rx; /* perl core regexp structure */ 122 regexp_internal *rxi; /* internal data for regexp object pprivate field */ 123 char *start; /* Start of input for compile */ 124 char *end; /* End of input for compile */ 125 char *parse; /* Input-scan pointer. */ 126 I32 whilem_seen; /* number of WHILEM in this expr */ 127 regnode *emit_start; /* Start of emitted-code area */ 128 regnode *emit_bound; /* First regnode outside of the allocated space */ 129 regnode *emit; /* Code-emit pointer; ®dummy = don't = compiling */ 130 I32 naughty; /* How bad is this pattern? */ 131 I32 sawback; /* Did we see \1, ...? */ 132 U32 seen; 133 I32 size; /* Code size. */ 134 I32 npar; /* Capture buffer count, (OPEN). */ 135 I32 cpar; /* Capture buffer count, (CLOSE). */ 136 I32 nestroot; /* root parens we are in - used by accept */ 137 I32 extralen; 138 I32 seen_zerolen; 139 regnode **open_parens; /* pointers to open parens */ 140 regnode **close_parens; /* pointers to close parens */ 141 regnode *opend; /* END node in program */ 142 I32 utf8; /* whether the pattern is utf8 or not */ 143 I32 orig_utf8; /* whether the pattern was originally in utf8 */ 144 /* XXX use this for future optimisation of case 145 * where pattern must be upgraded to utf8. */ 146 I32 uni_semantics; /* If a d charset modifier should use unicode 147 rules, even if the pattern is not in 148 utf8 */ 149 HV *paren_names; /* Paren names */ 150 151 regnode **recurse; /* Recurse regops */ 152 I32 recurse_count; /* Number of recurse regops */ 153 I32 in_lookbehind; 154 I32 contains_locale; 155 I32 override_recoding; 156 I32 in_multi_char_class; 157 struct reg_code_block *code_blocks; /* positions of literal (?{}) 158 within pattern */ 159 int num_code_blocks; /* size of code_blocks[] */ 160 int code_index; /* next code_blocks[] slot */ 161 #if ADD_TO_REGEXEC 162 char *starttry; /* -Dr: where regtry was called. */ 163 #define RExC_starttry (pRExC_state->starttry) 164 #endif 165 SV *runtime_code_qr; /* qr with the runtime code blocks */ 166 #ifdef DEBUGGING 167 const char *lastparse; 168 I32 lastnum; 169 AV *paren_name_list; /* idx -> name */ 170 #define RExC_lastparse (pRExC_state->lastparse) 171 #define RExC_lastnum (pRExC_state->lastnum) 172 #define RExC_paren_name_list (pRExC_state->paren_name_list) 173 #endif 174 } RExC_state_t; 175 176 #define RExC_flags (pRExC_state->flags) 177 #define RExC_pm_flags (pRExC_state->pm_flags) 178 #define RExC_precomp (pRExC_state->precomp) 179 #define RExC_rx_sv (pRExC_state->rx_sv) 180 #define RExC_rx (pRExC_state->rx) 181 #define RExC_rxi (pRExC_state->rxi) 182 #define RExC_start (pRExC_state->start) 183 #define RExC_end (pRExC_state->end) 184 #define RExC_parse (pRExC_state->parse) 185 #define RExC_whilem_seen (pRExC_state->whilem_seen) 186 #ifdef RE_TRACK_PATTERN_OFFSETS 187 #define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the others */ 188 #endif 189 #define RExC_emit (pRExC_state->emit) 190 #define RExC_emit_start (pRExC_state->emit_start) 191 #define RExC_emit_bound (pRExC_state->emit_bound) 192 #define RExC_naughty (pRExC_state->naughty) 193 #define RExC_sawback (pRExC_state->sawback) 194 #define RExC_seen (pRExC_state->seen) 195 #define RExC_size (pRExC_state->size) 196 #define RExC_npar (pRExC_state->npar) 197 #define RExC_nestroot (pRExC_state->nestroot) 198 #define RExC_extralen (pRExC_state->extralen) 199 #define RExC_seen_zerolen (pRExC_state->seen_zerolen) 200 #define RExC_utf8 (pRExC_state->utf8) 201 #define RExC_uni_semantics (pRExC_state->uni_semantics) 202 #define RExC_orig_utf8 (pRExC_state->orig_utf8) 203 #define RExC_open_parens (pRExC_state->open_parens) 204 #define RExC_close_parens (pRExC_state->close_parens) 205 #define RExC_opend (pRExC_state->opend) 206 #define RExC_paren_names (pRExC_state->paren_names) 207 #define RExC_recurse (pRExC_state->recurse) 208 #define RExC_recurse_count (pRExC_state->recurse_count) 209 #define RExC_in_lookbehind (pRExC_state->in_lookbehind) 210 #define RExC_contains_locale (pRExC_state->contains_locale) 211 #define RExC_override_recoding (pRExC_state->override_recoding) 212 #define RExC_in_multi_char_class (pRExC_state->in_multi_char_class) 213 214 215 #define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?') 216 #define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \ 217 ((*s) == '{' && regcurly(s, FALSE))) 218 219 #ifdef SPSTART 220 #undef SPSTART /* dratted cpp namespace... */ 221 #endif 222 /* 223 * Flags to be passed up and down. 224 */ 225 #define WORST 0 /* Worst case. */ 226 #define HASWIDTH 0x01 /* Known to match non-null strings. */ 227 228 /* Simple enough to be STAR/PLUS operand; in an EXACTish node must be a single 229 * character. (There needs to be a case: in the switch statement in regexec.c 230 * for any node marked SIMPLE.) Note that this is not the same thing as 231 * REGNODE_SIMPLE */ 232 #define SIMPLE 0x02 233 #define SPSTART 0x04 /* Starts with * or + */ 234 #define POSTPONED 0x08 /* (?1),(?&name), (??{...}) or similar */ 235 #define TRYAGAIN 0x10 /* Weeded out a declaration. */ 236 #define RESTART_UTF8 0x20 /* Restart, need to calcuate sizes as UTF-8 */ 237 238 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1) 239 240 /* whether trie related optimizations are enabled */ 241 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION 242 #define TRIE_STUDY_OPT 243 #define FULL_TRIE_STUDY 244 #define TRIE_STCLASS 245 #endif 246 247 248 249 #define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3] 250 #define PBITVAL(paren) (1 << ((paren) & 7)) 251 #define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren)) 252 #define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren) 253 #define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren)) 254 255 #define REQUIRE_UTF8 STMT_START { \ 256 if (!UTF) { \ 257 *flagp = RESTART_UTF8; \ 258 return NULL; \ 259 } \ 260 } STMT_END 261 262 /* This converts the named class defined in regcomp.h to its equivalent class 263 * number defined in handy.h. */ 264 #define namedclass_to_classnum(class) ((int) ((class) / 2)) 265 #define classnum_to_namedclass(classnum) ((classnum) * 2) 266 267 /* About scan_data_t. 268 269 During optimisation we recurse through the regexp program performing 270 various inplace (keyhole style) optimisations. In addition study_chunk 271 and scan_commit populate this data structure with information about 272 what strings MUST appear in the pattern. We look for the longest 273 string that must appear at a fixed location, and we look for the 274 longest string that may appear at a floating location. So for instance 275 in the pattern: 276 277 /FOO[xX]A.*B[xX]BAR/ 278 279 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating 280 strings (because they follow a .* construct). study_chunk will identify 281 both FOO and BAR as being the longest fixed and floating strings respectively. 282 283 The strings can be composites, for instance 284 285 /(f)(o)(o)/ 286 287 will result in a composite fixed substring 'foo'. 288 289 For each string some basic information is maintained: 290 291 - offset or min_offset 292 This is the position the string must appear at, or not before. 293 It also implicitly (when combined with minlenp) tells us how many 294 characters must match before the string we are searching for. 295 Likewise when combined with minlenp and the length of the string it 296 tells us how many characters must appear after the string we have 297 found. 298 299 - max_offset 300 Only used for floating strings. This is the rightmost point that 301 the string can appear at. If set to I32 max it indicates that the 302 string can occur infinitely far to the right. 303 304 - minlenp 305 A pointer to the minimum number of characters of the pattern that the 306 string was found inside. This is important as in the case of positive 307 lookahead or positive lookbehind we can have multiple patterns 308 involved. Consider 309 310 /(?=FOO).*F/ 311 312 The minimum length of the pattern overall is 3, the minimum length 313 of the lookahead part is 3, but the minimum length of the part that 314 will actually match is 1. So 'FOO's minimum length is 3, but the 315 minimum length for the F is 1. This is important as the minimum length 316 is used to determine offsets in front of and behind the string being 317 looked for. Since strings can be composites this is the length of the 318 pattern at the time it was committed with a scan_commit. Note that 319 the length is calculated by study_chunk, so that the minimum lengths 320 are not known until the full pattern has been compiled, thus the 321 pointer to the value. 322 323 - lookbehind 324 325 In the case of lookbehind the string being searched for can be 326 offset past the start point of the final matching string. 327 If this value was just blithely removed from the min_offset it would 328 invalidate some of the calculations for how many chars must match 329 before or after (as they are derived from min_offset and minlen and 330 the length of the string being searched for). 331 When the final pattern is compiled and the data is moved from the 332 scan_data_t structure into the regexp structure the information 333 about lookbehind is factored in, with the information that would 334 have been lost precalculated in the end_shift field for the 335 associated string. 336 337 The fields pos_min and pos_delta are used to store the minimum offset 338 and the delta to the maximum offset at the current point in the pattern. 339 340 */ 341 342 typedef struct scan_data_t { 343 /*I32 len_min; unused */ 344 /*I32 len_delta; unused */ 345 I32 pos_min; 346 I32 pos_delta; 347 SV *last_found; 348 I32 last_end; /* min value, <0 unless valid. */ 349 I32 last_start_min; 350 I32 last_start_max; 351 SV **longest; /* Either &l_fixed, or &l_float. */ 352 SV *longest_fixed; /* longest fixed string found in pattern */ 353 I32 offset_fixed; /* offset where it starts */ 354 I32 *minlen_fixed; /* pointer to the minlen relevant to the string */ 355 I32 lookbehind_fixed; /* is the position of the string modfied by LB */ 356 SV *longest_float; /* longest floating string found in pattern */ 357 I32 offset_float_min; /* earliest point in string it can appear */ 358 I32 offset_float_max; /* latest point in string it can appear */ 359 I32 *minlen_float; /* pointer to the minlen relevant to the string */ 360 I32 lookbehind_float; /* is the position of the string modified by LB */ 361 I32 flags; 362 I32 whilem_c; 363 I32 *last_closep; 364 struct regnode_charclass_class *start_class; 365 } scan_data_t; 366 367 /* 368 * Forward declarations for pregcomp()'s friends. 369 */ 370 371 static const scan_data_t zero_scan_data = 372 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0}; 373 374 #define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL) 375 #define SF_BEFORE_SEOL 0x0001 376 #define SF_BEFORE_MEOL 0x0002 377 #define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL) 378 #define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL) 379 380 #ifdef NO_UNARY_PLUS 381 # define SF_FIX_SHIFT_EOL (0+2) 382 # define SF_FL_SHIFT_EOL (0+4) 383 #else 384 # define SF_FIX_SHIFT_EOL (+2) 385 # define SF_FL_SHIFT_EOL (+4) 386 #endif 387 388 #define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL) 389 #define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL) 390 391 #define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL) 392 #define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */ 393 #define SF_IS_INF 0x0040 394 #define SF_HAS_PAR 0x0080 395 #define SF_IN_PAR 0x0100 396 #define SF_HAS_EVAL 0x0200 397 #define SCF_DO_SUBSTR 0x0400 398 #define SCF_DO_STCLASS_AND 0x0800 399 #define SCF_DO_STCLASS_OR 0x1000 400 #define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR) 401 #define SCF_WHILEM_VISITED_POS 0x2000 402 403 #define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */ 404 #define SCF_SEEN_ACCEPT 0x8000 405 406 #define UTF cBOOL(RExC_utf8) 407 408 /* The enums for all these are ordered so things work out correctly */ 409 #define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET) 410 #define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_DEPENDS_CHARSET) 411 #define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET) 412 #define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) >= REGEX_UNICODE_CHARSET) 413 #define ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_RESTRICTED_CHARSET) 414 #define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) >= REGEX_ASCII_RESTRICTED_CHARSET) 415 #define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_MORE_RESTRICTED_CHARSET) 416 417 #define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD) 418 419 #define OOB_NAMEDCLASS -1 420 421 /* There is no code point that is out-of-bounds, so this is problematic. But 422 * its only current use is to initialize a variable that is always set before 423 * looked at. */ 424 #define OOB_UNICODE 0xDEADBEEF 425 426 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv)) 427 #define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b) 428 429 430 /* length of regex to show in messages that don't mark a position within */ 431 #define RegexLengthToShowInErrorMessages 127 432 433 /* 434 * If MARKER[12] are adjusted, be sure to adjust the constants at the top 435 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in 436 * op/pragma/warn/regcomp. 437 */ 438 #define MARKER1 "<-- HERE" /* marker as it appears in the description */ 439 #define MARKER2 " <-- HERE " /* marker as it appears within the regex */ 440 441 #define REPORT_LOCATION " in regex; marked by " MARKER1 " in m/%.*s" MARKER2 "%s/" 442 443 /* 444 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given 445 * arg. Show regex, up to a maximum length. If it's too long, chop and add 446 * "...". 447 */ 448 #define _FAIL(code) STMT_START { \ 449 const char *ellipses = ""; \ 450 IV len = RExC_end - RExC_precomp; \ 451 \ 452 if (!SIZE_ONLY) \ 453 SAVEFREESV(RExC_rx_sv); \ 454 if (len > RegexLengthToShowInErrorMessages) { \ 455 /* chop 10 shorter than the max, to ensure meaning of "..." */ \ 456 len = RegexLengthToShowInErrorMessages - 10; \ 457 ellipses = "..."; \ 458 } \ 459 code; \ 460 } STMT_END 461 462 #define FAIL(msg) _FAIL( \ 463 Perl_croak(aTHX_ "%s in regex m/%.*s%s/", \ 464 msg, (int)len, RExC_precomp, ellipses)) 465 466 #define FAIL2(msg,arg) _FAIL( \ 467 Perl_croak(aTHX_ msg " in regex m/%.*s%s/", \ 468 arg, (int)len, RExC_precomp, ellipses)) 469 470 /* 471 * Simple_vFAIL -- like FAIL, but marks the current location in the scan 472 */ 473 #define Simple_vFAIL(m) STMT_START { \ 474 const IV offset = RExC_parse - RExC_precomp; \ 475 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \ 476 m, (int)offset, RExC_precomp, RExC_precomp + offset); \ 477 } STMT_END 478 479 /* 480 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL() 481 */ 482 #define vFAIL(m) STMT_START { \ 483 if (!SIZE_ONLY) \ 484 SAVEFREESV(RExC_rx_sv); \ 485 Simple_vFAIL(m); \ 486 } STMT_END 487 488 /* 489 * Like Simple_vFAIL(), but accepts two arguments. 490 */ 491 #define Simple_vFAIL2(m,a1) STMT_START { \ 492 const IV offset = RExC_parse - RExC_precomp; \ 493 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, \ 494 (int)offset, RExC_precomp, RExC_precomp + offset); \ 495 } STMT_END 496 497 /* 498 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2(). 499 */ 500 #define vFAIL2(m,a1) STMT_START { \ 501 if (!SIZE_ONLY) \ 502 SAVEFREESV(RExC_rx_sv); \ 503 Simple_vFAIL2(m, a1); \ 504 } STMT_END 505 506 507 /* 508 * Like Simple_vFAIL(), but accepts three arguments. 509 */ 510 #define Simple_vFAIL3(m, a1, a2) STMT_START { \ 511 const IV offset = RExC_parse - RExC_precomp; \ 512 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, \ 513 (int)offset, RExC_precomp, RExC_precomp + offset); \ 514 } STMT_END 515 516 /* 517 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3(). 518 */ 519 #define vFAIL3(m,a1,a2) STMT_START { \ 520 if (!SIZE_ONLY) \ 521 SAVEFREESV(RExC_rx_sv); \ 522 Simple_vFAIL3(m, a1, a2); \ 523 } STMT_END 524 525 /* 526 * Like Simple_vFAIL(), but accepts four arguments. 527 */ 528 #define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \ 529 const IV offset = RExC_parse - RExC_precomp; \ 530 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, a3, \ 531 (int)offset, RExC_precomp, RExC_precomp + offset); \ 532 } STMT_END 533 534 #define vFAIL4(m,a1,a2,a3) STMT_START { \ 535 if (!SIZE_ONLY) \ 536 SAVEFREESV(RExC_rx_sv); \ 537 Simple_vFAIL4(m, a1, a2, a3); \ 538 } STMT_END 539 540 /* m is not necessarily a "literal string", in this macro */ 541 #define reg_warn_non_literal_string(loc, m) STMT_START { \ 542 const IV offset = loc - RExC_precomp; \ 543 Perl_warner(aTHX_ packWARN(WARN_REGEXP), "%s" REPORT_LOCATION, \ 544 m, (int)offset, RExC_precomp, RExC_precomp + offset); \ 545 } STMT_END 546 547 #define ckWARNreg(loc,m) STMT_START { \ 548 const IV offset = loc - RExC_precomp; \ 549 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \ 550 (int)offset, RExC_precomp, RExC_precomp + offset); \ 551 } STMT_END 552 553 #define vWARN_dep(loc, m) STMT_START { \ 554 const IV offset = loc - RExC_precomp; \ 555 Perl_warner(aTHX_ packWARN(WARN_DEPRECATED), m REPORT_LOCATION, \ 556 (int)offset, RExC_precomp, RExC_precomp + offset); \ 557 } STMT_END 558 559 #define ckWARNdep(loc,m) STMT_START { \ 560 const IV offset = loc - RExC_precomp; \ 561 Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED), \ 562 m REPORT_LOCATION, \ 563 (int)offset, RExC_precomp, RExC_precomp + offset); \ 564 } STMT_END 565 566 #define ckWARNregdep(loc,m) STMT_START { \ 567 const IV offset = loc - RExC_precomp; \ 568 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \ 569 m REPORT_LOCATION, \ 570 (int)offset, RExC_precomp, RExC_precomp + offset); \ 571 } STMT_END 572 573 #define ckWARN2regdep(loc,m, a1) STMT_START { \ 574 const IV offset = loc - RExC_precomp; \ 575 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \ 576 m REPORT_LOCATION, \ 577 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \ 578 } STMT_END 579 580 #define ckWARN2reg(loc, m, a1) STMT_START { \ 581 const IV offset = loc - RExC_precomp; \ 582 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \ 583 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \ 584 } STMT_END 585 586 #define vWARN3(loc, m, a1, a2) STMT_START { \ 587 const IV offset = loc - RExC_precomp; \ 588 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \ 589 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \ 590 } STMT_END 591 592 #define ckWARN3reg(loc, m, a1, a2) STMT_START { \ 593 const IV offset = loc - RExC_precomp; \ 594 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \ 595 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \ 596 } STMT_END 597 598 #define vWARN4(loc, m, a1, a2, a3) STMT_START { \ 599 const IV offset = loc - RExC_precomp; \ 600 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \ 601 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \ 602 } STMT_END 603 604 #define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \ 605 const IV offset = loc - RExC_precomp; \ 606 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \ 607 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \ 608 } STMT_END 609 610 #define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \ 611 const IV offset = loc - RExC_precomp; \ 612 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \ 613 a1, a2, a3, a4, (int)offset, RExC_precomp, RExC_precomp + offset); \ 614 } STMT_END 615 616 617 /* Allow for side effects in s */ 618 #define REGC(c,s) STMT_START { \ 619 if (!SIZE_ONLY) *(s) = (c); else (void)(s); \ 620 } STMT_END 621 622 /* Macros for recording node offsets. 20001227 mjd@plover.com 623 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in 624 * element 2*n-1 of the array. Element #2n holds the byte length node #n. 625 * Element 0 holds the number n. 626 * Position is 1 indexed. 627 */ 628 #ifndef RE_TRACK_PATTERN_OFFSETS 629 #define Set_Node_Offset_To_R(node,byte) 630 #define Set_Node_Offset(node,byte) 631 #define Set_Cur_Node_Offset 632 #define Set_Node_Length_To_R(node,len) 633 #define Set_Node_Length(node,len) 634 #define Set_Node_Cur_Length(node) 635 #define Node_Offset(n) 636 #define Node_Length(n) 637 #define Set_Node_Offset_Length(node,offset,len) 638 #define ProgLen(ri) ri->u.proglen 639 #define SetProgLen(ri,x) ri->u.proglen = x 640 #else 641 #define ProgLen(ri) ri->u.offsets[0] 642 #define SetProgLen(ri,x) ri->u.offsets[0] = x 643 #define Set_Node_Offset_To_R(node,byte) STMT_START { \ 644 if (! SIZE_ONLY) { \ 645 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \ 646 __LINE__, (int)(node), (int)(byte))); \ 647 if((node) < 0) { \ 648 Perl_croak(aTHX_ "value of node is %d in Offset macro", (int)(node)); \ 649 } else { \ 650 RExC_offsets[2*(node)-1] = (byte); \ 651 } \ 652 } \ 653 } STMT_END 654 655 #define Set_Node_Offset(node,byte) \ 656 Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start) 657 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse) 658 659 #define Set_Node_Length_To_R(node,len) STMT_START { \ 660 if (! SIZE_ONLY) { \ 661 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \ 662 __LINE__, (int)(node), (int)(len))); \ 663 if((node) < 0) { \ 664 Perl_croak(aTHX_ "value of node is %d in Length macro", (int)(node)); \ 665 } else { \ 666 RExC_offsets[2*(node)] = (len); \ 667 } \ 668 } \ 669 } STMT_END 670 671 #define Set_Node_Length(node,len) \ 672 Set_Node_Length_To_R((node)-RExC_emit_start, len) 673 #define Set_Cur_Node_Length(len) Set_Node_Length(RExC_emit, len) 674 #define Set_Node_Cur_Length(node) \ 675 Set_Node_Length(node, RExC_parse - parse_start) 676 677 /* Get offsets and lengths */ 678 #define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1]) 679 #define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)]) 680 681 #define Set_Node_Offset_Length(node,offset,len) STMT_START { \ 682 Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \ 683 Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \ 684 } STMT_END 685 #endif 686 687 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS 688 #define EXPERIMENTAL_INPLACESCAN 689 #endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/ 690 691 #define DEBUG_STUDYDATA(str,data,depth) \ 692 DEBUG_OPTIMISE_MORE_r(if(data){ \ 693 PerlIO_printf(Perl_debug_log, \ 694 "%*s" str "Pos:%"IVdf"/%"IVdf \ 695 " Flags: 0x%"UVXf" Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \ 696 (int)(depth)*2, "", \ 697 (IV)((data)->pos_min), \ 698 (IV)((data)->pos_delta), \ 699 (UV)((data)->flags), \ 700 (IV)((data)->whilem_c), \ 701 (IV)((data)->last_closep ? *((data)->last_closep) : -1), \ 702 is_inf ? "INF " : "" \ 703 ); \ 704 if ((data)->last_found) \ 705 PerlIO_printf(Perl_debug_log, \ 706 "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \ 707 " %sFloat: '%s' @ %"IVdf"/%"IVdf"", \ 708 SvPVX_const((data)->last_found), \ 709 (IV)((data)->last_end), \ 710 (IV)((data)->last_start_min), \ 711 (IV)((data)->last_start_max), \ 712 ((data)->longest && \ 713 (data)->longest==&((data)->longest_fixed)) ? "*" : "", \ 714 SvPVX_const((data)->longest_fixed), \ 715 (IV)((data)->offset_fixed), \ 716 ((data)->longest && \ 717 (data)->longest==&((data)->longest_float)) ? "*" : "", \ 718 SvPVX_const((data)->longest_float), \ 719 (IV)((data)->offset_float_min), \ 720 (IV)((data)->offset_float_max) \ 721 ); \ 722 PerlIO_printf(Perl_debug_log,"\n"); \ 723 }); 724 725 /* Mark that we cannot extend a found fixed substring at this point. 726 Update the longest found anchored substring and the longest found 727 floating substrings if needed. */ 728 729 STATIC void 730 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data, I32 *minlenp, int is_inf) 731 { 732 const STRLEN l = CHR_SVLEN(data->last_found); 733 const STRLEN old_l = CHR_SVLEN(*data->longest); 734 GET_RE_DEBUG_FLAGS_DECL; 735 736 PERL_ARGS_ASSERT_SCAN_COMMIT; 737 738 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) { 739 SvSetMagicSV(*data->longest, data->last_found); 740 if (*data->longest == data->longest_fixed) { 741 data->offset_fixed = l ? data->last_start_min : data->pos_min; 742 if (data->flags & SF_BEFORE_EOL) 743 data->flags 744 |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL); 745 else 746 data->flags &= ~SF_FIX_BEFORE_EOL; 747 data->minlen_fixed=minlenp; 748 data->lookbehind_fixed=0; 749 } 750 else { /* *data->longest == data->longest_float */ 751 data->offset_float_min = l ? data->last_start_min : data->pos_min; 752 data->offset_float_max = (l 753 ? data->last_start_max 754 : (data->pos_delta == I32_MAX ? I32_MAX : data->pos_min + data->pos_delta)); 755 if (is_inf || (U32)data->offset_float_max > (U32)I32_MAX) 756 data->offset_float_max = I32_MAX; 757 if (data->flags & SF_BEFORE_EOL) 758 data->flags 759 |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL); 760 else 761 data->flags &= ~SF_FL_BEFORE_EOL; 762 data->minlen_float=minlenp; 763 data->lookbehind_float=0; 764 } 765 } 766 SvCUR_set(data->last_found, 0); 767 { 768 SV * const sv = data->last_found; 769 if (SvUTF8(sv) && SvMAGICAL(sv)) { 770 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8); 771 if (mg) 772 mg->mg_len = 0; 773 } 774 } 775 data->last_end = -1; 776 data->flags &= ~SF_BEFORE_EOL; 777 DEBUG_STUDYDATA("commit: ",data,0); 778 } 779 780 /* These macros set, clear and test whether the synthetic start class ('ssc', 781 * given by the parameter) matches an empty string (EOS). This uses the 782 * 'next_off' field in the node, to save a bit in the flags field. The ssc 783 * stands alone, so there is never a next_off, so this field is otherwise 784 * unused. The EOS information is used only for compilation, but theoretically 785 * it could be passed on to the execution code. This could be used to store 786 * more than one bit of information, but only this one is currently used. */ 787 #define SET_SSC_EOS(node) STMT_START { (node)->next_off = TRUE; } STMT_END 788 #define CLEAR_SSC_EOS(node) STMT_START { (node)->next_off = FALSE; } STMT_END 789 #define TEST_SSC_EOS(node) cBOOL((node)->next_off) 790 791 /* Can match anything (initialization) */ 792 STATIC void 793 S_cl_anything(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl) 794 { 795 PERL_ARGS_ASSERT_CL_ANYTHING; 796 797 ANYOF_BITMAP_SETALL(cl); 798 cl->flags = ANYOF_UNICODE_ALL; 799 SET_SSC_EOS(cl); 800 801 /* If any portion of the regex is to operate under locale rules, 802 * initialization includes it. The reason this isn't done for all regexes 803 * is that the optimizer was written under the assumption that locale was 804 * all-or-nothing. Given the complexity and lack of documentation in the 805 * optimizer, and that there are inadequate test cases for locale, so many 806 * parts of it may not work properly, it is safest to avoid locale unless 807 * necessary. */ 808 if (RExC_contains_locale) { 809 ANYOF_CLASS_SETALL(cl); /* /l uses class */ 810 cl->flags |= ANYOF_LOCALE|ANYOF_CLASS|ANYOF_LOC_FOLD; 811 } 812 else { 813 ANYOF_CLASS_ZERO(cl); /* Only /l uses class now */ 814 } 815 } 816 817 /* Can match anything (initialization) */ 818 STATIC int 819 S_cl_is_anything(const struct regnode_charclass_class *cl) 820 { 821 int value; 822 823 PERL_ARGS_ASSERT_CL_IS_ANYTHING; 824 825 for (value = 0; value < ANYOF_MAX; value += 2) 826 if (ANYOF_CLASS_TEST(cl, value) && ANYOF_CLASS_TEST(cl, value + 1)) 827 return 1; 828 if (!(cl->flags & ANYOF_UNICODE_ALL)) 829 return 0; 830 if (!ANYOF_BITMAP_TESTALLSET((const void*)cl)) 831 return 0; 832 return 1; 833 } 834 835 /* Can match anything (initialization) */ 836 STATIC void 837 S_cl_init(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl) 838 { 839 PERL_ARGS_ASSERT_CL_INIT; 840 841 Zero(cl, 1, struct regnode_charclass_class); 842 cl->type = ANYOF; 843 cl_anything(pRExC_state, cl); 844 ARG_SET(cl, ANYOF_NONBITMAP_EMPTY); 845 } 846 847 /* These two functions currently do the exact same thing */ 848 #define cl_init_zero S_cl_init 849 850 /* 'AND' a given class with another one. Can create false positives. 'cl' 851 * should not be inverted. 'and_with->flags & ANYOF_CLASS' should be 0 if 852 * 'and_with' is a regnode_charclass instead of a regnode_charclass_class. */ 853 STATIC void 854 S_cl_and(struct regnode_charclass_class *cl, 855 const struct regnode_charclass_class *and_with) 856 { 857 PERL_ARGS_ASSERT_CL_AND; 858 859 assert(PL_regkind[and_with->type] == ANYOF); 860 861 /* I (khw) am not sure all these restrictions are necessary XXX */ 862 if (!(ANYOF_CLASS_TEST_ANY_SET(and_with)) 863 && !(ANYOF_CLASS_TEST_ANY_SET(cl)) 864 && (and_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE) 865 && !(and_with->flags & ANYOF_LOC_FOLD) 866 && !(cl->flags & ANYOF_LOC_FOLD)) { 867 int i; 868 869 if (and_with->flags & ANYOF_INVERT) 870 for (i = 0; i < ANYOF_BITMAP_SIZE; i++) 871 cl->bitmap[i] &= ~and_with->bitmap[i]; 872 else 873 for (i = 0; i < ANYOF_BITMAP_SIZE; i++) 874 cl->bitmap[i] &= and_with->bitmap[i]; 875 } /* XXXX: logic is complicated otherwise, leave it along for a moment. */ 876 877 if (and_with->flags & ANYOF_INVERT) { 878 879 /* Here, the and'ed node is inverted. Get the AND of the flags that 880 * aren't affected by the inversion. Those that are affected are 881 * handled individually below */ 882 U8 affected_flags = cl->flags & ~INVERSION_UNAFFECTED_FLAGS; 883 cl->flags &= (and_with->flags & INVERSION_UNAFFECTED_FLAGS); 884 cl->flags |= affected_flags; 885 886 /* We currently don't know how to deal with things that aren't in the 887 * bitmap, but we know that the intersection is no greater than what 888 * is already in cl, so let there be false positives that get sorted 889 * out after the synthetic start class succeeds, and the node is 890 * matched for real. */ 891 892 /* The inversion of these two flags indicate that the resulting 893 * intersection doesn't have them */ 894 if (and_with->flags & ANYOF_UNICODE_ALL) { 895 cl->flags &= ~ANYOF_UNICODE_ALL; 896 } 897 if (and_with->flags & ANYOF_NON_UTF8_LATIN1_ALL) { 898 cl->flags &= ~ANYOF_NON_UTF8_LATIN1_ALL; 899 } 900 } 901 else { /* and'd node is not inverted */ 902 U8 outside_bitmap_but_not_utf8; /* Temp variable */ 903 904 if (! ANYOF_NONBITMAP(and_with)) { 905 906 /* Here 'and_with' doesn't match anything outside the bitmap 907 * (except possibly ANYOF_UNICODE_ALL), which means the 908 * intersection can't either, except for ANYOF_UNICODE_ALL, in 909 * which case we don't know what the intersection is, but it's no 910 * greater than what cl already has, so can just leave it alone, 911 * with possible false positives */ 912 if (! (and_with->flags & ANYOF_UNICODE_ALL)) { 913 ARG_SET(cl, ANYOF_NONBITMAP_EMPTY); 914 cl->flags &= ~ANYOF_NONBITMAP_NON_UTF8; 915 } 916 } 917 else if (! ANYOF_NONBITMAP(cl)) { 918 919 /* Here, 'and_with' does match something outside the bitmap, and cl 920 * doesn't have a list of things to match outside the bitmap. If 921 * cl can match all code points above 255, the intersection will 922 * be those above-255 code points that 'and_with' matches. If cl 923 * can't match all Unicode code points, it means that it can't 924 * match anything outside the bitmap (since the 'if' that got us 925 * into this block tested for that), so we leave the bitmap empty. 926 */ 927 if (cl->flags & ANYOF_UNICODE_ALL) { 928 ARG_SET(cl, ARG(and_with)); 929 930 /* and_with's ARG may match things that don't require UTF8. 931 * And now cl's will too, in spite of this being an 'and'. See 932 * the comments below about the kludge */ 933 cl->flags |= and_with->flags & ANYOF_NONBITMAP_NON_UTF8; 934 } 935 } 936 else { 937 /* Here, both 'and_with' and cl match something outside the 938 * bitmap. Currently we do not do the intersection, so just match 939 * whatever cl had at the beginning. */ 940 } 941 942 943 /* Take the intersection of the two sets of flags. However, the 944 * ANYOF_NONBITMAP_NON_UTF8 flag is treated as an 'or'. This is a 945 * kludge around the fact that this flag is not treated like the others 946 * which are initialized in cl_anything(). The way the optimizer works 947 * is that the synthetic start class (SSC) is initialized to match 948 * anything, and then the first time a real node is encountered, its 949 * values are AND'd with the SSC's with the result being the values of 950 * the real node. However, there are paths through the optimizer where 951 * the AND never gets called, so those initialized bits are set 952 * inappropriately, which is not usually a big deal, as they just cause 953 * false positives in the SSC, which will just mean a probably 954 * imperceptible slow down in execution. However this bit has a 955 * higher false positive consequence in that it can cause utf8.pm, 956 * utf8_heavy.pl ... to be loaded when not necessary, which is a much 957 * bigger slowdown and also causes significant extra memory to be used. 958 * In order to prevent this, the code now takes a different tack. The 959 * bit isn't set unless some part of the regular expression needs it, 960 * but once set it won't get cleared. This means that these extra 961 * modules won't get loaded unless there was some path through the 962 * pattern that would have required them anyway, and so any false 963 * positives that occur by not ANDing them out when they could be 964 * aren't as severe as they would be if we treated this bit like all 965 * the others */ 966 outside_bitmap_but_not_utf8 = (cl->flags | and_with->flags) 967 & ANYOF_NONBITMAP_NON_UTF8; 968 cl->flags &= and_with->flags; 969 cl->flags |= outside_bitmap_but_not_utf8; 970 } 971 } 972 973 /* 'OR' a given class with another one. Can create false positives. 'cl' 974 * should not be inverted. 'or_with->flags & ANYOF_CLASS' should be 0 if 975 * 'or_with' is a regnode_charclass instead of a regnode_charclass_class. */ 976 STATIC void 977 S_cl_or(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl, const struct regnode_charclass_class *or_with) 978 { 979 PERL_ARGS_ASSERT_CL_OR; 980 981 if (or_with->flags & ANYOF_INVERT) { 982 983 /* Here, the or'd node is to be inverted. This means we take the 984 * complement of everything not in the bitmap, but currently we don't 985 * know what that is, so give up and match anything */ 986 if (ANYOF_NONBITMAP(or_with)) { 987 cl_anything(pRExC_state, cl); 988 } 989 /* We do not use 990 * (B1 | CL1) | (!B2 & !CL2) = (B1 | !B2 & !CL2) | (CL1 | (!B2 & !CL2)) 991 * <= (B1 | !B2) | (CL1 | !CL2) 992 * which is wasteful if CL2 is small, but we ignore CL2: 993 * (B1 | CL1) | (!B2 & !CL2) <= (B1 | CL1) | !B2 = (B1 | !B2) | CL1 994 * XXXX Can we handle case-fold? Unclear: 995 * (OK1(i) | OK1(i')) | !(OK1(i) | OK1(i')) = 996 * (OK1(i) | OK1(i')) | (!OK1(i) & !OK1(i')) 997 */ 998 else if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE) 999 && !(or_with->flags & ANYOF_LOC_FOLD) 1000 && !(cl->flags & ANYOF_LOC_FOLD) ) { 1001 int i; 1002 1003 for (i = 0; i < ANYOF_BITMAP_SIZE; i++) 1004 cl->bitmap[i] |= ~or_with->bitmap[i]; 1005 } /* XXXX: logic is complicated otherwise */ 1006 else { 1007 cl_anything(pRExC_state, cl); 1008 } 1009 1010 /* And, we can just take the union of the flags that aren't affected 1011 * by the inversion */ 1012 cl->flags |= or_with->flags & INVERSION_UNAFFECTED_FLAGS; 1013 1014 /* For the remaining flags: 1015 ANYOF_UNICODE_ALL and inverted means to not match anything above 1016 255, which means that the union with cl should just be 1017 what cl has in it, so can ignore this flag 1018 ANYOF_NON_UTF8_LATIN1_ALL and inverted means if not utf8 and ord 1019 is 127-255 to match them, but then invert that, so the 1020 union with cl should just be what cl has in it, so can 1021 ignore this flag 1022 */ 1023 } else { /* 'or_with' is not inverted */ 1024 /* (B1 | CL1) | (B2 | CL2) = (B1 | B2) | (CL1 | CL2)) */ 1025 if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE) 1026 && (!(or_with->flags & ANYOF_LOC_FOLD) 1027 || (cl->flags & ANYOF_LOC_FOLD)) ) { 1028 int i; 1029 1030 /* OR char bitmap and class bitmap separately */ 1031 for (i = 0; i < ANYOF_BITMAP_SIZE; i++) 1032 cl->bitmap[i] |= or_with->bitmap[i]; 1033 if (or_with->flags & ANYOF_CLASS) { 1034 ANYOF_CLASS_OR(or_with, cl); 1035 } 1036 } 1037 else { /* XXXX: logic is complicated, leave it along for a moment. */ 1038 cl_anything(pRExC_state, cl); 1039 } 1040 1041 if (ANYOF_NONBITMAP(or_with)) { 1042 1043 /* Use the added node's outside-the-bit-map match if there isn't a 1044 * conflict. If there is a conflict (both nodes match something 1045 * outside the bitmap, but what they match outside is not the same 1046 * pointer, and hence not easily compared until XXX we extend 1047 * inversion lists this far), give up and allow the start class to 1048 * match everything outside the bitmap. If that stuff is all above 1049 * 255, can just set UNICODE_ALL, otherwise caould be anything. */ 1050 if (! ANYOF_NONBITMAP(cl)) { 1051 ARG_SET(cl, ARG(or_with)); 1052 } 1053 else if (ARG(cl) != ARG(or_with)) { 1054 1055 if ((or_with->flags & ANYOF_NONBITMAP_NON_UTF8)) { 1056 cl_anything(pRExC_state, cl); 1057 } 1058 else { 1059 cl->flags |= ANYOF_UNICODE_ALL; 1060 } 1061 } 1062 } 1063 1064 /* Take the union */ 1065 cl->flags |= or_with->flags; 1066 } 1067 } 1068 1069 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ] 1070 #define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid ) 1071 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate ) 1072 #define TRIE_LIST_USED(idx) ( trie->states[state].trans.list ? (TRIE_LIST_CUR( idx ) - 1) : 0 ) 1073 1074 1075 #ifdef DEBUGGING 1076 /* 1077 dump_trie(trie,widecharmap,revcharmap) 1078 dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc) 1079 dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc) 1080 1081 These routines dump out a trie in a somewhat readable format. 1082 The _interim_ variants are used for debugging the interim 1083 tables that are used to generate the final compressed 1084 representation which is what dump_trie expects. 1085 1086 Part of the reason for their existence is to provide a form 1087 of documentation as to how the different representations function. 1088 1089 */ 1090 1091 /* 1092 Dumps the final compressed table form of the trie to Perl_debug_log. 1093 Used for debugging make_trie(). 1094 */ 1095 1096 STATIC void 1097 S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap, 1098 AV *revcharmap, U32 depth) 1099 { 1100 U32 state; 1101 SV *sv=sv_newmortal(); 1102 int colwidth= widecharmap ? 6 : 4; 1103 U16 word; 1104 GET_RE_DEBUG_FLAGS_DECL; 1105 1106 PERL_ARGS_ASSERT_DUMP_TRIE; 1107 1108 PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ", 1109 (int)depth * 2 + 2,"", 1110 "Match","Base","Ofs" ); 1111 1112 for( state = 0 ; state < trie->uniquecharcount ; state++ ) { 1113 SV ** const tmp = av_fetch( revcharmap, state, 0); 1114 if ( tmp ) { 1115 PerlIO_printf( Perl_debug_log, "%*s", 1116 colwidth, 1117 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth, 1118 PL_colors[0], PL_colors[1], 1119 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) | 1120 PERL_PV_ESCAPE_FIRSTCHAR 1121 ) 1122 ); 1123 } 1124 } 1125 PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------", 1126 (int)depth * 2 + 2,""); 1127 1128 for( state = 0 ; state < trie->uniquecharcount ; state++ ) 1129 PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------"); 1130 PerlIO_printf( Perl_debug_log, "\n"); 1131 1132 for( state = 1 ; state < trie->statecount ; state++ ) { 1133 const U32 base = trie->states[ state ].trans.base; 1134 1135 PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|", (int)depth * 2 + 2,"", (UV)state); 1136 1137 if ( trie->states[ state ].wordnum ) { 1138 PerlIO_printf( Perl_debug_log, " W%4X", trie->states[ state ].wordnum ); 1139 } else { 1140 PerlIO_printf( Perl_debug_log, "%6s", "" ); 1141 } 1142 1143 PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base ); 1144 1145 if ( base ) { 1146 U32 ofs = 0; 1147 1148 while( ( base + ofs < trie->uniquecharcount ) || 1149 ( base + ofs - trie->uniquecharcount < trie->lasttrans 1150 && trie->trans[ base + ofs - trie->uniquecharcount ].check != state)) 1151 ofs++; 1152 1153 PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs); 1154 1155 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) { 1156 if ( ( base + ofs >= trie->uniquecharcount ) && 1157 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) && 1158 trie->trans[ base + ofs - trie->uniquecharcount ].check == state ) 1159 { 1160 PerlIO_printf( Perl_debug_log, "%*"UVXf, 1161 colwidth, 1162 (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next ); 1163 } else { 1164 PerlIO_printf( Perl_debug_log, "%*s",colwidth," ." ); 1165 } 1166 } 1167 1168 PerlIO_printf( Perl_debug_log, "]"); 1169 1170 } 1171 PerlIO_printf( Perl_debug_log, "\n" ); 1172 } 1173 PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=", (int)depth*2, ""); 1174 for (word=1; word <= trie->wordcount; word++) { 1175 PerlIO_printf(Perl_debug_log, " %d:(%d,%d)", 1176 (int)word, (int)(trie->wordinfo[word].prev), 1177 (int)(trie->wordinfo[word].len)); 1178 } 1179 PerlIO_printf(Perl_debug_log, "\n" ); 1180 } 1181 /* 1182 Dumps a fully constructed but uncompressed trie in list form. 1183 List tries normally only are used for construction when the number of 1184 possible chars (trie->uniquecharcount) is very high. 1185 Used for debugging make_trie(). 1186 */ 1187 STATIC void 1188 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie, 1189 HV *widecharmap, AV *revcharmap, U32 next_alloc, 1190 U32 depth) 1191 { 1192 U32 state; 1193 SV *sv=sv_newmortal(); 1194 int colwidth= widecharmap ? 6 : 4; 1195 GET_RE_DEBUG_FLAGS_DECL; 1196 1197 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST; 1198 1199 /* print out the table precompression. */ 1200 PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s", 1201 (int)depth * 2 + 2,"", (int)depth * 2 + 2,"", 1202 "------:-----+-----------------\n" ); 1203 1204 for( state=1 ; state < next_alloc ; state ++ ) { 1205 U16 charid; 1206 1207 PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :", 1208 (int)depth * 2 + 2,"", (UV)state ); 1209 if ( ! trie->states[ state ].wordnum ) { 1210 PerlIO_printf( Perl_debug_log, "%5s| ",""); 1211 } else { 1212 PerlIO_printf( Perl_debug_log, "W%4x| ", 1213 trie->states[ state ].wordnum 1214 ); 1215 } 1216 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) { 1217 SV ** const tmp = av_fetch( revcharmap, TRIE_LIST_ITEM(state,charid).forid, 0); 1218 if ( tmp ) { 1219 PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ", 1220 colwidth, 1221 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth, 1222 PL_colors[0], PL_colors[1], 1223 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) | 1224 PERL_PV_ESCAPE_FIRSTCHAR 1225 ) , 1226 TRIE_LIST_ITEM(state,charid).forid, 1227 (UV)TRIE_LIST_ITEM(state,charid).newstate 1228 ); 1229 if (!(charid % 10)) 1230 PerlIO_printf(Perl_debug_log, "\n%*s| ", 1231 (int)((depth * 2) + 14), ""); 1232 } 1233 } 1234 PerlIO_printf( Perl_debug_log, "\n"); 1235 } 1236 } 1237 1238 /* 1239 Dumps a fully constructed but uncompressed trie in table form. 1240 This is the normal DFA style state transition table, with a few 1241 twists to facilitate compression later. 1242 Used for debugging make_trie(). 1243 */ 1244 STATIC void 1245 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie, 1246 HV *widecharmap, AV *revcharmap, U32 next_alloc, 1247 U32 depth) 1248 { 1249 U32 state; 1250 U16 charid; 1251 SV *sv=sv_newmortal(); 1252 int colwidth= widecharmap ? 6 : 4; 1253 GET_RE_DEBUG_FLAGS_DECL; 1254 1255 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE; 1256 1257 /* 1258 print out the table precompression so that we can do a visual check 1259 that they are identical. 1260 */ 1261 1262 PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" ); 1263 1264 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) { 1265 SV ** const tmp = av_fetch( revcharmap, charid, 0); 1266 if ( tmp ) { 1267 PerlIO_printf( Perl_debug_log, "%*s", 1268 colwidth, 1269 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth, 1270 PL_colors[0], PL_colors[1], 1271 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) | 1272 PERL_PV_ESCAPE_FIRSTCHAR 1273 ) 1274 ); 1275 } 1276 } 1277 1278 PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" ); 1279 1280 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) { 1281 PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------"); 1282 } 1283 1284 PerlIO_printf( Perl_debug_log, "\n" ); 1285 1286 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) { 1287 1288 PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ", 1289 (int)depth * 2 + 2,"", 1290 (UV)TRIE_NODENUM( state ) ); 1291 1292 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) { 1293 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next ); 1294 if (v) 1295 PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v ); 1296 else 1297 PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." ); 1298 } 1299 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) { 1300 PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n", (UV)trie->trans[ state ].check ); 1301 } else { 1302 PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n", (UV)trie->trans[ state ].check, 1303 trie->states[ TRIE_NODENUM( state ) ].wordnum ); 1304 } 1305 } 1306 } 1307 1308 #endif 1309 1310 1311 /* make_trie(startbranch,first,last,tail,word_count,flags,depth) 1312 startbranch: the first branch in the whole branch sequence 1313 first : start branch of sequence of branch-exact nodes. 1314 May be the same as startbranch 1315 last : Thing following the last branch. 1316 May be the same as tail. 1317 tail : item following the branch sequence 1318 count : words in the sequence 1319 flags : currently the OP() type we will be building one of /EXACT(|F|Fl)/ 1320 depth : indent depth 1321 1322 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node. 1323 1324 A trie is an N'ary tree where the branches are determined by digital 1325 decomposition of the key. IE, at the root node you look up the 1st character and 1326 follow that branch repeat until you find the end of the branches. Nodes can be 1327 marked as "accepting" meaning they represent a complete word. Eg: 1328 1329 /he|she|his|hers/ 1330 1331 would convert into the following structure. Numbers represent states, letters 1332 following numbers represent valid transitions on the letter from that state, if 1333 the number is in square brackets it represents an accepting state, otherwise it 1334 will be in parenthesis. 1335 1336 +-h->+-e->[3]-+-r->(8)-+-s->[9] 1337 | | 1338 | (2) 1339 | | 1340 (1) +-i->(6)-+-s->[7] 1341 | 1342 +-s->(3)-+-h->(4)-+-e->[5] 1343 1344 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers) 1345 1346 This shows that when matching against the string 'hers' we will begin at state 1 1347 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting, 1348 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which 1349 is also accepting. Thus we know that we can match both 'he' and 'hers' with a 1350 single traverse. We store a mapping from accepting to state to which word was 1351 matched, and then when we have multiple possibilities we try to complete the 1352 rest of the regex in the order in which they occured in the alternation. 1353 1354 The only prior NFA like behaviour that would be changed by the TRIE support is 1355 the silent ignoring of duplicate alternations which are of the form: 1356 1357 / (DUPE|DUPE) X? (?{ ... }) Y /x 1358 1359 Thus EVAL blocks following a trie may be called a different number of times with 1360 and without the optimisation. With the optimisations dupes will be silently 1361 ignored. This inconsistent behaviour of EVAL type nodes is well established as 1362 the following demonstrates: 1363 1364 'words'=~/(word|word|word)(?{ print $1 })[xyz]/ 1365 1366 which prints out 'word' three times, but 1367 1368 'words'=~/(word|word|word)(?{ print $1 })S/ 1369 1370 which doesnt print it out at all. This is due to other optimisations kicking in. 1371 1372 Example of what happens on a structural level: 1373 1374 The regexp /(ac|ad|ab)+/ will produce the following debug output: 1375 1376 1: CURLYM[1] {1,32767}(18) 1377 5: BRANCH(8) 1378 6: EXACT <ac>(16) 1379 8: BRANCH(11) 1380 9: EXACT <ad>(16) 1381 11: BRANCH(14) 1382 12: EXACT <ab>(16) 1383 16: SUCCEED(0) 1384 17: NOTHING(18) 1385 18: END(0) 1386 1387 This would be optimizable with startbranch=5, first=5, last=16, tail=16 1388 and should turn into: 1389 1390 1: CURLYM[1] {1,32767}(18) 1391 5: TRIE(16) 1392 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1] 1393 <ac> 1394 <ad> 1395 <ab> 1396 16: SUCCEED(0) 1397 17: NOTHING(18) 1398 18: END(0) 1399 1400 Cases where tail != last would be like /(?foo|bar)baz/: 1401 1402 1: BRANCH(4) 1403 2: EXACT <foo>(8) 1404 4: BRANCH(7) 1405 5: EXACT <bar>(8) 1406 7: TAIL(8) 1407 8: EXACT <baz>(10) 1408 10: END(0) 1409 1410 which would be optimizable with startbranch=1, first=1, last=7, tail=8 1411 and would end up looking like: 1412 1413 1: TRIE(8) 1414 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1] 1415 <foo> 1416 <bar> 1417 7: TAIL(8) 1418 8: EXACT <baz>(10) 1419 10: END(0) 1420 1421 d = uvuni_to_utf8_flags(d, uv, 0); 1422 1423 is the recommended Unicode-aware way of saying 1424 1425 *(d++) = uv; 1426 */ 1427 1428 #define TRIE_STORE_REVCHAR(val) \ 1429 STMT_START { \ 1430 if (UTF) { \ 1431 SV *zlopp = newSV(7); /* XXX: optimize me */ \ 1432 unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \ 1433 unsigned const char *const kapow = uvuni_to_utf8(flrbbbbb, val); \ 1434 SvCUR_set(zlopp, kapow - flrbbbbb); \ 1435 SvPOK_on(zlopp); \ 1436 SvUTF8_on(zlopp); \ 1437 av_push(revcharmap, zlopp); \ 1438 } else { \ 1439 char ooooff = (char)val; \ 1440 av_push(revcharmap, newSVpvn(&ooooff, 1)); \ 1441 } \ 1442 } STMT_END 1443 1444 #define TRIE_READ_CHAR STMT_START { \ 1445 wordlen++; \ 1446 if ( UTF ) { \ 1447 /* if it is UTF then it is either already folded, or does not need folding */ \ 1448 uvc = utf8n_to_uvuni( (const U8*) uc, UTF8_MAXLEN, &len, uniflags); \ 1449 } \ 1450 else if (folder == PL_fold_latin1) { \ 1451 /* if we use this folder we have to obey unicode rules on latin-1 data */ \ 1452 if ( foldlen > 0 ) { \ 1453 uvc = utf8n_to_uvuni( (const U8*) scan, UTF8_MAXLEN, &len, uniflags ); \ 1454 foldlen -= len; \ 1455 scan += len; \ 1456 len = 0; \ 1457 } else { \ 1458 len = 1; \ 1459 uvc = _to_fold_latin1( (U8) *uc, foldbuf, &foldlen, 1); \ 1460 skiplen = UNISKIP(uvc); \ 1461 foldlen -= skiplen; \ 1462 scan = foldbuf + skiplen; \ 1463 } \ 1464 } else { \ 1465 /* raw data, will be folded later if needed */ \ 1466 uvc = (U32)*uc; \ 1467 len = 1; \ 1468 } \ 1469 } STMT_END 1470 1471 1472 1473 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \ 1474 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \ 1475 U32 ging = TRIE_LIST_LEN( state ) *= 2; \ 1476 Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \ 1477 } \ 1478 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \ 1479 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \ 1480 TRIE_LIST_CUR( state )++; \ 1481 } STMT_END 1482 1483 #define TRIE_LIST_NEW(state) STMT_START { \ 1484 Newxz( trie->states[ state ].trans.list, \ 1485 4, reg_trie_trans_le ); \ 1486 TRIE_LIST_CUR( state ) = 1; \ 1487 TRIE_LIST_LEN( state ) = 4; \ 1488 } STMT_END 1489 1490 #define TRIE_HANDLE_WORD(state) STMT_START { \ 1491 U16 dupe= trie->states[ state ].wordnum; \ 1492 regnode * const noper_next = regnext( noper ); \ 1493 \ 1494 DEBUG_r({ \ 1495 /* store the word for dumping */ \ 1496 SV* tmp; \ 1497 if (OP(noper) != NOTHING) \ 1498 tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \ 1499 else \ 1500 tmp = newSVpvn_utf8( "", 0, UTF ); \ 1501 av_push( trie_words, tmp ); \ 1502 }); \ 1503 \ 1504 curword++; \ 1505 trie->wordinfo[curword].prev = 0; \ 1506 trie->wordinfo[curword].len = wordlen; \ 1507 trie->wordinfo[curword].accept = state; \ 1508 \ 1509 if ( noper_next < tail ) { \ 1510 if (!trie->jump) \ 1511 trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, sizeof(U16) ); \ 1512 trie->jump[curword] = (U16)(noper_next - convert); \ 1513 if (!jumper) \ 1514 jumper = noper_next; \ 1515 if (!nextbranch) \ 1516 nextbranch= regnext(cur); \ 1517 } \ 1518 \ 1519 if ( dupe ) { \ 1520 /* It's a dupe. Pre-insert into the wordinfo[].prev */\ 1521 /* chain, so that when the bits of chain are later */\ 1522 /* linked together, the dups appear in the chain */\ 1523 trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \ 1524 trie->wordinfo[dupe].prev = curword; \ 1525 } else { \ 1526 /* we haven't inserted this word yet. */ \ 1527 trie->states[ state ].wordnum = curword; \ 1528 } \ 1529 } STMT_END 1530 1531 1532 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \ 1533 ( ( base + charid >= ucharcount \ 1534 && base + charid < ubound \ 1535 && state == trie->trans[ base - ucharcount + charid ].check \ 1536 && trie->trans[ base - ucharcount + charid ].next ) \ 1537 ? trie->trans[ base - ucharcount + charid ].next \ 1538 : ( state==1 ? special : 0 ) \ 1539 ) 1540 1541 #define MADE_TRIE 1 1542 #define MADE_JUMP_TRIE 2 1543 #define MADE_EXACT_TRIE 4 1544 1545 STATIC I32 1546 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch, regnode *first, regnode *last, regnode *tail, U32 word_count, U32 flags, U32 depth) 1547 { 1548 dVAR; 1549 /* first pass, loop through and scan words */ 1550 reg_trie_data *trie; 1551 HV *widecharmap = NULL; 1552 AV *revcharmap = newAV(); 1553 regnode *cur; 1554 const U32 uniflags = UTF8_ALLOW_DEFAULT; 1555 STRLEN len = 0; 1556 UV uvc = 0; 1557 U16 curword = 0; 1558 U32 next_alloc = 0; 1559 regnode *jumper = NULL; 1560 regnode *nextbranch = NULL; 1561 regnode *convert = NULL; 1562 U32 *prev_states; /* temp array mapping each state to previous one */ 1563 /* we just use folder as a flag in utf8 */ 1564 const U8 * folder = NULL; 1565 1566 #ifdef DEBUGGING 1567 const U32 data_slot = add_data( pRExC_state, 4, "tuuu" ); 1568 AV *trie_words = NULL; 1569 /* along with revcharmap, this only used during construction but both are 1570 * useful during debugging so we store them in the struct when debugging. 1571 */ 1572 #else 1573 const U32 data_slot = add_data( pRExC_state, 2, "tu" ); 1574 STRLEN trie_charcount=0; 1575 #endif 1576 SV *re_trie_maxbuff; 1577 GET_RE_DEBUG_FLAGS_DECL; 1578 1579 PERL_ARGS_ASSERT_MAKE_TRIE; 1580 #ifndef DEBUGGING 1581 PERL_UNUSED_ARG(depth); 1582 #endif 1583 1584 switch (flags) { 1585 case EXACT: break; 1586 case EXACTFA: 1587 case EXACTFU_SS: 1588 case EXACTFU_TRICKYFOLD: 1589 case EXACTFU: folder = PL_fold_latin1; break; 1590 case EXACTF: folder = PL_fold; break; 1591 case EXACTFL: folder = PL_fold_locale; break; 1592 default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] ); 1593 } 1594 1595 trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) ); 1596 trie->refcount = 1; 1597 trie->startstate = 1; 1598 trie->wordcount = word_count; 1599 RExC_rxi->data->data[ data_slot ] = (void*)trie; 1600 trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) ); 1601 if (flags == EXACT) 1602 trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 ); 1603 trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc( 1604 trie->wordcount+1, sizeof(reg_trie_wordinfo)); 1605 1606 DEBUG_r({ 1607 trie_words = newAV(); 1608 }); 1609 1610 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1); 1611 if (!SvIOK(re_trie_maxbuff)) { 1612 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT); 1613 } 1614 DEBUG_TRIE_COMPILE_r({ 1615 PerlIO_printf( Perl_debug_log, 1616 "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n", 1617 (int)depth * 2 + 2, "", 1618 REG_NODE_NUM(startbranch),REG_NODE_NUM(first), 1619 REG_NODE_NUM(last), REG_NODE_NUM(tail), 1620 (int)depth); 1621 }); 1622 1623 /* Find the node we are going to overwrite */ 1624 if ( first == startbranch && OP( last ) != BRANCH ) { 1625 /* whole branch chain */ 1626 convert = first; 1627 } else { 1628 /* branch sub-chain */ 1629 convert = NEXTOPER( first ); 1630 } 1631 1632 /* -- First loop and Setup -- 1633 1634 We first traverse the branches and scan each word to determine if it 1635 contains widechars, and how many unique chars there are, this is 1636 important as we have to build a table with at least as many columns as we 1637 have unique chars. 1638 1639 We use an array of integers to represent the character codes 0..255 1640 (trie->charmap) and we use a an HV* to store Unicode characters. We use the 1641 native representation of the character value as the key and IV's for the 1642 coded index. 1643 1644 *TODO* If we keep track of how many times each character is used we can 1645 remap the columns so that the table compression later on is more 1646 efficient in terms of memory by ensuring the most common value is in the 1647 middle and the least common are on the outside. IMO this would be better 1648 than a most to least common mapping as theres a decent chance the most 1649 common letter will share a node with the least common, meaning the node 1650 will not be compressible. With a middle is most common approach the worst 1651 case is when we have the least common nodes twice. 1652 1653 */ 1654 1655 for ( cur = first ; cur < last ; cur = regnext( cur ) ) { 1656 regnode *noper = NEXTOPER( cur ); 1657 const U8 *uc = (U8*)STRING( noper ); 1658 const U8 *e = uc + STR_LEN( noper ); 1659 STRLEN foldlen = 0; 1660 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ]; 1661 STRLEN skiplen = 0; 1662 const U8 *scan = (U8*)NULL; 1663 U32 wordlen = 0; /* required init */ 1664 STRLEN chars = 0; 1665 bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the bitmap?*/ 1666 1667 if (OP(noper) == NOTHING) { 1668 regnode *noper_next= regnext(noper); 1669 if (noper_next != tail && OP(noper_next) == flags) { 1670 noper = noper_next; 1671 uc= (U8*)STRING(noper); 1672 e= uc + STR_LEN(noper); 1673 trie->minlen= STR_LEN(noper); 1674 } else { 1675 trie->minlen= 0; 1676 continue; 1677 } 1678 } 1679 1680 if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */ 1681 TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte 1682 regardless of encoding */ 1683 if (OP( noper ) == EXACTFU_SS) { 1684 /* false positives are ok, so just set this */ 1685 TRIE_BITMAP_SET(trie,0xDF); 1686 } 1687 } 1688 for ( ; uc < e ; uc += len ) { 1689 TRIE_CHARCOUNT(trie)++; 1690 TRIE_READ_CHAR; 1691 chars++; 1692 if ( uvc < 256 ) { 1693 if ( folder ) { 1694 U8 folded= folder[ (U8) uvc ]; 1695 if ( !trie->charmap[ folded ] ) { 1696 trie->charmap[ folded ]=( ++trie->uniquecharcount ); 1697 TRIE_STORE_REVCHAR( folded ); 1698 } 1699 } 1700 if ( !trie->charmap[ uvc ] ) { 1701 trie->charmap[ uvc ]=( ++trie->uniquecharcount ); 1702 TRIE_STORE_REVCHAR( uvc ); 1703 } 1704 if ( set_bit ) { 1705 /* store the codepoint in the bitmap, and its folded 1706 * equivalent. */ 1707 TRIE_BITMAP_SET(trie, uvc); 1708 1709 /* store the folded codepoint */ 1710 if ( folder ) TRIE_BITMAP_SET(trie, folder[(U8) uvc ]); 1711 1712 if ( !UTF ) { 1713 /* store first byte of utf8 representation of 1714 variant codepoints */ 1715 if (! UNI_IS_INVARIANT(uvc)) { 1716 TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc)); 1717 } 1718 } 1719 set_bit = 0; /* We've done our bit :-) */ 1720 } 1721 } else { 1722 SV** svpp; 1723 if ( !widecharmap ) 1724 widecharmap = newHV(); 1725 1726 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 ); 1727 1728 if ( !svpp ) 1729 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc ); 1730 1731 if ( !SvTRUE( *svpp ) ) { 1732 sv_setiv( *svpp, ++trie->uniquecharcount ); 1733 TRIE_STORE_REVCHAR(uvc); 1734 } 1735 } 1736 } 1737 if( cur == first ) { 1738 trie->minlen = chars; 1739 trie->maxlen = chars; 1740 } else if (chars < trie->minlen) { 1741 trie->minlen = chars; 1742 } else if (chars > trie->maxlen) { 1743 trie->maxlen = chars; 1744 } 1745 if (OP( noper ) == EXACTFU_SS) { 1746 /* XXX: workaround - 'ss' could match "\x{DF}" so minlen could be 1 and not 2*/ 1747 if (trie->minlen > 1) 1748 trie->minlen= 1; 1749 } 1750 if (OP( noper ) == EXACTFU_TRICKYFOLD) { 1751 /* XXX: workround - things like "\x{1FBE}\x{0308}\x{0301}" can match "\x{0390}" 1752 * - We assume that any such sequence might match a 2 byte string */ 1753 if (trie->minlen > 2 ) 1754 trie->minlen= 2; 1755 } 1756 1757 } /* end first pass */ 1758 DEBUG_TRIE_COMPILE_r( 1759 PerlIO_printf( Perl_debug_log, "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n", 1760 (int)depth * 2 + 2,"", 1761 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count, 1762 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount, 1763 (int)trie->minlen, (int)trie->maxlen ) 1764 ); 1765 1766 /* 1767 We now know what we are dealing with in terms of unique chars and 1768 string sizes so we can calculate how much memory a naive 1769 representation using a flat table will take. If it's over a reasonable 1770 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory 1771 conservative but potentially much slower representation using an array 1772 of lists. 1773 1774 At the end we convert both representations into the same compressed 1775 form that will be used in regexec.c for matching with. The latter 1776 is a form that cannot be used to construct with but has memory 1777 properties similar to the list form and access properties similar 1778 to the table form making it both suitable for fast searches and 1779 small enough that its feasable to store for the duration of a program. 1780 1781 See the comment in the code where the compressed table is produced 1782 inplace from the flat tabe representation for an explanation of how 1783 the compression works. 1784 1785 */ 1786 1787 1788 Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32); 1789 prev_states[1] = 0; 1790 1791 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1) > SvIV(re_trie_maxbuff) ) { 1792 /* 1793 Second Pass -- Array Of Lists Representation 1794 1795 Each state will be represented by a list of charid:state records 1796 (reg_trie_trans_le) the first such element holds the CUR and LEN 1797 points of the allocated array. (See defines above). 1798 1799 We build the initial structure using the lists, and then convert 1800 it into the compressed table form which allows faster lookups 1801 (but cant be modified once converted). 1802 */ 1803 1804 STRLEN transcount = 1; 1805 1806 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log, 1807 "%*sCompiling trie using list compiler\n", 1808 (int)depth * 2 + 2, "")); 1809 1810 trie->states = (reg_trie_state *) 1811 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2, 1812 sizeof(reg_trie_state) ); 1813 TRIE_LIST_NEW(1); 1814 next_alloc = 2; 1815 1816 for ( cur = first ; cur < last ; cur = regnext( cur ) ) { 1817 1818 regnode *noper = NEXTOPER( cur ); 1819 U8 *uc = (U8*)STRING( noper ); 1820 const U8 *e = uc + STR_LEN( noper ); 1821 U32 state = 1; /* required init */ 1822 U16 charid = 0; /* sanity init */ 1823 U8 *scan = (U8*)NULL; /* sanity init */ 1824 STRLEN foldlen = 0; /* required init */ 1825 U32 wordlen = 0; /* required init */ 1826 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ]; 1827 STRLEN skiplen = 0; 1828 1829 if (OP(noper) == NOTHING) { 1830 regnode *noper_next= regnext(noper); 1831 if (noper_next != tail && OP(noper_next) == flags) { 1832 noper = noper_next; 1833 uc= (U8*)STRING(noper); 1834 e= uc + STR_LEN(noper); 1835 } 1836 } 1837 1838 if (OP(noper) != NOTHING) { 1839 for ( ; uc < e ; uc += len ) { 1840 1841 TRIE_READ_CHAR; 1842 1843 if ( uvc < 256 ) { 1844 charid = trie->charmap[ uvc ]; 1845 } else { 1846 SV** const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0); 1847 if ( !svpp ) { 1848 charid = 0; 1849 } else { 1850 charid=(U16)SvIV( *svpp ); 1851 } 1852 } 1853 /* charid is now 0 if we dont know the char read, or nonzero if we do */ 1854 if ( charid ) { 1855 1856 U16 check; 1857 U32 newstate = 0; 1858 1859 charid--; 1860 if ( !trie->states[ state ].trans.list ) { 1861 TRIE_LIST_NEW( state ); 1862 } 1863 for ( check = 1; check <= TRIE_LIST_USED( state ); check++ ) { 1864 if ( TRIE_LIST_ITEM( state, check ).forid == charid ) { 1865 newstate = TRIE_LIST_ITEM( state, check ).newstate; 1866 break; 1867 } 1868 } 1869 if ( ! newstate ) { 1870 newstate = next_alloc++; 1871 prev_states[newstate] = state; 1872 TRIE_LIST_PUSH( state, charid, newstate ); 1873 transcount++; 1874 } 1875 state = newstate; 1876 } else { 1877 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc ); 1878 } 1879 } 1880 } 1881 TRIE_HANDLE_WORD(state); 1882 1883 } /* end second pass */ 1884 1885 /* next alloc is the NEXT state to be allocated */ 1886 trie->statecount = next_alloc; 1887 trie->states = (reg_trie_state *) 1888 PerlMemShared_realloc( trie->states, 1889 next_alloc 1890 * sizeof(reg_trie_state) ); 1891 1892 /* and now dump it out before we compress it */ 1893 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap, 1894 revcharmap, next_alloc, 1895 depth+1) 1896 ); 1897 1898 trie->trans = (reg_trie_trans *) 1899 PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) ); 1900 { 1901 U32 state; 1902 U32 tp = 0; 1903 U32 zp = 0; 1904 1905 1906 for( state=1 ; state < next_alloc ; state ++ ) { 1907 U32 base=0; 1908 1909 /* 1910 DEBUG_TRIE_COMPILE_MORE_r( 1911 PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp) 1912 ); 1913 */ 1914 1915 if (trie->states[state].trans.list) { 1916 U16 minid=TRIE_LIST_ITEM( state, 1).forid; 1917 U16 maxid=minid; 1918 U16 idx; 1919 1920 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) { 1921 const U16 forid = TRIE_LIST_ITEM( state, idx).forid; 1922 if ( forid < minid ) { 1923 minid=forid; 1924 } else if ( forid > maxid ) { 1925 maxid=forid; 1926 } 1927 } 1928 if ( transcount < tp + maxid - minid + 1) { 1929 transcount *= 2; 1930 trie->trans = (reg_trie_trans *) 1931 PerlMemShared_realloc( trie->trans, 1932 transcount 1933 * sizeof(reg_trie_trans) ); 1934 Zero( trie->trans + (transcount / 2), transcount / 2 , reg_trie_trans ); 1935 } 1936 base = trie->uniquecharcount + tp - minid; 1937 if ( maxid == minid ) { 1938 U32 set = 0; 1939 for ( ; zp < tp ; zp++ ) { 1940 if ( ! trie->trans[ zp ].next ) { 1941 base = trie->uniquecharcount + zp - minid; 1942 trie->trans[ zp ].next = TRIE_LIST_ITEM( state, 1).newstate; 1943 trie->trans[ zp ].check = state; 1944 set = 1; 1945 break; 1946 } 1947 } 1948 if ( !set ) { 1949 trie->trans[ tp ].next = TRIE_LIST_ITEM( state, 1).newstate; 1950 trie->trans[ tp ].check = state; 1951 tp++; 1952 zp = tp; 1953 } 1954 } else { 1955 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) { 1956 const U32 tid = base - trie->uniquecharcount + TRIE_LIST_ITEM( state, idx ).forid; 1957 trie->trans[ tid ].next = TRIE_LIST_ITEM( state, idx ).newstate; 1958 trie->trans[ tid ].check = state; 1959 } 1960 tp += ( maxid - minid + 1 ); 1961 } 1962 Safefree(trie->states[ state ].trans.list); 1963 } 1964 /* 1965 DEBUG_TRIE_COMPILE_MORE_r( 1966 PerlIO_printf( Perl_debug_log, " base: %d\n",base); 1967 ); 1968 */ 1969 trie->states[ state ].trans.base=base; 1970 } 1971 trie->lasttrans = tp + 1; 1972 } 1973 } else { 1974 /* 1975 Second Pass -- Flat Table Representation. 1976 1977 we dont use the 0 slot of either trans[] or states[] so we add 1 to each. 1978 We know that we will need Charcount+1 trans at most to store the data 1979 (one row per char at worst case) So we preallocate both structures 1980 assuming worst case. 1981 1982 We then construct the trie using only the .next slots of the entry 1983 structs. 1984 1985 We use the .check field of the first entry of the node temporarily to 1986 make compression both faster and easier by keeping track of how many non 1987 zero fields are in the node. 1988 1989 Since trans are numbered from 1 any 0 pointer in the table is a FAIL 1990 transition. 1991 1992 There are two terms at use here: state as a TRIE_NODEIDX() which is a 1993 number representing the first entry of the node, and state as a 1994 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1) and 1995 TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3) if there 1996 are 2 entrys per node. eg: 1997 1998 A B A B 1999 1. 2 4 1. 3 7 2000 2. 0 3 3. 0 5 2001 3. 0 0 5. 0 0 2002 4. 0 0 7. 0 0 2003 2004 The table is internally in the right hand, idx form. However as we also 2005 have to deal with the states array which is indexed by nodenum we have to 2006 use TRIE_NODENUM() to convert. 2007 2008 */ 2009 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log, 2010 "%*sCompiling trie using table compiler\n", 2011 (int)depth * 2 + 2, "")); 2012 2013 trie->trans = (reg_trie_trans *) 2014 PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 ) 2015 * trie->uniquecharcount + 1, 2016 sizeof(reg_trie_trans) ); 2017 trie->states = (reg_trie_state *) 2018 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2, 2019 sizeof(reg_trie_state) ); 2020 next_alloc = trie->uniquecharcount + 1; 2021 2022 2023 for ( cur = first ; cur < last ; cur = regnext( cur ) ) { 2024 2025 regnode *noper = NEXTOPER( cur ); 2026 const U8 *uc = (U8*)STRING( noper ); 2027 const U8 *e = uc + STR_LEN( noper ); 2028 2029 U32 state = 1; /* required init */ 2030 2031 U16 charid = 0; /* sanity init */ 2032 U32 accept_state = 0; /* sanity init */ 2033 U8 *scan = (U8*)NULL; /* sanity init */ 2034 2035 STRLEN foldlen = 0; /* required init */ 2036 U32 wordlen = 0; /* required init */ 2037 STRLEN skiplen = 0; 2038 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ]; 2039 2040 if (OP(noper) == NOTHING) { 2041 regnode *noper_next= regnext(noper); 2042 if (noper_next != tail && OP(noper_next) == flags) { 2043 noper = noper_next; 2044 uc= (U8*)STRING(noper); 2045 e= uc + STR_LEN(noper); 2046 } 2047 } 2048 2049 if ( OP(noper) != NOTHING ) { 2050 for ( ; uc < e ; uc += len ) { 2051 2052 TRIE_READ_CHAR; 2053 2054 if ( uvc < 256 ) { 2055 charid = trie->charmap[ uvc ]; 2056 } else { 2057 SV* const * const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0); 2058 charid = svpp ? (U16)SvIV(*svpp) : 0; 2059 } 2060 if ( charid ) { 2061 charid--; 2062 if ( !trie->trans[ state + charid ].next ) { 2063 trie->trans[ state + charid ].next = next_alloc; 2064 trie->trans[ state ].check++; 2065 prev_states[TRIE_NODENUM(next_alloc)] 2066 = TRIE_NODENUM(state); 2067 next_alloc += trie->uniquecharcount; 2068 } 2069 state = trie->trans[ state + charid ].next; 2070 } else { 2071 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc ); 2072 } 2073 /* charid is now 0 if we dont know the char read, or nonzero if we do */ 2074 } 2075 } 2076 accept_state = TRIE_NODENUM( state ); 2077 TRIE_HANDLE_WORD(accept_state); 2078 2079 } /* end second pass */ 2080 2081 /* and now dump it out before we compress it */ 2082 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap, 2083 revcharmap, 2084 next_alloc, depth+1)); 2085 2086 { 2087 /* 2088 * Inplace compress the table.* 2089 2090 For sparse data sets the table constructed by the trie algorithm will 2091 be mostly 0/FAIL transitions or to put it another way mostly empty. 2092 (Note that leaf nodes will not contain any transitions.) 2093 2094 This algorithm compresses the tables by eliminating most such 2095 transitions, at the cost of a modest bit of extra work during lookup: 2096 2097 - Each states[] entry contains a .base field which indicates the 2098 index in the state[] array wheres its transition data is stored. 2099 2100 - If .base is 0 there are no valid transitions from that node. 2101 2102 - If .base is nonzero then charid is added to it to find an entry in 2103 the trans array. 2104 2105 -If trans[states[state].base+charid].check!=state then the 2106 transition is taken to be a 0/Fail transition. Thus if there are fail 2107 transitions at the front of the node then the .base offset will point 2108 somewhere inside the previous nodes data (or maybe even into a node 2109 even earlier), but the .check field determines if the transition is 2110 valid. 2111 2112 XXX - wrong maybe? 2113 The following process inplace converts the table to the compressed 2114 table: We first do not compress the root node 1,and mark all its 2115 .check pointers as 1 and set its .base pointer as 1 as well. This 2116 allows us to do a DFA construction from the compressed table later, 2117 and ensures that any .base pointers we calculate later are greater 2118 than 0. 2119 2120 - We set 'pos' to indicate the first entry of the second node. 2121 2122 - We then iterate over the columns of the node, finding the first and 2123 last used entry at l and m. We then copy l..m into pos..(pos+m-l), 2124 and set the .check pointers accordingly, and advance pos 2125 appropriately and repreat for the next node. Note that when we copy 2126 the next pointers we have to convert them from the original 2127 NODEIDX form to NODENUM form as the former is not valid post 2128 compression. 2129 2130 - If a node has no transitions used we mark its base as 0 and do not 2131 advance the pos pointer. 2132 2133 - If a node only has one transition we use a second pointer into the 2134 structure to fill in allocated fail transitions from other states. 2135 This pointer is independent of the main pointer and scans forward 2136 looking for null transitions that are allocated to a state. When it 2137 finds one it writes the single transition into the "hole". If the 2138 pointer doesnt find one the single transition is appended as normal. 2139 2140 - Once compressed we can Renew/realloc the structures to release the 2141 excess space. 2142 2143 See "Table-Compression Methods" in sec 3.9 of the Red Dragon, 2144 specifically Fig 3.47 and the associated pseudocode. 2145 2146 demq 2147 */ 2148 const U32 laststate = TRIE_NODENUM( next_alloc ); 2149 U32 state, charid; 2150 U32 pos = 0, zp=0; 2151 trie->statecount = laststate; 2152 2153 for ( state = 1 ; state < laststate ; state++ ) { 2154 U8 flag = 0; 2155 const U32 stateidx = TRIE_NODEIDX( state ); 2156 const U32 o_used = trie->trans[ stateidx ].check; 2157 U32 used = trie->trans[ stateidx ].check; 2158 trie->trans[ stateidx ].check = 0; 2159 2160 for ( charid = 0 ; used && charid < trie->uniquecharcount ; charid++ ) { 2161 if ( flag || trie->trans[ stateidx + charid ].next ) { 2162 if ( trie->trans[ stateidx + charid ].next ) { 2163 if (o_used == 1) { 2164 for ( ; zp < pos ; zp++ ) { 2165 if ( ! trie->trans[ zp ].next ) { 2166 break; 2167 } 2168 } 2169 trie->states[ state ].trans.base = zp + trie->uniquecharcount - charid ; 2170 trie->trans[ zp ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next ); 2171 trie->trans[ zp ].check = state; 2172 if ( ++zp > pos ) pos = zp; 2173 break; 2174 } 2175 used--; 2176 } 2177 if ( !flag ) { 2178 flag = 1; 2179 trie->states[ state ].trans.base = pos + trie->uniquecharcount - charid ; 2180 } 2181 trie->trans[ pos ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next ); 2182 trie->trans[ pos ].check = state; 2183 pos++; 2184 } 2185 } 2186 } 2187 trie->lasttrans = pos + 1; 2188 trie->states = (reg_trie_state *) 2189 PerlMemShared_realloc( trie->states, laststate 2190 * sizeof(reg_trie_state) ); 2191 DEBUG_TRIE_COMPILE_MORE_r( 2192 PerlIO_printf( Perl_debug_log, 2193 "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n", 2194 (int)depth * 2 + 2,"", 2195 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1 ), 2196 (IV)next_alloc, 2197 (IV)pos, 2198 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc ); 2199 ); 2200 2201 } /* end table compress */ 2202 } 2203 DEBUG_TRIE_COMPILE_MORE_r( 2204 PerlIO_printf(Perl_debug_log, "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n", 2205 (int)depth * 2 + 2, "", 2206 (UV)trie->statecount, 2207 (UV)trie->lasttrans) 2208 ); 2209 /* resize the trans array to remove unused space */ 2210 trie->trans = (reg_trie_trans *) 2211 PerlMemShared_realloc( trie->trans, trie->lasttrans 2212 * sizeof(reg_trie_trans) ); 2213 2214 { /* Modify the program and insert the new TRIE node */ 2215 U8 nodetype =(U8)(flags & 0xFF); 2216 char *str=NULL; 2217 2218 #ifdef DEBUGGING 2219 regnode *optimize = NULL; 2220 #ifdef RE_TRACK_PATTERN_OFFSETS 2221 2222 U32 mjd_offset = 0; 2223 U32 mjd_nodelen = 0; 2224 #endif /* RE_TRACK_PATTERN_OFFSETS */ 2225 #endif /* DEBUGGING */ 2226 /* 2227 This means we convert either the first branch or the first Exact, 2228 depending on whether the thing following (in 'last') is a branch 2229 or not and whther first is the startbranch (ie is it a sub part of 2230 the alternation or is it the whole thing.) 2231 Assuming its a sub part we convert the EXACT otherwise we convert 2232 the whole branch sequence, including the first. 2233 */ 2234 /* Find the node we are going to overwrite */ 2235 if ( first != startbranch || OP( last ) == BRANCH ) { 2236 /* branch sub-chain */ 2237 NEXT_OFF( first ) = (U16)(last - first); 2238 #ifdef RE_TRACK_PATTERN_OFFSETS 2239 DEBUG_r({ 2240 mjd_offset= Node_Offset((convert)); 2241 mjd_nodelen= Node_Length((convert)); 2242 }); 2243 #endif 2244 /* whole branch chain */ 2245 } 2246 #ifdef RE_TRACK_PATTERN_OFFSETS 2247 else { 2248 DEBUG_r({ 2249 const regnode *nop = NEXTOPER( convert ); 2250 mjd_offset= Node_Offset((nop)); 2251 mjd_nodelen= Node_Length((nop)); 2252 }); 2253 } 2254 DEBUG_OPTIMISE_r( 2255 PerlIO_printf(Perl_debug_log, "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n", 2256 (int)depth * 2 + 2, "", 2257 (UV)mjd_offset, (UV)mjd_nodelen) 2258 ); 2259 #endif 2260 /* But first we check to see if there is a common prefix we can 2261 split out as an EXACT and put in front of the TRIE node. */ 2262 trie->startstate= 1; 2263 if ( trie->bitmap && !widecharmap && !trie->jump ) { 2264 U32 state; 2265 for ( state = 1 ; state < trie->statecount-1 ; state++ ) { 2266 U32 ofs = 0; 2267 I32 idx = -1; 2268 U32 count = 0; 2269 const U32 base = trie->states[ state ].trans.base; 2270 2271 if ( trie->states[state].wordnum ) 2272 count = 1; 2273 2274 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) { 2275 if ( ( base + ofs >= trie->uniquecharcount ) && 2276 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) && 2277 trie->trans[ base + ofs - trie->uniquecharcount ].check == state ) 2278 { 2279 if ( ++count > 1 ) { 2280 SV **tmp = av_fetch( revcharmap, ofs, 0); 2281 const U8 *ch = (U8*)SvPV_nolen_const( *tmp ); 2282 if ( state == 1 ) break; 2283 if ( count == 2 ) { 2284 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char); 2285 DEBUG_OPTIMISE_r( 2286 PerlIO_printf(Perl_debug_log, 2287 "%*sNew Start State=%"UVuf" Class: [", 2288 (int)depth * 2 + 2, "", 2289 (UV)state)); 2290 if (idx >= 0) { 2291 SV ** const tmp = av_fetch( revcharmap, idx, 0); 2292 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp ); 2293 2294 TRIE_BITMAP_SET(trie,*ch); 2295 if ( folder ) 2296 TRIE_BITMAP_SET(trie, folder[ *ch ]); 2297 DEBUG_OPTIMISE_r( 2298 PerlIO_printf(Perl_debug_log, "%s", (char*)ch) 2299 ); 2300 } 2301 } 2302 TRIE_BITMAP_SET(trie,*ch); 2303 if ( folder ) 2304 TRIE_BITMAP_SET(trie,folder[ *ch ]); 2305 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch)); 2306 } 2307 idx = ofs; 2308 } 2309 } 2310 if ( count == 1 ) { 2311 SV **tmp = av_fetch( revcharmap, idx, 0); 2312 STRLEN len; 2313 char *ch = SvPV( *tmp, len ); 2314 DEBUG_OPTIMISE_r({ 2315 SV *sv=sv_newmortal(); 2316 PerlIO_printf( Perl_debug_log, 2317 "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n", 2318 (int)depth * 2 + 2, "", 2319 (UV)state, (UV)idx, 2320 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6, 2321 PL_colors[0], PL_colors[1], 2322 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) | 2323 PERL_PV_ESCAPE_FIRSTCHAR 2324 ) 2325 ); 2326 }); 2327 if ( state==1 ) { 2328 OP( convert ) = nodetype; 2329 str=STRING(convert); 2330 STR_LEN(convert)=0; 2331 } 2332 STR_LEN(convert) += len; 2333 while (len--) 2334 *str++ = *ch++; 2335 } else { 2336 #ifdef DEBUGGING 2337 if (state>1) 2338 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n")); 2339 #endif 2340 break; 2341 } 2342 } 2343 trie->prefixlen = (state-1); 2344 if (str) { 2345 regnode *n = convert+NODE_SZ_STR(convert); 2346 NEXT_OFF(convert) = NODE_SZ_STR(convert); 2347 trie->startstate = state; 2348 trie->minlen -= (state - 1); 2349 trie->maxlen -= (state - 1); 2350 #ifdef DEBUGGING 2351 /* At least the UNICOS C compiler choked on this 2352 * being argument to DEBUG_r(), so let's just have 2353 * it right here. */ 2354 if ( 2355 #ifdef PERL_EXT_RE_BUILD 2356 1 2357 #else 2358 DEBUG_r_TEST 2359 #endif 2360 ) { 2361 regnode *fix = convert; 2362 U32 word = trie->wordcount; 2363 mjd_nodelen++; 2364 Set_Node_Offset_Length(convert, mjd_offset, state - 1); 2365 while( ++fix < n ) { 2366 Set_Node_Offset_Length(fix, 0, 0); 2367 } 2368 while (word--) { 2369 SV ** const tmp = av_fetch( trie_words, word, 0 ); 2370 if (tmp) { 2371 if ( STR_LEN(convert) <= SvCUR(*tmp) ) 2372 sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert)); 2373 else 2374 sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp)); 2375 } 2376 } 2377 } 2378 #endif 2379 if (trie->maxlen) { 2380 convert = n; 2381 } else { 2382 NEXT_OFF(convert) = (U16)(tail - convert); 2383 DEBUG_r(optimize= n); 2384 } 2385 } 2386 } 2387 if (!jumper) 2388 jumper = last; 2389 if ( trie->maxlen ) { 2390 NEXT_OFF( convert ) = (U16)(tail - convert); 2391 ARG_SET( convert, data_slot ); 2392 /* Store the offset to the first unabsorbed branch in 2393 jump[0], which is otherwise unused by the jump logic. 2394 We use this when dumping a trie and during optimisation. */ 2395 if (trie->jump) 2396 trie->jump[0] = (U16)(nextbranch - convert); 2397 2398 /* If the start state is not accepting (meaning there is no empty string/NOTHING) 2399 * and there is a bitmap 2400 * and the first "jump target" node we found leaves enough room 2401 * then convert the TRIE node into a TRIEC node, with the bitmap 2402 * embedded inline in the opcode - this is hypothetically faster. 2403 */ 2404 if ( !trie->states[trie->startstate].wordnum 2405 && trie->bitmap 2406 && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) ) 2407 { 2408 OP( convert ) = TRIEC; 2409 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char); 2410 PerlMemShared_free(trie->bitmap); 2411 trie->bitmap= NULL; 2412 } else 2413 OP( convert ) = TRIE; 2414 2415 /* store the type in the flags */ 2416 convert->flags = nodetype; 2417 DEBUG_r({ 2418 optimize = convert 2419 + NODE_STEP_REGNODE 2420 + regarglen[ OP( convert ) ]; 2421 }); 2422 /* XXX We really should free up the resource in trie now, 2423 as we won't use them - (which resources?) dmq */ 2424 } 2425 /* needed for dumping*/ 2426 DEBUG_r(if (optimize) { 2427 regnode *opt = convert; 2428 2429 while ( ++opt < optimize) { 2430 Set_Node_Offset_Length(opt,0,0); 2431 } 2432 /* 2433 Try to clean up some of the debris left after the 2434 optimisation. 2435 */ 2436 while( optimize < jumper ) { 2437 mjd_nodelen += Node_Length((optimize)); 2438 OP( optimize ) = OPTIMIZED; 2439 Set_Node_Offset_Length(optimize,0,0); 2440 optimize++; 2441 } 2442 Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen); 2443 }); 2444 } /* end node insert */ 2445 2446 /* Finish populating the prev field of the wordinfo array. Walk back 2447 * from each accept state until we find another accept state, and if 2448 * so, point the first word's .prev field at the second word. If the 2449 * second already has a .prev field set, stop now. This will be the 2450 * case either if we've already processed that word's accept state, 2451 * or that state had multiple words, and the overspill words were 2452 * already linked up earlier. 2453 */ 2454 { 2455 U16 word; 2456 U32 state; 2457 U16 prev; 2458 2459 for (word=1; word <= trie->wordcount; word++) { 2460 prev = 0; 2461 if (trie->wordinfo[word].prev) 2462 continue; 2463 state = trie->wordinfo[word].accept; 2464 while (state) { 2465 state = prev_states[state]; 2466 if (!state) 2467 break; 2468 prev = trie->states[state].wordnum; 2469 if (prev) 2470 break; 2471 } 2472 trie->wordinfo[word].prev = prev; 2473 } 2474 Safefree(prev_states); 2475 } 2476 2477 2478 /* and now dump out the compressed format */ 2479 DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1)); 2480 2481 RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap; 2482 #ifdef DEBUGGING 2483 RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words; 2484 RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap; 2485 #else 2486 SvREFCNT_dec_NN(revcharmap); 2487 #endif 2488 return trie->jump 2489 ? MADE_JUMP_TRIE 2490 : trie->startstate>1 2491 ? MADE_EXACT_TRIE 2492 : MADE_TRIE; 2493 } 2494 2495 STATIC void 2496 S_make_trie_failtable(pTHX_ RExC_state_t *pRExC_state, regnode *source, regnode *stclass, U32 depth) 2497 { 2498 /* The Trie is constructed and compressed now so we can build a fail array if it's needed 2499 2500 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and 3.32 in the 2501 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi, Ullman 1985/88 2502 ISBN 0-201-10088-6 2503 2504 We find the fail state for each state in the trie, this state is the longest proper 2505 suffix of the current state's 'word' that is also a proper prefix of another word in our 2506 trie. State 1 represents the word '' and is thus the default fail state. This allows 2507 the DFA not to have to restart after its tried and failed a word at a given point, it 2508 simply continues as though it had been matching the other word in the first place. 2509 Consider 2510 'abcdgu'=~/abcdefg|cdgu/ 2511 When we get to 'd' we are still matching the first word, we would encounter 'g' which would 2512 fail, which would bring us to the state representing 'd' in the second word where we would 2513 try 'g' and succeed, proceeding to match 'cdgu'. 2514 */ 2515 /* add a fail transition */ 2516 const U32 trie_offset = ARG(source); 2517 reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset]; 2518 U32 *q; 2519 const U32 ucharcount = trie->uniquecharcount; 2520 const U32 numstates = trie->statecount; 2521 const U32 ubound = trie->lasttrans + ucharcount; 2522 U32 q_read = 0; 2523 U32 q_write = 0; 2524 U32 charid; 2525 U32 base = trie->states[ 1 ].trans.base; 2526 U32 *fail; 2527 reg_ac_data *aho; 2528 const U32 data_slot = add_data( pRExC_state, 1, "T" ); 2529 GET_RE_DEBUG_FLAGS_DECL; 2530 2531 PERL_ARGS_ASSERT_MAKE_TRIE_FAILTABLE; 2532 #ifndef DEBUGGING 2533 PERL_UNUSED_ARG(depth); 2534 #endif 2535 2536 2537 ARG_SET( stclass, data_slot ); 2538 aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) ); 2539 RExC_rxi->data->data[ data_slot ] = (void*)aho; 2540 aho->trie=trie_offset; 2541 aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) ); 2542 Copy( trie->states, aho->states, numstates, reg_trie_state ); 2543 Newxz( q, numstates, U32); 2544 aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) ); 2545 aho->refcount = 1; 2546 fail = aho->fail; 2547 /* initialize fail[0..1] to be 1 so that we always have 2548 a valid final fail state */ 2549 fail[ 0 ] = fail[ 1 ] = 1; 2550 2551 for ( charid = 0; charid < ucharcount ; charid++ ) { 2552 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 ); 2553 if ( newstate ) { 2554 q[ q_write ] = newstate; 2555 /* set to point at the root */ 2556 fail[ q[ q_write++ ] ]=1; 2557 } 2558 } 2559 while ( q_read < q_write) { 2560 const U32 cur = q[ q_read++ % numstates ]; 2561 base = trie->states[ cur ].trans.base; 2562 2563 for ( charid = 0 ; charid < ucharcount ; charid++ ) { 2564 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 ); 2565 if (ch_state) { 2566 U32 fail_state = cur; 2567 U32 fail_base; 2568 do { 2569 fail_state = fail[ fail_state ]; 2570 fail_base = aho->states[ fail_state ].trans.base; 2571 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) ); 2572 2573 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ); 2574 fail[ ch_state ] = fail_state; 2575 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum ) 2576 { 2577 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum; 2578 } 2579 q[ q_write++ % numstates] = ch_state; 2580 } 2581 } 2582 } 2583 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop 2584 when we fail in state 1, this allows us to use the 2585 charclass scan to find a valid start char. This is based on the principle 2586 that theres a good chance the string being searched contains lots of stuff 2587 that cant be a start char. 2588 */ 2589 fail[ 0 ] = fail[ 1 ] = 0; 2590 DEBUG_TRIE_COMPILE_r({ 2591 PerlIO_printf(Perl_debug_log, 2592 "%*sStclass Failtable (%"UVuf" states): 0", 2593 (int)(depth * 2), "", (UV)numstates 2594 ); 2595 for( q_read=1; q_read<numstates; q_read++ ) { 2596 PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]); 2597 } 2598 PerlIO_printf(Perl_debug_log, "\n"); 2599 }); 2600 Safefree(q); 2601 /*RExC_seen |= REG_SEEN_TRIEDFA;*/ 2602 } 2603 2604 2605 /* 2606 * There are strange code-generation bugs caused on sparc64 by gcc-2.95.2. 2607 * These need to be revisited when a newer toolchain becomes available. 2608 */ 2609 #if defined(__sparc64__) && defined(__GNUC__) 2610 # if __GNUC__ < 2 || (__GNUC__ == 2 && __GNUC_MINOR__ < 96) 2611 # undef SPARC64_GCC_WORKAROUND 2612 # define SPARC64_GCC_WORKAROUND 1 2613 # endif 2614 #endif 2615 2616 #define DEBUG_PEEP(str,scan,depth) \ 2617 DEBUG_OPTIMISE_r({if (scan){ \ 2618 SV * const mysv=sv_newmortal(); \ 2619 regnode *Next = regnext(scan); \ 2620 regprop(RExC_rx, mysv, scan); \ 2621 PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)\n", \ 2622 (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(mysv),\ 2623 Next ? (REG_NODE_NUM(Next)) : 0 ); \ 2624 }}); 2625 2626 2627 /* The below joins as many adjacent EXACTish nodes as possible into a single 2628 * one. The regop may be changed if the node(s) contain certain sequences that 2629 * require special handling. The joining is only done if: 2630 * 1) there is room in the current conglomerated node to entirely contain the 2631 * next one. 2632 * 2) they are the exact same node type 2633 * 2634 * The adjacent nodes actually may be separated by NOTHING-kind nodes, and 2635 * these get optimized out 2636 * 2637 * If a node is to match under /i (folded), the number of characters it matches 2638 * can be different than its character length if it contains a multi-character 2639 * fold. *min_subtract is set to the total delta of the input nodes. 2640 * 2641 * And *has_exactf_sharp_s is set to indicate whether or not the node is EXACTF 2642 * and contains LATIN SMALL LETTER SHARP S 2643 * 2644 * This is as good a place as any to discuss the design of handling these 2645 * multi-character fold sequences. It's been wrong in Perl for a very long 2646 * time. There are three code points in Unicode whose multi-character folds 2647 * were long ago discovered to mess things up. The previous designs for 2648 * dealing with these involved assigning a special node for them. This 2649 * approach doesn't work, as evidenced by this example: 2650 * "\xDFs" =~ /s\xDF/ui # Used to fail before these patches 2651 * Both these fold to "sss", but if the pattern is parsed to create a node that 2652 * would match just the \xDF, it won't be able to handle the case where a 2653 * successful match would have to cross the node's boundary. The new approach 2654 * that hopefully generally solves the problem generates an EXACTFU_SS node 2655 * that is "sss". 2656 * 2657 * It turns out that there are problems with all multi-character folds, and not 2658 * just these three. Now the code is general, for all such cases, but the 2659 * three still have some special handling. The approach taken is: 2660 * 1) This routine examines each EXACTFish node that could contain multi- 2661 * character fold sequences. It returns in *min_subtract how much to 2662 * subtract from the the actual length of the string to get a real minimum 2663 * match length; it is 0 if there are no multi-char folds. This delta is 2664 * used by the caller to adjust the min length of the match, and the delta 2665 * between min and max, so that the optimizer doesn't reject these 2666 * possibilities based on size constraints. 2667 * 2) Certain of these sequences require special handling by the trie code, 2668 * so, if found, this code changes the joined node type to special ops: 2669 * EXACTFU_TRICKYFOLD and EXACTFU_SS. 2670 * 3) For the sequence involving the Sharp s (\xDF), the node type EXACTFU_SS 2671 * is used for an EXACTFU node that contains at least one "ss" sequence in 2672 * it. For non-UTF-8 patterns and strings, this is the only case where 2673 * there is a possible fold length change. That means that a regular 2674 * EXACTFU node without UTF-8 involvement doesn't have to concern itself 2675 * with length changes, and so can be processed faster. regexec.c takes 2676 * advantage of this. Generally, an EXACTFish node that is in UTF-8 is 2677 * pre-folded by regcomp.c. This saves effort in regex matching. 2678 * However, the pre-folding isn't done for non-UTF8 patterns because the 2679 * fold of the MICRO SIGN requires UTF-8, and we don't want to slow things 2680 * down by forcing the pattern into UTF8 unless necessary. Also what 2681 * EXACTF and EXACTFL nodes fold to isn't known until runtime. The fold 2682 * possibilities for the non-UTF8 patterns are quite simple, except for 2683 * the sharp s. All the ones that don't involve a UTF-8 target string are 2684 * members of a fold-pair, and arrays are set up for all of them so that 2685 * the other member of the pair can be found quickly. Code elsewhere in 2686 * this file makes sure that in EXACTFU nodes, the sharp s gets folded to 2687 * 'ss', even if the pattern isn't UTF-8. This avoids the issues 2688 * described in the next item. 2689 * 4) A problem remains for the sharp s in EXACTF nodes. Whether it matches 2690 * 'ss' or not is not knowable at compile time. It will match iff the 2691 * target string is in UTF-8, unlike the EXACTFU nodes, where it always 2692 * matches; and the EXACTFL and EXACTFA nodes where it never does. Thus 2693 * it can't be folded to "ss" at compile time, unlike EXACTFU does (as 2694 * described in item 3). An assumption that the optimizer part of 2695 * regexec.c (probably unwittingly) makes is that a character in the 2696 * pattern corresponds to at most a single character in the target string. 2697 * (And I do mean character, and not byte here, unlike other parts of the 2698 * documentation that have never been updated to account for multibyte 2699 * Unicode.) This assumption is wrong only in this case, as all other 2700 * cases are either 1-1 folds when no UTF-8 is involved; or is true by 2701 * virtue of having this file pre-fold UTF-8 patterns. I'm 2702 * reluctant to try to change this assumption, so instead the code punts. 2703 * This routine examines EXACTF nodes for the sharp s, and returns a 2704 * boolean indicating whether or not the node is an EXACTF node that 2705 * contains a sharp s. When it is true, the caller sets a flag that later 2706 * causes the optimizer in this file to not set values for the floating 2707 * and fixed string lengths, and thus avoids the optimizer code in 2708 * regexec.c that makes the invalid assumption. Thus, there is no 2709 * optimization based on string lengths for EXACTF nodes that contain the 2710 * sharp s. This only happens for /id rules (which means the pattern 2711 * isn't in UTF-8). 2712 */ 2713 2714 #define JOIN_EXACT(scan,min_subtract,has_exactf_sharp_s, flags) \ 2715 if (PL_regkind[OP(scan)] == EXACT) \ 2716 join_exact(pRExC_state,(scan),(min_subtract),has_exactf_sharp_s, (flags),NULL,depth+1) 2717 2718 STATIC U32 2719 S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan, UV *min_subtract, bool *has_exactf_sharp_s, U32 flags,regnode *val, U32 depth) { 2720 /* Merge several consecutive EXACTish nodes into one. */ 2721 regnode *n = regnext(scan); 2722 U32 stringok = 1; 2723 regnode *next = scan + NODE_SZ_STR(scan); 2724 U32 merged = 0; 2725 U32 stopnow = 0; 2726 #ifdef DEBUGGING 2727 regnode *stop = scan; 2728 GET_RE_DEBUG_FLAGS_DECL; 2729 #else 2730 PERL_UNUSED_ARG(depth); 2731 #endif 2732 2733 PERL_ARGS_ASSERT_JOIN_EXACT; 2734 #ifndef EXPERIMENTAL_INPLACESCAN 2735 PERL_UNUSED_ARG(flags); 2736 PERL_UNUSED_ARG(val); 2737 #endif 2738 DEBUG_PEEP("join",scan,depth); 2739 2740 /* Look through the subsequent nodes in the chain. Skip NOTHING, merge 2741 * EXACT ones that are mergeable to the current one. */ 2742 while (n 2743 && (PL_regkind[OP(n)] == NOTHING 2744 || (stringok && OP(n) == OP(scan))) 2745 && NEXT_OFF(n) 2746 && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX) 2747 { 2748 2749 if (OP(n) == TAIL || n > next) 2750 stringok = 0; 2751 if (PL_regkind[OP(n)] == NOTHING) { 2752 DEBUG_PEEP("skip:",n,depth); 2753 NEXT_OFF(scan) += NEXT_OFF(n); 2754 next = n + NODE_STEP_REGNODE; 2755 #ifdef DEBUGGING 2756 if (stringok) 2757 stop = n; 2758 #endif 2759 n = regnext(n); 2760 } 2761 else if (stringok) { 2762 const unsigned int oldl = STR_LEN(scan); 2763 regnode * const nnext = regnext(n); 2764 2765 /* XXX I (khw) kind of doubt that this works on platforms where 2766 * U8_MAX is above 255 because of lots of other assumptions */ 2767 /* Don't join if the sum can't fit into a single node */ 2768 if (oldl + STR_LEN(n) > U8_MAX) 2769 break; 2770 2771 DEBUG_PEEP("merg",n,depth); 2772 merged++; 2773 2774 NEXT_OFF(scan) += NEXT_OFF(n); 2775 STR_LEN(scan) += STR_LEN(n); 2776 next = n + NODE_SZ_STR(n); 2777 /* Now we can overwrite *n : */ 2778 Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char); 2779 #ifdef DEBUGGING 2780 stop = next - 1; 2781 #endif 2782 n = nnext; 2783 if (stopnow) break; 2784 } 2785 2786 #ifdef EXPERIMENTAL_INPLACESCAN 2787 if (flags && !NEXT_OFF(n)) { 2788 DEBUG_PEEP("atch", val, depth); 2789 if (reg_off_by_arg[OP(n)]) { 2790 ARG_SET(n, val - n); 2791 } 2792 else { 2793 NEXT_OFF(n) = val - n; 2794 } 2795 stopnow = 1; 2796 } 2797 #endif 2798 } 2799 2800 *min_subtract = 0; 2801 *has_exactf_sharp_s = FALSE; 2802 2803 /* Here, all the adjacent mergeable EXACTish nodes have been merged. We 2804 * can now analyze for sequences of problematic code points. (Prior to 2805 * this final joining, sequences could have been split over boundaries, and 2806 * hence missed). The sequences only happen in folding, hence for any 2807 * non-EXACT EXACTish node */ 2808 if (OP(scan) != EXACT) { 2809 const U8 * const s0 = (U8*) STRING(scan); 2810 const U8 * s = s0; 2811 const U8 * const s_end = s0 + STR_LEN(scan); 2812 2813 /* One pass is made over the node's string looking for all the 2814 * possibilities. to avoid some tests in the loop, there are two main 2815 * cases, for UTF-8 patterns (which can't have EXACTF nodes) and 2816 * non-UTF-8 */ 2817 if (UTF) { 2818 2819 /* Examine the string for a multi-character fold sequence. UTF-8 2820 * patterns have all characters pre-folded by the time this code is 2821 * executed */ 2822 while (s < s_end - 1) /* Can stop 1 before the end, as minimum 2823 length sequence we are looking for is 2 */ 2824 { 2825 int count = 0; 2826 int len = is_MULTI_CHAR_FOLD_utf8_safe(s, s_end); 2827 if (! len) { /* Not a multi-char fold: get next char */ 2828 s += UTF8SKIP(s); 2829 continue; 2830 } 2831 2832 /* Nodes with 'ss' require special handling, except for EXACTFL 2833 * and EXACTFA for which there is no multi-char fold to this */ 2834 if (len == 2 && *s == 's' && *(s+1) == 's' 2835 && OP(scan) != EXACTFL && OP(scan) != EXACTFA) 2836 { 2837 count = 2; 2838 OP(scan) = EXACTFU_SS; 2839 s += 2; 2840 } 2841 else if (len == 6 /* len is the same in both ASCII and EBCDIC for these */ 2842 && (memEQ(s, GREEK_SMALL_LETTER_IOTA_UTF8 2843 COMBINING_DIAERESIS_UTF8 2844 COMBINING_ACUTE_ACCENT_UTF8, 2845 6) 2846 || memEQ(s, GREEK_SMALL_LETTER_UPSILON_UTF8 2847 COMBINING_DIAERESIS_UTF8 2848 COMBINING_ACUTE_ACCENT_UTF8, 2849 6))) 2850 { 2851 count = 3; 2852 2853 /* These two folds require special handling by trie's, so 2854 * change the node type to indicate this. If EXACTFA and 2855 * EXACTFL were ever to be handled by trie's, this would 2856 * have to be changed. If this node has already been 2857 * changed to EXACTFU_SS in this loop, leave it as is. (I 2858 * (khw) think it doesn't matter in regexec.c for UTF 2859 * patterns, but no need to change it */ 2860 if (OP(scan) == EXACTFU) { 2861 OP(scan) = EXACTFU_TRICKYFOLD; 2862 } 2863 s += 6; 2864 } 2865 else { /* Here is a generic multi-char fold. */ 2866 const U8* multi_end = s + len; 2867 2868 /* Count how many characters in it. In the case of /l and 2869 * /aa, no folds which contain ASCII code points are 2870 * allowed, so check for those, and skip if found. (In 2871 * EXACTFL, no folds are allowed to any Latin1 code point, 2872 * not just ASCII. But there aren't any of these 2873 * currently, nor ever likely, so don't take the time to 2874 * test for them. The code that generates the 2875 * is_MULTI_foo() macros croaks should one actually get put 2876 * into Unicode .) */ 2877 if (OP(scan) != EXACTFL && OP(scan) != EXACTFA) { 2878 count = utf8_length(s, multi_end); 2879 s = multi_end; 2880 } 2881 else { 2882 while (s < multi_end) { 2883 if (isASCII(*s)) { 2884 s++; 2885 goto next_iteration; 2886 } 2887 else { 2888 s += UTF8SKIP(s); 2889 } 2890 count++; 2891 } 2892 } 2893 } 2894 2895 /* The delta is how long the sequence is minus 1 (1 is how long 2896 * the character that folds to the sequence is) */ 2897 *min_subtract += count - 1; 2898 next_iteration: ; 2899 } 2900 } 2901 else if (OP(scan) != EXACTFL && OP(scan) != EXACTFA) { 2902 2903 /* Here, the pattern is not UTF-8. Look for the multi-char folds 2904 * that are all ASCII. As in the above case, EXACTFL and EXACTFA 2905 * nodes can't have multi-char folds to this range (and there are 2906 * no existing ones in the upper latin1 range). In the EXACTF 2907 * case we look also for the sharp s, which can be in the final 2908 * position. Otherwise we can stop looking 1 byte earlier because 2909 * have to find at least two characters for a multi-fold */ 2910 const U8* upper = (OP(scan) == EXACTF) ? s_end : s_end -1; 2911 2912 /* The below is perhaps overboard, but this allows us to save a 2913 * test each time through the loop at the expense of a mask. This 2914 * is because on both EBCDIC and ASCII machines, 'S' and 's' differ 2915 * by a single bit. On ASCII they are 32 apart; on EBCDIC, they 2916 * are 64. This uses an exclusive 'or' to find that bit and then 2917 * inverts it to form a mask, with just a single 0, in the bit 2918 * position where 'S' and 's' differ. */ 2919 const U8 S_or_s_mask = (U8) ~ ('S' ^ 's'); 2920 const U8 s_masked = 's' & S_or_s_mask; 2921 2922 while (s < upper) { 2923 int len = is_MULTI_CHAR_FOLD_latin1_safe(s, s_end); 2924 if (! len) { /* Not a multi-char fold. */ 2925 if (*s == LATIN_SMALL_LETTER_SHARP_S && OP(scan) == EXACTF) 2926 { 2927 *has_exactf_sharp_s = TRUE; 2928 } 2929 s++; 2930 continue; 2931 } 2932 2933 if (len == 2 2934 && ((*s & S_or_s_mask) == s_masked) 2935 && ((*(s+1) & S_or_s_mask) == s_masked)) 2936 { 2937 2938 /* EXACTF nodes need to know that the minimum length 2939 * changed so that a sharp s in the string can match this 2940 * ss in the pattern, but they remain EXACTF nodes, as they 2941 * won't match this unless the target string is is UTF-8, 2942 * which we don't know until runtime */ 2943 if (OP(scan) != EXACTF) { 2944 OP(scan) = EXACTFU_SS; 2945 } 2946 } 2947 2948 *min_subtract += len - 1; 2949 s += len; 2950 } 2951 } 2952 } 2953 2954 #ifdef DEBUGGING 2955 /* Allow dumping but overwriting the collection of skipped 2956 * ops and/or strings with fake optimized ops */ 2957 n = scan + NODE_SZ_STR(scan); 2958 while (n <= stop) { 2959 OP(n) = OPTIMIZED; 2960 FLAGS(n) = 0; 2961 NEXT_OFF(n) = 0; 2962 n++; 2963 } 2964 #endif 2965 DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)}); 2966 return stopnow; 2967 } 2968 2969 /* REx optimizer. Converts nodes into quicker variants "in place". 2970 Finds fixed substrings. */ 2971 2972 /* Stops at toplevel WHILEM as well as at "last". At end *scanp is set 2973 to the position after last scanned or to NULL. */ 2974 2975 #define INIT_AND_WITHP \ 2976 assert(!and_withp); \ 2977 Newx(and_withp,1,struct regnode_charclass_class); \ 2978 SAVEFREEPV(and_withp) 2979 2980 /* this is a chain of data about sub patterns we are processing that 2981 need to be handled separately/specially in study_chunk. Its so 2982 we can simulate recursion without losing state. */ 2983 struct scan_frame; 2984 typedef struct scan_frame { 2985 regnode *last; /* last node to process in this frame */ 2986 regnode *next; /* next node to process when last is reached */ 2987 struct scan_frame *prev; /*previous frame*/ 2988 I32 stop; /* what stopparen do we use */ 2989 } scan_frame; 2990 2991 2992 #define SCAN_COMMIT(s, data, m) scan_commit(s, data, m, is_inf) 2993 2994 STATIC I32 2995 S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp, 2996 I32 *minlenp, I32 *deltap, 2997 regnode *last, 2998 scan_data_t *data, 2999 I32 stopparen, 3000 U8* recursed, 3001 struct regnode_charclass_class *and_withp, 3002 U32 flags, U32 depth) 3003 /* scanp: Start here (read-write). */ 3004 /* deltap: Write maxlen-minlen here. */ 3005 /* last: Stop before this one. */ 3006 /* data: string data about the pattern */ 3007 /* stopparen: treat close N as END */ 3008 /* recursed: which subroutines have we recursed into */ 3009 /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */ 3010 { 3011 dVAR; 3012 I32 min = 0; /* There must be at least this number of characters to match */ 3013 I32 pars = 0, code; 3014 regnode *scan = *scanp, *next; 3015 I32 delta = 0; 3016 int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF); 3017 int is_inf_internal = 0; /* The studied chunk is infinite */ 3018 I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0; 3019 scan_data_t data_fake; 3020 SV *re_trie_maxbuff = NULL; 3021 regnode *first_non_open = scan; 3022 I32 stopmin = I32_MAX; 3023 scan_frame *frame = NULL; 3024 GET_RE_DEBUG_FLAGS_DECL; 3025 3026 PERL_ARGS_ASSERT_STUDY_CHUNK; 3027 3028 #ifdef DEBUGGING 3029 StructCopy(&zero_scan_data, &data_fake, scan_data_t); 3030 #endif 3031 3032 if ( depth == 0 ) { 3033 while (first_non_open && OP(first_non_open) == OPEN) 3034 first_non_open=regnext(first_non_open); 3035 } 3036 3037 3038 fake_study_recurse: 3039 while ( scan && OP(scan) != END && scan < last ){ 3040 UV min_subtract = 0; /* How mmany chars to subtract from the minimum 3041 node length to get a real minimum (because 3042 the folded version may be shorter) */ 3043 bool has_exactf_sharp_s = FALSE; 3044 /* Peephole optimizer: */ 3045 DEBUG_STUDYDATA("Peep:", data,depth); 3046 DEBUG_PEEP("Peep",scan,depth); 3047 3048 /* Its not clear to khw or hv why this is done here, and not in the 3049 * clauses that deal with EXACT nodes. khw's guess is that it's 3050 * because of a previous design */ 3051 JOIN_EXACT(scan,&min_subtract, &has_exactf_sharp_s, 0); 3052 3053 /* Follow the next-chain of the current node and optimize 3054 away all the NOTHINGs from it. */ 3055 if (OP(scan) != CURLYX) { 3056 const int max = (reg_off_by_arg[OP(scan)] 3057 ? I32_MAX 3058 /* I32 may be smaller than U16 on CRAYs! */ 3059 : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX)); 3060 int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan)); 3061 int noff; 3062 regnode *n = scan; 3063 3064 /* Skip NOTHING and LONGJMP. */ 3065 while ((n = regnext(n)) 3066 && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n))) 3067 || ((OP(n) == LONGJMP) && (noff = ARG(n)))) 3068 && off + noff < max) 3069 off += noff; 3070 if (reg_off_by_arg[OP(scan)]) 3071 ARG(scan) = off; 3072 else 3073 NEXT_OFF(scan) = off; 3074 } 3075 3076 3077 3078 /* The principal pseudo-switch. Cannot be a switch, since we 3079 look into several different things. */ 3080 if (OP(scan) == BRANCH || OP(scan) == BRANCHJ 3081 || OP(scan) == IFTHEN) { 3082 next = regnext(scan); 3083 code = OP(scan); 3084 /* demq: the op(next)==code check is to see if we have "branch-branch" AFAICT */ 3085 3086 if (OP(next) == code || code == IFTHEN) { 3087 /* NOTE - There is similar code to this block below for handling 3088 TRIE nodes on a re-study. If you change stuff here check there 3089 too. */ 3090 I32 max1 = 0, min1 = I32_MAX, num = 0; 3091 struct regnode_charclass_class accum; 3092 regnode * const startbranch=scan; 3093 3094 if (flags & SCF_DO_SUBSTR) 3095 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot merge strings after this. */ 3096 if (flags & SCF_DO_STCLASS) 3097 cl_init_zero(pRExC_state, &accum); 3098 3099 while (OP(scan) == code) { 3100 I32 deltanext, minnext, f = 0, fake; 3101 struct regnode_charclass_class this_class; 3102 3103 num++; 3104 data_fake.flags = 0; 3105 if (data) { 3106 data_fake.whilem_c = data->whilem_c; 3107 data_fake.last_closep = data->last_closep; 3108 } 3109 else 3110 data_fake.last_closep = &fake; 3111 3112 data_fake.pos_delta = delta; 3113 next = regnext(scan); 3114 scan = NEXTOPER(scan); 3115 if (code != BRANCH) 3116 scan = NEXTOPER(scan); 3117 if (flags & SCF_DO_STCLASS) { 3118 cl_init(pRExC_state, &this_class); 3119 data_fake.start_class = &this_class; 3120 f = SCF_DO_STCLASS_AND; 3121 } 3122 if (flags & SCF_WHILEM_VISITED_POS) 3123 f |= SCF_WHILEM_VISITED_POS; 3124 3125 /* we suppose the run is continuous, last=next...*/ 3126 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext, 3127 next, &data_fake, 3128 stopparen, recursed, NULL, f,depth+1); 3129 if (min1 > minnext) 3130 min1 = minnext; 3131 if (deltanext == I32_MAX) { 3132 is_inf = is_inf_internal = 1; 3133 max1 = I32_MAX; 3134 } else if (max1 < minnext + deltanext) 3135 max1 = minnext + deltanext; 3136 scan = next; 3137 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR)) 3138 pars++; 3139 if (data_fake.flags & SCF_SEEN_ACCEPT) { 3140 if ( stopmin > minnext) 3141 stopmin = min + min1; 3142 flags &= ~SCF_DO_SUBSTR; 3143 if (data) 3144 data->flags |= SCF_SEEN_ACCEPT; 3145 } 3146 if (data) { 3147 if (data_fake.flags & SF_HAS_EVAL) 3148 data->flags |= SF_HAS_EVAL; 3149 data->whilem_c = data_fake.whilem_c; 3150 } 3151 if (flags & SCF_DO_STCLASS) 3152 cl_or(pRExC_state, &accum, &this_class); 3153 } 3154 if (code == IFTHEN && num < 2) /* Empty ELSE branch */ 3155 min1 = 0; 3156 if (flags & SCF_DO_SUBSTR) { 3157 data->pos_min += min1; 3158 if (data->pos_delta >= I32_MAX - (max1 - min1)) 3159 data->pos_delta = I32_MAX; 3160 else 3161 data->pos_delta += max1 - min1; 3162 if (max1 != min1 || is_inf) 3163 data->longest = &(data->longest_float); 3164 } 3165 min += min1; 3166 if (delta == I32_MAX || I32_MAX - delta - (max1 - min1) < 0) 3167 delta = I32_MAX; 3168 else 3169 delta += max1 - min1; 3170 if (flags & SCF_DO_STCLASS_OR) { 3171 cl_or(pRExC_state, data->start_class, &accum); 3172 if (min1) { 3173 cl_and(data->start_class, and_withp); 3174 flags &= ~SCF_DO_STCLASS; 3175 } 3176 } 3177 else if (flags & SCF_DO_STCLASS_AND) { 3178 if (min1) { 3179 cl_and(data->start_class, &accum); 3180 flags &= ~SCF_DO_STCLASS; 3181 } 3182 else { 3183 /* Switch to OR mode: cache the old value of 3184 * data->start_class */ 3185 INIT_AND_WITHP; 3186 StructCopy(data->start_class, and_withp, 3187 struct regnode_charclass_class); 3188 flags &= ~SCF_DO_STCLASS_AND; 3189 StructCopy(&accum, data->start_class, 3190 struct regnode_charclass_class); 3191 flags |= SCF_DO_STCLASS_OR; 3192 SET_SSC_EOS(data->start_class); 3193 } 3194 } 3195 3196 if (PERL_ENABLE_TRIE_OPTIMISATION && OP( startbranch ) == BRANCH ) { 3197 /* demq. 3198 3199 Assuming this was/is a branch we are dealing with: 'scan' now 3200 points at the item that follows the branch sequence, whatever 3201 it is. We now start at the beginning of the sequence and look 3202 for subsequences of 3203 3204 BRANCH->EXACT=>x1 3205 BRANCH->EXACT=>x2 3206 tail 3207 3208 which would be constructed from a pattern like /A|LIST|OF|WORDS/ 3209 3210 If we can find such a subsequence we need to turn the first 3211 element into a trie and then add the subsequent branch exact 3212 strings to the trie. 3213 3214 We have two cases 3215 3216 1. patterns where the whole set of branches can be converted. 3217 3218 2. patterns where only a subset can be converted. 3219 3220 In case 1 we can replace the whole set with a single regop 3221 for the trie. In case 2 we need to keep the start and end 3222 branches so 3223 3224 'BRANCH EXACT; BRANCH EXACT; BRANCH X' 3225 becomes BRANCH TRIE; BRANCH X; 3226 3227 There is an additional case, that being where there is a 3228 common prefix, which gets split out into an EXACT like node 3229 preceding the TRIE node. 3230 3231 If x(1..n)==tail then we can do a simple trie, if not we make 3232 a "jump" trie, such that when we match the appropriate word 3233 we "jump" to the appropriate tail node. Essentially we turn 3234 a nested if into a case structure of sorts. 3235 3236 */ 3237 3238 int made=0; 3239 if (!re_trie_maxbuff) { 3240 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1); 3241 if (!SvIOK(re_trie_maxbuff)) 3242 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT); 3243 } 3244 if ( SvIV(re_trie_maxbuff)>=0 ) { 3245 regnode *cur; 3246 regnode *first = (regnode *)NULL; 3247 regnode *last = (regnode *)NULL; 3248 regnode *tail = scan; 3249 U8 trietype = 0; 3250 U32 count=0; 3251 3252 #ifdef DEBUGGING 3253 SV * const mysv = sv_newmortal(); /* for dumping */ 3254 #endif 3255 /* var tail is used because there may be a TAIL 3256 regop in the way. Ie, the exacts will point to the 3257 thing following the TAIL, but the last branch will 3258 point at the TAIL. So we advance tail. If we 3259 have nested (?:) we may have to move through several 3260 tails. 3261 */ 3262 3263 while ( OP( tail ) == TAIL ) { 3264 /* this is the TAIL generated by (?:) */ 3265 tail = regnext( tail ); 3266 } 3267 3268 3269 DEBUG_TRIE_COMPILE_r({ 3270 regprop(RExC_rx, mysv, tail ); 3271 PerlIO_printf( Perl_debug_log, "%*s%s%s\n", 3272 (int)depth * 2 + 2, "", 3273 "Looking for TRIE'able sequences. Tail node is: ", 3274 SvPV_nolen_const( mysv ) 3275 ); 3276 }); 3277 3278 /* 3279 3280 Step through the branches 3281 cur represents each branch, 3282 noper is the first thing to be matched as part of that branch 3283 noper_next is the regnext() of that node. 3284 3285 We normally handle a case like this /FOO[xyz]|BAR[pqr]/ 3286 via a "jump trie" but we also support building with NOJUMPTRIE, 3287 which restricts the trie logic to structures like /FOO|BAR/. 3288 3289 If noper is a trieable nodetype then the branch is a possible optimization 3290 target. If we are building under NOJUMPTRIE then we require that noper_next 3291 is the same as scan (our current position in the regex program). 3292 3293 Once we have two or more consecutive such branches we can create a 3294 trie of the EXACT's contents and stitch it in place into the program. 3295 3296 If the sequence represents all of the branches in the alternation we 3297 replace the entire thing with a single TRIE node. 3298 3299 Otherwise when it is a subsequence we need to stitch it in place and 3300 replace only the relevant branches. This means the first branch has 3301 to remain as it is used by the alternation logic, and its next pointer, 3302 and needs to be repointed at the item on the branch chain following 3303 the last branch we have optimized away. 3304 3305 This could be either a BRANCH, in which case the subsequence is internal, 3306 or it could be the item following the branch sequence in which case the 3307 subsequence is at the end (which does not necessarily mean the first node 3308 is the start of the alternation). 3309 3310 TRIE_TYPE(X) is a define which maps the optype to a trietype. 3311 3312 optype | trietype 3313 ----------------+----------- 3314 NOTHING | NOTHING 3315 EXACT | EXACT 3316 EXACTFU | EXACTFU 3317 EXACTFU_SS | EXACTFU 3318 EXACTFU_TRICKYFOLD | EXACTFU 3319 EXACTFA | 0 3320 3321 3322 */ 3323 #define TRIE_TYPE(X) ( ( NOTHING == (X) ) ? NOTHING : \ 3324 ( EXACT == (X) ) ? EXACT : \ 3325 ( EXACTFU == (X) || EXACTFU_SS == (X) || EXACTFU_TRICKYFOLD == (X) ) ? EXACTFU : \ 3326 0 ) 3327 3328 /* dont use tail as the end marker for this traverse */ 3329 for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) { 3330 regnode * const noper = NEXTOPER( cur ); 3331 U8 noper_type = OP( noper ); 3332 U8 noper_trietype = TRIE_TYPE( noper_type ); 3333 #if defined(DEBUGGING) || defined(NOJUMPTRIE) 3334 regnode * const noper_next = regnext( noper ); 3335 U8 noper_next_type = (noper_next && noper_next != tail) ? OP(noper_next) : 0; 3336 U8 noper_next_trietype = (noper_next && noper_next != tail) ? TRIE_TYPE( noper_next_type ) :0; 3337 #endif 3338 3339 DEBUG_TRIE_COMPILE_r({ 3340 regprop(RExC_rx, mysv, cur); 3341 PerlIO_printf( Perl_debug_log, "%*s- %s (%d)", 3342 (int)depth * 2 + 2,"", SvPV_nolen_const( mysv ), REG_NODE_NUM(cur) ); 3343 3344 regprop(RExC_rx, mysv, noper); 3345 PerlIO_printf( Perl_debug_log, " -> %s", 3346 SvPV_nolen_const(mysv)); 3347 3348 if ( noper_next ) { 3349 regprop(RExC_rx, mysv, noper_next ); 3350 PerlIO_printf( Perl_debug_log,"\t=> %s\t", 3351 SvPV_nolen_const(mysv)); 3352 } 3353 PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d,tt==%s,nt==%s,nnt==%s)\n", 3354 REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur), 3355 PL_reg_name[trietype], PL_reg_name[noper_trietype], PL_reg_name[noper_next_trietype] 3356 ); 3357 }); 3358 3359 /* Is noper a trieable nodetype that can be merged with the 3360 * current trie (if there is one)? */ 3361 if ( noper_trietype 3362 && 3363 ( 3364 ( noper_trietype == NOTHING) 3365 || ( trietype == NOTHING ) 3366 || ( trietype == noper_trietype ) 3367 ) 3368 #ifdef NOJUMPTRIE 3369 && noper_next == tail 3370 #endif 3371 && count < U16_MAX) 3372 { 3373 /* Handle mergable triable node 3374 * Either we are the first node in a new trieable sequence, 3375 * in which case we do some bookkeeping, otherwise we update 3376 * the end pointer. */ 3377 if ( !first ) { 3378 first = cur; 3379 if ( noper_trietype == NOTHING ) { 3380 #if !defined(DEBUGGING) && !defined(NOJUMPTRIE) 3381 regnode * const noper_next = regnext( noper ); 3382 U8 noper_next_type = (noper_next && noper_next!=tail) ? OP(noper_next) : 0; 3383 U8 noper_next_trietype = noper_next_type ? TRIE_TYPE( noper_next_type ) :0; 3384 #endif 3385 3386 if ( noper_next_trietype ) { 3387 trietype = noper_next_trietype; 3388 } else if (noper_next_type) { 3389 /* a NOTHING regop is 1 regop wide. We need at least two 3390 * for a trie so we can't merge this in */ 3391 first = NULL; 3392 } 3393 } else { 3394 trietype = noper_trietype; 3395 } 3396 } else { 3397 if ( trietype == NOTHING ) 3398 trietype = noper_trietype; 3399 last = cur; 3400 } 3401 if (first) 3402 count++; 3403 } /* end handle mergable triable node */ 3404 else { 3405 /* handle unmergable node - 3406 * noper may either be a triable node which can not be tried 3407 * together with the current trie, or a non triable node */ 3408 if ( last ) { 3409 /* If last is set and trietype is not NOTHING then we have found 3410 * at least two triable branch sequences in a row of a similar 3411 * trietype so we can turn them into a trie. If/when we 3412 * allow NOTHING to start a trie sequence this condition will be 3413 * required, and it isn't expensive so we leave it in for now. */ 3414 if ( trietype && trietype != NOTHING ) 3415 make_trie( pRExC_state, 3416 startbranch, first, cur, tail, count, 3417 trietype, depth+1 ); 3418 last = NULL; /* note: we clear/update first, trietype etc below, so we dont do it here */ 3419 } 3420 if ( noper_trietype 3421 #ifdef NOJUMPTRIE 3422 && noper_next == tail 3423 #endif 3424 ){ 3425 /* noper is triable, so we can start a new trie sequence */ 3426 count = 1; 3427 first = cur; 3428 trietype = noper_trietype; 3429 } else if (first) { 3430 /* if we already saw a first but the current node is not triable then we have 3431 * to reset the first information. */ 3432 count = 0; 3433 first = NULL; 3434 trietype = 0; 3435 } 3436 } /* end handle unmergable node */ 3437 } /* loop over branches */ 3438 DEBUG_TRIE_COMPILE_r({ 3439 regprop(RExC_rx, mysv, cur); 3440 PerlIO_printf( Perl_debug_log, 3441 "%*s- %s (%d) <SCAN FINISHED>\n", (int)depth * 2 + 2, 3442 "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur)); 3443 3444 }); 3445 if ( last && trietype ) { 3446 if ( trietype != NOTHING ) { 3447 /* the last branch of the sequence was part of a trie, 3448 * so we have to construct it here outside of the loop 3449 */ 3450 made= make_trie( pRExC_state, startbranch, first, scan, tail, count, trietype, depth+1 ); 3451 #ifdef TRIE_STUDY_OPT 3452 if ( ((made == MADE_EXACT_TRIE && 3453 startbranch == first) 3454 || ( first_non_open == first )) && 3455 depth==0 ) { 3456 flags |= SCF_TRIE_RESTUDY; 3457 if ( startbranch == first 3458 && scan == tail ) 3459 { 3460 RExC_seen &=~REG_TOP_LEVEL_BRANCHES; 3461 } 3462 } 3463 #endif 3464 } else { 3465 /* at this point we know whatever we have is a NOTHING sequence/branch 3466 * AND if 'startbranch' is 'first' then we can turn the whole thing into a NOTHING 3467 */ 3468 if ( startbranch == first ) { 3469 regnode *opt; 3470 /* the entire thing is a NOTHING sequence, something like this: 3471 * (?:|) So we can turn it into a plain NOTHING op. */ 3472 DEBUG_TRIE_COMPILE_r({ 3473 regprop(RExC_rx, mysv, cur); 3474 PerlIO_printf( Perl_debug_log, 3475 "%*s- %s (%d) <NOTHING BRANCH SEQUENCE>\n", (int)depth * 2 + 2, 3476 "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur)); 3477 3478 }); 3479 OP(startbranch)= NOTHING; 3480 NEXT_OFF(startbranch)= tail - startbranch; 3481 for ( opt= startbranch + 1; opt < tail ; opt++ ) 3482 OP(opt)= OPTIMIZED; 3483 } 3484 } 3485 } /* end if ( last) */ 3486 } /* TRIE_MAXBUF is non zero */ 3487 3488 } /* do trie */ 3489 3490 } 3491 else if ( code == BRANCHJ ) { /* single branch is optimized. */ 3492 scan = NEXTOPER(NEXTOPER(scan)); 3493 } else /* single branch is optimized. */ 3494 scan = NEXTOPER(scan); 3495 continue; 3496 } else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) { 3497 scan_frame *newframe = NULL; 3498 I32 paren; 3499 regnode *start; 3500 regnode *end; 3501 3502 if (OP(scan) != SUSPEND) { 3503 /* set the pointer */ 3504 if (OP(scan) == GOSUB) { 3505 paren = ARG(scan); 3506 RExC_recurse[ARG2L(scan)] = scan; 3507 start = RExC_open_parens[paren-1]; 3508 end = RExC_close_parens[paren-1]; 3509 } else { 3510 paren = 0; 3511 start = RExC_rxi->program + 1; 3512 end = RExC_opend; 3513 } 3514 if (!recursed) { 3515 Newxz(recursed, (((RExC_npar)>>3) +1), U8); 3516 SAVEFREEPV(recursed); 3517 } 3518 if (!PAREN_TEST(recursed,paren+1)) { 3519 PAREN_SET(recursed,paren+1); 3520 Newx(newframe,1,scan_frame); 3521 } else { 3522 if (flags & SCF_DO_SUBSTR) { 3523 SCAN_COMMIT(pRExC_state,data,minlenp); 3524 data->longest = &(data->longest_float); 3525 } 3526 is_inf = is_inf_internal = 1; 3527 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */ 3528 cl_anything(pRExC_state, data->start_class); 3529 flags &= ~SCF_DO_STCLASS; 3530 } 3531 } else { 3532 Newx(newframe,1,scan_frame); 3533 paren = stopparen; 3534 start = scan+2; 3535 end = regnext(scan); 3536 } 3537 if (newframe) { 3538 assert(start); 3539 assert(end); 3540 SAVEFREEPV(newframe); 3541 newframe->next = regnext(scan); 3542 newframe->last = last; 3543 newframe->stop = stopparen; 3544 newframe->prev = frame; 3545 3546 frame = newframe; 3547 scan = start; 3548 stopparen = paren; 3549 last = end; 3550 3551 continue; 3552 } 3553 } 3554 else if (OP(scan) == EXACT) { 3555 I32 l = STR_LEN(scan); 3556 UV uc; 3557 if (UTF) { 3558 const U8 * const s = (U8*)STRING(scan); 3559 uc = utf8_to_uvchr_buf(s, s + l, NULL); 3560 l = utf8_length(s, s + l); 3561 } else { 3562 uc = *((U8*)STRING(scan)); 3563 } 3564 min += l; 3565 if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */ 3566 /* The code below prefers earlier match for fixed 3567 offset, later match for variable offset. */ 3568 if (data->last_end == -1) { /* Update the start info. */ 3569 data->last_start_min = data->pos_min; 3570 data->last_start_max = is_inf 3571 ? I32_MAX : data->pos_min + data->pos_delta; 3572 } 3573 sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan)); 3574 if (UTF) 3575 SvUTF8_on(data->last_found); 3576 { 3577 SV * const sv = data->last_found; 3578 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ? 3579 mg_find(sv, PERL_MAGIC_utf8) : NULL; 3580 if (mg && mg->mg_len >= 0) 3581 mg->mg_len += utf8_length((U8*)STRING(scan), 3582 (U8*)STRING(scan)+STR_LEN(scan)); 3583 } 3584 data->last_end = data->pos_min + l; 3585 data->pos_min += l; /* As in the first entry. */ 3586 data->flags &= ~SF_BEFORE_EOL; 3587 } 3588 if (flags & SCF_DO_STCLASS_AND) { 3589 /* Check whether it is compatible with what we know already! */ 3590 int compat = 1; 3591 3592 3593 /* If compatible, we or it in below. It is compatible if is 3594 * in the bitmp and either 1) its bit or its fold is set, or 2) 3595 * it's for a locale. Even if there isn't unicode semantics 3596 * here, at runtime there may be because of matching against a 3597 * utf8 string, so accept a possible false positive for 3598 * latin1-range folds */ 3599 if (uc >= 0x100 || 3600 (!(data->start_class->flags & ANYOF_LOCALE) 3601 && !ANYOF_BITMAP_TEST(data->start_class, uc) 3602 && (!(data->start_class->flags & ANYOF_LOC_FOLD) 3603 || !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc]))) 3604 ) 3605 { 3606 compat = 0; 3607 } 3608 ANYOF_CLASS_ZERO(data->start_class); 3609 ANYOF_BITMAP_ZERO(data->start_class); 3610 if (compat) 3611 ANYOF_BITMAP_SET(data->start_class, uc); 3612 else if (uc >= 0x100) { 3613 int i; 3614 3615 /* Some Unicode code points fold to the Latin1 range; as 3616 * XXX temporary code, instead of figuring out if this is 3617 * one, just assume it is and set all the start class bits 3618 * that could be some such above 255 code point's fold 3619 * which will generate fals positives. As the code 3620 * elsewhere that does compute the fold settles down, it 3621 * can be extracted out and re-used here */ 3622 for (i = 0; i < 256; i++){ 3623 if (HAS_NONLATIN1_FOLD_CLOSURE(i)) { 3624 ANYOF_BITMAP_SET(data->start_class, i); 3625 } 3626 } 3627 } 3628 CLEAR_SSC_EOS(data->start_class); 3629 if (uc < 0x100) 3630 data->start_class->flags &= ~ANYOF_UNICODE_ALL; 3631 } 3632 else if (flags & SCF_DO_STCLASS_OR) { 3633 /* false positive possible if the class is case-folded */ 3634 if (uc < 0x100) 3635 ANYOF_BITMAP_SET(data->start_class, uc); 3636 else 3637 data->start_class->flags |= ANYOF_UNICODE_ALL; 3638 CLEAR_SSC_EOS(data->start_class); 3639 cl_and(data->start_class, and_withp); 3640 } 3641 flags &= ~SCF_DO_STCLASS; 3642 } 3643 else if (PL_regkind[OP(scan)] == EXACT) { /* But OP != EXACT! */ 3644 I32 l = STR_LEN(scan); 3645 UV uc = *((U8*)STRING(scan)); 3646 3647 /* Search for fixed substrings supports EXACT only. */ 3648 if (flags & SCF_DO_SUBSTR) { 3649 assert(data); 3650 SCAN_COMMIT(pRExC_state, data, minlenp); 3651 } 3652 if (UTF) { 3653 const U8 * const s = (U8 *)STRING(scan); 3654 uc = utf8_to_uvchr_buf(s, s + l, NULL); 3655 l = utf8_length(s, s + l); 3656 } 3657 if (has_exactf_sharp_s) { 3658 RExC_seen |= REG_SEEN_EXACTF_SHARP_S; 3659 } 3660 min += l - min_subtract; 3661 assert (min >= 0); 3662 delta += min_subtract; 3663 if (flags & SCF_DO_SUBSTR) { 3664 data->pos_min += l - min_subtract; 3665 if (data->pos_min < 0) { 3666 data->pos_min = 0; 3667 } 3668 data->pos_delta += min_subtract; 3669 if (min_subtract) { 3670 data->longest = &(data->longest_float); 3671 } 3672 } 3673 if (flags & SCF_DO_STCLASS_AND) { 3674 /* Check whether it is compatible with what we know already! */ 3675 int compat = 1; 3676 if (uc >= 0x100 || 3677 (!(data->start_class->flags & ANYOF_LOCALE) 3678 && !ANYOF_BITMAP_TEST(data->start_class, uc) 3679 && !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc]))) 3680 { 3681 compat = 0; 3682 } 3683 ANYOF_CLASS_ZERO(data->start_class); 3684 ANYOF_BITMAP_ZERO(data->start_class); 3685 if (compat) { 3686 ANYOF_BITMAP_SET(data->start_class, uc); 3687 CLEAR_SSC_EOS(data->start_class); 3688 if (OP(scan) == EXACTFL) { 3689 /* XXX This set is probably no longer necessary, and 3690 * probably wrong as LOCALE now is on in the initial 3691 * state */ 3692 data->start_class->flags |= ANYOF_LOCALE|ANYOF_LOC_FOLD; 3693 } 3694 else { 3695 3696 /* Also set the other member of the fold pair. In case 3697 * that unicode semantics is called for at runtime, use 3698 * the full latin1 fold. (Can't do this for locale, 3699 * because not known until runtime) */ 3700 ANYOF_BITMAP_SET(data->start_class, PL_fold_latin1[uc]); 3701 3702 /* All other (EXACTFL handled above) folds except under 3703 * /iaa that include s, S, and sharp_s also may include 3704 * the others */ 3705 if (OP(scan) != EXACTFA) { 3706 if (uc == 's' || uc == 'S') { 3707 ANYOF_BITMAP_SET(data->start_class, 3708 LATIN_SMALL_LETTER_SHARP_S); 3709 } 3710 else if (uc == LATIN_SMALL_LETTER_SHARP_S) { 3711 ANYOF_BITMAP_SET(data->start_class, 's'); 3712 ANYOF_BITMAP_SET(data->start_class, 'S'); 3713 } 3714 } 3715 } 3716 } 3717 else if (uc >= 0x100) { 3718 int i; 3719 for (i = 0; i < 256; i++){ 3720 if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) { 3721 ANYOF_BITMAP_SET(data->start_class, i); 3722 } 3723 } 3724 } 3725 } 3726 else if (flags & SCF_DO_STCLASS_OR) { 3727 if (data->start_class->flags & ANYOF_LOC_FOLD) { 3728 /* false positive possible if the class is case-folded. 3729 Assume that the locale settings are the same... */ 3730 if (uc < 0x100) { 3731 ANYOF_BITMAP_SET(data->start_class, uc); 3732 if (OP(scan) != EXACTFL) { 3733 3734 /* And set the other member of the fold pair, but 3735 * can't do that in locale because not known until 3736 * run-time */ 3737 ANYOF_BITMAP_SET(data->start_class, 3738 PL_fold_latin1[uc]); 3739 3740 /* All folds except under /iaa that include s, S, 3741 * and sharp_s also may include the others */ 3742 if (OP(scan) != EXACTFA) { 3743 if (uc == 's' || uc == 'S') { 3744 ANYOF_BITMAP_SET(data->start_class, 3745 LATIN_SMALL_LETTER_SHARP_S); 3746 } 3747 else if (uc == LATIN_SMALL_LETTER_SHARP_S) { 3748 ANYOF_BITMAP_SET(data->start_class, 's'); 3749 ANYOF_BITMAP_SET(data->start_class, 'S'); 3750 } 3751 } 3752 } 3753 } 3754 CLEAR_SSC_EOS(data->start_class); 3755 } 3756 cl_and(data->start_class, and_withp); 3757 } 3758 flags &= ~SCF_DO_STCLASS; 3759 } 3760 else if (REGNODE_VARIES(OP(scan))) { 3761 I32 mincount, maxcount, minnext, deltanext, fl = 0; 3762 I32 f = flags, pos_before = 0; 3763 regnode * const oscan = scan; 3764 struct regnode_charclass_class this_class; 3765 struct regnode_charclass_class *oclass = NULL; 3766 I32 next_is_eval = 0; 3767 3768 switch (PL_regkind[OP(scan)]) { 3769 case WHILEM: /* End of (?:...)* . */ 3770 scan = NEXTOPER(scan); 3771 goto finish; 3772 case PLUS: 3773 if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) { 3774 next = NEXTOPER(scan); 3775 if (OP(next) == EXACT || (flags & SCF_DO_STCLASS)) { 3776 mincount = 1; 3777 maxcount = REG_INFTY; 3778 next = regnext(scan); 3779 scan = NEXTOPER(scan); 3780 goto do_curly; 3781 } 3782 } 3783 if (flags & SCF_DO_SUBSTR) 3784 data->pos_min++; 3785 min++; 3786 /* Fall through. */ 3787 case STAR: 3788 if (flags & SCF_DO_STCLASS) { 3789 mincount = 0; 3790 maxcount = REG_INFTY; 3791 next = regnext(scan); 3792 scan = NEXTOPER(scan); 3793 goto do_curly; 3794 } 3795 is_inf = is_inf_internal = 1; 3796 scan = regnext(scan); 3797 if (flags & SCF_DO_SUBSTR) { 3798 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot extend fixed substrings */ 3799 data->longest = &(data->longest_float); 3800 } 3801 goto optimize_curly_tail; 3802 case CURLY: 3803 if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM) 3804 && (scan->flags == stopparen)) 3805 { 3806 mincount = 1; 3807 maxcount = 1; 3808 } else { 3809 mincount = ARG1(scan); 3810 maxcount = ARG2(scan); 3811 } 3812 next = regnext(scan); 3813 if (OP(scan) == CURLYX) { 3814 I32 lp = (data ? *(data->last_closep) : 0); 3815 scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX); 3816 } 3817 scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS; 3818 next_is_eval = (OP(scan) == EVAL); 3819 do_curly: 3820 if (flags & SCF_DO_SUBSTR) { 3821 if (mincount == 0) SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot extend fixed substrings */ 3822 pos_before = data->pos_min; 3823 } 3824 if (data) { 3825 fl = data->flags; 3826 data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL); 3827 if (is_inf) 3828 data->flags |= SF_IS_INF; 3829 } 3830 if (flags & SCF_DO_STCLASS) { 3831 cl_init(pRExC_state, &this_class); 3832 oclass = data->start_class; 3833 data->start_class = &this_class; 3834 f |= SCF_DO_STCLASS_AND; 3835 f &= ~SCF_DO_STCLASS_OR; 3836 } 3837 /* Exclude from super-linear cache processing any {n,m} 3838 regops for which the combination of input pos and regex 3839 pos is not enough information to determine if a match 3840 will be possible. 3841 3842 For example, in the regex /foo(bar\s*){4,8}baz/ with the 3843 regex pos at the \s*, the prospects for a match depend not 3844 only on the input position but also on how many (bar\s*) 3845 repeats into the {4,8} we are. */ 3846 if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY)) 3847 f &= ~SCF_WHILEM_VISITED_POS; 3848 3849 /* This will finish on WHILEM, setting scan, or on NULL: */ 3850 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext, 3851 last, data, stopparen, recursed, NULL, 3852 (mincount == 0 3853 ? (f & ~SCF_DO_SUBSTR) : f),depth+1); 3854 3855 if (flags & SCF_DO_STCLASS) 3856 data->start_class = oclass; 3857 if (mincount == 0 || minnext == 0) { 3858 if (flags & SCF_DO_STCLASS_OR) { 3859 cl_or(pRExC_state, data->start_class, &this_class); 3860 } 3861 else if (flags & SCF_DO_STCLASS_AND) { 3862 /* Switch to OR mode: cache the old value of 3863 * data->start_class */ 3864 INIT_AND_WITHP; 3865 StructCopy(data->start_class, and_withp, 3866 struct regnode_charclass_class); 3867 flags &= ~SCF_DO_STCLASS_AND; 3868 StructCopy(&this_class, data->start_class, 3869 struct regnode_charclass_class); 3870 flags |= SCF_DO_STCLASS_OR; 3871 SET_SSC_EOS(data->start_class); 3872 } 3873 } else { /* Non-zero len */ 3874 if (flags & SCF_DO_STCLASS_OR) { 3875 cl_or(pRExC_state, data->start_class, &this_class); 3876 cl_and(data->start_class, and_withp); 3877 } 3878 else if (flags & SCF_DO_STCLASS_AND) 3879 cl_and(data->start_class, &this_class); 3880 flags &= ~SCF_DO_STCLASS; 3881 } 3882 if (!scan) /* It was not CURLYX, but CURLY. */ 3883 scan = next; 3884 if ( /* ? quantifier ok, except for (?{ ... }) */ 3885 (next_is_eval || !(mincount == 0 && maxcount == 1)) 3886 && (minnext == 0) && (deltanext == 0) 3887 && data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR)) 3888 && maxcount <= REG_INFTY/3) /* Complement check for big count */ 3889 { 3890 /* Fatal warnings may leak the regexp without this: */ 3891 SAVEFREESV(RExC_rx_sv); 3892 ckWARNreg(RExC_parse, 3893 "Quantifier unexpected on zero-length expression"); 3894 (void)ReREFCNT_inc(RExC_rx_sv); 3895 } 3896 3897 min += minnext * mincount; 3898 is_inf_internal |= deltanext == I32_MAX 3899 || (maxcount == REG_INFTY && minnext + deltanext > 0); 3900 is_inf |= is_inf_internal; 3901 if (is_inf) 3902 delta = I32_MAX; 3903 else 3904 delta += (minnext + deltanext) * maxcount - minnext * mincount; 3905 3906 /* Try powerful optimization CURLYX => CURLYN. */ 3907 if ( OP(oscan) == CURLYX && data 3908 && data->flags & SF_IN_PAR 3909 && !(data->flags & SF_HAS_EVAL) 3910 && !deltanext && minnext == 1 ) { 3911 /* Try to optimize to CURLYN. */ 3912 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; 3913 regnode * const nxt1 = nxt; 3914 #ifdef DEBUGGING 3915 regnode *nxt2; 3916 #endif 3917 3918 /* Skip open. */ 3919 nxt = regnext(nxt); 3920 if (!REGNODE_SIMPLE(OP(nxt)) 3921 && !(PL_regkind[OP(nxt)] == EXACT 3922 && STR_LEN(nxt) == 1)) 3923 goto nogo; 3924 #ifdef DEBUGGING 3925 nxt2 = nxt; 3926 #endif 3927 nxt = regnext(nxt); 3928 if (OP(nxt) != CLOSE) 3929 goto nogo; 3930 if (RExC_open_parens) { 3931 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/ 3932 RExC_close_parens[ARG(nxt1)-1]=nxt+2; /*close->while*/ 3933 } 3934 /* Now we know that nxt2 is the only contents: */ 3935 oscan->flags = (U8)ARG(nxt); 3936 OP(oscan) = CURLYN; 3937 OP(nxt1) = NOTHING; /* was OPEN. */ 3938 3939 #ifdef DEBUGGING 3940 OP(nxt1 + 1) = OPTIMIZED; /* was count. */ 3941 NEXT_OFF(nxt1+ 1) = 0; /* just for consistency. */ 3942 NEXT_OFF(nxt2) = 0; /* just for consistency with CURLY. */ 3943 OP(nxt) = OPTIMIZED; /* was CLOSE. */ 3944 OP(nxt + 1) = OPTIMIZED; /* was count. */ 3945 NEXT_OFF(nxt+ 1) = 0; /* just for consistency. */ 3946 #endif 3947 } 3948 nogo: 3949 3950 /* Try optimization CURLYX => CURLYM. */ 3951 if ( OP(oscan) == CURLYX && data 3952 && !(data->flags & SF_HAS_PAR) 3953 && !(data->flags & SF_HAS_EVAL) 3954 && !deltanext /* atom is fixed width */ 3955 && minnext != 0 /* CURLYM can't handle zero width */ 3956 && ! (RExC_seen & REG_SEEN_EXACTF_SHARP_S) /* Nor \xDF */ 3957 ) { 3958 /* XXXX How to optimize if data == 0? */ 3959 /* Optimize to a simpler form. */ 3960 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */ 3961 regnode *nxt2; 3962 3963 OP(oscan) = CURLYM; 3964 while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/ 3965 && (OP(nxt2) != WHILEM)) 3966 nxt = nxt2; 3967 OP(nxt2) = SUCCEED; /* Whas WHILEM */ 3968 /* Need to optimize away parenths. */ 3969 if ((data->flags & SF_IN_PAR) && OP(nxt) == CLOSE) { 3970 /* Set the parenth number. */ 3971 regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/ 3972 3973 oscan->flags = (U8)ARG(nxt); 3974 if (RExC_open_parens) { 3975 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/ 3976 RExC_close_parens[ARG(nxt1)-1]=nxt2+1; /*close->NOTHING*/ 3977 } 3978 OP(nxt1) = OPTIMIZED; /* was OPEN. */ 3979 OP(nxt) = OPTIMIZED; /* was CLOSE. */ 3980 3981 #ifdef DEBUGGING 3982 OP(nxt1 + 1) = OPTIMIZED; /* was count. */ 3983 OP(nxt + 1) = OPTIMIZED; /* was count. */ 3984 NEXT_OFF(nxt1 + 1) = 0; /* just for consistency. */ 3985 NEXT_OFF(nxt + 1) = 0; /* just for consistency. */ 3986 #endif 3987 #if 0 3988 while ( nxt1 && (OP(nxt1) != WHILEM)) { 3989 regnode *nnxt = regnext(nxt1); 3990 if (nnxt == nxt) { 3991 if (reg_off_by_arg[OP(nxt1)]) 3992 ARG_SET(nxt1, nxt2 - nxt1); 3993 else if (nxt2 - nxt1 < U16_MAX) 3994 NEXT_OFF(nxt1) = nxt2 - nxt1; 3995 else 3996 OP(nxt) = NOTHING; /* Cannot beautify */ 3997 } 3998 nxt1 = nnxt; 3999 } 4000 #endif 4001 /* Optimize again: */ 4002 study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt, 4003 NULL, stopparen, recursed, NULL, 0,depth+1); 4004 } 4005 else 4006 oscan->flags = 0; 4007 } 4008 else if ((OP(oscan) == CURLYX) 4009 && (flags & SCF_WHILEM_VISITED_POS) 4010 /* See the comment on a similar expression above. 4011 However, this time it's not a subexpression 4012 we care about, but the expression itself. */ 4013 && (maxcount == REG_INFTY) 4014 && data && ++data->whilem_c < 16) { 4015 /* This stays as CURLYX, we can put the count/of pair. */ 4016 /* Find WHILEM (as in regexec.c) */ 4017 regnode *nxt = oscan + NEXT_OFF(oscan); 4018 4019 if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */ 4020 nxt += ARG(nxt); 4021 PREVOPER(nxt)->flags = (U8)(data->whilem_c 4022 | (RExC_whilem_seen << 4)); /* On WHILEM */ 4023 } 4024 if (data && fl & (SF_HAS_PAR|SF_IN_PAR)) 4025 pars++; 4026 if (flags & SCF_DO_SUBSTR) { 4027 SV *last_str = NULL; 4028 int counted = mincount != 0; 4029 4030 if (data->last_end > 0 && mincount != 0) { /* Ends with a string. */ 4031 #if defined(SPARC64_GCC_WORKAROUND) 4032 I32 b = 0; 4033 STRLEN l = 0; 4034 const char *s = NULL; 4035 I32 old = 0; 4036 4037 if (pos_before >= data->last_start_min) 4038 b = pos_before; 4039 else 4040 b = data->last_start_min; 4041 4042 l = 0; 4043 s = SvPV_const(data->last_found, l); 4044 old = b - data->last_start_min; 4045 4046 #else 4047 I32 b = pos_before >= data->last_start_min 4048 ? pos_before : data->last_start_min; 4049 STRLEN l; 4050 const char * const s = SvPV_const(data->last_found, l); 4051 I32 old = b - data->last_start_min; 4052 #endif 4053 4054 if (UTF) 4055 old = utf8_hop((U8*)s, old) - (U8*)s; 4056 l -= old; 4057 /* Get the added string: */ 4058 last_str = newSVpvn_utf8(s + old, l, UTF); 4059 if (deltanext == 0 && pos_before == b) { 4060 /* What was added is a constant string */ 4061 if (mincount > 1) { 4062 SvGROW(last_str, (mincount * l) + 1); 4063 repeatcpy(SvPVX(last_str) + l, 4064 SvPVX_const(last_str), l, mincount - 1); 4065 SvCUR_set(last_str, SvCUR(last_str) * mincount); 4066 /* Add additional parts. */ 4067 SvCUR_set(data->last_found, 4068 SvCUR(data->last_found) - l); 4069 sv_catsv(data->last_found, last_str); 4070 { 4071 SV * sv = data->last_found; 4072 MAGIC *mg = 4073 SvUTF8(sv) && SvMAGICAL(sv) ? 4074 mg_find(sv, PERL_MAGIC_utf8) : NULL; 4075 if (mg && mg->mg_len >= 0) 4076 mg->mg_len += CHR_SVLEN(last_str) - l; 4077 } 4078 data->last_end += l * (mincount - 1); 4079 } 4080 } else { 4081 /* start offset must point into the last copy */ 4082 data->last_start_min += minnext * (mincount - 1); 4083 data->last_start_max += is_inf ? I32_MAX 4084 : (maxcount - 1) * (minnext + data->pos_delta); 4085 } 4086 } 4087 /* It is counted once already... */ 4088 data->pos_min += minnext * (mincount - counted); 4089 #if 0 4090 PerlIO_printf(Perl_debug_log, "counted=%d deltanext=%d I32_MAX=%d minnext=%d maxcount=%d mincount=%d\n", 4091 counted, deltanext, I32_MAX, minnext, maxcount, mincount); 4092 if (deltanext != I32_MAX) 4093 PerlIO_printf(Perl_debug_log, "LHS=%d RHS=%d\n", -counted * deltanext + (minnext + deltanext) * maxcount - minnext * mincount, I32_MAX - data->pos_delta); 4094 #endif 4095 if (deltanext == I32_MAX || -counted * deltanext + (minnext + deltanext) * maxcount - minnext * mincount >= I32_MAX - data->pos_delta) 4096 data->pos_delta = I32_MAX; 4097 else 4098 data->pos_delta += - counted * deltanext + 4099 (minnext + deltanext) * maxcount - minnext * mincount; 4100 if (mincount != maxcount) { 4101 /* Cannot extend fixed substrings found inside 4102 the group. */ 4103 SCAN_COMMIT(pRExC_state,data,minlenp); 4104 if (mincount && last_str) { 4105 SV * const sv = data->last_found; 4106 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ? 4107 mg_find(sv, PERL_MAGIC_utf8) : NULL; 4108 4109 if (mg) 4110 mg->mg_len = -1; 4111 sv_setsv(sv, last_str); 4112 data->last_end = data->pos_min; 4113 data->last_start_min = 4114 data->pos_min - CHR_SVLEN(last_str); 4115 data->last_start_max = is_inf 4116 ? I32_MAX 4117 : data->pos_min + data->pos_delta 4118 - CHR_SVLEN(last_str); 4119 } 4120 data->longest = &(data->longest_float); 4121 } 4122 SvREFCNT_dec(last_str); 4123 } 4124 if (data && (fl & SF_HAS_EVAL)) 4125 data->flags |= SF_HAS_EVAL; 4126 optimize_curly_tail: 4127 if (OP(oscan) != CURLYX) { 4128 while (PL_regkind[OP(next = regnext(oscan))] == NOTHING 4129 && NEXT_OFF(next)) 4130 NEXT_OFF(oscan) += NEXT_OFF(next); 4131 } 4132 continue; 4133 default: /* REF, and CLUMP only? */ 4134 if (flags & SCF_DO_SUBSTR) { 4135 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */ 4136 data->longest = &(data->longest_float); 4137 } 4138 is_inf = is_inf_internal = 1; 4139 if (flags & SCF_DO_STCLASS_OR) 4140 cl_anything(pRExC_state, data->start_class); 4141 flags &= ~SCF_DO_STCLASS; 4142 break; 4143 } 4144 } 4145 else if (OP(scan) == LNBREAK) { 4146 if (flags & SCF_DO_STCLASS) { 4147 int value = 0; 4148 CLEAR_SSC_EOS(data->start_class); /* No match on empty */ 4149 if (flags & SCF_DO_STCLASS_AND) { 4150 for (value = 0; value < 256; value++) 4151 if (!is_VERTWS_cp(value)) 4152 ANYOF_BITMAP_CLEAR(data->start_class, value); 4153 } 4154 else { 4155 for (value = 0; value < 256; value++) 4156 if (is_VERTWS_cp(value)) 4157 ANYOF_BITMAP_SET(data->start_class, value); 4158 } 4159 if (flags & SCF_DO_STCLASS_OR) 4160 cl_and(data->start_class, and_withp); 4161 flags &= ~SCF_DO_STCLASS; 4162 } 4163 min++; 4164 delta++; /* Because of the 2 char string cr-lf */ 4165 if (flags & SCF_DO_SUBSTR) { 4166 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */ 4167 data->pos_min += 1; 4168 data->pos_delta += 1; 4169 data->longest = &(data->longest_float); 4170 } 4171 } 4172 else if (REGNODE_SIMPLE(OP(scan))) { 4173 int value = 0; 4174 4175 if (flags & SCF_DO_SUBSTR) { 4176 SCAN_COMMIT(pRExC_state,data,minlenp); 4177 data->pos_min++; 4178 } 4179 min++; 4180 if (flags & SCF_DO_STCLASS) { 4181 int loop_max = 256; 4182 CLEAR_SSC_EOS(data->start_class); /* No match on empty */ 4183 4184 /* Some of the logic below assumes that switching 4185 locale on will only add false positives. */ 4186 switch (PL_regkind[OP(scan)]) { 4187 U8 classnum; 4188 4189 case SANY: 4190 default: 4191 #ifdef DEBUGGING 4192 Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d", OP(scan)); 4193 #endif 4194 do_default: 4195 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */ 4196 cl_anything(pRExC_state, data->start_class); 4197 break; 4198 case REG_ANY: 4199 if (OP(scan) == SANY) 4200 goto do_default; 4201 if (flags & SCF_DO_STCLASS_OR) { /* Everything but \n */ 4202 value = (ANYOF_BITMAP_TEST(data->start_class,'\n') 4203 || ANYOF_CLASS_TEST_ANY_SET(data->start_class)); 4204 cl_anything(pRExC_state, data->start_class); 4205 } 4206 if (flags & SCF_DO_STCLASS_AND || !value) 4207 ANYOF_BITMAP_CLEAR(data->start_class,'\n'); 4208 break; 4209 case ANYOF: 4210 if (flags & SCF_DO_STCLASS_AND) 4211 cl_and(data->start_class, 4212 (struct regnode_charclass_class*)scan); 4213 else 4214 cl_or(pRExC_state, data->start_class, 4215 (struct regnode_charclass_class*)scan); 4216 break; 4217 case POSIXA: 4218 loop_max = 128; 4219 /* FALL THROUGH */ 4220 case POSIXL: 4221 case POSIXD: 4222 case POSIXU: 4223 classnum = FLAGS(scan); 4224 if (flags & SCF_DO_STCLASS_AND) { 4225 if (!(data->start_class->flags & ANYOF_LOCALE)) { 4226 ANYOF_CLASS_CLEAR(data->start_class, classnum_to_namedclass(classnum) + 1); 4227 for (value = 0; value < loop_max; value++) { 4228 if (! _generic_isCC(UNI_TO_NATIVE(value), classnum)) { 4229 ANYOF_BITMAP_CLEAR(data->start_class, UNI_TO_NATIVE(value)); 4230 } 4231 } 4232 } 4233 } 4234 else { 4235 if (data->start_class->flags & ANYOF_LOCALE) { 4236 ANYOF_CLASS_SET(data->start_class, classnum_to_namedclass(classnum)); 4237 } 4238 else { 4239 4240 /* Even if under locale, set the bits for non-locale 4241 * in case it isn't a true locale-node. This will 4242 * create false positives if it truly is locale */ 4243 for (value = 0; value < loop_max; value++) { 4244 if (_generic_isCC(UNI_TO_NATIVE(value), classnum)) { 4245 ANYOF_BITMAP_SET(data->start_class, UNI_TO_NATIVE(value)); 4246 } 4247 } 4248 } 4249 } 4250 break; 4251 case NPOSIXA: 4252 loop_max = 128; 4253 /* FALL THROUGH */ 4254 case NPOSIXL: 4255 case NPOSIXU: 4256 case NPOSIXD: 4257 classnum = FLAGS(scan); 4258 if (flags & SCF_DO_STCLASS_AND) { 4259 if (!(data->start_class->flags & ANYOF_LOCALE)) { 4260 ANYOF_CLASS_CLEAR(data->start_class, classnum_to_namedclass(classnum)); 4261 for (value = 0; value < loop_max; value++) { 4262 if (_generic_isCC(UNI_TO_NATIVE(value), classnum)) { 4263 ANYOF_BITMAP_CLEAR(data->start_class, UNI_TO_NATIVE(value)); 4264 } 4265 } 4266 } 4267 } 4268 else { 4269 if (data->start_class->flags & ANYOF_LOCALE) { 4270 ANYOF_CLASS_SET(data->start_class, classnum_to_namedclass(classnum) + 1); 4271 } 4272 else { 4273 4274 /* Even if under locale, set the bits for non-locale in 4275 * case it isn't a true locale-node. This will create 4276 * false positives if it truly is locale */ 4277 for (value = 0; value < loop_max; value++) { 4278 if (! _generic_isCC(UNI_TO_NATIVE(value), classnum)) { 4279 ANYOF_BITMAP_SET(data->start_class, UNI_TO_NATIVE(value)); 4280 } 4281 } 4282 if (PL_regkind[OP(scan)] == NPOSIXD) { 4283 data->start_class->flags |= ANYOF_NON_UTF8_LATIN1_ALL; 4284 } 4285 } 4286 } 4287 break; 4288 } 4289 if (flags & SCF_DO_STCLASS_OR) 4290 cl_and(data->start_class, and_withp); 4291 flags &= ~SCF_DO_STCLASS; 4292 } 4293 } 4294 else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) { 4295 data->flags |= (OP(scan) == MEOL 4296 ? SF_BEFORE_MEOL 4297 : SF_BEFORE_SEOL); 4298 SCAN_COMMIT(pRExC_state, data, minlenp); 4299 4300 } 4301 else if ( PL_regkind[OP(scan)] == BRANCHJ 4302 /* Lookbehind, or need to calculate parens/evals/stclass: */ 4303 && (scan->flags || data || (flags & SCF_DO_STCLASS)) 4304 && (OP(scan) == IFMATCH || OP(scan) == UNLESSM)) { 4305 if ( OP(scan) == UNLESSM && 4306 scan->flags == 0 && 4307 OP(NEXTOPER(NEXTOPER(scan))) == NOTHING && 4308 OP(regnext(NEXTOPER(NEXTOPER(scan)))) == SUCCEED 4309 ) { 4310 regnode *opt; 4311 regnode *upto= regnext(scan); 4312 DEBUG_PARSE_r({ 4313 SV * const mysv_val=sv_newmortal(); 4314 DEBUG_STUDYDATA("OPFAIL",data,depth); 4315 4316 /*DEBUG_PARSE_MSG("opfail");*/ 4317 regprop(RExC_rx, mysv_val, upto); 4318 PerlIO_printf(Perl_debug_log, "~ replace with OPFAIL pointed at %s (%"IVdf") offset %"IVdf"\n", 4319 SvPV_nolen_const(mysv_val), 4320 (IV)REG_NODE_NUM(upto), 4321 (IV)(upto - scan) 4322 ); 4323 }); 4324 OP(scan) = OPFAIL; 4325 NEXT_OFF(scan) = upto - scan; 4326 for (opt= scan + 1; opt < upto ; opt++) 4327 OP(opt) = OPTIMIZED; 4328 scan= upto; 4329 continue; 4330 } 4331 if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY 4332 || OP(scan) == UNLESSM ) 4333 { 4334 /* Negative Lookahead/lookbehind 4335 In this case we can't do fixed string optimisation. 4336 */ 4337 4338 I32 deltanext, minnext, fake = 0; 4339 regnode *nscan; 4340 struct regnode_charclass_class intrnl; 4341 int f = 0; 4342 4343 data_fake.flags = 0; 4344 if (data) { 4345 data_fake.whilem_c = data->whilem_c; 4346 data_fake.last_closep = data->last_closep; 4347 } 4348 else 4349 data_fake.last_closep = &fake; 4350 data_fake.pos_delta = delta; 4351 if ( flags & SCF_DO_STCLASS && !scan->flags 4352 && OP(scan) == IFMATCH ) { /* Lookahead */ 4353 cl_init(pRExC_state, &intrnl); 4354 data_fake.start_class = &intrnl; 4355 f |= SCF_DO_STCLASS_AND; 4356 } 4357 if (flags & SCF_WHILEM_VISITED_POS) 4358 f |= SCF_WHILEM_VISITED_POS; 4359 next = regnext(scan); 4360 nscan = NEXTOPER(NEXTOPER(scan)); 4361 minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext, 4362 last, &data_fake, stopparen, recursed, NULL, f, depth+1); 4363 if (scan->flags) { 4364 if (deltanext) { 4365 FAIL("Variable length lookbehind not implemented"); 4366 } 4367 else if (minnext > (I32)U8_MAX) { 4368 FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX); 4369 } 4370 scan->flags = (U8)minnext; 4371 } 4372 if (data) { 4373 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR)) 4374 pars++; 4375 if (data_fake.flags & SF_HAS_EVAL) 4376 data->flags |= SF_HAS_EVAL; 4377 data->whilem_c = data_fake.whilem_c; 4378 } 4379 if (f & SCF_DO_STCLASS_AND) { 4380 if (flags & SCF_DO_STCLASS_OR) { 4381 /* OR before, AND after: ideally we would recurse with 4382 * data_fake to get the AND applied by study of the 4383 * remainder of the pattern, and then derecurse; 4384 * *** HACK *** for now just treat as "no information". 4385 * See [perl #56690]. 4386 */ 4387 cl_init(pRExC_state, data->start_class); 4388 } else { 4389 /* AND before and after: combine and continue */ 4390 const int was = TEST_SSC_EOS(data->start_class); 4391 4392 cl_and(data->start_class, &intrnl); 4393 if (was) 4394 SET_SSC_EOS(data->start_class); 4395 } 4396 } 4397 } 4398 #if PERL_ENABLE_POSITIVE_ASSERTION_STUDY 4399 else { 4400 /* Positive Lookahead/lookbehind 4401 In this case we can do fixed string optimisation, 4402 but we must be careful about it. Note in the case of 4403 lookbehind the positions will be offset by the minimum 4404 length of the pattern, something we won't know about 4405 until after the recurse. 4406 */ 4407 I32 deltanext, fake = 0; 4408 regnode *nscan; 4409 struct regnode_charclass_class intrnl; 4410 int f = 0; 4411 /* We use SAVEFREEPV so that when the full compile 4412 is finished perl will clean up the allocated 4413 minlens when it's all done. This way we don't 4414 have to worry about freeing them when we know 4415 they wont be used, which would be a pain. 4416 */ 4417 I32 *minnextp; 4418 Newx( minnextp, 1, I32 ); 4419 SAVEFREEPV(minnextp); 4420 4421 if (data) { 4422 StructCopy(data, &data_fake, scan_data_t); 4423 if ((flags & SCF_DO_SUBSTR) && data->last_found) { 4424 f |= SCF_DO_SUBSTR; 4425 if (scan->flags) 4426 SCAN_COMMIT(pRExC_state, &data_fake,minlenp); 4427 data_fake.last_found=newSVsv(data->last_found); 4428 } 4429 } 4430 else 4431 data_fake.last_closep = &fake; 4432 data_fake.flags = 0; 4433 data_fake.pos_delta = delta; 4434 if (is_inf) 4435 data_fake.flags |= SF_IS_INF; 4436 if ( flags & SCF_DO_STCLASS && !scan->flags 4437 && OP(scan) == IFMATCH ) { /* Lookahead */ 4438 cl_init(pRExC_state, &intrnl); 4439 data_fake.start_class = &intrnl; 4440 f |= SCF_DO_STCLASS_AND; 4441 } 4442 if (flags & SCF_WHILEM_VISITED_POS) 4443 f |= SCF_WHILEM_VISITED_POS; 4444 next = regnext(scan); 4445 nscan = NEXTOPER(NEXTOPER(scan)); 4446 4447 *minnextp = study_chunk(pRExC_state, &nscan, minnextp, &deltanext, 4448 last, &data_fake, stopparen, recursed, NULL, f,depth+1); 4449 if (scan->flags) { 4450 if (deltanext) { 4451 FAIL("Variable length lookbehind not implemented"); 4452 } 4453 else if (*minnextp > (I32)U8_MAX) { 4454 FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX); 4455 } 4456 scan->flags = (U8)*minnextp; 4457 } 4458 4459 *minnextp += min; 4460 4461 if (f & SCF_DO_STCLASS_AND) { 4462 const int was = TEST_SSC_EOS(data.start_class); 4463 4464 cl_and(data->start_class, &intrnl); 4465 if (was) 4466 SET_SSC_EOS(data->start_class); 4467 } 4468 if (data) { 4469 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR)) 4470 pars++; 4471 if (data_fake.flags & SF_HAS_EVAL) 4472 data->flags |= SF_HAS_EVAL; 4473 data->whilem_c = data_fake.whilem_c; 4474 if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) { 4475 if (RExC_rx->minlen<*minnextp) 4476 RExC_rx->minlen=*minnextp; 4477 SCAN_COMMIT(pRExC_state, &data_fake, minnextp); 4478 SvREFCNT_dec_NN(data_fake.last_found); 4479 4480 if ( data_fake.minlen_fixed != minlenp ) 4481 { 4482 data->offset_fixed= data_fake.offset_fixed; 4483 data->minlen_fixed= data_fake.minlen_fixed; 4484 data->lookbehind_fixed+= scan->flags; 4485 } 4486 if ( data_fake.minlen_float != minlenp ) 4487 { 4488 data->minlen_float= data_fake.minlen_float; 4489 data->offset_float_min=data_fake.offset_float_min; 4490 data->offset_float_max=data_fake.offset_float_max; 4491 data->lookbehind_float+= scan->flags; 4492 } 4493 } 4494 } 4495 } 4496 #endif 4497 } 4498 else if (OP(scan) == OPEN) { 4499 if (stopparen != (I32)ARG(scan)) 4500 pars++; 4501 } 4502 else if (OP(scan) == CLOSE) { 4503 if (stopparen == (I32)ARG(scan)) { 4504 break; 4505 } 4506 if ((I32)ARG(scan) == is_par) { 4507 next = regnext(scan); 4508 4509 if ( next && (OP(next) != WHILEM) && next < last) 4510 is_par = 0; /* Disable optimization */ 4511 } 4512 if (data) 4513 *(data->last_closep) = ARG(scan); 4514 } 4515 else if (OP(scan) == EVAL) { 4516 if (data) 4517 data->flags |= SF_HAS_EVAL; 4518 } 4519 else if ( PL_regkind[OP(scan)] == ENDLIKE ) { 4520 if (flags & SCF_DO_SUBSTR) { 4521 SCAN_COMMIT(pRExC_state,data,minlenp); 4522 flags &= ~SCF_DO_SUBSTR; 4523 } 4524 if (data && OP(scan)==ACCEPT) { 4525 data->flags |= SCF_SEEN_ACCEPT; 4526 if (stopmin > min) 4527 stopmin = min; 4528 } 4529 } 4530 else if (OP(scan) == LOGICAL && scan->flags == 2) /* Embedded follows */ 4531 { 4532 if (flags & SCF_DO_SUBSTR) { 4533 SCAN_COMMIT(pRExC_state,data,minlenp); 4534 data->longest = &(data->longest_float); 4535 } 4536 is_inf = is_inf_internal = 1; 4537 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */ 4538 cl_anything(pRExC_state, data->start_class); 4539 flags &= ~SCF_DO_STCLASS; 4540 } 4541 else if (OP(scan) == GPOS) { 4542 if (!(RExC_rx->extflags & RXf_GPOS_FLOAT) && 4543 !(delta || is_inf || (data && data->pos_delta))) 4544 { 4545 if (!(RExC_rx->extflags & RXf_ANCH) && (flags & SCF_DO_SUBSTR)) 4546 RExC_rx->extflags |= RXf_ANCH_GPOS; 4547 if (RExC_rx->gofs < (U32)min) 4548 RExC_rx->gofs = min; 4549 } else { 4550 RExC_rx->extflags |= RXf_GPOS_FLOAT; 4551 RExC_rx->gofs = 0; 4552 } 4553 } 4554 #ifdef TRIE_STUDY_OPT 4555 #ifdef FULL_TRIE_STUDY 4556 else if (PL_regkind[OP(scan)] == TRIE) { 4557 /* NOTE - There is similar code to this block above for handling 4558 BRANCH nodes on the initial study. If you change stuff here 4559 check there too. */ 4560 regnode *trie_node= scan; 4561 regnode *tail= regnext(scan); 4562 reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ]; 4563 I32 max1 = 0, min1 = I32_MAX; 4564 struct regnode_charclass_class accum; 4565 4566 if (flags & SCF_DO_SUBSTR) /* XXXX Add !SUSPEND? */ 4567 SCAN_COMMIT(pRExC_state, data,minlenp); /* Cannot merge strings after this. */ 4568 if (flags & SCF_DO_STCLASS) 4569 cl_init_zero(pRExC_state, &accum); 4570 4571 if (!trie->jump) { 4572 min1= trie->minlen; 4573 max1= trie->maxlen; 4574 } else { 4575 const regnode *nextbranch= NULL; 4576 U32 word; 4577 4578 for ( word=1 ; word <= trie->wordcount ; word++) 4579 { 4580 I32 deltanext=0, minnext=0, f = 0, fake; 4581 struct regnode_charclass_class this_class; 4582 4583 data_fake.flags = 0; 4584 if (data) { 4585 data_fake.whilem_c = data->whilem_c; 4586 data_fake.last_closep = data->last_closep; 4587 } 4588 else 4589 data_fake.last_closep = &fake; 4590 data_fake.pos_delta = delta; 4591 if (flags & SCF_DO_STCLASS) { 4592 cl_init(pRExC_state, &this_class); 4593 data_fake.start_class = &this_class; 4594 f = SCF_DO_STCLASS_AND; 4595 } 4596 if (flags & SCF_WHILEM_VISITED_POS) 4597 f |= SCF_WHILEM_VISITED_POS; 4598 4599 if (trie->jump[word]) { 4600 if (!nextbranch) 4601 nextbranch = trie_node + trie->jump[0]; 4602 scan= trie_node + trie->jump[word]; 4603 /* We go from the jump point to the branch that follows 4604 it. Note this means we need the vestigal unused branches 4605 even though they arent otherwise used. 4606 */ 4607 minnext = study_chunk(pRExC_state, &scan, minlenp, 4608 &deltanext, (regnode *)nextbranch, &data_fake, 4609 stopparen, recursed, NULL, f,depth+1); 4610 } 4611 if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH) 4612 nextbranch= regnext((regnode*)nextbranch); 4613 4614 if (min1 > (I32)(minnext + trie->minlen)) 4615 min1 = minnext + trie->minlen; 4616 if (deltanext == I32_MAX) { 4617 is_inf = is_inf_internal = 1; 4618 max1 = I32_MAX; 4619 } else if (max1 < (I32)(minnext + deltanext + trie->maxlen)) 4620 max1 = minnext + deltanext + trie->maxlen; 4621 4622 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR)) 4623 pars++; 4624 if (data_fake.flags & SCF_SEEN_ACCEPT) { 4625 if ( stopmin > min + min1) 4626 stopmin = min + min1; 4627 flags &= ~SCF_DO_SUBSTR; 4628 if (data) 4629 data->flags |= SCF_SEEN_ACCEPT; 4630 } 4631 if (data) { 4632 if (data_fake.flags & SF_HAS_EVAL) 4633 data->flags |= SF_HAS_EVAL; 4634 data->whilem_c = data_fake.whilem_c; 4635 } 4636 if (flags & SCF_DO_STCLASS) 4637 cl_or(pRExC_state, &accum, &this_class); 4638 } 4639 } 4640 if (flags & SCF_DO_SUBSTR) { 4641 data->pos_min += min1; 4642 data->pos_delta += max1 - min1; 4643 if (max1 != min1 || is_inf) 4644 data->longest = &(data->longest_float); 4645 } 4646 min += min1; 4647 delta += max1 - min1; 4648 if (flags & SCF_DO_STCLASS_OR) { 4649 cl_or(pRExC_state, data->start_class, &accum); 4650 if (min1) { 4651 cl_and(data->start_class, and_withp); 4652 flags &= ~SCF_DO_STCLASS; 4653 } 4654 } 4655 else if (flags & SCF_DO_STCLASS_AND) { 4656 if (min1) { 4657 cl_and(data->start_class, &accum); 4658 flags &= ~SCF_DO_STCLASS; 4659 } 4660 else { 4661 /* Switch to OR mode: cache the old value of 4662 * data->start_class */ 4663 INIT_AND_WITHP; 4664 StructCopy(data->start_class, and_withp, 4665 struct regnode_charclass_class); 4666 flags &= ~SCF_DO_STCLASS_AND; 4667 StructCopy(&accum, data->start_class, 4668 struct regnode_charclass_class); 4669 flags |= SCF_DO_STCLASS_OR; 4670 SET_SSC_EOS(data->start_class); 4671 } 4672 } 4673 scan= tail; 4674 continue; 4675 } 4676 #else 4677 else if (PL_regkind[OP(scan)] == TRIE) { 4678 reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ]; 4679 U8*bang=NULL; 4680 4681 min += trie->minlen; 4682 delta += (trie->maxlen - trie->minlen); 4683 flags &= ~SCF_DO_STCLASS; /* xxx */ 4684 if (flags & SCF_DO_SUBSTR) { 4685 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */ 4686 data->pos_min += trie->minlen; 4687 data->pos_delta += (trie->maxlen - trie->minlen); 4688 if (trie->maxlen != trie->minlen) 4689 data->longest = &(data->longest_float); 4690 } 4691 if (trie->jump) /* no more substrings -- for now /grr*/ 4692 flags &= ~SCF_DO_SUBSTR; 4693 } 4694 #endif /* old or new */ 4695 #endif /* TRIE_STUDY_OPT */ 4696 4697 /* Else: zero-length, ignore. */ 4698 scan = regnext(scan); 4699 } 4700 if (frame) { 4701 last = frame->last; 4702 scan = frame->next; 4703 stopparen = frame->stop; 4704 frame = frame->prev; 4705 goto fake_study_recurse; 4706 } 4707 4708 finish: 4709 assert(!frame); 4710 DEBUG_STUDYDATA("pre-fin:",data,depth); 4711 4712 *scanp = scan; 4713 *deltap = is_inf_internal ? I32_MAX : delta; 4714 if (flags & SCF_DO_SUBSTR && is_inf) 4715 data->pos_delta = I32_MAX - data->pos_min; 4716 if (is_par > (I32)U8_MAX) 4717 is_par = 0; 4718 if (is_par && pars==1 && data) { 4719 data->flags |= SF_IN_PAR; 4720 data->flags &= ~SF_HAS_PAR; 4721 } 4722 else if (pars && data) { 4723 data->flags |= SF_HAS_PAR; 4724 data->flags &= ~SF_IN_PAR; 4725 } 4726 if (flags & SCF_DO_STCLASS_OR) 4727 cl_and(data->start_class, and_withp); 4728 if (flags & SCF_TRIE_RESTUDY) 4729 data->flags |= SCF_TRIE_RESTUDY; 4730 4731 DEBUG_STUDYDATA("post-fin:",data,depth); 4732 4733 return min < stopmin ? min : stopmin; 4734 } 4735 4736 STATIC U32 4737 S_add_data(RExC_state_t *pRExC_state, U32 n, const char *s) 4738 { 4739 U32 count = RExC_rxi->data ? RExC_rxi->data->count : 0; 4740 4741 PERL_ARGS_ASSERT_ADD_DATA; 4742 4743 Renewc(RExC_rxi->data, 4744 sizeof(*RExC_rxi->data) + sizeof(void*) * (count + n - 1), 4745 char, struct reg_data); 4746 if(count) 4747 Renew(RExC_rxi->data->what, count + n, U8); 4748 else 4749 Newx(RExC_rxi->data->what, n, U8); 4750 RExC_rxi->data->count = count + n; 4751 Copy(s, RExC_rxi->data->what + count, n, U8); 4752 return count; 4753 } 4754 4755 /*XXX: todo make this not included in a non debugging perl */ 4756 #ifndef PERL_IN_XSUB_RE 4757 void 4758 Perl_reginitcolors(pTHX) 4759 { 4760 dVAR; 4761 const char * const s = PerlEnv_getenv("PERL_RE_COLORS"); 4762 if (s) { 4763 char *t = savepv(s); 4764 int i = 0; 4765 PL_colors[0] = t; 4766 while (++i < 6) { 4767 t = strchr(t, '\t'); 4768 if (t) { 4769 *t = '\0'; 4770 PL_colors[i] = ++t; 4771 } 4772 else 4773 PL_colors[i] = t = (char *)""; 4774 } 4775 } else { 4776 int i = 0; 4777 while (i < 6) 4778 PL_colors[i++] = (char *)""; 4779 } 4780 PL_colorset = 1; 4781 } 4782 #endif 4783 4784 4785 #ifdef TRIE_STUDY_OPT 4786 #define CHECK_RESTUDY_GOTO_butfirst(dOsomething) \ 4787 STMT_START { \ 4788 if ( \ 4789 (data.flags & SCF_TRIE_RESTUDY) \ 4790 && ! restudied++ \ 4791 ) { \ 4792 dOsomething; \ 4793 goto reStudy; \ 4794 } \ 4795 } STMT_END 4796 #else 4797 #define CHECK_RESTUDY_GOTO_butfirst 4798 #endif 4799 4800 /* 4801 * pregcomp - compile a regular expression into internal code 4802 * 4803 * Decides which engine's compiler to call based on the hint currently in 4804 * scope 4805 */ 4806 4807 #ifndef PERL_IN_XSUB_RE 4808 4809 /* return the currently in-scope regex engine (or the default if none) */ 4810 4811 regexp_engine const * 4812 Perl_current_re_engine(pTHX) 4813 { 4814 dVAR; 4815 4816 if (IN_PERL_COMPILETIME) { 4817 HV * const table = GvHV(PL_hintgv); 4818 SV **ptr; 4819 4820 if (!table) 4821 return &PL_core_reg_engine; 4822 ptr = hv_fetchs(table, "regcomp", FALSE); 4823 if ( !(ptr && SvIOK(*ptr) && SvIV(*ptr))) 4824 return &PL_core_reg_engine; 4825 return INT2PTR(regexp_engine*,SvIV(*ptr)); 4826 } 4827 else { 4828 SV *ptr; 4829 if (!PL_curcop->cop_hints_hash) 4830 return &PL_core_reg_engine; 4831 ptr = cop_hints_fetch_pvs(PL_curcop, "regcomp", 0); 4832 if ( !(ptr && SvIOK(ptr) && SvIV(ptr))) 4833 return &PL_core_reg_engine; 4834 return INT2PTR(regexp_engine*,SvIV(ptr)); 4835 } 4836 } 4837 4838 4839 REGEXP * 4840 Perl_pregcomp(pTHX_ SV * const pattern, const U32 flags) 4841 { 4842 dVAR; 4843 regexp_engine const *eng = current_re_engine(); 4844 GET_RE_DEBUG_FLAGS_DECL; 4845 4846 PERL_ARGS_ASSERT_PREGCOMP; 4847 4848 /* Dispatch a request to compile a regexp to correct regexp engine. */ 4849 DEBUG_COMPILE_r({ 4850 PerlIO_printf(Perl_debug_log, "Using engine %"UVxf"\n", 4851 PTR2UV(eng)); 4852 }); 4853 return CALLREGCOMP_ENG(eng, pattern, flags); 4854 } 4855 #endif 4856 4857 /* public(ish) entry point for the perl core's own regex compiling code. 4858 * It's actually a wrapper for Perl_re_op_compile that only takes an SV 4859 * pattern rather than a list of OPs, and uses the internal engine rather 4860 * than the current one */ 4861 4862 REGEXP * 4863 Perl_re_compile(pTHX_ SV * const pattern, U32 rx_flags) 4864 { 4865 SV *pat = pattern; /* defeat constness! */ 4866 PERL_ARGS_ASSERT_RE_COMPILE; 4867 return Perl_re_op_compile(aTHX_ &pat, 1, NULL, 4868 #ifdef PERL_IN_XSUB_RE 4869 &my_reg_engine, 4870 #else 4871 &PL_core_reg_engine, 4872 #endif 4873 NULL, NULL, rx_flags, 0); 4874 } 4875 4876 4877 /* upgrade pattern pat_p of length plen_p to UTF8, and if there are code 4878 * blocks, recalculate the indices. Update pat_p and plen_p in-place to 4879 * point to the realloced string and length. 4880 * 4881 * This is essentially a copy of Perl_bytes_to_utf8() with the code index 4882 * stuff added */ 4883 4884 static void 4885 S_pat_upgrade_to_utf8(pTHX_ RExC_state_t * const pRExC_state, 4886 char **pat_p, STRLEN *plen_p, int num_code_blocks) 4887 { 4888 U8 *const src = (U8*)*pat_p; 4889 U8 *dst; 4890 int n=0; 4891 STRLEN s = 0, d = 0; 4892 bool do_end = 0; 4893 GET_RE_DEBUG_FLAGS_DECL; 4894 4895 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, 4896 "UTF8 mismatch! Converting to utf8 for resizing and compile\n")); 4897 4898 Newx(dst, *plen_p * 2 + 1, U8); 4899 4900 while (s < *plen_p) { 4901 const UV uv = NATIVE_TO_ASCII(src[s]); 4902 if (UNI_IS_INVARIANT(uv)) 4903 dst[d] = (U8)UTF_TO_NATIVE(uv); 4904 else { 4905 dst[d++] = (U8)UTF8_EIGHT_BIT_HI(uv); 4906 dst[d] = (U8)UTF8_EIGHT_BIT_LO(uv); 4907 } 4908 if (n < num_code_blocks) { 4909 if (!do_end && pRExC_state->code_blocks[n].start == s) { 4910 pRExC_state->code_blocks[n].start = d; 4911 assert(dst[d] == '('); 4912 do_end = 1; 4913 } 4914 else if (do_end && pRExC_state->code_blocks[n].end == s) { 4915 pRExC_state->code_blocks[n].end = d; 4916 assert(dst[d] == ')'); 4917 do_end = 0; 4918 n++; 4919 } 4920 } 4921 s++; 4922 d++; 4923 } 4924 dst[d] = '\0'; 4925 *plen_p = d; 4926 *pat_p = (char*) dst; 4927 SAVEFREEPV(*pat_p); 4928 RExC_orig_utf8 = RExC_utf8 = 1; 4929 } 4930 4931 4932 4933 /* S_concat_pat(): concatenate a list of args to the pattern string pat, 4934 * while recording any code block indices, and handling overloading, 4935 * nested qr// objects etc. If pat is null, it will allocate a new 4936 * string, or just return the first arg, if there's only one. 4937 * 4938 * Returns the malloced/updated pat. 4939 * patternp and pat_count is the array of SVs to be concatted; 4940 * oplist is the optional list of ops that generated the SVs; 4941 * recompile_p is a pointer to a boolean that will be set if 4942 * the regex will need to be recompiled. 4943 * delim, if non-null is an SV that will be inserted between each element 4944 */ 4945 4946 static SV* 4947 S_concat_pat(pTHX_ RExC_state_t * const pRExC_state, 4948 SV *pat, SV ** const patternp, int pat_count, 4949 OP *oplist, bool *recompile_p, SV *delim) 4950 { 4951 SV **svp; 4952 int n = 0; 4953 bool use_delim = FALSE; 4954 bool alloced = FALSE; 4955 4956 /* if we know we have at least two args, create an empty string, 4957 * then concatenate args to that. For no args, return an empty string */ 4958 if (!pat && pat_count != 1) { 4959 pat = newSVpvn("", 0); 4960 SAVEFREESV(pat); 4961 alloced = TRUE; 4962 } 4963 4964 for (svp = patternp; svp < patternp + pat_count; svp++) { 4965 SV *sv; 4966 SV *rx = NULL; 4967 STRLEN orig_patlen = 0; 4968 bool code = 0; 4969 SV *msv = use_delim ? delim : *svp; 4970 4971 /* if we've got a delimiter, we go round the loop twice for each 4972 * svp slot (except the last), using the delimiter the second 4973 * time round */ 4974 if (use_delim) { 4975 svp--; 4976 use_delim = FALSE; 4977 } 4978 else if (delim) 4979 use_delim = TRUE; 4980 4981 if (SvTYPE(msv) == SVt_PVAV) { 4982 /* we've encountered an interpolated array within 4983 * the pattern, e.g. /...@a..../. Expand the list of elements, 4984 * then recursively append elements. 4985 * The code in this block is based on S_pushav() */ 4986 4987 AV *const av = (AV*)msv; 4988 const I32 maxarg = AvFILL(av) + 1; 4989 SV **array; 4990 4991 if (oplist) { 4992 assert(oplist->op_type == OP_PADAV 4993 || oplist->op_type == OP_RV2AV); 4994 oplist = oplist->op_sibling;; 4995 } 4996 4997 if (SvRMAGICAL(av)) { 4998 U32 i; 4999 5000 Newx(array, maxarg, SV*); 5001 SAVEFREEPV(array); 5002 for (i=0; i < (U32)maxarg; i++) { 5003 SV ** const svp = av_fetch(av, i, FALSE); 5004 array[i] = svp ? *svp : &PL_sv_undef; 5005 } 5006 } 5007 else 5008 array = AvARRAY(av); 5009 5010 pat = S_concat_pat(aTHX_ pRExC_state, pat, 5011 array, maxarg, NULL, recompile_p, 5012 /* $" */ 5013 GvSV((gv_fetchpvs("\"", GV_ADDMULTI, SVt_PV)))); 5014 5015 continue; 5016 } 5017 5018 5019 /* we make the assumption here that each op in the list of 5020 * op_siblings maps to one SV pushed onto the stack, 5021 * except for code blocks, with have both an OP_NULL and 5022 * and OP_CONST. 5023 * This allows us to match up the list of SVs against the 5024 * list of OPs to find the next code block. 5025 * 5026 * Note that PUSHMARK PADSV PADSV .. 5027 * is optimised to 5028 * PADRANGE PADSV PADSV .. 5029 * so the alignment still works. */ 5030 5031 if (oplist) { 5032 if (oplist->op_type == OP_NULL 5033 && (oplist->op_flags & OPf_SPECIAL)) 5034 { 5035 assert(n < pRExC_state->num_code_blocks); 5036 pRExC_state->code_blocks[n].start = pat ? SvCUR(pat) : 0; 5037 pRExC_state->code_blocks[n].block = oplist; 5038 pRExC_state->code_blocks[n].src_regex = NULL; 5039 n++; 5040 code = 1; 5041 oplist = oplist->op_sibling; /* skip CONST */ 5042 assert(oplist); 5043 } 5044 oplist = oplist->op_sibling;; 5045 } 5046 5047 /* apply magic and QR overloading to arg */ 5048 5049 SvGETMAGIC(msv); 5050 if (SvROK(msv) && SvAMAGIC(msv)) { 5051 SV *sv = AMG_CALLunary(msv, regexp_amg); 5052 if (sv) { 5053 if (SvROK(sv)) 5054 sv = SvRV(sv); 5055 if (SvTYPE(sv) != SVt_REGEXP) 5056 Perl_croak(aTHX_ "Overloaded qr did not return a REGEXP"); 5057 msv = sv; 5058 } 5059 } 5060 5061 /* try concatenation overload ... */ 5062 if (pat && (SvAMAGIC(pat) || SvAMAGIC(msv)) && 5063 (sv = amagic_call(pat, msv, concat_amg, AMGf_assign))) 5064 { 5065 sv_setsv(pat, sv); 5066 /* overloading involved: all bets are off over literal 5067 * code. Pretend we haven't seen it */ 5068 pRExC_state->num_code_blocks -= n; 5069 n = 0; 5070 } 5071 else { 5072 /* ... or failing that, try "" overload */ 5073 while (SvAMAGIC(msv) 5074 && (sv = AMG_CALLunary(msv, string_amg)) 5075 && sv != msv 5076 && !( SvROK(msv) 5077 && SvROK(sv) 5078 && SvRV(msv) == SvRV(sv)) 5079 ) { 5080 msv = sv; 5081 SvGETMAGIC(msv); 5082 } 5083 if (SvROK(msv) && SvTYPE(SvRV(msv)) == SVt_REGEXP) 5084 msv = SvRV(msv); 5085 5086 if (pat) { 5087 /* this is a partially unrolled 5088 * sv_catsv_nomg(pat, msv); 5089 * that allows us to adjust code block indices if 5090 * needed */ 5091 STRLEN dlen; 5092 char *dst = SvPV_force_nomg(pat, dlen); 5093 orig_patlen = dlen; 5094 if (SvUTF8(msv) && !SvUTF8(pat)) { 5095 S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &dst, &dlen, n); 5096 sv_setpvn(pat, dst, dlen); 5097 SvUTF8_on(pat); 5098 } 5099 sv_catsv_nomg(pat, msv); 5100 rx = msv; 5101 } 5102 else 5103 pat = msv; 5104 5105 if (code) 5106 pRExC_state->code_blocks[n-1].end = SvCUR(pat)-1; 5107 } 5108 5109 /* extract any code blocks within any embedded qr//'s */ 5110 if (rx && SvTYPE(rx) == SVt_REGEXP 5111 && RX_ENGINE((REGEXP*)rx)->op_comp) 5112 { 5113 5114 RXi_GET_DECL(ReANY((REGEXP *)rx), ri); 5115 if (ri->num_code_blocks) { 5116 int i; 5117 /* the presence of an embedded qr// with code means 5118 * we should always recompile: the text of the 5119 * qr// may not have changed, but it may be a 5120 * different closure than last time */ 5121 *recompile_p = 1; 5122 Renew(pRExC_state->code_blocks, 5123 pRExC_state->num_code_blocks + ri->num_code_blocks, 5124 struct reg_code_block); 5125 pRExC_state->num_code_blocks += ri->num_code_blocks; 5126 5127 for (i=0; i < ri->num_code_blocks; i++) { 5128 struct reg_code_block *src, *dst; 5129 STRLEN offset = orig_patlen 5130 + ReANY((REGEXP *)rx)->pre_prefix; 5131 assert(n < pRExC_state->num_code_blocks); 5132 src = &ri->code_blocks[i]; 5133 dst = &pRExC_state->code_blocks[n]; 5134 dst->start = src->start + offset; 5135 dst->end = src->end + offset; 5136 dst->block = src->block; 5137 dst->src_regex = (REGEXP*) SvREFCNT_inc( (SV*) 5138 src->src_regex 5139 ? src->src_regex 5140 : (REGEXP*)rx); 5141 n++; 5142 } 5143 } 5144 } 5145 } 5146 /* avoid calling magic multiple times on a single element e.g. =~ $qr */ 5147 if (alloced) 5148 SvSETMAGIC(pat); 5149 5150 return pat; 5151 } 5152 5153 5154 5155 /* see if there are any run-time code blocks in the pattern. 5156 * False positives are allowed */ 5157 5158 static bool 5159 S_has_runtime_code(pTHX_ RExC_state_t * const pRExC_state, 5160 char *pat, STRLEN plen) 5161 { 5162 int n = 0; 5163 STRLEN s; 5164 5165 for (s = 0; s < plen; s++) { 5166 if (n < pRExC_state->num_code_blocks 5167 && s == pRExC_state->code_blocks[n].start) 5168 { 5169 s = pRExC_state->code_blocks[n].end; 5170 n++; 5171 continue; 5172 } 5173 /* TODO ideally should handle [..], (#..), /#.../x to reduce false 5174 * positives here */ 5175 if (pat[s] == '(' && s+2 <= plen && pat[s+1] == '?' && 5176 (pat[s+2] == '{' 5177 || (s + 2 <= plen && pat[s+2] == '?' && pat[s+3] == '{')) 5178 ) 5179 return 1; 5180 } 5181 return 0; 5182 } 5183 5184 /* Handle run-time code blocks. We will already have compiled any direct 5185 * or indirect literal code blocks. Now, take the pattern 'pat' and make a 5186 * copy of it, but with any literal code blocks blanked out and 5187 * appropriate chars escaped; then feed it into 5188 * 5189 * eval "qr'modified_pattern'" 5190 * 5191 * For example, 5192 * 5193 * a\bc(?{"this was literal"})def'ghi\\jkl(?{"this is runtime"})mno 5194 * 5195 * becomes 5196 * 5197 * qr'a\\bc_______________________def\'ghi\\\\jkl(?{"this is runtime"})mno' 5198 * 5199 * After eval_sv()-ing that, grab any new code blocks from the returned qr 5200 * and merge them with any code blocks of the original regexp. 5201 * 5202 * If the pat is non-UTF8, while the evalled qr is UTF8, don't merge; 5203 * instead, just save the qr and return FALSE; this tells our caller that 5204 * the original pattern needs upgrading to utf8. 5205 */ 5206 5207 static bool 5208 S_compile_runtime_code(pTHX_ RExC_state_t * const pRExC_state, 5209 char *pat, STRLEN plen) 5210 { 5211 SV *qr; 5212 5213 GET_RE_DEBUG_FLAGS_DECL; 5214 5215 if (pRExC_state->runtime_code_qr) { 5216 /* this is the second time we've been called; this should 5217 * only happen if the main pattern got upgraded to utf8 5218 * during compilation; re-use the qr we compiled first time 5219 * round (which should be utf8 too) 5220 */ 5221 qr = pRExC_state->runtime_code_qr; 5222 pRExC_state->runtime_code_qr = NULL; 5223 assert(RExC_utf8 && SvUTF8(qr)); 5224 } 5225 else { 5226 int n = 0; 5227 STRLEN s; 5228 char *p, *newpat; 5229 int newlen = plen + 6; /* allow for "qr''x\0" extra chars */ 5230 SV *sv, *qr_ref; 5231 dSP; 5232 5233 /* determine how many extra chars we need for ' and \ escaping */ 5234 for (s = 0; s < plen; s++) { 5235 if (pat[s] == '\'' || pat[s] == '\\') 5236 newlen++; 5237 } 5238 5239 Newx(newpat, newlen, char); 5240 p = newpat; 5241 *p++ = 'q'; *p++ = 'r'; *p++ = '\''; 5242 5243 for (s = 0; s < plen; s++) { 5244 if (n < pRExC_state->num_code_blocks 5245 && s == pRExC_state->code_blocks[n].start) 5246 { 5247 /* blank out literal code block */ 5248 assert(pat[s] == '('); 5249 while (s <= pRExC_state->code_blocks[n].end) { 5250 *p++ = '_'; 5251 s++; 5252 } 5253 s--; 5254 n++; 5255 continue; 5256 } 5257 if (pat[s] == '\'' || pat[s] == '\\') 5258 *p++ = '\\'; 5259 *p++ = pat[s]; 5260 } 5261 *p++ = '\''; 5262 if (pRExC_state->pm_flags & RXf_PMf_EXTENDED) 5263 *p++ = 'x'; 5264 *p++ = '\0'; 5265 DEBUG_COMPILE_r({ 5266 PerlIO_printf(Perl_debug_log, 5267 "%sre-parsing pattern for runtime code:%s %s\n", 5268 PL_colors[4],PL_colors[5],newpat); 5269 }); 5270 5271 sv = newSVpvn_flags(newpat, p-newpat-1, RExC_utf8 ? SVf_UTF8 : 0); 5272 Safefree(newpat); 5273 5274 ENTER; 5275 SAVETMPS; 5276 save_re_context(); 5277 PUSHSTACKi(PERLSI_REQUIRE); 5278 /* G_RE_REPARSING causes the toker to collapse \\ into \ when 5279 * parsing qr''; normally only q'' does this. It also alters 5280 * hints handling */ 5281 eval_sv(sv, G_SCALAR|G_RE_REPARSING); 5282 SvREFCNT_dec_NN(sv); 5283 SPAGAIN; 5284 qr_ref = POPs; 5285 PUTBACK; 5286 { 5287 SV * const errsv = ERRSV; 5288 if (SvTRUE_NN(errsv)) 5289 { 5290 Safefree(pRExC_state->code_blocks); 5291 /* use croak_sv ? */ 5292 Perl_croak_nocontext("%s", SvPV_nolen_const(errsv)); 5293 } 5294 } 5295 assert(SvROK(qr_ref)); 5296 qr = SvRV(qr_ref); 5297 assert(SvTYPE(qr) == SVt_REGEXP && RX_ENGINE((REGEXP*)qr)->op_comp); 5298 /* the leaving below frees the tmp qr_ref. 5299 * Give qr a life of its own */ 5300 SvREFCNT_inc(qr); 5301 POPSTACK; 5302 FREETMPS; 5303 LEAVE; 5304 5305 } 5306 5307 if (!RExC_utf8 && SvUTF8(qr)) { 5308 /* first time through; the pattern got upgraded; save the 5309 * qr for the next time through */ 5310 assert(!pRExC_state->runtime_code_qr); 5311 pRExC_state->runtime_code_qr = qr; 5312 return 0; 5313 } 5314 5315 5316 /* extract any code blocks within the returned qr// */ 5317 5318 5319 /* merge the main (r1) and run-time (r2) code blocks into one */ 5320 { 5321 RXi_GET_DECL(ReANY((REGEXP *)qr), r2); 5322 struct reg_code_block *new_block, *dst; 5323 RExC_state_t * const r1 = pRExC_state; /* convenient alias */ 5324 int i1 = 0, i2 = 0; 5325 5326 if (!r2->num_code_blocks) /* we guessed wrong */ 5327 { 5328 SvREFCNT_dec_NN(qr); 5329 return 1; 5330 } 5331 5332 Newx(new_block, 5333 r1->num_code_blocks + r2->num_code_blocks, 5334 struct reg_code_block); 5335 dst = new_block; 5336 5337 while ( i1 < r1->num_code_blocks 5338 || i2 < r2->num_code_blocks) 5339 { 5340 struct reg_code_block *src; 5341 bool is_qr = 0; 5342 5343 if (i1 == r1->num_code_blocks) { 5344 src = &r2->code_blocks[i2++]; 5345 is_qr = 1; 5346 } 5347 else if (i2 == r2->num_code_blocks) 5348 src = &r1->code_blocks[i1++]; 5349 else if ( r1->code_blocks[i1].start 5350 < r2->code_blocks[i2].start) 5351 { 5352 src = &r1->code_blocks[i1++]; 5353 assert(src->end < r2->code_blocks[i2].start); 5354 } 5355 else { 5356 assert( r1->code_blocks[i1].start 5357 > r2->code_blocks[i2].start); 5358 src = &r2->code_blocks[i2++]; 5359 is_qr = 1; 5360 assert(src->end < r1->code_blocks[i1].start); 5361 } 5362 5363 assert(pat[src->start] == '('); 5364 assert(pat[src->end] == ')'); 5365 dst->start = src->start; 5366 dst->end = src->end; 5367 dst->block = src->block; 5368 dst->src_regex = is_qr ? (REGEXP*) SvREFCNT_inc( (SV*) qr) 5369 : src->src_regex; 5370 dst++; 5371 } 5372 r1->num_code_blocks += r2->num_code_blocks; 5373 Safefree(r1->code_blocks); 5374 r1->code_blocks = new_block; 5375 } 5376 5377 SvREFCNT_dec_NN(qr); 5378 return 1; 5379 } 5380 5381 5382 STATIC bool 5383 S_setup_longest(pTHX_ RExC_state_t *pRExC_state, SV* sv_longest, SV** rx_utf8, SV** rx_substr, I32* rx_end_shift, I32 lookbehind, I32 offset, I32 *minlen, STRLEN longest_length, bool eol, bool meol) 5384 { 5385 /* This is the common code for setting up the floating and fixed length 5386 * string data extracted from Perl_re_op_compile() below. Returns a boolean 5387 * as to whether succeeded or not */ 5388 5389 I32 t,ml; 5390 5391 if (! (longest_length 5392 || (eol /* Can't have SEOL and MULTI */ 5393 && (! meol || (RExC_flags & RXf_PMf_MULTILINE))) 5394 ) 5395 /* See comments for join_exact for why REG_SEEN_EXACTF_SHARP_S */ 5396 || (RExC_seen & REG_SEEN_EXACTF_SHARP_S)) 5397 { 5398 return FALSE; 5399 } 5400 5401 /* copy the information about the longest from the reg_scan_data 5402 over to the program. */ 5403 if (SvUTF8(sv_longest)) { 5404 *rx_utf8 = sv_longest; 5405 *rx_substr = NULL; 5406 } else { 5407 *rx_substr = sv_longest; 5408 *rx_utf8 = NULL; 5409 } 5410 /* end_shift is how many chars that must be matched that 5411 follow this item. We calculate it ahead of time as once the 5412 lookbehind offset is added in we lose the ability to correctly 5413 calculate it.*/ 5414 ml = minlen ? *(minlen) : (I32)longest_length; 5415 *rx_end_shift = ml - offset 5416 - longest_length + (SvTAIL(sv_longest) != 0) 5417 + lookbehind; 5418 5419 t = (eol/* Can't have SEOL and MULTI */ 5420 && (! meol || (RExC_flags & RXf_PMf_MULTILINE))); 5421 fbm_compile(sv_longest, t ? FBMcf_TAIL : 0); 5422 5423 return TRUE; 5424 } 5425 5426 /* 5427 * Perl_re_op_compile - the perl internal RE engine's function to compile a 5428 * regular expression into internal code. 5429 * The pattern may be passed either as: 5430 * a list of SVs (patternp plus pat_count) 5431 * a list of OPs (expr) 5432 * If both are passed, the SV list is used, but the OP list indicates 5433 * which SVs are actually pre-compiled code blocks 5434 * 5435 * The SVs in the list have magic and qr overloading applied to them (and 5436 * the list may be modified in-place with replacement SVs in the latter 5437 * case). 5438 * 5439 * If the pattern hasn't changed from old_re, then old_re will be 5440 * returned. 5441 * 5442 * eng is the current engine. If that engine has an op_comp method, then 5443 * handle directly (i.e. we assume that op_comp was us); otherwise, just 5444 * do the initial concatenation of arguments and pass on to the external 5445 * engine. 5446 * 5447 * If is_bare_re is not null, set it to a boolean indicating whether the 5448 * arg list reduced (after overloading) to a single bare regex which has 5449 * been returned (i.e. /$qr/). 5450 * 5451 * orig_rx_flags contains RXf_* flags. See perlreapi.pod for more details. 5452 * 5453 * pm_flags contains the PMf_* flags, typically based on those from the 5454 * pm_flags field of the related PMOP. Currently we're only interested in 5455 * PMf_HAS_CV, PMf_IS_QR, PMf_USE_RE_EVAL. 5456 * 5457 * We can't allocate space until we know how big the compiled form will be, 5458 * but we can't compile it (and thus know how big it is) until we've got a 5459 * place to put the code. So we cheat: we compile it twice, once with code 5460 * generation turned off and size counting turned on, and once "for real". 5461 * This also means that we don't allocate space until we are sure that the 5462 * thing really will compile successfully, and we never have to move the 5463 * code and thus invalidate pointers into it. (Note that it has to be in 5464 * one piece because free() must be able to free it all.) [NB: not true in perl] 5465 * 5466 * Beware that the optimization-preparation code in here knows about some 5467 * of the structure of the compiled regexp. [I'll say.] 5468 */ 5469 5470 REGEXP * 5471 Perl_re_op_compile(pTHX_ SV ** const patternp, int pat_count, 5472 OP *expr, const regexp_engine* eng, REGEXP *old_re, 5473 bool *is_bare_re, U32 orig_rx_flags, U32 pm_flags) 5474 { 5475 dVAR; 5476 REGEXP *rx; 5477 struct regexp *r; 5478 regexp_internal *ri; 5479 STRLEN plen; 5480 char *exp; 5481 regnode *scan; 5482 I32 flags; 5483 I32 minlen = 0; 5484 U32 rx_flags; 5485 SV *pat; 5486 SV *code_blocksv = NULL; 5487 SV** new_patternp = patternp; 5488 5489 /* these are all flags - maybe they should be turned 5490 * into a single int with different bit masks */ 5491 I32 sawlookahead = 0; 5492 I32 sawplus = 0; 5493 I32 sawopen = 0; 5494 regex_charset initial_charset = get_regex_charset(orig_rx_flags); 5495 bool recompile = 0; 5496 bool runtime_code = 0; 5497 scan_data_t data; 5498 RExC_state_t RExC_state; 5499 RExC_state_t * const pRExC_state = &RExC_state; 5500 #ifdef TRIE_STUDY_OPT 5501 int restudied = 0; 5502 RExC_state_t copyRExC_state; 5503 #endif 5504 GET_RE_DEBUG_FLAGS_DECL; 5505 5506 PERL_ARGS_ASSERT_RE_OP_COMPILE; 5507 5508 DEBUG_r(if (!PL_colorset) reginitcolors()); 5509 5510 #ifndef PERL_IN_XSUB_RE 5511 /* Initialize these here instead of as-needed, as is quick and avoids 5512 * having to test them each time otherwise */ 5513 if (! PL_AboveLatin1) { 5514 PL_AboveLatin1 = _new_invlist_C_array(AboveLatin1_invlist); 5515 PL_ASCII = _new_invlist_C_array(ASCII_invlist); 5516 PL_Latin1 = _new_invlist_C_array(Latin1_invlist); 5517 5518 PL_L1Posix_ptrs[_CC_ALPHANUMERIC] 5519 = _new_invlist_C_array(L1PosixAlnum_invlist); 5520 PL_Posix_ptrs[_CC_ALPHANUMERIC] 5521 = _new_invlist_C_array(PosixAlnum_invlist); 5522 5523 PL_L1Posix_ptrs[_CC_ALPHA] 5524 = _new_invlist_C_array(L1PosixAlpha_invlist); 5525 PL_Posix_ptrs[_CC_ALPHA] = _new_invlist_C_array(PosixAlpha_invlist); 5526 5527 PL_Posix_ptrs[_CC_BLANK] = _new_invlist_C_array(PosixBlank_invlist); 5528 PL_XPosix_ptrs[_CC_BLANK] = _new_invlist_C_array(XPosixBlank_invlist); 5529 5530 /* Cased is the same as Alpha in the ASCII range */ 5531 PL_L1Posix_ptrs[_CC_CASED] = _new_invlist_C_array(L1Cased_invlist); 5532 PL_Posix_ptrs[_CC_CASED] = _new_invlist_C_array(PosixAlpha_invlist); 5533 5534 PL_Posix_ptrs[_CC_CNTRL] = _new_invlist_C_array(PosixCntrl_invlist); 5535 PL_XPosix_ptrs[_CC_CNTRL] = _new_invlist_C_array(XPosixCntrl_invlist); 5536 5537 PL_Posix_ptrs[_CC_DIGIT] = _new_invlist_C_array(PosixDigit_invlist); 5538 PL_L1Posix_ptrs[_CC_DIGIT] = _new_invlist_C_array(PosixDigit_invlist); 5539 5540 PL_L1Posix_ptrs[_CC_GRAPH] = _new_invlist_C_array(L1PosixGraph_invlist); 5541 PL_Posix_ptrs[_CC_GRAPH] = _new_invlist_C_array(PosixGraph_invlist); 5542 5543 PL_L1Posix_ptrs[_CC_LOWER] = _new_invlist_C_array(L1PosixLower_invlist); 5544 PL_Posix_ptrs[_CC_LOWER] = _new_invlist_C_array(PosixLower_invlist); 5545 5546 PL_L1Posix_ptrs[_CC_PRINT] = _new_invlist_C_array(L1PosixPrint_invlist); 5547 PL_Posix_ptrs[_CC_PRINT] = _new_invlist_C_array(PosixPrint_invlist); 5548 5549 PL_L1Posix_ptrs[_CC_PUNCT] = _new_invlist_C_array(L1PosixPunct_invlist); 5550 PL_Posix_ptrs[_CC_PUNCT] = _new_invlist_C_array(PosixPunct_invlist); 5551 5552 PL_Posix_ptrs[_CC_SPACE] = _new_invlist_C_array(PerlSpace_invlist); 5553 PL_XPosix_ptrs[_CC_SPACE] = _new_invlist_C_array(XPerlSpace_invlist); 5554 PL_Posix_ptrs[_CC_PSXSPC] = _new_invlist_C_array(PosixSpace_invlist); 5555 PL_XPosix_ptrs[_CC_PSXSPC] = _new_invlist_C_array(XPosixSpace_invlist); 5556 5557 PL_L1Posix_ptrs[_CC_UPPER] = _new_invlist_C_array(L1PosixUpper_invlist); 5558 PL_Posix_ptrs[_CC_UPPER] = _new_invlist_C_array(PosixUpper_invlist); 5559 5560 PL_XPosix_ptrs[_CC_VERTSPACE] = _new_invlist_C_array(VertSpace_invlist); 5561 5562 PL_Posix_ptrs[_CC_WORDCHAR] = _new_invlist_C_array(PosixWord_invlist); 5563 PL_L1Posix_ptrs[_CC_WORDCHAR] 5564 = _new_invlist_C_array(L1PosixWord_invlist); 5565 5566 PL_Posix_ptrs[_CC_XDIGIT] = _new_invlist_C_array(PosixXDigit_invlist); 5567 PL_XPosix_ptrs[_CC_XDIGIT] = _new_invlist_C_array(XPosixXDigit_invlist); 5568 5569 PL_HasMultiCharFold = _new_invlist_C_array(_Perl_Multi_Char_Folds_invlist); 5570 } 5571 #endif 5572 5573 pRExC_state->code_blocks = NULL; 5574 pRExC_state->num_code_blocks = 0; 5575 5576 if (is_bare_re) 5577 *is_bare_re = FALSE; 5578 5579 if (expr && (expr->op_type == OP_LIST || 5580 (expr->op_type == OP_NULL && expr->op_targ == OP_LIST))) { 5581 /* allocate code_blocks if needed */ 5582 OP *o; 5583 int ncode = 0; 5584 5585 for (o = cLISTOPx(expr)->op_first; o; o = o->op_sibling) 5586 if (o->op_type == OP_NULL && (o->op_flags & OPf_SPECIAL)) 5587 ncode++; /* count of DO blocks */ 5588 if (ncode) { 5589 pRExC_state->num_code_blocks = ncode; 5590 Newx(pRExC_state->code_blocks, ncode, struct reg_code_block); 5591 } 5592 } 5593 5594 if (!pat_count) { 5595 /* compile-time pattern with just OP_CONSTs and DO blocks */ 5596 5597 int n; 5598 OP *o; 5599 5600 /* find how many CONSTs there are */ 5601 assert(expr); 5602 n = 0; 5603 if (expr->op_type == OP_CONST) 5604 n = 1; 5605 else 5606 for (o = cLISTOPx(expr)->op_first; o; o = o->op_sibling) { 5607 if (o->op_type == OP_CONST) 5608 n++; 5609 } 5610 5611 /* fake up an SV array */ 5612 5613 assert(!new_patternp); 5614 Newx(new_patternp, n, SV*); 5615 SAVEFREEPV(new_patternp); 5616 pat_count = n; 5617 5618 n = 0; 5619 if (expr->op_type == OP_CONST) 5620 new_patternp[n] = cSVOPx_sv(expr); 5621 else 5622 for (o = cLISTOPx(expr)->op_first; o; o = o->op_sibling) { 5623 if (o->op_type == OP_CONST) 5624 new_patternp[n++] = cSVOPo_sv; 5625 } 5626 5627 } 5628 5629 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, 5630 "Assembling pattern from %d elements%s\n", pat_count, 5631 orig_rx_flags & RXf_SPLIT ? " for split" : "")); 5632 5633 /* set expr to the first arg op */ 5634 5635 if (pRExC_state->num_code_blocks 5636 && expr->op_type != OP_CONST) 5637 { 5638 expr = cLISTOPx(expr)->op_first; 5639 assert( expr->op_type == OP_PUSHMARK 5640 || (expr->op_type == OP_NULL && expr->op_targ == OP_PUSHMARK) 5641 || expr->op_type == OP_PADRANGE); 5642 expr = expr->op_sibling; 5643 } 5644 5645 pat = S_concat_pat(aTHX_ pRExC_state, NULL, new_patternp, pat_count, 5646 expr, &recompile, NULL); 5647 5648 /* handle bare (possibly after overloading) regex: foo =~ $re */ 5649 { 5650 SV *re = pat; 5651 if (SvROK(re)) 5652 re = SvRV(re); 5653 if (SvTYPE(re) == SVt_REGEXP) { 5654 if (is_bare_re) 5655 *is_bare_re = TRUE; 5656 SvREFCNT_inc(re); 5657 Safefree(pRExC_state->code_blocks); 5658 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, 5659 "Precompiled pattern%s\n", 5660 orig_rx_flags & RXf_SPLIT ? " for split" : "")); 5661 5662 return (REGEXP*)re; 5663 } 5664 } 5665 5666 exp = SvPV_nomg(pat, plen); 5667 5668 if (!eng->op_comp) { 5669 if ((SvUTF8(pat) && IN_BYTES) 5670 || SvGMAGICAL(pat) || SvAMAGIC(pat)) 5671 { 5672 /* make a temporary copy; either to convert to bytes, 5673 * or to avoid repeating get-magic / overloaded stringify */ 5674 pat = newSVpvn_flags(exp, plen, SVs_TEMP | 5675 (IN_BYTES ? 0 : SvUTF8(pat))); 5676 } 5677 Safefree(pRExC_state->code_blocks); 5678 return CALLREGCOMP_ENG(eng, pat, orig_rx_flags); 5679 } 5680 5681 /* ignore the utf8ness if the pattern is 0 length */ 5682 RExC_utf8 = RExC_orig_utf8 = (plen == 0 || IN_BYTES) ? 0 : SvUTF8(pat); 5683 RExC_uni_semantics = 0; 5684 RExC_contains_locale = 0; 5685 pRExC_state->runtime_code_qr = NULL; 5686 5687 DEBUG_COMPILE_r({ 5688 SV *dsv= sv_newmortal(); 5689 RE_PV_QUOTED_DECL(s, RExC_utf8, dsv, exp, plen, 60); 5690 PerlIO_printf(Perl_debug_log, "%sCompiling REx%s %s\n", 5691 PL_colors[4],PL_colors[5],s); 5692 }); 5693 5694 redo_first_pass: 5695 /* we jump here if we upgrade the pattern to utf8 and have to 5696 * recompile */ 5697 5698 if ((pm_flags & PMf_USE_RE_EVAL) 5699 /* this second condition covers the non-regex literal case, 5700 * i.e. $foo =~ '(?{})'. */ 5701 || (IN_PERL_COMPILETIME && (PL_hints & HINT_RE_EVAL)) 5702 ) 5703 runtime_code = S_has_runtime_code(aTHX_ pRExC_state, exp, plen); 5704 5705 /* return old regex if pattern hasn't changed */ 5706 /* XXX: note in the below we have to check the flags as well as the pattern. 5707 * 5708 * Things get a touch tricky as we have to compare the utf8 flag independently 5709 * from the compile flags. 5710 */ 5711 5712 if ( old_re 5713 && !recompile 5714 && !!RX_UTF8(old_re) == !!RExC_utf8 5715 && ( RX_COMPFLAGS(old_re) == ( orig_rx_flags & RXf_PMf_FLAGCOPYMASK ) ) 5716 && RX_PRECOMP(old_re) 5717 && RX_PRELEN(old_re) == plen 5718 && memEQ(RX_PRECOMP(old_re), exp, plen) 5719 && !runtime_code /* with runtime code, always recompile */ ) 5720 { 5721 Safefree(pRExC_state->code_blocks); 5722 return old_re; 5723 } 5724 5725 rx_flags = orig_rx_flags; 5726 5727 if (initial_charset == REGEX_LOCALE_CHARSET) { 5728 RExC_contains_locale = 1; 5729 } 5730 else if (RExC_utf8 && initial_charset == REGEX_DEPENDS_CHARSET) { 5731 5732 /* Set to use unicode semantics if the pattern is in utf8 and has the 5733 * 'depends' charset specified, as it means unicode when utf8 */ 5734 set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET); 5735 } 5736 5737 RExC_precomp = exp; 5738 RExC_flags = rx_flags; 5739 RExC_pm_flags = pm_flags; 5740 5741 if (runtime_code) { 5742 if (TAINTING_get && TAINT_get) 5743 Perl_croak(aTHX_ "Eval-group in insecure regular expression"); 5744 5745 if (!S_compile_runtime_code(aTHX_ pRExC_state, exp, plen)) { 5746 /* whoops, we have a non-utf8 pattern, whilst run-time code 5747 * got compiled as utf8. Try again with a utf8 pattern */ 5748 S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen, 5749 pRExC_state->num_code_blocks); 5750 goto redo_first_pass; 5751 } 5752 } 5753 assert(!pRExC_state->runtime_code_qr); 5754 5755 RExC_sawback = 0; 5756 5757 RExC_seen = 0; 5758 RExC_in_lookbehind = 0; 5759 RExC_seen_zerolen = *exp == '^' ? -1 : 0; 5760 RExC_extralen = 0; 5761 RExC_override_recoding = 0; 5762 RExC_in_multi_char_class = 0; 5763 5764 /* First pass: determine size, legality. */ 5765 RExC_parse = exp; 5766 RExC_start = exp; 5767 RExC_end = exp + plen; 5768 RExC_naughty = 0; 5769 RExC_npar = 1; 5770 RExC_nestroot = 0; 5771 RExC_size = 0L; 5772 RExC_emit = &PL_regdummy; 5773 RExC_whilem_seen = 0; 5774 RExC_open_parens = NULL; 5775 RExC_close_parens = NULL; 5776 RExC_opend = NULL; 5777 RExC_paren_names = NULL; 5778 #ifdef DEBUGGING 5779 RExC_paren_name_list = NULL; 5780 #endif 5781 RExC_recurse = NULL; 5782 RExC_recurse_count = 0; 5783 pRExC_state->code_index = 0; 5784 5785 #if 0 /* REGC() is (currently) a NOP at the first pass. 5786 * Clever compilers notice this and complain. --jhi */ 5787 REGC((U8)REG_MAGIC, (char*)RExC_emit); 5788 #endif 5789 DEBUG_PARSE_r( 5790 PerlIO_printf(Perl_debug_log, "Starting first pass (sizing)\n"); 5791 RExC_lastnum=0; 5792 RExC_lastparse=NULL; 5793 ); 5794 /* reg may croak on us, not giving us a chance to free 5795 pRExC_state->code_blocks. We cannot SAVEFREEPV it now, as we may 5796 need it to survive as long as the regexp (qr/(?{})/). 5797 We must check that code_blocksv is not already set, because we may 5798 have jumped back to restart the sizing pass. */ 5799 if (pRExC_state->code_blocks && !code_blocksv) { 5800 code_blocksv = newSV_type(SVt_PV); 5801 SAVEFREESV(code_blocksv); 5802 SvPV_set(code_blocksv, (char *)pRExC_state->code_blocks); 5803 SvLEN_set(code_blocksv, 1); /*sufficient to make sv_clear free it*/ 5804 } 5805 if (reg(pRExC_state, 0, &flags,1) == NULL) { 5806 /* It's possible to write a regexp in ascii that represents Unicode 5807 codepoints outside of the byte range, such as via \x{100}. If we 5808 detect such a sequence we have to convert the entire pattern to utf8 5809 and then recompile, as our sizing calculation will have been based 5810 on 1 byte == 1 character, but we will need to use utf8 to encode 5811 at least some part of the pattern, and therefore must convert the whole 5812 thing. 5813 -- dmq */ 5814 if (flags & RESTART_UTF8) { 5815 S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen, 5816 pRExC_state->num_code_blocks); 5817 goto redo_first_pass; 5818 } 5819 Perl_croak(aTHX_ "panic: reg returned NULL to re_op_compile for sizing pass, flags=%#X", flags); 5820 } 5821 if (code_blocksv) 5822 SvLEN_set(code_blocksv,0); /* no you can't have it, sv_clear */ 5823 5824 DEBUG_PARSE_r({ 5825 PerlIO_printf(Perl_debug_log, 5826 "Required size %"IVdf" nodes\n" 5827 "Starting second pass (creation)\n", 5828 (IV)RExC_size); 5829 RExC_lastnum=0; 5830 RExC_lastparse=NULL; 5831 }); 5832 5833 /* The first pass could have found things that force Unicode semantics */ 5834 if ((RExC_utf8 || RExC_uni_semantics) 5835 && get_regex_charset(rx_flags) == REGEX_DEPENDS_CHARSET) 5836 { 5837 set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET); 5838 } 5839 5840 /* Small enough for pointer-storage convention? 5841 If extralen==0, this means that we will not need long jumps. */ 5842 if (RExC_size >= 0x10000L && RExC_extralen) 5843 RExC_size += RExC_extralen; 5844 else 5845 RExC_extralen = 0; 5846 if (RExC_whilem_seen > 15) 5847 RExC_whilem_seen = 15; 5848 5849 /* Allocate space and zero-initialize. Note, the two step process 5850 of zeroing when in debug mode, thus anything assigned has to 5851 happen after that */ 5852 rx = (REGEXP*) newSV_type(SVt_REGEXP); 5853 r = ReANY(rx); 5854 Newxc(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode), 5855 char, regexp_internal); 5856 if ( r == NULL || ri == NULL ) 5857 FAIL("Regexp out of space"); 5858 #ifdef DEBUGGING 5859 /* avoid reading uninitialized memory in DEBUGGING code in study_chunk() */ 5860 Zero(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode), char); 5861 #else 5862 /* bulk initialize base fields with 0. */ 5863 Zero(ri, sizeof(regexp_internal), char); 5864 #endif 5865 5866 /* non-zero initialization begins here */ 5867 RXi_SET( r, ri ); 5868 r->engine= eng; 5869 r->extflags = rx_flags; 5870 RXp_COMPFLAGS(r) = orig_rx_flags & RXf_PMf_FLAGCOPYMASK; 5871 5872 if (pm_flags & PMf_IS_QR) { 5873 ri->code_blocks = pRExC_state->code_blocks; 5874 ri->num_code_blocks = pRExC_state->num_code_blocks; 5875 } 5876 else 5877 { 5878 int n; 5879 for (n = 0; n < pRExC_state->num_code_blocks; n++) 5880 if (pRExC_state->code_blocks[n].src_regex) 5881 SAVEFREESV(pRExC_state->code_blocks[n].src_regex); 5882 SAVEFREEPV(pRExC_state->code_blocks); 5883 } 5884 5885 { 5886 bool has_p = ((r->extflags & RXf_PMf_KEEPCOPY) == RXf_PMf_KEEPCOPY); 5887 bool has_charset = (get_regex_charset(r->extflags) != REGEX_DEPENDS_CHARSET); 5888 5889 /* The caret is output if there are any defaults: if not all the STD 5890 * flags are set, or if no character set specifier is needed */ 5891 bool has_default = 5892 (((r->extflags & RXf_PMf_STD_PMMOD) != RXf_PMf_STD_PMMOD) 5893 || ! has_charset); 5894 bool has_runon = ((RExC_seen & REG_SEEN_RUN_ON_COMMENT)==REG_SEEN_RUN_ON_COMMENT); 5895 U16 reganch = (U16)((r->extflags & RXf_PMf_STD_PMMOD) 5896 >> RXf_PMf_STD_PMMOD_SHIFT); 5897 const char *fptr = STD_PAT_MODS; /*"msix"*/ 5898 char *p; 5899 /* Allocate for the worst case, which is all the std flags are turned 5900 * on. If more precision is desired, we could do a population count of 5901 * the flags set. This could be done with a small lookup table, or by 5902 * shifting, masking and adding, or even, when available, assembly 5903 * language for a machine-language population count. 5904 * We never output a minus, as all those are defaults, so are 5905 * covered by the caret */ 5906 const STRLEN wraplen = plen + has_p + has_runon 5907 + has_default /* If needs a caret */ 5908 5909 /* If needs a character set specifier */ 5910 + ((has_charset) ? MAX_CHARSET_NAME_LENGTH : 0) 5911 + (sizeof(STD_PAT_MODS) - 1) 5912 + (sizeof("(?:)") - 1); 5913 5914 Newx(p, wraplen + 1, char); /* +1 for the ending NUL */ 5915 r->xpv_len_u.xpvlenu_pv = p; 5916 if (RExC_utf8) 5917 SvFLAGS(rx) |= SVf_UTF8; 5918 *p++='('; *p++='?'; 5919 5920 /* If a default, cover it using the caret */ 5921 if (has_default) { 5922 *p++= DEFAULT_PAT_MOD; 5923 } 5924 if (has_charset) { 5925 STRLEN len; 5926 const char* const name = get_regex_charset_name(r->extflags, &len); 5927 Copy(name, p, len, char); 5928 p += len; 5929 } 5930 if (has_p) 5931 *p++ = KEEPCOPY_PAT_MOD; /*'p'*/ 5932 { 5933 char ch; 5934 while((ch = *fptr++)) { 5935 if(reganch & 1) 5936 *p++ = ch; 5937 reganch >>= 1; 5938 } 5939 } 5940 5941 *p++ = ':'; 5942 Copy(RExC_precomp, p, plen, char); 5943 assert ((RX_WRAPPED(rx) - p) < 16); 5944 r->pre_prefix = p - RX_WRAPPED(rx); 5945 p += plen; 5946 if (has_runon) 5947 *p++ = '\n'; 5948 *p++ = ')'; 5949 *p = 0; 5950 SvCUR_set(rx, p - RX_WRAPPED(rx)); 5951 } 5952 5953 r->intflags = 0; 5954 r->nparens = RExC_npar - 1; /* set early to validate backrefs */ 5955 5956 if (RExC_seen & REG_SEEN_RECURSE) { 5957 Newxz(RExC_open_parens, RExC_npar,regnode *); 5958 SAVEFREEPV(RExC_open_parens); 5959 Newxz(RExC_close_parens,RExC_npar,regnode *); 5960 SAVEFREEPV(RExC_close_parens); 5961 } 5962 5963 /* Useful during FAIL. */ 5964 #ifdef RE_TRACK_PATTERN_OFFSETS 5965 Newxz(ri->u.offsets, 2*RExC_size+1, U32); /* MJD 20001228 */ 5966 DEBUG_OFFSETS_r(PerlIO_printf(Perl_debug_log, 5967 "%s %"UVuf" bytes for offset annotations.\n", 5968 ri->u.offsets ? "Got" : "Couldn't get", 5969 (UV)((2*RExC_size+1) * sizeof(U32)))); 5970 #endif 5971 SetProgLen(ri,RExC_size); 5972 RExC_rx_sv = rx; 5973 RExC_rx = r; 5974 RExC_rxi = ri; 5975 5976 /* Second pass: emit code. */ 5977 RExC_flags = rx_flags; /* don't let top level (?i) bleed */ 5978 RExC_pm_flags = pm_flags; 5979 RExC_parse = exp; 5980 RExC_end = exp + plen; 5981 RExC_naughty = 0; 5982 RExC_npar = 1; 5983 RExC_emit_start = ri->program; 5984 RExC_emit = ri->program; 5985 RExC_emit_bound = ri->program + RExC_size + 1; 5986 pRExC_state->code_index = 0; 5987 5988 REGC((U8)REG_MAGIC, (char*) RExC_emit++); 5989 if (reg(pRExC_state, 0, &flags,1) == NULL) { 5990 ReREFCNT_dec(rx); 5991 Perl_croak(aTHX_ "panic: reg returned NULL to re_op_compile for generation pass, flags=%#X", flags); 5992 } 5993 /* XXXX To minimize changes to RE engine we always allocate 5994 3-units-long substrs field. */ 5995 Newx(r->substrs, 1, struct reg_substr_data); 5996 if (RExC_recurse_count) { 5997 Newxz(RExC_recurse,RExC_recurse_count,regnode *); 5998 SAVEFREEPV(RExC_recurse); 5999 } 6000 6001 reStudy: 6002 r->minlen = minlen = sawlookahead = sawplus = sawopen = 0; 6003 Zero(r->substrs, 1, struct reg_substr_data); 6004 6005 #ifdef TRIE_STUDY_OPT 6006 if (!restudied) { 6007 StructCopy(&zero_scan_data, &data, scan_data_t); 6008 copyRExC_state = RExC_state; 6009 } else { 6010 U32 seen=RExC_seen; 6011 DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log,"Restudying\n")); 6012 6013 RExC_state = copyRExC_state; 6014 if (seen & REG_TOP_LEVEL_BRANCHES) 6015 RExC_seen |= REG_TOP_LEVEL_BRANCHES; 6016 else 6017 RExC_seen &= ~REG_TOP_LEVEL_BRANCHES; 6018 StructCopy(&zero_scan_data, &data, scan_data_t); 6019 } 6020 #else 6021 StructCopy(&zero_scan_data, &data, scan_data_t); 6022 #endif 6023 6024 /* Dig out information for optimizations. */ 6025 r->extflags = RExC_flags; /* was pm_op */ 6026 /*dmq: removed as part of de-PMOP: pm->op_pmflags = RExC_flags; */ 6027 6028 if (UTF) 6029 SvUTF8_on(rx); /* Unicode in it? */ 6030 ri->regstclass = NULL; 6031 if (RExC_naughty >= 10) /* Probably an expensive pattern. */ 6032 r->intflags |= PREGf_NAUGHTY; 6033 scan = ri->program + 1; /* First BRANCH. */ 6034 6035 /* testing for BRANCH here tells us whether there is "must appear" 6036 data in the pattern. If there is then we can use it for optimisations */ 6037 if (!(RExC_seen & REG_TOP_LEVEL_BRANCHES)) { /* Only one top-level choice. */ 6038 I32 fake; 6039 STRLEN longest_float_length, longest_fixed_length; 6040 struct regnode_charclass_class ch_class; /* pointed to by data */ 6041 int stclass_flag; 6042 I32 last_close = 0; /* pointed to by data */ 6043 regnode *first= scan; 6044 regnode *first_next= regnext(first); 6045 /* 6046 * Skip introductions and multiplicators >= 1 6047 * so that we can extract the 'meat' of the pattern that must 6048 * match in the large if() sequence following. 6049 * NOTE that EXACT is NOT covered here, as it is normally 6050 * picked up by the optimiser separately. 6051 * 6052 * This is unfortunate as the optimiser isnt handling lookahead 6053 * properly currently. 6054 * 6055 */ 6056 while ((OP(first) == OPEN && (sawopen = 1)) || 6057 /* An OR of *one* alternative - should not happen now. */ 6058 (OP(first) == BRANCH && OP(first_next) != BRANCH) || 6059 /* for now we can't handle lookbehind IFMATCH*/ 6060 (OP(first) == IFMATCH && !first->flags && (sawlookahead = 1)) || 6061 (OP(first) == PLUS) || 6062 (OP(first) == MINMOD) || 6063 /* An {n,m} with n>0 */ 6064 (PL_regkind[OP(first)] == CURLY && ARG1(first) > 0) || 6065 (OP(first) == NOTHING && PL_regkind[OP(first_next)] != END )) 6066 { 6067 /* 6068 * the only op that could be a regnode is PLUS, all the rest 6069 * will be regnode_1 or regnode_2. 6070 * 6071 */ 6072 if (OP(first) == PLUS) 6073 sawplus = 1; 6074 else 6075 first += regarglen[OP(first)]; 6076 6077 first = NEXTOPER(first); 6078 first_next= regnext(first); 6079 } 6080 6081 /* Starting-point info. */ 6082 again: 6083 DEBUG_PEEP("first:",first,0); 6084 /* Ignore EXACT as we deal with it later. */ 6085 if (PL_regkind[OP(first)] == EXACT) { 6086 if (OP(first) == EXACT) 6087 NOOP; /* Empty, get anchored substr later. */ 6088 else 6089 ri->regstclass = first; 6090 } 6091 #ifdef TRIE_STCLASS 6092 else if (PL_regkind[OP(first)] == TRIE && 6093 ((reg_trie_data *)ri->data->data[ ARG(first) ])->minlen>0) 6094 { 6095 regnode *trie_op; 6096 /* this can happen only on restudy */ 6097 if ( OP(first) == TRIE ) { 6098 struct regnode_1 *trieop = (struct regnode_1 *) 6099 PerlMemShared_calloc(1, sizeof(struct regnode_1)); 6100 StructCopy(first,trieop,struct regnode_1); 6101 trie_op=(regnode *)trieop; 6102 } else { 6103 struct regnode_charclass *trieop = (struct regnode_charclass *) 6104 PerlMemShared_calloc(1, sizeof(struct regnode_charclass)); 6105 StructCopy(first,trieop,struct regnode_charclass); 6106 trie_op=(regnode *)trieop; 6107 } 6108 OP(trie_op)+=2; 6109 make_trie_failtable(pRExC_state, (regnode *)first, trie_op, 0); 6110 ri->regstclass = trie_op; 6111 } 6112 #endif 6113 else if (REGNODE_SIMPLE(OP(first))) 6114 ri->regstclass = first; 6115 else if (PL_regkind[OP(first)] == BOUND || 6116 PL_regkind[OP(first)] == NBOUND) 6117 ri->regstclass = first; 6118 else if (PL_regkind[OP(first)] == BOL) { 6119 r->extflags |= (OP(first) == MBOL 6120 ? RXf_ANCH_MBOL 6121 : (OP(first) == SBOL 6122 ? RXf_ANCH_SBOL 6123 : RXf_ANCH_BOL)); 6124 first = NEXTOPER(first); 6125 goto again; 6126 } 6127 else if (OP(first) == GPOS) { 6128 r->extflags |= RXf_ANCH_GPOS; 6129 first = NEXTOPER(first); 6130 goto again; 6131 } 6132 else if ((!sawopen || !RExC_sawback) && 6133 (OP(first) == STAR && 6134 PL_regkind[OP(NEXTOPER(first))] == REG_ANY) && 6135 !(r->extflags & RXf_ANCH) && !pRExC_state->num_code_blocks) 6136 { 6137 /* turn .* into ^.* with an implied $*=1 */ 6138 const int type = 6139 (OP(NEXTOPER(first)) == REG_ANY) 6140 ? RXf_ANCH_MBOL 6141 : RXf_ANCH_SBOL; 6142 r->extflags |= type; 6143 r->intflags |= PREGf_IMPLICIT; 6144 first = NEXTOPER(first); 6145 goto again; 6146 } 6147 if (sawplus && !sawlookahead && (!sawopen || !RExC_sawback) 6148 && !pRExC_state->num_code_blocks) /* May examine pos and $& */ 6149 /* x+ must match at the 1st pos of run of x's */ 6150 r->intflags |= PREGf_SKIP; 6151 6152 /* Scan is after the zeroth branch, first is atomic matcher. */ 6153 #ifdef TRIE_STUDY_OPT 6154 DEBUG_PARSE_r( 6155 if (!restudied) 6156 PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n", 6157 (IV)(first - scan + 1)) 6158 ); 6159 #else 6160 DEBUG_PARSE_r( 6161 PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n", 6162 (IV)(first - scan + 1)) 6163 ); 6164 #endif 6165 6166 6167 /* 6168 * If there's something expensive in the r.e., find the 6169 * longest literal string that must appear and make it the 6170 * regmust. Resolve ties in favor of later strings, since 6171 * the regstart check works with the beginning of the r.e. 6172 * and avoiding duplication strengthens checking. Not a 6173 * strong reason, but sufficient in the absence of others. 6174 * [Now we resolve ties in favor of the earlier string if 6175 * it happens that c_offset_min has been invalidated, since the 6176 * earlier string may buy us something the later one won't.] 6177 */ 6178 6179 data.longest_fixed = newSVpvs(""); 6180 data.longest_float = newSVpvs(""); 6181 data.last_found = newSVpvs(""); 6182 data.longest = &(data.longest_fixed); 6183 ENTER_with_name("study_chunk"); 6184 SAVEFREESV(data.longest_fixed); 6185 SAVEFREESV(data.longest_float); 6186 SAVEFREESV(data.last_found); 6187 first = scan; 6188 if (!ri->regstclass) { 6189 cl_init(pRExC_state, &ch_class); 6190 data.start_class = &ch_class; 6191 stclass_flag = SCF_DO_STCLASS_AND; 6192 } else /* XXXX Check for BOUND? */ 6193 stclass_flag = 0; 6194 data.last_closep = &last_close; 6195 6196 minlen = study_chunk(pRExC_state, &first, &minlen, &fake, scan + RExC_size, /* Up to end */ 6197 &data, -1, NULL, NULL, 6198 SCF_DO_SUBSTR | SCF_WHILEM_VISITED_POS | stclass_flag,0); 6199 6200 6201 CHECK_RESTUDY_GOTO_butfirst(LEAVE_with_name("study_chunk")); 6202 6203 6204 if ( RExC_npar == 1 && data.longest == &(data.longest_fixed) 6205 && data.last_start_min == 0 && data.last_end > 0 6206 && !RExC_seen_zerolen 6207 && !(RExC_seen & REG_SEEN_VERBARG) 6208 && (!(RExC_seen & REG_SEEN_GPOS) || (r->extflags & RXf_ANCH_GPOS))) 6209 r->extflags |= RXf_CHECK_ALL; 6210 scan_commit(pRExC_state, &data,&minlen,0); 6211 6212 longest_float_length = CHR_SVLEN(data.longest_float); 6213 6214 if (! ((SvCUR(data.longest_fixed) /* ok to leave SvCUR */ 6215 && data.offset_fixed == data.offset_float_min 6216 && SvCUR(data.longest_fixed) == SvCUR(data.longest_float))) 6217 && S_setup_longest (aTHX_ pRExC_state, 6218 data.longest_float, 6219 &(r->float_utf8), 6220 &(r->float_substr), 6221 &(r->float_end_shift), 6222 data.lookbehind_float, 6223 data.offset_float_min, 6224 data.minlen_float, 6225 longest_float_length, 6226 cBOOL(data.flags & SF_FL_BEFORE_EOL), 6227 cBOOL(data.flags & SF_FL_BEFORE_MEOL))) 6228 { 6229 r->float_min_offset = data.offset_float_min - data.lookbehind_float; 6230 r->float_max_offset = data.offset_float_max; 6231 if (data.offset_float_max < I32_MAX) /* Don't offset infinity */ 6232 r->float_max_offset -= data.lookbehind_float; 6233 SvREFCNT_inc_simple_void_NN(data.longest_float); 6234 } 6235 else { 6236 r->float_substr = r->float_utf8 = NULL; 6237 longest_float_length = 0; 6238 } 6239 6240 longest_fixed_length = CHR_SVLEN(data.longest_fixed); 6241 6242 if (S_setup_longest (aTHX_ pRExC_state, 6243 data.longest_fixed, 6244 &(r->anchored_utf8), 6245 &(r->anchored_substr), 6246 &(r->anchored_end_shift), 6247 data.lookbehind_fixed, 6248 data.offset_fixed, 6249 data.minlen_fixed, 6250 longest_fixed_length, 6251 cBOOL(data.flags & SF_FIX_BEFORE_EOL), 6252 cBOOL(data.flags & SF_FIX_BEFORE_MEOL))) 6253 { 6254 r->anchored_offset = data.offset_fixed - data.lookbehind_fixed; 6255 SvREFCNT_inc_simple_void_NN(data.longest_fixed); 6256 } 6257 else { 6258 r->anchored_substr = r->anchored_utf8 = NULL; 6259 longest_fixed_length = 0; 6260 } 6261 LEAVE_with_name("study_chunk"); 6262 6263 if (ri->regstclass 6264 && (OP(ri->regstclass) == REG_ANY || OP(ri->regstclass) == SANY)) 6265 ri->regstclass = NULL; 6266 6267 if ((!(r->anchored_substr || r->anchored_utf8) || r->anchored_offset) 6268 && stclass_flag 6269 && ! TEST_SSC_EOS(data.start_class) 6270 && !cl_is_anything(data.start_class)) 6271 { 6272 const U32 n = add_data(pRExC_state, 1, "f"); 6273 OP(data.start_class) = ANYOF_SYNTHETIC; 6274 6275 Newx(RExC_rxi->data->data[n], 1, 6276 struct regnode_charclass_class); 6277 StructCopy(data.start_class, 6278 (struct regnode_charclass_class*)RExC_rxi->data->data[n], 6279 struct regnode_charclass_class); 6280 ri->regstclass = (regnode*)RExC_rxi->data->data[n]; 6281 r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */ 6282 DEBUG_COMPILE_r({ SV *sv = sv_newmortal(); 6283 regprop(r, sv, (regnode*)data.start_class); 6284 PerlIO_printf(Perl_debug_log, 6285 "synthetic stclass \"%s\".\n", 6286 SvPVX_const(sv));}); 6287 } 6288 6289 /* A temporary algorithm prefers floated substr to fixed one to dig more info. */ 6290 if (longest_fixed_length > longest_float_length) { 6291 r->check_end_shift = r->anchored_end_shift; 6292 r->check_substr = r->anchored_substr; 6293 r->check_utf8 = r->anchored_utf8; 6294 r->check_offset_min = r->check_offset_max = r->anchored_offset; 6295 if (r->extflags & RXf_ANCH_SINGLE) 6296 r->extflags |= RXf_NOSCAN; 6297 } 6298 else { 6299 r->check_end_shift = r->float_end_shift; 6300 r->check_substr = r->float_substr; 6301 r->check_utf8 = r->float_utf8; 6302 r->check_offset_min = r->float_min_offset; 6303 r->check_offset_max = r->float_max_offset; 6304 } 6305 /* XXXX Currently intuiting is not compatible with ANCH_GPOS. 6306 This should be changed ASAP! */ 6307 if ((r->check_substr || r->check_utf8) && !(r->extflags & RXf_ANCH_GPOS)) { 6308 r->extflags |= RXf_USE_INTUIT; 6309 if (SvTAIL(r->check_substr ? r->check_substr : r->check_utf8)) 6310 r->extflags |= RXf_INTUIT_TAIL; 6311 } 6312 /* XXX Unneeded? dmq (shouldn't as this is handled elsewhere) 6313 if ( (STRLEN)minlen < longest_float_length ) 6314 minlen= longest_float_length; 6315 if ( (STRLEN)minlen < longest_fixed_length ) 6316 minlen= longest_fixed_length; 6317 */ 6318 } 6319 else { 6320 /* Several toplevels. Best we can is to set minlen. */ 6321 I32 fake; 6322 struct regnode_charclass_class ch_class; 6323 I32 last_close = 0; 6324 6325 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "\nMulti Top Level\n")); 6326 6327 scan = ri->program + 1; 6328 cl_init(pRExC_state, &ch_class); 6329 data.start_class = &ch_class; 6330 data.last_closep = &last_close; 6331 6332 6333 minlen = study_chunk(pRExC_state, &scan, &minlen, &fake, scan + RExC_size, 6334 &data, -1, NULL, NULL, SCF_DO_STCLASS_AND|SCF_WHILEM_VISITED_POS,0); 6335 6336 CHECK_RESTUDY_GOTO_butfirst(NOOP); 6337 6338 r->check_substr = r->check_utf8 = r->anchored_substr = r->anchored_utf8 6339 = r->float_substr = r->float_utf8 = NULL; 6340 6341 if (! TEST_SSC_EOS(data.start_class) 6342 && !cl_is_anything(data.start_class)) 6343 { 6344 const U32 n = add_data(pRExC_state, 1, "f"); 6345 OP(data.start_class) = ANYOF_SYNTHETIC; 6346 6347 Newx(RExC_rxi->data->data[n], 1, 6348 struct regnode_charclass_class); 6349 StructCopy(data.start_class, 6350 (struct regnode_charclass_class*)RExC_rxi->data->data[n], 6351 struct regnode_charclass_class); 6352 ri->regstclass = (regnode*)RExC_rxi->data->data[n]; 6353 r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */ 6354 DEBUG_COMPILE_r({ SV* sv = sv_newmortal(); 6355 regprop(r, sv, (regnode*)data.start_class); 6356 PerlIO_printf(Perl_debug_log, 6357 "synthetic stclass \"%s\".\n", 6358 SvPVX_const(sv));}); 6359 } 6360 } 6361 6362 /* Guard against an embedded (?=) or (?<=) with a longer minlen than 6363 the "real" pattern. */ 6364 DEBUG_OPTIMISE_r({ 6365 PerlIO_printf(Perl_debug_log,"minlen: %"IVdf" r->minlen:%"IVdf"\n", 6366 (IV)minlen, (IV)r->minlen); 6367 }); 6368 r->minlenret = minlen; 6369 if (r->minlen < minlen) 6370 r->minlen = minlen; 6371 6372 if (RExC_seen & REG_SEEN_GPOS) 6373 r->extflags |= RXf_GPOS_SEEN; 6374 if (RExC_seen & REG_SEEN_LOOKBEHIND) 6375 r->extflags |= RXf_NO_INPLACE_SUBST; /* inplace might break the lookbehind */ 6376 if (pRExC_state->num_code_blocks) 6377 r->extflags |= RXf_EVAL_SEEN; 6378 if (RExC_seen & REG_SEEN_CANY) 6379 r->extflags |= RXf_CANY_SEEN; 6380 if (RExC_seen & REG_SEEN_VERBARG) 6381 { 6382 r->intflags |= PREGf_VERBARG_SEEN; 6383 r->extflags |= RXf_NO_INPLACE_SUBST; /* don't understand this! Yves */ 6384 } 6385 if (RExC_seen & REG_SEEN_CUTGROUP) 6386 r->intflags |= PREGf_CUTGROUP_SEEN; 6387 if (pm_flags & PMf_USE_RE_EVAL) 6388 r->intflags |= PREGf_USE_RE_EVAL; 6389 if (RExC_paren_names) 6390 RXp_PAREN_NAMES(r) = MUTABLE_HV(SvREFCNT_inc(RExC_paren_names)); 6391 else 6392 RXp_PAREN_NAMES(r) = NULL; 6393 6394 { 6395 regnode *first = ri->program + 1; 6396 U8 fop = OP(first); 6397 regnode *next = NEXTOPER(first); 6398 U8 nop = OP(next); 6399 6400 if (PL_regkind[fop] == NOTHING && nop == END) 6401 r->extflags |= RXf_NULL; 6402 else if (PL_regkind[fop] == BOL && nop == END) 6403 r->extflags |= RXf_START_ONLY; 6404 else if (fop == PLUS && PL_regkind[nop] == POSIXD && FLAGS(next) == _CC_SPACE && OP(regnext(first)) == END) 6405 r->extflags |= RXf_WHITE; 6406 else if ( r->extflags & RXf_SPLIT && fop == EXACT && STR_LEN(first) == 1 && *(STRING(first)) == ' ' && OP(regnext(first)) == END ) 6407 r->extflags |= (RXf_SKIPWHITE|RXf_WHITE); 6408 6409 } 6410 #ifdef DEBUGGING 6411 if (RExC_paren_names) { 6412 ri->name_list_idx = add_data( pRExC_state, 1, "a" ); 6413 ri->data->data[ri->name_list_idx] = (void*)SvREFCNT_inc(RExC_paren_name_list); 6414 } else 6415 #endif 6416 ri->name_list_idx = 0; 6417 6418 if (RExC_recurse_count) { 6419 for ( ; RExC_recurse_count ; RExC_recurse_count-- ) { 6420 const regnode *scan = RExC_recurse[RExC_recurse_count-1]; 6421 ARG2L_SET( scan, RExC_open_parens[ARG(scan)-1] - scan ); 6422 } 6423 } 6424 Newxz(r->offs, RExC_npar, regexp_paren_pair); 6425 /* assume we don't need to swap parens around before we match */ 6426 6427 DEBUG_DUMP_r({ 6428 PerlIO_printf(Perl_debug_log,"Final program:\n"); 6429 regdump(r); 6430 }); 6431 #ifdef RE_TRACK_PATTERN_OFFSETS 6432 DEBUG_OFFSETS_r(if (ri->u.offsets) { 6433 const U32 len = ri->u.offsets[0]; 6434 U32 i; 6435 GET_RE_DEBUG_FLAGS_DECL; 6436 PerlIO_printf(Perl_debug_log, "Offsets: [%"UVuf"]\n\t", (UV)ri->u.offsets[0]); 6437 for (i = 1; i <= len; i++) { 6438 if (ri->u.offsets[i*2-1] || ri->u.offsets[i*2]) 6439 PerlIO_printf(Perl_debug_log, "%"UVuf":%"UVuf"[%"UVuf"] ", 6440 (UV)i, (UV)ri->u.offsets[i*2-1], (UV)ri->u.offsets[i*2]); 6441 } 6442 PerlIO_printf(Perl_debug_log, "\n"); 6443 }); 6444 #endif 6445 6446 #ifdef USE_ITHREADS 6447 /* under ithreads the ?pat? PMf_USED flag on the pmop is simulated 6448 * by setting the regexp SV to readonly-only instead. If the 6449 * pattern's been recompiled, the USEDness should remain. */ 6450 if (old_re && SvREADONLY(old_re)) 6451 SvREADONLY_on(rx); 6452 #endif 6453 return rx; 6454 } 6455 6456 6457 SV* 6458 Perl_reg_named_buff(pTHX_ REGEXP * const rx, SV * const key, SV * const value, 6459 const U32 flags) 6460 { 6461 PERL_ARGS_ASSERT_REG_NAMED_BUFF; 6462 6463 PERL_UNUSED_ARG(value); 6464 6465 if (flags & RXapif_FETCH) { 6466 return reg_named_buff_fetch(rx, key, flags); 6467 } else if (flags & (RXapif_STORE | RXapif_DELETE | RXapif_CLEAR)) { 6468 Perl_croak_no_modify(); 6469 return NULL; 6470 } else if (flags & RXapif_EXISTS) { 6471 return reg_named_buff_exists(rx, key, flags) 6472 ? &PL_sv_yes 6473 : &PL_sv_no; 6474 } else if (flags & RXapif_REGNAMES) { 6475 return reg_named_buff_all(rx, flags); 6476 } else if (flags & (RXapif_SCALAR | RXapif_REGNAMES_COUNT)) { 6477 return reg_named_buff_scalar(rx, flags); 6478 } else { 6479 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff", (int)flags); 6480 return NULL; 6481 } 6482 } 6483 6484 SV* 6485 Perl_reg_named_buff_iter(pTHX_ REGEXP * const rx, const SV * const lastkey, 6486 const U32 flags) 6487 { 6488 PERL_ARGS_ASSERT_REG_NAMED_BUFF_ITER; 6489 PERL_UNUSED_ARG(lastkey); 6490 6491 if (flags & RXapif_FIRSTKEY) 6492 return reg_named_buff_firstkey(rx, flags); 6493 else if (flags & RXapif_NEXTKEY) 6494 return reg_named_buff_nextkey(rx, flags); 6495 else { 6496 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_iter", (int)flags); 6497 return NULL; 6498 } 6499 } 6500 6501 SV* 6502 Perl_reg_named_buff_fetch(pTHX_ REGEXP * const r, SV * const namesv, 6503 const U32 flags) 6504 { 6505 AV *retarray = NULL; 6506 SV *ret; 6507 struct regexp *const rx = ReANY(r); 6508 6509 PERL_ARGS_ASSERT_REG_NAMED_BUFF_FETCH; 6510 6511 if (flags & RXapif_ALL) 6512 retarray=newAV(); 6513 6514 if (rx && RXp_PAREN_NAMES(rx)) { 6515 HE *he_str = hv_fetch_ent( RXp_PAREN_NAMES(rx), namesv, 0, 0 ); 6516 if (he_str) { 6517 IV i; 6518 SV* sv_dat=HeVAL(he_str); 6519 I32 *nums=(I32*)SvPVX(sv_dat); 6520 for ( i=0; i<SvIVX(sv_dat); i++ ) { 6521 if ((I32)(rx->nparens) >= nums[i] 6522 && rx->offs[nums[i]].start != -1 6523 && rx->offs[nums[i]].end != -1) 6524 { 6525 ret = newSVpvs(""); 6526 CALLREG_NUMBUF_FETCH(r,nums[i],ret); 6527 if (!retarray) 6528 return ret; 6529 } else { 6530 if (retarray) 6531 ret = newSVsv(&PL_sv_undef); 6532 } 6533 if (retarray) 6534 av_push(retarray, ret); 6535 } 6536 if (retarray) 6537 return newRV_noinc(MUTABLE_SV(retarray)); 6538 } 6539 } 6540 return NULL; 6541 } 6542 6543 bool 6544 Perl_reg_named_buff_exists(pTHX_ REGEXP * const r, SV * const key, 6545 const U32 flags) 6546 { 6547 struct regexp *const rx = ReANY(r); 6548 6549 PERL_ARGS_ASSERT_REG_NAMED_BUFF_EXISTS; 6550 6551 if (rx && RXp_PAREN_NAMES(rx)) { 6552 if (flags & RXapif_ALL) { 6553 return hv_exists_ent(RXp_PAREN_NAMES(rx), key, 0); 6554 } else { 6555 SV *sv = CALLREG_NAMED_BUFF_FETCH(r, key, flags); 6556 if (sv) { 6557 SvREFCNT_dec_NN(sv); 6558 return TRUE; 6559 } else { 6560 return FALSE; 6561 } 6562 } 6563 } else { 6564 return FALSE; 6565 } 6566 } 6567 6568 SV* 6569 Perl_reg_named_buff_firstkey(pTHX_ REGEXP * const r, const U32 flags) 6570 { 6571 struct regexp *const rx = ReANY(r); 6572 6573 PERL_ARGS_ASSERT_REG_NAMED_BUFF_FIRSTKEY; 6574 6575 if ( rx && RXp_PAREN_NAMES(rx) ) { 6576 (void)hv_iterinit(RXp_PAREN_NAMES(rx)); 6577 6578 return CALLREG_NAMED_BUFF_NEXTKEY(r, NULL, flags & ~RXapif_FIRSTKEY); 6579 } else { 6580 return FALSE; 6581 } 6582 } 6583 6584 SV* 6585 Perl_reg_named_buff_nextkey(pTHX_ REGEXP * const r, const U32 flags) 6586 { 6587 struct regexp *const rx = ReANY(r); 6588 GET_RE_DEBUG_FLAGS_DECL; 6589 6590 PERL_ARGS_ASSERT_REG_NAMED_BUFF_NEXTKEY; 6591 6592 if (rx && RXp_PAREN_NAMES(rx)) { 6593 HV *hv = RXp_PAREN_NAMES(rx); 6594 HE *temphe; 6595 while ( (temphe = hv_iternext_flags(hv,0)) ) { 6596 IV i; 6597 IV parno = 0; 6598 SV* sv_dat = HeVAL(temphe); 6599 I32 *nums = (I32*)SvPVX(sv_dat); 6600 for ( i = 0; i < SvIVX(sv_dat); i++ ) { 6601 if ((I32)(rx->lastparen) >= nums[i] && 6602 rx->offs[nums[i]].start != -1 && 6603 rx->offs[nums[i]].end != -1) 6604 { 6605 parno = nums[i]; 6606 break; 6607 } 6608 } 6609 if (parno || flags & RXapif_ALL) { 6610 return newSVhek(HeKEY_hek(temphe)); 6611 } 6612 } 6613 } 6614 return NULL; 6615 } 6616 6617 SV* 6618 Perl_reg_named_buff_scalar(pTHX_ REGEXP * const r, const U32 flags) 6619 { 6620 SV *ret; 6621 AV *av; 6622 I32 length; 6623 struct regexp *const rx = ReANY(r); 6624 6625 PERL_ARGS_ASSERT_REG_NAMED_BUFF_SCALAR; 6626 6627 if (rx && RXp_PAREN_NAMES(rx)) { 6628 if (flags & (RXapif_ALL | RXapif_REGNAMES_COUNT)) { 6629 return newSViv(HvTOTALKEYS(RXp_PAREN_NAMES(rx))); 6630 } else if (flags & RXapif_ONE) { 6631 ret = CALLREG_NAMED_BUFF_ALL(r, (flags | RXapif_REGNAMES)); 6632 av = MUTABLE_AV(SvRV(ret)); 6633 length = av_len(av); 6634 SvREFCNT_dec_NN(ret); 6635 return newSViv(length + 1); 6636 } else { 6637 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_scalar", (int)flags); 6638 return NULL; 6639 } 6640 } 6641 return &PL_sv_undef; 6642 } 6643 6644 SV* 6645 Perl_reg_named_buff_all(pTHX_ REGEXP * const r, const U32 flags) 6646 { 6647 struct regexp *const rx = ReANY(r); 6648 AV *av = newAV(); 6649 6650 PERL_ARGS_ASSERT_REG_NAMED_BUFF_ALL; 6651 6652 if (rx && RXp_PAREN_NAMES(rx)) { 6653 HV *hv= RXp_PAREN_NAMES(rx); 6654 HE *temphe; 6655 (void)hv_iterinit(hv); 6656 while ( (temphe = hv_iternext_flags(hv,0)) ) { 6657 IV i; 6658 IV parno = 0; 6659 SV* sv_dat = HeVAL(temphe); 6660 I32 *nums = (I32*)SvPVX(sv_dat); 6661 for ( i = 0; i < SvIVX(sv_dat); i++ ) { 6662 if ((I32)(rx->lastparen) >= nums[i] && 6663 rx->offs[nums[i]].start != -1 && 6664 rx->offs[nums[i]].end != -1) 6665 { 6666 parno = nums[i]; 6667 break; 6668 } 6669 } 6670 if (parno || flags & RXapif_ALL) { 6671 av_push(av, newSVhek(HeKEY_hek(temphe))); 6672 } 6673 } 6674 } 6675 6676 return newRV_noinc(MUTABLE_SV(av)); 6677 } 6678 6679 void 6680 Perl_reg_numbered_buff_fetch(pTHX_ REGEXP * const r, const I32 paren, 6681 SV * const sv) 6682 { 6683 struct regexp *const rx = ReANY(r); 6684 char *s = NULL; 6685 I32 i = 0; 6686 I32 s1, t1; 6687 I32 n = paren; 6688 6689 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_FETCH; 6690 6691 if ( n == RX_BUFF_IDX_CARET_PREMATCH 6692 || n == RX_BUFF_IDX_CARET_FULLMATCH 6693 || n == RX_BUFF_IDX_CARET_POSTMATCH 6694 ) 6695 { 6696 bool keepcopy = cBOOL(rx->extflags & RXf_PMf_KEEPCOPY); 6697 if (!keepcopy) { 6698 /* on something like 6699 * $r = qr/.../; 6700 * /$qr/p; 6701 * the KEEPCOPY is set on the PMOP rather than the regex */ 6702 if (PL_curpm && r == PM_GETRE(PL_curpm)) 6703 keepcopy = cBOOL(PL_curpm->op_pmflags & PMf_KEEPCOPY); 6704 } 6705 if (!keepcopy) 6706 goto ret_undef; 6707 } 6708 6709 if (!rx->subbeg) 6710 goto ret_undef; 6711 6712 if (n == RX_BUFF_IDX_CARET_FULLMATCH) 6713 /* no need to distinguish between them any more */ 6714 n = RX_BUFF_IDX_FULLMATCH; 6715 6716 if ((n == RX_BUFF_IDX_PREMATCH || n == RX_BUFF_IDX_CARET_PREMATCH) 6717 && rx->offs[0].start != -1) 6718 { 6719 /* $`, ${^PREMATCH} */ 6720 i = rx->offs[0].start; 6721 s = rx->subbeg; 6722 } 6723 else 6724 if ((n == RX_BUFF_IDX_POSTMATCH || n == RX_BUFF_IDX_CARET_POSTMATCH) 6725 && rx->offs[0].end != -1) 6726 { 6727 /* $', ${^POSTMATCH} */ 6728 s = rx->subbeg - rx->suboffset + rx->offs[0].end; 6729 i = rx->sublen + rx->suboffset - rx->offs[0].end; 6730 } 6731 else 6732 if ( 0 <= n && n <= (I32)rx->nparens && 6733 (s1 = rx->offs[n].start) != -1 && 6734 (t1 = rx->offs[n].end) != -1) 6735 { 6736 /* $&, ${^MATCH}, $1 ... */ 6737 i = t1 - s1; 6738 s = rx->subbeg + s1 - rx->suboffset; 6739 } else { 6740 goto ret_undef; 6741 } 6742 6743 assert(s >= rx->subbeg); 6744 assert(rx->sublen >= (s - rx->subbeg) + i ); 6745 if (i >= 0) { 6746 #if NO_TAINT_SUPPORT 6747 sv_setpvn(sv, s, i); 6748 #else 6749 const int oldtainted = TAINT_get; 6750 TAINT_NOT; 6751 sv_setpvn(sv, s, i); 6752 TAINT_set(oldtainted); 6753 #endif 6754 if ( (rx->extflags & RXf_CANY_SEEN) 6755 ? (RXp_MATCH_UTF8(rx) 6756 && (!i || is_utf8_string((U8*)s, i))) 6757 : (RXp_MATCH_UTF8(rx)) ) 6758 { 6759 SvUTF8_on(sv); 6760 } 6761 else 6762 SvUTF8_off(sv); 6763 if (TAINTING_get) { 6764 if (RXp_MATCH_TAINTED(rx)) { 6765 if (SvTYPE(sv) >= SVt_PVMG) { 6766 MAGIC* const mg = SvMAGIC(sv); 6767 MAGIC* mgt; 6768 TAINT; 6769 SvMAGIC_set(sv, mg->mg_moremagic); 6770 SvTAINT(sv); 6771 if ((mgt = SvMAGIC(sv))) { 6772 mg->mg_moremagic = mgt; 6773 SvMAGIC_set(sv, mg); 6774 } 6775 } else { 6776 TAINT; 6777 SvTAINT(sv); 6778 } 6779 } else 6780 SvTAINTED_off(sv); 6781 } 6782 } else { 6783 ret_undef: 6784 sv_setsv(sv,&PL_sv_undef); 6785 return; 6786 } 6787 } 6788 6789 void 6790 Perl_reg_numbered_buff_store(pTHX_ REGEXP * const rx, const I32 paren, 6791 SV const * const value) 6792 { 6793 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_STORE; 6794 6795 PERL_UNUSED_ARG(rx); 6796 PERL_UNUSED_ARG(paren); 6797 PERL_UNUSED_ARG(value); 6798 6799 if (!PL_localizing) 6800 Perl_croak_no_modify(); 6801 } 6802 6803 I32 6804 Perl_reg_numbered_buff_length(pTHX_ REGEXP * const r, const SV * const sv, 6805 const I32 paren) 6806 { 6807 struct regexp *const rx = ReANY(r); 6808 I32 i; 6809 I32 s1, t1; 6810 6811 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_LENGTH; 6812 6813 if ( paren == RX_BUFF_IDX_CARET_PREMATCH 6814 || paren == RX_BUFF_IDX_CARET_FULLMATCH 6815 || paren == RX_BUFF_IDX_CARET_POSTMATCH 6816 ) 6817 { 6818 bool keepcopy = cBOOL(rx->extflags & RXf_PMf_KEEPCOPY); 6819 if (!keepcopy) { 6820 /* on something like 6821 * $r = qr/.../; 6822 * /$qr/p; 6823 * the KEEPCOPY is set on the PMOP rather than the regex */ 6824 if (PL_curpm && r == PM_GETRE(PL_curpm)) 6825 keepcopy = cBOOL(PL_curpm->op_pmflags & PMf_KEEPCOPY); 6826 } 6827 if (!keepcopy) 6828 goto warn_undef; 6829 } 6830 6831 /* Some of this code was originally in C<Perl_magic_len> in F<mg.c> */ 6832 switch (paren) { 6833 case RX_BUFF_IDX_CARET_PREMATCH: /* ${^PREMATCH} */ 6834 case RX_BUFF_IDX_PREMATCH: /* $` */ 6835 if (rx->offs[0].start != -1) { 6836 i = rx->offs[0].start; 6837 if (i > 0) { 6838 s1 = 0; 6839 t1 = i; 6840 goto getlen; 6841 } 6842 } 6843 return 0; 6844 6845 case RX_BUFF_IDX_CARET_POSTMATCH: /* ${^POSTMATCH} */ 6846 case RX_BUFF_IDX_POSTMATCH: /* $' */ 6847 if (rx->offs[0].end != -1) { 6848 i = rx->sublen - rx->offs[0].end; 6849 if (i > 0) { 6850 s1 = rx->offs[0].end; 6851 t1 = rx->sublen; 6852 goto getlen; 6853 } 6854 } 6855 return 0; 6856 6857 default: /* $& / ${^MATCH}, $1, $2, ... */ 6858 if (paren <= (I32)rx->nparens && 6859 (s1 = rx->offs[paren].start) != -1 && 6860 (t1 = rx->offs[paren].end) != -1) 6861 { 6862 i = t1 - s1; 6863 goto getlen; 6864 } else { 6865 warn_undef: 6866 if (ckWARN(WARN_UNINITIALIZED)) 6867 report_uninit((const SV *)sv); 6868 return 0; 6869 } 6870 } 6871 getlen: 6872 if (i > 0 && RXp_MATCH_UTF8(rx)) { 6873 const char * const s = rx->subbeg - rx->suboffset + s1; 6874 const U8 *ep; 6875 STRLEN el; 6876 6877 i = t1 - s1; 6878 if (is_utf8_string_loclen((U8*)s, i, &ep, &el)) 6879 i = el; 6880 } 6881 return i; 6882 } 6883 6884 SV* 6885 Perl_reg_qr_package(pTHX_ REGEXP * const rx) 6886 { 6887 PERL_ARGS_ASSERT_REG_QR_PACKAGE; 6888 PERL_UNUSED_ARG(rx); 6889 if (0) 6890 return NULL; 6891 else 6892 return newSVpvs("Regexp"); 6893 } 6894 6895 /* Scans the name of a named buffer from the pattern. 6896 * If flags is REG_RSN_RETURN_NULL returns null. 6897 * If flags is REG_RSN_RETURN_NAME returns an SV* containing the name 6898 * If flags is REG_RSN_RETURN_DATA returns the data SV* corresponding 6899 * to the parsed name as looked up in the RExC_paren_names hash. 6900 * If there is an error throws a vFAIL().. type exception. 6901 */ 6902 6903 #define REG_RSN_RETURN_NULL 0 6904 #define REG_RSN_RETURN_NAME 1 6905 #define REG_RSN_RETURN_DATA 2 6906 6907 STATIC SV* 6908 S_reg_scan_name(pTHX_ RExC_state_t *pRExC_state, U32 flags) 6909 { 6910 char *name_start = RExC_parse; 6911 6912 PERL_ARGS_ASSERT_REG_SCAN_NAME; 6913 6914 if (isIDFIRST_lazy_if(RExC_parse, UTF)) { 6915 /* skip IDFIRST by using do...while */ 6916 if (UTF) 6917 do { 6918 RExC_parse += UTF8SKIP(RExC_parse); 6919 } while (isWORDCHAR_utf8((U8*)RExC_parse)); 6920 else 6921 do { 6922 RExC_parse++; 6923 } while (isWORDCHAR(*RExC_parse)); 6924 } else { 6925 RExC_parse++; /* so the <- from the vFAIL is after the offending character */ 6926 vFAIL("Group name must start with a non-digit word character"); 6927 } 6928 if ( flags ) { 6929 SV* sv_name 6930 = newSVpvn_flags(name_start, (int)(RExC_parse - name_start), 6931 SVs_TEMP | (UTF ? SVf_UTF8 : 0)); 6932 if ( flags == REG_RSN_RETURN_NAME) 6933 return sv_name; 6934 else if (flags==REG_RSN_RETURN_DATA) { 6935 HE *he_str = NULL; 6936 SV *sv_dat = NULL; 6937 if ( ! sv_name ) /* should not happen*/ 6938 Perl_croak(aTHX_ "panic: no svname in reg_scan_name"); 6939 if (RExC_paren_names) 6940 he_str = hv_fetch_ent( RExC_paren_names, sv_name, 0, 0 ); 6941 if ( he_str ) 6942 sv_dat = HeVAL(he_str); 6943 if ( ! sv_dat ) 6944 vFAIL("Reference to nonexistent named group"); 6945 return sv_dat; 6946 } 6947 else { 6948 Perl_croak(aTHX_ "panic: bad flag %lx in reg_scan_name", 6949 (unsigned long) flags); 6950 } 6951 assert(0); /* NOT REACHED */ 6952 } 6953 return NULL; 6954 } 6955 6956 #define DEBUG_PARSE_MSG(funcname) DEBUG_PARSE_r({ \ 6957 int rem=(int)(RExC_end - RExC_parse); \ 6958 int cut; \ 6959 int num; \ 6960 int iscut=0; \ 6961 if (rem>10) { \ 6962 rem=10; \ 6963 iscut=1; \ 6964 } \ 6965 cut=10-rem; \ 6966 if (RExC_lastparse!=RExC_parse) \ 6967 PerlIO_printf(Perl_debug_log," >%.*s%-*s", \ 6968 rem, RExC_parse, \ 6969 cut + 4, \ 6970 iscut ? "..." : "<" \ 6971 ); \ 6972 else \ 6973 PerlIO_printf(Perl_debug_log,"%16s",""); \ 6974 \ 6975 if (SIZE_ONLY) \ 6976 num = RExC_size + 1; \ 6977 else \ 6978 num=REG_NODE_NUM(RExC_emit); \ 6979 if (RExC_lastnum!=num) \ 6980 PerlIO_printf(Perl_debug_log,"|%4d",num); \ 6981 else \ 6982 PerlIO_printf(Perl_debug_log,"|%4s",""); \ 6983 PerlIO_printf(Perl_debug_log,"|%*s%-4s", \ 6984 (int)((depth*2)), "", \ 6985 (funcname) \ 6986 ); \ 6987 RExC_lastnum=num; \ 6988 RExC_lastparse=RExC_parse; \ 6989 }) 6990 6991 6992 6993 #define DEBUG_PARSE(funcname) DEBUG_PARSE_r({ \ 6994 DEBUG_PARSE_MSG((funcname)); \ 6995 PerlIO_printf(Perl_debug_log,"%4s","\n"); \ 6996 }) 6997 #define DEBUG_PARSE_FMT(funcname,fmt,args) DEBUG_PARSE_r({ \ 6998 DEBUG_PARSE_MSG((funcname)); \ 6999 PerlIO_printf(Perl_debug_log,fmt "\n",args); \ 7000 }) 7001 7002 /* This section of code defines the inversion list object and its methods. The 7003 * interfaces are highly subject to change, so as much as possible is static to 7004 * this file. An inversion list is here implemented as a malloc'd C UV array 7005 * with some added info that is placed as UVs at the beginning in a header 7006 * portion. An inversion list for Unicode is an array of code points, sorted 7007 * by ordinal number. The zeroth element is the first code point in the list. 7008 * The 1th element is the first element beyond that not in the list. In other 7009 * words, the first range is 7010 * invlist[0]..(invlist[1]-1) 7011 * The other ranges follow. Thus every element whose index is divisible by two 7012 * marks the beginning of a range that is in the list, and every element not 7013 * divisible by two marks the beginning of a range not in the list. A single 7014 * element inversion list that contains the single code point N generally 7015 * consists of two elements 7016 * invlist[0] == N 7017 * invlist[1] == N+1 7018 * (The exception is when N is the highest representable value on the 7019 * machine, in which case the list containing just it would be a single 7020 * element, itself. By extension, if the last range in the list extends to 7021 * infinity, then the first element of that range will be in the inversion list 7022 * at a position that is divisible by two, and is the final element in the 7023 * list.) 7024 * Taking the complement (inverting) an inversion list is quite simple, if the 7025 * first element is 0, remove it; otherwise add a 0 element at the beginning. 7026 * This implementation reserves an element at the beginning of each inversion 7027 * list to contain 0 when the list contains 0, and contains 1 otherwise. The 7028 * actual beginning of the list is either that element if 0, or the next one if 7029 * 1. 7030 * 7031 * More about inversion lists can be found in "Unicode Demystified" 7032 * Chapter 13 by Richard Gillam, published by Addison-Wesley. 7033 * More will be coming when functionality is added later. 7034 * 7035 * The inversion list data structure is currently implemented as an SV pointing 7036 * to an array of UVs that the SV thinks are bytes. This allows us to have an 7037 * array of UV whose memory management is automatically handled by the existing 7038 * facilities for SV's. 7039 * 7040 * Some of the methods should always be private to the implementation, and some 7041 * should eventually be made public */ 7042 7043 /* The header definitions are in F<inline_invlist.c> */ 7044 #define TO_INTERNAL_SIZE(x) (((x) + HEADER_LENGTH) * sizeof(UV)) 7045 #define FROM_INTERNAL_SIZE(x) (((x)/ sizeof(UV)) - HEADER_LENGTH) 7046 7047 #define INVLIST_INITIAL_LEN 10 7048 7049 PERL_STATIC_INLINE UV* 7050 S__invlist_array_init(pTHX_ SV* const invlist, const bool will_have_0) 7051 { 7052 /* Returns a pointer to the first element in the inversion list's array. 7053 * This is called upon initialization of an inversion list. Where the 7054 * array begins depends on whether the list has the code point U+0000 7055 * in it or not. The other parameter tells it whether the code that 7056 * follows this call is about to put a 0 in the inversion list or not. 7057 * The first element is either the element with 0, if 0, or the next one, 7058 * if 1 */ 7059 7060 UV* zero = get_invlist_zero_addr(invlist); 7061 7062 PERL_ARGS_ASSERT__INVLIST_ARRAY_INIT; 7063 7064 /* Must be empty */ 7065 assert(! *_get_invlist_len_addr(invlist)); 7066 7067 /* 1^1 = 0; 1^0 = 1 */ 7068 *zero = 1 ^ will_have_0; 7069 return zero + *zero; 7070 } 7071 7072 PERL_STATIC_INLINE UV* 7073 S_invlist_array(pTHX_ SV* const invlist) 7074 { 7075 /* Returns the pointer to the inversion list's array. Every time the 7076 * length changes, this needs to be called in case malloc or realloc moved 7077 * it */ 7078 7079 PERL_ARGS_ASSERT_INVLIST_ARRAY; 7080 7081 /* Must not be empty. If these fail, you probably didn't check for <len> 7082 * being non-zero before trying to get the array */ 7083 assert(*_get_invlist_len_addr(invlist)); 7084 assert(*get_invlist_zero_addr(invlist) == 0 7085 || *get_invlist_zero_addr(invlist) == 1); 7086 7087 /* The array begins either at the element reserved for zero if the 7088 * list contains 0 (that element will be set to 0), or otherwise the next 7089 * element (in which case the reserved element will be set to 1). */ 7090 return (UV *) (get_invlist_zero_addr(invlist) 7091 + *get_invlist_zero_addr(invlist)); 7092 } 7093 7094 PERL_STATIC_INLINE void 7095 S_invlist_set_len(pTHX_ SV* const invlist, const UV len) 7096 { 7097 /* Sets the current number of elements stored in the inversion list */ 7098 7099 PERL_ARGS_ASSERT_INVLIST_SET_LEN; 7100 7101 *_get_invlist_len_addr(invlist) = len; 7102 7103 assert(len <= SvLEN(invlist)); 7104 7105 SvCUR_set(invlist, TO_INTERNAL_SIZE(len)); 7106 /* If the list contains U+0000, that element is part of the header, 7107 * and should not be counted as part of the array. It will contain 7108 * 0 in that case, and 1 otherwise. So we could flop 0=>1, 1=>0 and 7109 * subtract: 7110 * SvCUR_set(invlist, 7111 * TO_INTERNAL_SIZE(len 7112 * - (*get_invlist_zero_addr(inv_list) ^ 1))); 7113 * But, this is only valid if len is not 0. The consequences of not doing 7114 * this is that the memory allocation code may think that 1 more UV is 7115 * being used than actually is, and so might do an unnecessary grow. That 7116 * seems worth not bothering to make this the precise amount. 7117 * 7118 * Note that when inverting, SvCUR shouldn't change */ 7119 } 7120 7121 PERL_STATIC_INLINE IV* 7122 S_get_invlist_previous_index_addr(pTHX_ SV* invlist) 7123 { 7124 /* Return the address of the UV that is reserved to hold the cached index 7125 * */ 7126 7127 PERL_ARGS_ASSERT_GET_INVLIST_PREVIOUS_INDEX_ADDR; 7128 7129 return (IV *) (SvPVX(invlist) + (INVLIST_PREVIOUS_INDEX_OFFSET * sizeof (UV))); 7130 } 7131 7132 PERL_STATIC_INLINE IV 7133 S_invlist_previous_index(pTHX_ SV* const invlist) 7134 { 7135 /* Returns cached index of previous search */ 7136 7137 PERL_ARGS_ASSERT_INVLIST_PREVIOUS_INDEX; 7138 7139 return *get_invlist_previous_index_addr(invlist); 7140 } 7141 7142 PERL_STATIC_INLINE void 7143 S_invlist_set_previous_index(pTHX_ SV* const invlist, const IV index) 7144 { 7145 /* Caches <index> for later retrieval */ 7146 7147 PERL_ARGS_ASSERT_INVLIST_SET_PREVIOUS_INDEX; 7148 7149 assert(index == 0 || index < (int) _invlist_len(invlist)); 7150 7151 *get_invlist_previous_index_addr(invlist) = index; 7152 } 7153 7154 PERL_STATIC_INLINE UV 7155 S_invlist_max(pTHX_ SV* const invlist) 7156 { 7157 /* Returns the maximum number of elements storable in the inversion list's 7158 * array, without having to realloc() */ 7159 7160 PERL_ARGS_ASSERT_INVLIST_MAX; 7161 7162 return SvLEN(invlist) == 0 /* This happens under _new_invlist_C_array */ 7163 ? _invlist_len(invlist) 7164 : FROM_INTERNAL_SIZE(SvLEN(invlist)); 7165 } 7166 7167 PERL_STATIC_INLINE UV* 7168 S_get_invlist_zero_addr(pTHX_ SV* invlist) 7169 { 7170 /* Return the address of the UV that is reserved to hold 0 if the inversion 7171 * list contains 0. This has to be the last element of the heading, as the 7172 * list proper starts with either it if 0, or the next element if not. 7173 * (But we force it to contain either 0 or 1) */ 7174 7175 PERL_ARGS_ASSERT_GET_INVLIST_ZERO_ADDR; 7176 7177 return (UV *) (SvPVX(invlist) + (INVLIST_ZERO_OFFSET * sizeof (UV))); 7178 } 7179 7180 #ifndef PERL_IN_XSUB_RE 7181 SV* 7182 Perl__new_invlist(pTHX_ IV initial_size) 7183 { 7184 7185 /* Return a pointer to a newly constructed inversion list, with enough 7186 * space to store 'initial_size' elements. If that number is negative, a 7187 * system default is used instead */ 7188 7189 SV* new_list; 7190 7191 if (initial_size < 0) { 7192 initial_size = INVLIST_INITIAL_LEN; 7193 } 7194 7195 /* Allocate the initial space */ 7196 new_list = newSV(TO_INTERNAL_SIZE(initial_size)); 7197 invlist_set_len(new_list, 0); 7198 7199 /* Force iterinit() to be used to get iteration to work */ 7200 *get_invlist_iter_addr(new_list) = UV_MAX; 7201 7202 /* This should force a segfault if a method doesn't initialize this 7203 * properly */ 7204 *get_invlist_zero_addr(new_list) = UV_MAX; 7205 7206 *get_invlist_previous_index_addr(new_list) = 0; 7207 *get_invlist_version_id_addr(new_list) = INVLIST_VERSION_ID; 7208 #if HEADER_LENGTH != 5 7209 # error Need to regenerate INVLIST_VERSION_ID by running perl -E 'say int(rand 2**31-1)', and then changing the #if to the new length 7210 #endif 7211 7212 return new_list; 7213 } 7214 #endif 7215 7216 STATIC SV* 7217 S__new_invlist_C_array(pTHX_ UV* list) 7218 { 7219 /* Return a pointer to a newly constructed inversion list, initialized to 7220 * point to <list>, which has to be in the exact correct inversion list 7221 * form, including internal fields. Thus this is a dangerous routine that 7222 * should not be used in the wrong hands */ 7223 7224 SV* invlist = newSV_type(SVt_PV); 7225 7226 PERL_ARGS_ASSERT__NEW_INVLIST_C_ARRAY; 7227 7228 SvPV_set(invlist, (char *) list); 7229 SvLEN_set(invlist, 0); /* Means we own the contents, and the system 7230 shouldn't touch it */ 7231 SvCUR_set(invlist, TO_INTERNAL_SIZE(_invlist_len(invlist))); 7232 7233 if (*get_invlist_version_id_addr(invlist) != INVLIST_VERSION_ID) { 7234 Perl_croak(aTHX_ "panic: Incorrect version for previously generated inversion list"); 7235 } 7236 7237 /* Initialize the iteration pointer. 7238 * XXX This could be done at compile time in charclass_invlists.h, but I 7239 * (khw) am not confident that the suffixes for specifying the C constant 7240 * UV_MAX are portable, e.g. 'ull' on a 32 bit machine that is configured 7241 * to use 64 bits; might need a Configure probe */ 7242 invlist_iterfinish(invlist); 7243 7244 return invlist; 7245 } 7246 7247 STATIC void 7248 S_invlist_extend(pTHX_ SV* const invlist, const UV new_max) 7249 { 7250 /* Grow the maximum size of an inversion list */ 7251 7252 PERL_ARGS_ASSERT_INVLIST_EXTEND; 7253 7254 SvGROW((SV *)invlist, TO_INTERNAL_SIZE(new_max)); 7255 } 7256 7257 PERL_STATIC_INLINE void 7258 S_invlist_trim(pTHX_ SV* const invlist) 7259 { 7260 PERL_ARGS_ASSERT_INVLIST_TRIM; 7261 7262 /* Change the length of the inversion list to how many entries it currently 7263 * has */ 7264 7265 SvPV_shrink_to_cur((SV *) invlist); 7266 } 7267 7268 #define _invlist_union_complement_2nd(a, b, output) _invlist_union_maybe_complement_2nd(a, b, TRUE, output) 7269 7270 STATIC void 7271 S__append_range_to_invlist(pTHX_ SV* const invlist, const UV start, const UV end) 7272 { 7273 /* Subject to change or removal. Append the range from 'start' to 'end' at 7274 * the end of the inversion list. The range must be above any existing 7275 * ones. */ 7276 7277 UV* array; 7278 UV max = invlist_max(invlist); 7279 UV len = _invlist_len(invlist); 7280 7281 PERL_ARGS_ASSERT__APPEND_RANGE_TO_INVLIST; 7282 7283 if (len == 0) { /* Empty lists must be initialized */ 7284 array = _invlist_array_init(invlist, start == 0); 7285 } 7286 else { 7287 /* Here, the existing list is non-empty. The current max entry in the 7288 * list is generally the first value not in the set, except when the 7289 * set extends to the end of permissible values, in which case it is 7290 * the first entry in that final set, and so this call is an attempt to 7291 * append out-of-order */ 7292 7293 UV final_element = len - 1; 7294 array = invlist_array(invlist); 7295 if (array[final_element] > start 7296 || ELEMENT_RANGE_MATCHES_INVLIST(final_element)) 7297 { 7298 Perl_croak(aTHX_ "panic: attempting to append to an inversion list, but wasn't at the end of the list, final=%"UVuf", start=%"UVuf", match=%c", 7299 array[final_element], start, 7300 ELEMENT_RANGE_MATCHES_INVLIST(final_element) ? 't' : 'f'); 7301 } 7302 7303 /* Here, it is a legal append. If the new range begins with the first 7304 * value not in the set, it is extending the set, so the new first 7305 * value not in the set is one greater than the newly extended range. 7306 * */ 7307 if (array[final_element] == start) { 7308 if (end != UV_MAX) { 7309 array[final_element] = end + 1; 7310 } 7311 else { 7312 /* But if the end is the maximum representable on the machine, 7313 * just let the range that this would extend to have no end */ 7314 invlist_set_len(invlist, len - 1); 7315 } 7316 return; 7317 } 7318 } 7319 7320 /* Here the new range doesn't extend any existing set. Add it */ 7321 7322 len += 2; /* Includes an element each for the start and end of range */ 7323 7324 /* If overflows the existing space, extend, which may cause the array to be 7325 * moved */ 7326 if (max < len) { 7327 invlist_extend(invlist, len); 7328 invlist_set_len(invlist, len); /* Have to set len here to avoid assert 7329 failure in invlist_array() */ 7330 array = invlist_array(invlist); 7331 } 7332 else { 7333 invlist_set_len(invlist, len); 7334 } 7335 7336 /* The next item on the list starts the range, the one after that is 7337 * one past the new range. */ 7338 array[len - 2] = start; 7339 if (end != UV_MAX) { 7340 array[len - 1] = end + 1; 7341 } 7342 else { 7343 /* But if the end is the maximum representable on the machine, just let 7344 * the range have no end */ 7345 invlist_set_len(invlist, len - 1); 7346 } 7347 } 7348 7349 #ifndef PERL_IN_XSUB_RE 7350 7351 IV 7352 Perl__invlist_search(pTHX_ SV* const invlist, const UV cp) 7353 { 7354 /* Searches the inversion list for the entry that contains the input code 7355 * point <cp>. If <cp> is not in the list, -1 is returned. Otherwise, the 7356 * return value is the index into the list's array of the range that 7357 * contains <cp> */ 7358 7359 IV low = 0; 7360 IV mid; 7361 IV high = _invlist_len(invlist); 7362 const IV highest_element = high - 1; 7363 const UV* array; 7364 7365 PERL_ARGS_ASSERT__INVLIST_SEARCH; 7366 7367 /* If list is empty, return failure. */ 7368 if (high == 0) { 7369 return -1; 7370 } 7371 7372 /* (We can't get the array unless we know the list is non-empty) */ 7373 array = invlist_array(invlist); 7374 7375 mid = invlist_previous_index(invlist); 7376 assert(mid >=0 && mid <= highest_element); 7377 7378 /* <mid> contains the cache of the result of the previous call to this 7379 * function (0 the first time). See if this call is for the same result, 7380 * or if it is for mid-1. This is under the theory that calls to this 7381 * function will often be for related code points that are near each other. 7382 * And benchmarks show that caching gives better results. We also test 7383 * here if the code point is within the bounds of the list. These tests 7384 * replace others that would have had to be made anyway to make sure that 7385 * the array bounds were not exceeded, and these give us extra information 7386 * at the same time */ 7387 if (cp >= array[mid]) { 7388 if (cp >= array[highest_element]) { 7389 return highest_element; 7390 } 7391 7392 /* Here, array[mid] <= cp < array[highest_element]. This means that 7393 * the final element is not the answer, so can exclude it; it also 7394 * means that <mid> is not the final element, so can refer to 'mid + 1' 7395 * safely */ 7396 if (cp < array[mid + 1]) { 7397 return mid; 7398 } 7399 high--; 7400 low = mid + 1; 7401 } 7402 else { /* cp < aray[mid] */ 7403 if (cp < array[0]) { /* Fail if outside the array */ 7404 return -1; 7405 } 7406 high = mid; 7407 if (cp >= array[mid - 1]) { 7408 goto found_entry; 7409 } 7410 } 7411 7412 /* Binary search. What we are looking for is <i> such that 7413 * array[i] <= cp < array[i+1] 7414 * The loop below converges on the i+1. Note that there may not be an 7415 * (i+1)th element in the array, and things work nonetheless */ 7416 while (low < high) { 7417 mid = (low + high) / 2; 7418 assert(mid <= highest_element); 7419 if (array[mid] <= cp) { /* cp >= array[mid] */ 7420 low = mid + 1; 7421 7422 /* We could do this extra test to exit the loop early. 7423 if (cp < array[low]) { 7424 return mid; 7425 } 7426 */ 7427 } 7428 else { /* cp < array[mid] */ 7429 high = mid; 7430 } 7431 } 7432 7433 found_entry: 7434 high--; 7435 invlist_set_previous_index(invlist, high); 7436 return high; 7437 } 7438 7439 void 7440 Perl__invlist_populate_swatch(pTHX_ SV* const invlist, const UV start, const UV end, U8* swatch) 7441 { 7442 /* populates a swatch of a swash the same way swatch_get() does in utf8.c, 7443 * but is used when the swash has an inversion list. This makes this much 7444 * faster, as it uses a binary search instead of a linear one. This is 7445 * intimately tied to that function, and perhaps should be in utf8.c, 7446 * except it is intimately tied to inversion lists as well. It assumes 7447 * that <swatch> is all 0's on input */ 7448 7449 UV current = start; 7450 const IV len = _invlist_len(invlist); 7451 IV i; 7452 const UV * array; 7453 7454 PERL_ARGS_ASSERT__INVLIST_POPULATE_SWATCH; 7455 7456 if (len == 0) { /* Empty inversion list */ 7457 return; 7458 } 7459 7460 array = invlist_array(invlist); 7461 7462 /* Find which element it is */ 7463 i = _invlist_search(invlist, start); 7464 7465 /* We populate from <start> to <end> */ 7466 while (current < end) { 7467 UV upper; 7468 7469 /* The inversion list gives the results for every possible code point 7470 * after the first one in the list. Only those ranges whose index is 7471 * even are ones that the inversion list matches. For the odd ones, 7472 * and if the initial code point is not in the list, we have to skip 7473 * forward to the next element */ 7474 if (i == -1 || ! ELEMENT_RANGE_MATCHES_INVLIST(i)) { 7475 i++; 7476 if (i >= len) { /* Finished if beyond the end of the array */ 7477 return; 7478 } 7479 current = array[i]; 7480 if (current >= end) { /* Finished if beyond the end of what we 7481 are populating */ 7482 if (LIKELY(end < UV_MAX)) { 7483 return; 7484 } 7485 7486 /* We get here when the upper bound is the maximum 7487 * representable on the machine, and we are looking for just 7488 * that code point. Have to special case it */ 7489 i = len; 7490 goto join_end_of_list; 7491 } 7492 } 7493 assert(current >= start); 7494 7495 /* The current range ends one below the next one, except don't go past 7496 * <end> */ 7497 i++; 7498 upper = (i < len && array[i] < end) ? array[i] : end; 7499 7500 /* Here we are in a range that matches. Populate a bit in the 3-bit U8 7501 * for each code point in it */ 7502 for (; current < upper; current++) { 7503 const STRLEN offset = (STRLEN)(current - start); 7504 swatch[offset >> 3] |= 1 << (offset & 7); 7505 } 7506 7507 join_end_of_list: 7508 7509 /* Quit if at the end of the list */ 7510 if (i >= len) { 7511 7512 /* But first, have to deal with the highest possible code point on 7513 * the platform. The previous code assumes that <end> is one 7514 * beyond where we want to populate, but that is impossible at the 7515 * platform's infinity, so have to handle it specially */ 7516 if (UNLIKELY(end == UV_MAX && ELEMENT_RANGE_MATCHES_INVLIST(len-1))) 7517 { 7518 const STRLEN offset = (STRLEN)(end - start); 7519 swatch[offset >> 3] |= 1 << (offset & 7); 7520 } 7521 return; 7522 } 7523 7524 /* Advance to the next range, which will be for code points not in the 7525 * inversion list */ 7526 current = array[i]; 7527 } 7528 7529 return; 7530 } 7531 7532 void 7533 Perl__invlist_union_maybe_complement_2nd(pTHX_ SV* const a, SV* const b, bool complement_b, SV** output) 7534 { 7535 /* Take the union of two inversion lists and point <output> to it. *output 7536 * SHOULD BE DEFINED upon input, and if it points to one of the two lists, 7537 * the reference count to that list will be decremented. The first list, 7538 * <a>, may be NULL, in which case a copy of the second list is returned. 7539 * If <complement_b> is TRUE, the union is taken of the complement 7540 * (inversion) of <b> instead of b itself. 7541 * 7542 * The basis for this comes from "Unicode Demystified" Chapter 13 by 7543 * Richard Gillam, published by Addison-Wesley, and explained at some 7544 * length there. The preface says to incorporate its examples into your 7545 * code at your own risk. 7546 * 7547 * The algorithm is like a merge sort. 7548 * 7549 * XXX A potential performance improvement is to keep track as we go along 7550 * if only one of the inputs contributes to the result, meaning the other 7551 * is a subset of that one. In that case, we can skip the final copy and 7552 * return the larger of the input lists, but then outside code might need 7553 * to keep track of whether to free the input list or not */ 7554 7555 UV* array_a; /* a's array */ 7556 UV* array_b; 7557 UV len_a; /* length of a's array */ 7558 UV len_b; 7559 7560 SV* u; /* the resulting union */ 7561 UV* array_u; 7562 UV len_u; 7563 7564 UV i_a = 0; /* current index into a's array */ 7565 UV i_b = 0; 7566 UV i_u = 0; 7567 7568 /* running count, as explained in the algorithm source book; items are 7569 * stopped accumulating and are output when the count changes to/from 0. 7570 * The count is incremented when we start a range that's in the set, and 7571 * decremented when we start a range that's not in the set. So its range 7572 * is 0 to 2. Only when the count is zero is something not in the set. 7573 */ 7574 UV count = 0; 7575 7576 PERL_ARGS_ASSERT__INVLIST_UNION_MAYBE_COMPLEMENT_2ND; 7577 assert(a != b); 7578 7579 /* If either one is empty, the union is the other one */ 7580 if (a == NULL || ((len_a = _invlist_len(a)) == 0)) { 7581 if (*output == a) { 7582 if (a != NULL) { 7583 SvREFCNT_dec_NN(a); 7584 } 7585 } 7586 if (*output != b) { 7587 *output = invlist_clone(b); 7588 if (complement_b) { 7589 _invlist_invert(*output); 7590 } 7591 } /* else *output already = b; */ 7592 return; 7593 } 7594 else if ((len_b = _invlist_len(b)) == 0) { 7595 if (*output == b) { 7596 SvREFCNT_dec_NN(b); 7597 } 7598 7599 /* The complement of an empty list is a list that has everything in it, 7600 * so the union with <a> includes everything too */ 7601 if (complement_b) { 7602 if (a == *output) { 7603 SvREFCNT_dec_NN(a); 7604 } 7605 *output = _new_invlist(1); 7606 _append_range_to_invlist(*output, 0, UV_MAX); 7607 } 7608 else if (*output != a) { 7609 *output = invlist_clone(a); 7610 } 7611 /* else *output already = a; */ 7612 return; 7613 } 7614 7615 /* Here both lists exist and are non-empty */ 7616 array_a = invlist_array(a); 7617 array_b = invlist_array(b); 7618 7619 /* If are to take the union of 'a' with the complement of b, set it 7620 * up so are looking at b's complement. */ 7621 if (complement_b) { 7622 7623 /* To complement, we invert: if the first element is 0, remove it. To 7624 * do this, we just pretend the array starts one later, and clear the 7625 * flag as we don't have to do anything else later */ 7626 if (array_b[0] == 0) { 7627 array_b++; 7628 len_b--; 7629 complement_b = FALSE; 7630 } 7631 else { 7632 7633 /* But if the first element is not zero, we unshift a 0 before the 7634 * array. The data structure reserves a space for that 0 (which 7635 * should be a '1' right now), so physical shifting is unneeded, 7636 * but temporarily change that element to 0. Before exiting the 7637 * routine, we must restore the element to '1' */ 7638 array_b--; 7639 len_b++; 7640 array_b[0] = 0; 7641 } 7642 } 7643 7644 /* Size the union for the worst case: that the sets are completely 7645 * disjoint */ 7646 u = _new_invlist(len_a + len_b); 7647 7648 /* Will contain U+0000 if either component does */ 7649 array_u = _invlist_array_init(u, (len_a > 0 && array_a[0] == 0) 7650 || (len_b > 0 && array_b[0] == 0)); 7651 7652 /* Go through each list item by item, stopping when exhausted one of 7653 * them */ 7654 while (i_a < len_a && i_b < len_b) { 7655 UV cp; /* The element to potentially add to the union's array */ 7656 bool cp_in_set; /* is it in the the input list's set or not */ 7657 7658 /* We need to take one or the other of the two inputs for the union. 7659 * Since we are merging two sorted lists, we take the smaller of the 7660 * next items. In case of a tie, we take the one that is in its set 7661 * first. If we took one not in the set first, it would decrement the 7662 * count, possibly to 0 which would cause it to be output as ending the 7663 * range, and the next time through we would take the same number, and 7664 * output it again as beginning the next range. By doing it the 7665 * opposite way, there is no possibility that the count will be 7666 * momentarily decremented to 0, and thus the two adjoining ranges will 7667 * be seamlessly merged. (In a tie and both are in the set or both not 7668 * in the set, it doesn't matter which we take first.) */ 7669 if (array_a[i_a] < array_b[i_b] 7670 || (array_a[i_a] == array_b[i_b] 7671 && ELEMENT_RANGE_MATCHES_INVLIST(i_a))) 7672 { 7673 cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a); 7674 cp= array_a[i_a++]; 7675 } 7676 else { 7677 cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b); 7678 cp = array_b[i_b++]; 7679 } 7680 7681 /* Here, have chosen which of the two inputs to look at. Only output 7682 * if the running count changes to/from 0, which marks the 7683 * beginning/end of a range in that's in the set */ 7684 if (cp_in_set) { 7685 if (count == 0) { 7686 array_u[i_u++] = cp; 7687 } 7688 count++; 7689 } 7690 else { 7691 count--; 7692 if (count == 0) { 7693 array_u[i_u++] = cp; 7694 } 7695 } 7696 } 7697 7698 /* Here, we are finished going through at least one of the lists, which 7699 * means there is something remaining in at most one. We check if the list 7700 * that hasn't been exhausted is positioned such that we are in the middle 7701 * of a range in its set or not. (i_a and i_b point to the element beyond 7702 * the one we care about.) If in the set, we decrement 'count'; if 0, there 7703 * is potentially more to output. 7704 * There are four cases: 7705 * 1) Both weren't in their sets, count is 0, and remains 0. What's left 7706 * in the union is entirely from the non-exhausted set. 7707 * 2) Both were in their sets, count is 2. Nothing further should 7708 * be output, as everything that remains will be in the exhausted 7709 * list's set, hence in the union; decrementing to 1 but not 0 insures 7710 * that 7711 * 3) the exhausted was in its set, non-exhausted isn't, count is 1. 7712 * Nothing further should be output because the union includes 7713 * everything from the exhausted set. Not decrementing ensures that. 7714 * 4) the exhausted wasn't in its set, non-exhausted is, count is 1; 7715 * decrementing to 0 insures that we look at the remainder of the 7716 * non-exhausted set */ 7717 if ((i_a != len_a && PREV_RANGE_MATCHES_INVLIST(i_a)) 7718 || (i_b != len_b && PREV_RANGE_MATCHES_INVLIST(i_b))) 7719 { 7720 count--; 7721 } 7722 7723 /* The final length is what we've output so far, plus what else is about to 7724 * be output. (If 'count' is non-zero, then the input list we exhausted 7725 * has everything remaining up to the machine's limit in its set, and hence 7726 * in the union, so there will be no further output. */ 7727 len_u = i_u; 7728 if (count == 0) { 7729 /* At most one of the subexpressions will be non-zero */ 7730 len_u += (len_a - i_a) + (len_b - i_b); 7731 } 7732 7733 /* Set result to final length, which can change the pointer to array_u, so 7734 * re-find it */ 7735 if (len_u != _invlist_len(u)) { 7736 invlist_set_len(u, len_u); 7737 invlist_trim(u); 7738 array_u = invlist_array(u); 7739 } 7740 7741 /* When 'count' is 0, the list that was exhausted (if one was shorter than 7742 * the other) ended with everything above it not in its set. That means 7743 * that the remaining part of the union is precisely the same as the 7744 * non-exhausted list, so can just copy it unchanged. (If both list were 7745 * exhausted at the same time, then the operations below will be both 0.) 7746 */ 7747 if (count == 0) { 7748 IV copy_count; /* At most one will have a non-zero copy count */ 7749 if ((copy_count = len_a - i_a) > 0) { 7750 Copy(array_a + i_a, array_u + i_u, copy_count, UV); 7751 } 7752 else if ((copy_count = len_b - i_b) > 0) { 7753 Copy(array_b + i_b, array_u + i_u, copy_count, UV); 7754 } 7755 } 7756 7757 /* If we've changed b, restore it */ 7758 if (complement_b) { 7759 array_b[0] = 1; 7760 } 7761 7762 /* We may be removing a reference to one of the inputs */ 7763 if (a == *output || b == *output) { 7764 assert(! invlist_is_iterating(*output)); 7765 SvREFCNT_dec_NN(*output); 7766 } 7767 7768 *output = u; 7769 return; 7770 } 7771 7772 void 7773 Perl__invlist_intersection_maybe_complement_2nd(pTHX_ SV* const a, SV* const b, bool complement_b, SV** i) 7774 { 7775 /* Take the intersection of two inversion lists and point <i> to it. *i 7776 * SHOULD BE DEFINED upon input, and if it points to one of the two lists, 7777 * the reference count to that list will be decremented. 7778 * If <complement_b> is TRUE, the result will be the intersection of <a> 7779 * and the complement (or inversion) of <b> instead of <b> directly. 7780 * 7781 * The basis for this comes from "Unicode Demystified" Chapter 13 by 7782 * Richard Gillam, published by Addison-Wesley, and explained at some 7783 * length there. The preface says to incorporate its examples into your 7784 * code at your own risk. In fact, it had bugs 7785 * 7786 * The algorithm is like a merge sort, and is essentially the same as the 7787 * union above 7788 */ 7789 7790 UV* array_a; /* a's array */ 7791 UV* array_b; 7792 UV len_a; /* length of a's array */ 7793 UV len_b; 7794 7795 SV* r; /* the resulting intersection */ 7796 UV* array_r; 7797 UV len_r; 7798 7799 UV i_a = 0; /* current index into a's array */ 7800 UV i_b = 0; 7801 UV i_r = 0; 7802 7803 /* running count, as explained in the algorithm source book; items are 7804 * stopped accumulating and are output when the count changes to/from 2. 7805 * The count is incremented when we start a range that's in the set, and 7806 * decremented when we start a range that's not in the set. So its range 7807 * is 0 to 2. Only when the count is 2 is something in the intersection. 7808 */ 7809 UV count = 0; 7810 7811 PERL_ARGS_ASSERT__INVLIST_INTERSECTION_MAYBE_COMPLEMENT_2ND; 7812 assert(a != b); 7813 7814 /* Special case if either one is empty */ 7815 len_a = _invlist_len(a); 7816 if ((len_a == 0) || ((len_b = _invlist_len(b)) == 0)) { 7817 7818 if (len_a != 0 && complement_b) { 7819 7820 /* Here, 'a' is not empty, therefore from the above 'if', 'b' must 7821 * be empty. Here, also we are using 'b's complement, which hence 7822 * must be every possible code point. Thus the intersection is 7823 * simply 'a'. */ 7824 if (*i != a) { 7825 *i = invlist_clone(a); 7826 7827 if (*i == b) { 7828 SvREFCNT_dec_NN(b); 7829 } 7830 } 7831 /* else *i is already 'a' */ 7832 return; 7833 } 7834 7835 /* Here, 'a' or 'b' is empty and not using the complement of 'b'. The 7836 * intersection must be empty */ 7837 if (*i == a) { 7838 SvREFCNT_dec_NN(a); 7839 } 7840 else if (*i == b) { 7841 SvREFCNT_dec_NN(b); 7842 } 7843 *i = _new_invlist(0); 7844 return; 7845 } 7846 7847 /* Here both lists exist and are non-empty */ 7848 array_a = invlist_array(a); 7849 array_b = invlist_array(b); 7850 7851 /* If are to take the intersection of 'a' with the complement of b, set it 7852 * up so are looking at b's complement. */ 7853 if (complement_b) { 7854 7855 /* To complement, we invert: if the first element is 0, remove it. To 7856 * do this, we just pretend the array starts one later, and clear the 7857 * flag as we don't have to do anything else later */ 7858 if (array_b[0] == 0) { 7859 array_b++; 7860 len_b--; 7861 complement_b = FALSE; 7862 } 7863 else { 7864 7865 /* But if the first element is not zero, we unshift a 0 before the 7866 * array. The data structure reserves a space for that 0 (which 7867 * should be a '1' right now), so physical shifting is unneeded, 7868 * but temporarily change that element to 0. Before exiting the 7869 * routine, we must restore the element to '1' */ 7870 array_b--; 7871 len_b++; 7872 array_b[0] = 0; 7873 } 7874 } 7875 7876 /* Size the intersection for the worst case: that the intersection ends up 7877 * fragmenting everything to be completely disjoint */ 7878 r= _new_invlist(len_a + len_b); 7879 7880 /* Will contain U+0000 iff both components do */ 7881 array_r = _invlist_array_init(r, len_a > 0 && array_a[0] == 0 7882 && len_b > 0 && array_b[0] == 0); 7883 7884 /* Go through each list item by item, stopping when exhausted one of 7885 * them */ 7886 while (i_a < len_a && i_b < len_b) { 7887 UV cp; /* The element to potentially add to the intersection's 7888 array */ 7889 bool cp_in_set; /* Is it in the input list's set or not */ 7890 7891 /* We need to take one or the other of the two inputs for the 7892 * intersection. Since we are merging two sorted lists, we take the 7893 * smaller of the next items. In case of a tie, we take the one that 7894 * is not in its set first (a difference from the union algorithm). If 7895 * we took one in the set first, it would increment the count, possibly 7896 * to 2 which would cause it to be output as starting a range in the 7897 * intersection, and the next time through we would take that same 7898 * number, and output it again as ending the set. By doing it the 7899 * opposite of this, there is no possibility that the count will be 7900 * momentarily incremented to 2. (In a tie and both are in the set or 7901 * both not in the set, it doesn't matter which we take first.) */ 7902 if (array_a[i_a] < array_b[i_b] 7903 || (array_a[i_a] == array_b[i_b] 7904 && ! ELEMENT_RANGE_MATCHES_INVLIST(i_a))) 7905 { 7906 cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a); 7907 cp= array_a[i_a++]; 7908 } 7909 else { 7910 cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b); 7911 cp= array_b[i_b++]; 7912 } 7913 7914 /* Here, have chosen which of the two inputs to look at. Only output 7915 * if the running count changes to/from 2, which marks the 7916 * beginning/end of a range that's in the intersection */ 7917 if (cp_in_set) { 7918 count++; 7919 if (count == 2) { 7920 array_r[i_r++] = cp; 7921 } 7922 } 7923 else { 7924 if (count == 2) { 7925 array_r[i_r++] = cp; 7926 } 7927 count--; 7928 } 7929 } 7930 7931 /* Here, we are finished going through at least one of the lists, which 7932 * means there is something remaining in at most one. We check if the list 7933 * that has been exhausted is positioned such that we are in the middle 7934 * of a range in its set or not. (i_a and i_b point to elements 1 beyond 7935 * the ones we care about.) There are four cases: 7936 * 1) Both weren't in their sets, count is 0, and remains 0. There's 7937 * nothing left in the intersection. 7938 * 2) Both were in their sets, count is 2 and perhaps is incremented to 7939 * above 2. What should be output is exactly that which is in the 7940 * non-exhausted set, as everything it has is also in the intersection 7941 * set, and everything it doesn't have can't be in the intersection 7942 * 3) The exhausted was in its set, non-exhausted isn't, count is 1, and 7943 * gets incremented to 2. Like the previous case, the intersection is 7944 * everything that remains in the non-exhausted set. 7945 * 4) the exhausted wasn't in its set, non-exhausted is, count is 1, and 7946 * remains 1. And the intersection has nothing more. */ 7947 if ((i_a == len_a && PREV_RANGE_MATCHES_INVLIST(i_a)) 7948 || (i_b == len_b && PREV_RANGE_MATCHES_INVLIST(i_b))) 7949 { 7950 count++; 7951 } 7952 7953 /* The final length is what we've output so far plus what else is in the 7954 * intersection. At most one of the subexpressions below will be non-zero */ 7955 len_r = i_r; 7956 if (count >= 2) { 7957 len_r += (len_a - i_a) + (len_b - i_b); 7958 } 7959 7960 /* Set result to final length, which can change the pointer to array_r, so 7961 * re-find it */ 7962 if (len_r != _invlist_len(r)) { 7963 invlist_set_len(r, len_r); 7964 invlist_trim(r); 7965 array_r = invlist_array(r); 7966 } 7967 7968 /* Finish outputting any remaining */ 7969 if (count >= 2) { /* At most one will have a non-zero copy count */ 7970 IV copy_count; 7971 if ((copy_count = len_a - i_a) > 0) { 7972 Copy(array_a + i_a, array_r + i_r, copy_count, UV); 7973 } 7974 else if ((copy_count = len_b - i_b) > 0) { 7975 Copy(array_b + i_b, array_r + i_r, copy_count, UV); 7976 } 7977 } 7978 7979 /* If we've changed b, restore it */ 7980 if (complement_b) { 7981 array_b[0] = 1; 7982 } 7983 7984 /* We may be removing a reference to one of the inputs */ 7985 if (a == *i || b == *i) { 7986 assert(! invlist_is_iterating(*i)); 7987 SvREFCNT_dec_NN(*i); 7988 } 7989 7990 *i = r; 7991 return; 7992 } 7993 7994 SV* 7995 Perl__add_range_to_invlist(pTHX_ SV* invlist, const UV start, const UV end) 7996 { 7997 /* Add the range from 'start' to 'end' inclusive to the inversion list's 7998 * set. A pointer to the inversion list is returned. This may actually be 7999 * a new list, in which case the passed in one has been destroyed. The 8000 * passed in inversion list can be NULL, in which case a new one is created 8001 * with just the one range in it */ 8002 8003 SV* range_invlist; 8004 UV len; 8005 8006 if (invlist == NULL) { 8007 invlist = _new_invlist(2); 8008 len = 0; 8009 } 8010 else { 8011 len = _invlist_len(invlist); 8012 } 8013 8014 /* If comes after the final entry actually in the list, can just append it 8015 * to the end, */ 8016 if (len == 0 8017 || (! ELEMENT_RANGE_MATCHES_INVLIST(len - 1) 8018 && start >= invlist_array(invlist)[len - 1])) 8019 { 8020 _append_range_to_invlist(invlist, start, end); 8021 return invlist; 8022 } 8023 8024 /* Here, can't just append things, create and return a new inversion list 8025 * which is the union of this range and the existing inversion list */ 8026 range_invlist = _new_invlist(2); 8027 _append_range_to_invlist(range_invlist, start, end); 8028 8029 _invlist_union(invlist, range_invlist, &invlist); 8030 8031 /* The temporary can be freed */ 8032 SvREFCNT_dec_NN(range_invlist); 8033 8034 return invlist; 8035 } 8036 8037 #endif 8038 8039 PERL_STATIC_INLINE SV* 8040 S_add_cp_to_invlist(pTHX_ SV* invlist, const UV cp) { 8041 return _add_range_to_invlist(invlist, cp, cp); 8042 } 8043 8044 #ifndef PERL_IN_XSUB_RE 8045 void 8046 Perl__invlist_invert(pTHX_ SV* const invlist) 8047 { 8048 /* Complement the input inversion list. This adds a 0 if the list didn't 8049 * have a zero; removes it otherwise. As described above, the data 8050 * structure is set up so that this is very efficient */ 8051 8052 UV* len_pos = _get_invlist_len_addr(invlist); 8053 8054 PERL_ARGS_ASSERT__INVLIST_INVERT; 8055 8056 assert(! invlist_is_iterating(invlist)); 8057 8058 /* The inverse of matching nothing is matching everything */ 8059 if (*len_pos == 0) { 8060 _append_range_to_invlist(invlist, 0, UV_MAX); 8061 return; 8062 } 8063 8064 /* The exclusive or complents 0 to 1; and 1 to 0. If the result is 1, the 8065 * zero element was a 0, so it is being removed, so the length decrements 8066 * by 1; and vice-versa. SvCUR is unaffected */ 8067 if (*get_invlist_zero_addr(invlist) ^= 1) { 8068 (*len_pos)--; 8069 } 8070 else { 8071 (*len_pos)++; 8072 } 8073 } 8074 8075 void 8076 Perl__invlist_invert_prop(pTHX_ SV* const invlist) 8077 { 8078 /* Complement the input inversion list (which must be a Unicode property, 8079 * all of which don't match above the Unicode maximum code point.) And 8080 * Perl has chosen to not have the inversion match above that either. This 8081 * adds a 0x110000 if the list didn't end with it, and removes it if it did 8082 */ 8083 8084 UV len; 8085 UV* array; 8086 8087 PERL_ARGS_ASSERT__INVLIST_INVERT_PROP; 8088 8089 _invlist_invert(invlist); 8090 8091 len = _invlist_len(invlist); 8092 8093 if (len != 0) { /* If empty do nothing */ 8094 array = invlist_array(invlist); 8095 if (array[len - 1] != PERL_UNICODE_MAX + 1) { 8096 /* Add 0x110000. First, grow if necessary */ 8097 len++; 8098 if (invlist_max(invlist) < len) { 8099 invlist_extend(invlist, len); 8100 array = invlist_array(invlist); 8101 } 8102 invlist_set_len(invlist, len); 8103 array[len - 1] = PERL_UNICODE_MAX + 1; 8104 } 8105 else { /* Remove the 0x110000 */ 8106 invlist_set_len(invlist, len - 1); 8107 } 8108 } 8109 8110 return; 8111 } 8112 #endif 8113 8114 PERL_STATIC_INLINE SV* 8115 S_invlist_clone(pTHX_ SV* const invlist) 8116 { 8117 8118 /* Return a new inversion list that is a copy of the input one, which is 8119 * unchanged */ 8120 8121 /* Need to allocate extra space to accommodate Perl's addition of a 8122 * trailing NUL to SvPV's, since it thinks they are always strings */ 8123 SV* new_invlist = _new_invlist(_invlist_len(invlist) + 1); 8124 STRLEN length = SvCUR(invlist); 8125 8126 PERL_ARGS_ASSERT_INVLIST_CLONE; 8127 8128 SvCUR_set(new_invlist, length); /* This isn't done automatically */ 8129 Copy(SvPVX(invlist), SvPVX(new_invlist), length, char); 8130 8131 return new_invlist; 8132 } 8133 8134 PERL_STATIC_INLINE UV* 8135 S_get_invlist_iter_addr(pTHX_ SV* invlist) 8136 { 8137 /* Return the address of the UV that contains the current iteration 8138 * position */ 8139 8140 PERL_ARGS_ASSERT_GET_INVLIST_ITER_ADDR; 8141 8142 return (UV *) (SvPVX(invlist) + (INVLIST_ITER_OFFSET * sizeof (UV))); 8143 } 8144 8145 PERL_STATIC_INLINE UV* 8146 S_get_invlist_version_id_addr(pTHX_ SV* invlist) 8147 { 8148 /* Return the address of the UV that contains the version id. */ 8149 8150 PERL_ARGS_ASSERT_GET_INVLIST_VERSION_ID_ADDR; 8151 8152 return (UV *) (SvPVX(invlist) + (INVLIST_VERSION_ID_OFFSET * sizeof (UV))); 8153 } 8154 8155 PERL_STATIC_INLINE void 8156 S_invlist_iterinit(pTHX_ SV* invlist) /* Initialize iterator for invlist */ 8157 { 8158 PERL_ARGS_ASSERT_INVLIST_ITERINIT; 8159 8160 *get_invlist_iter_addr(invlist) = 0; 8161 } 8162 8163 PERL_STATIC_INLINE void 8164 S_invlist_iterfinish(pTHX_ SV* invlist) 8165 { 8166 /* Terminate iterator for invlist. This is to catch development errors. 8167 * Any iteration that is interrupted before completed should call this 8168 * function. Functions that add code points anywhere else but to the end 8169 * of an inversion list assert that they are not in the middle of an 8170 * iteration. If they were, the addition would make the iteration 8171 * problematical: if the iteration hadn't reached the place where things 8172 * were being added, it would be ok */ 8173 8174 PERL_ARGS_ASSERT_INVLIST_ITERFINISH; 8175 8176 *get_invlist_iter_addr(invlist) = UV_MAX; 8177 } 8178 8179 STATIC bool 8180 S_invlist_iternext(pTHX_ SV* invlist, UV* start, UV* end) 8181 { 8182 /* An C<invlist_iterinit> call on <invlist> must be used to set this up. 8183 * This call sets in <*start> and <*end>, the next range in <invlist>. 8184 * Returns <TRUE> if successful and the next call will return the next 8185 * range; <FALSE> if was already at the end of the list. If the latter, 8186 * <*start> and <*end> are unchanged, and the next call to this function 8187 * will start over at the beginning of the list */ 8188 8189 UV* pos = get_invlist_iter_addr(invlist); 8190 UV len = _invlist_len(invlist); 8191 UV *array; 8192 8193 PERL_ARGS_ASSERT_INVLIST_ITERNEXT; 8194 8195 if (*pos >= len) { 8196 *pos = UV_MAX; /* Force iterinit() to be required next time */ 8197 return FALSE; 8198 } 8199 8200 array = invlist_array(invlist); 8201 8202 *start = array[(*pos)++]; 8203 8204 if (*pos >= len) { 8205 *end = UV_MAX; 8206 } 8207 else { 8208 *end = array[(*pos)++] - 1; 8209 } 8210 8211 return TRUE; 8212 } 8213 8214 PERL_STATIC_INLINE bool 8215 S_invlist_is_iterating(pTHX_ SV* const invlist) 8216 { 8217 PERL_ARGS_ASSERT_INVLIST_IS_ITERATING; 8218 8219 return *(get_invlist_iter_addr(invlist)) < UV_MAX; 8220 } 8221 8222 PERL_STATIC_INLINE UV 8223 S_invlist_highest(pTHX_ SV* const invlist) 8224 { 8225 /* Returns the highest code point that matches an inversion list. This API 8226 * has an ambiguity, as it returns 0 under either the highest is actually 8227 * 0, or if the list is empty. If this distinction matters to you, check 8228 * for emptiness before calling this function */ 8229 8230 UV len = _invlist_len(invlist); 8231 UV *array; 8232 8233 PERL_ARGS_ASSERT_INVLIST_HIGHEST; 8234 8235 if (len == 0) { 8236 return 0; 8237 } 8238 8239 array = invlist_array(invlist); 8240 8241 /* The last element in the array in the inversion list always starts a 8242 * range that goes to infinity. That range may be for code points that are 8243 * matched in the inversion list, or it may be for ones that aren't 8244 * matched. In the latter case, the highest code point in the set is one 8245 * less than the beginning of this range; otherwise it is the final element 8246 * of this range: infinity */ 8247 return (ELEMENT_RANGE_MATCHES_INVLIST(len - 1)) 8248 ? UV_MAX 8249 : array[len - 1] - 1; 8250 } 8251 8252 #ifndef PERL_IN_XSUB_RE 8253 SV * 8254 Perl__invlist_contents(pTHX_ SV* const invlist) 8255 { 8256 /* Get the contents of an inversion list into a string SV so that they can 8257 * be printed out. It uses the format traditionally done for debug tracing 8258 */ 8259 8260 UV start, end; 8261 SV* output = newSVpvs("\n"); 8262 8263 PERL_ARGS_ASSERT__INVLIST_CONTENTS; 8264 8265 assert(! invlist_is_iterating(invlist)); 8266 8267 invlist_iterinit(invlist); 8268 while (invlist_iternext(invlist, &start, &end)) { 8269 if (end == UV_MAX) { 8270 Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\tINFINITY\n", start); 8271 } 8272 else if (end != start) { 8273 Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\t%04"UVXf"\n", 8274 start, end); 8275 } 8276 else { 8277 Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\n", start); 8278 } 8279 } 8280 8281 return output; 8282 } 8283 #endif 8284 8285 #ifdef PERL_ARGS_ASSERT__INVLIST_DUMP 8286 void 8287 Perl__invlist_dump(pTHX_ SV* const invlist, const char * const header) 8288 { 8289 /* Dumps out the ranges in an inversion list. The string 'header' 8290 * if present is output on a line before the first range */ 8291 8292 UV start, end; 8293 8294 PERL_ARGS_ASSERT__INVLIST_DUMP; 8295 8296 if (header && strlen(header)) { 8297 PerlIO_printf(Perl_debug_log, "%s\n", header); 8298 } 8299 if (invlist_is_iterating(invlist)) { 8300 PerlIO_printf(Perl_debug_log, "Can't dump because is in middle of iterating\n"); 8301 return; 8302 } 8303 8304 invlist_iterinit(invlist); 8305 while (invlist_iternext(invlist, &start, &end)) { 8306 if (end == UV_MAX) { 8307 PerlIO_printf(Perl_debug_log, "0x%04"UVXf" .. INFINITY\n", start); 8308 } 8309 else if (end != start) { 8310 PerlIO_printf(Perl_debug_log, "0x%04"UVXf" .. 0x%04"UVXf"\n", 8311 start, end); 8312 } 8313 else { 8314 PerlIO_printf(Perl_debug_log, "0x%04"UVXf"\n", start); 8315 } 8316 } 8317 } 8318 #endif 8319 8320 #if 0 8321 bool 8322 S__invlistEQ(pTHX_ SV* const a, SV* const b, bool complement_b) 8323 { 8324 /* Return a boolean as to if the two passed in inversion lists are 8325 * identical. The final argument, if TRUE, says to take the complement of 8326 * the second inversion list before doing the comparison */ 8327 8328 UV* array_a = invlist_array(a); 8329 UV* array_b = invlist_array(b); 8330 UV len_a = _invlist_len(a); 8331 UV len_b = _invlist_len(b); 8332 8333 UV i = 0; /* current index into the arrays */ 8334 bool retval = TRUE; /* Assume are identical until proven otherwise */ 8335 8336 PERL_ARGS_ASSERT__INVLISTEQ; 8337 8338 /* If are to compare 'a' with the complement of b, set it 8339 * up so are looking at b's complement. */ 8340 if (complement_b) { 8341 8342 /* The complement of nothing is everything, so <a> would have to have 8343 * just one element, starting at zero (ending at infinity) */ 8344 if (len_b == 0) { 8345 return (len_a == 1 && array_a[0] == 0); 8346 } 8347 else if (array_b[0] == 0) { 8348 8349 /* Otherwise, to complement, we invert. Here, the first element is 8350 * 0, just remove it. To do this, we just pretend the array starts 8351 * one later, and clear the flag as we don't have to do anything 8352 * else later */ 8353 8354 array_b++; 8355 len_b--; 8356 complement_b = FALSE; 8357 } 8358 else { 8359 8360 /* But if the first element is not zero, we unshift a 0 before the 8361 * array. The data structure reserves a space for that 0 (which 8362 * should be a '1' right now), so physical shifting is unneeded, 8363 * but temporarily change that element to 0. Before exiting the 8364 * routine, we must restore the element to '1' */ 8365 array_b--; 8366 len_b++; 8367 array_b[0] = 0; 8368 } 8369 } 8370 8371 /* Make sure that the lengths are the same, as well as the final element 8372 * before looping through the remainder. (Thus we test the length, final, 8373 * and first elements right off the bat) */ 8374 if (len_a != len_b || array_a[len_a-1] != array_b[len_a-1]) { 8375 retval = FALSE; 8376 } 8377 else for (i = 0; i < len_a - 1; i++) { 8378 if (array_a[i] != array_b[i]) { 8379 retval = FALSE; 8380 break; 8381 } 8382 } 8383 8384 if (complement_b) { 8385 array_b[0] = 1; 8386 } 8387 return retval; 8388 } 8389 #endif 8390 8391 #undef HEADER_LENGTH 8392 #undef INVLIST_INITIAL_LENGTH 8393 #undef TO_INTERNAL_SIZE 8394 #undef FROM_INTERNAL_SIZE 8395 #undef INVLIST_LEN_OFFSET 8396 #undef INVLIST_ZERO_OFFSET 8397 #undef INVLIST_ITER_OFFSET 8398 #undef INVLIST_VERSION_ID 8399 #undef INVLIST_PREVIOUS_INDEX_OFFSET 8400 8401 /* End of inversion list object */ 8402 8403 STATIC void 8404 S_parse_lparen_question_flags(pTHX_ struct RExC_state_t *pRExC_state) 8405 { 8406 /* This parses the flags that are in either the '(?foo)' or '(?foo:bar)' 8407 * constructs, and updates RExC_flags with them. On input, RExC_parse 8408 * should point to the first flag; it is updated on output to point to the 8409 * final ')' or ':'. There needs to be at least one flag, or this will 8410 * abort */ 8411 8412 /* for (?g), (?gc), and (?o) warnings; warning 8413 about (?c) will warn about (?g) -- japhy */ 8414 8415 #define WASTED_O 0x01 8416 #define WASTED_G 0x02 8417 #define WASTED_C 0x04 8418 #define WASTED_GC (0x02|0x04) 8419 I32 wastedflags = 0x00; 8420 U32 posflags = 0, negflags = 0; 8421 U32 *flagsp = &posflags; 8422 char has_charset_modifier = '\0'; 8423 regex_charset cs; 8424 bool has_use_defaults = FALSE; 8425 const char* const seqstart = RExC_parse - 1; /* Point to the '?' */ 8426 8427 PERL_ARGS_ASSERT_PARSE_LPAREN_QUESTION_FLAGS; 8428 8429 /* '^' as an initial flag sets certain defaults */ 8430 if (UCHARAT(RExC_parse) == '^') { 8431 RExC_parse++; 8432 has_use_defaults = TRUE; 8433 STD_PMMOD_FLAGS_CLEAR(&RExC_flags); 8434 set_regex_charset(&RExC_flags, (RExC_utf8 || RExC_uni_semantics) 8435 ? REGEX_UNICODE_CHARSET 8436 : REGEX_DEPENDS_CHARSET); 8437 } 8438 8439 cs = get_regex_charset(RExC_flags); 8440 if (cs == REGEX_DEPENDS_CHARSET 8441 && (RExC_utf8 || RExC_uni_semantics)) 8442 { 8443 cs = REGEX_UNICODE_CHARSET; 8444 } 8445 8446 while (*RExC_parse) { 8447 /* && strchr("iogcmsx", *RExC_parse) */ 8448 /* (?g), (?gc) and (?o) are useless here 8449 and must be globally applied -- japhy */ 8450 switch (*RExC_parse) { 8451 8452 /* Code for the imsx flags */ 8453 CASE_STD_PMMOD_FLAGS_PARSE_SET(flagsp); 8454 8455 case LOCALE_PAT_MOD: 8456 if (has_charset_modifier) { 8457 goto excess_modifier; 8458 } 8459 else if (flagsp == &negflags) { 8460 goto neg_modifier; 8461 } 8462 cs = REGEX_LOCALE_CHARSET; 8463 has_charset_modifier = LOCALE_PAT_MOD; 8464 RExC_contains_locale = 1; 8465 break; 8466 case UNICODE_PAT_MOD: 8467 if (has_charset_modifier) { 8468 goto excess_modifier; 8469 } 8470 else if (flagsp == &negflags) { 8471 goto neg_modifier; 8472 } 8473 cs = REGEX_UNICODE_CHARSET; 8474 has_charset_modifier = UNICODE_PAT_MOD; 8475 break; 8476 case ASCII_RESTRICT_PAT_MOD: 8477 if (flagsp == &negflags) { 8478 goto neg_modifier; 8479 } 8480 if (has_charset_modifier) { 8481 if (cs != REGEX_ASCII_RESTRICTED_CHARSET) { 8482 goto excess_modifier; 8483 } 8484 /* Doubled modifier implies more restricted */ 8485 cs = REGEX_ASCII_MORE_RESTRICTED_CHARSET; 8486 } 8487 else { 8488 cs = REGEX_ASCII_RESTRICTED_CHARSET; 8489 } 8490 has_charset_modifier = ASCII_RESTRICT_PAT_MOD; 8491 break; 8492 case DEPENDS_PAT_MOD: 8493 if (has_use_defaults) { 8494 goto fail_modifiers; 8495 } 8496 else if (flagsp == &negflags) { 8497 goto neg_modifier; 8498 } 8499 else if (has_charset_modifier) { 8500 goto excess_modifier; 8501 } 8502 8503 /* The dual charset means unicode semantics if the 8504 * pattern (or target, not known until runtime) are 8505 * utf8, or something in the pattern indicates unicode 8506 * semantics */ 8507 cs = (RExC_utf8 || RExC_uni_semantics) 8508 ? REGEX_UNICODE_CHARSET 8509 : REGEX_DEPENDS_CHARSET; 8510 has_charset_modifier = DEPENDS_PAT_MOD; 8511 break; 8512 excess_modifier: 8513 RExC_parse++; 8514 if (has_charset_modifier == ASCII_RESTRICT_PAT_MOD) { 8515 vFAIL2("Regexp modifier \"%c\" may appear a maximum of twice", ASCII_RESTRICT_PAT_MOD); 8516 } 8517 else if (has_charset_modifier == *(RExC_parse - 1)) { 8518 vFAIL2("Regexp modifier \"%c\" may not appear twice", *(RExC_parse - 1)); 8519 } 8520 else { 8521 vFAIL3("Regexp modifiers \"%c\" and \"%c\" are mutually exclusive", has_charset_modifier, *(RExC_parse - 1)); 8522 } 8523 /*NOTREACHED*/ 8524 neg_modifier: 8525 RExC_parse++; 8526 vFAIL2("Regexp modifier \"%c\" may not appear after the \"-\"", *(RExC_parse - 1)); 8527 /*NOTREACHED*/ 8528 case ONCE_PAT_MOD: /* 'o' */ 8529 case GLOBAL_PAT_MOD: /* 'g' */ 8530 if (SIZE_ONLY && ckWARN(WARN_REGEXP)) { 8531 const I32 wflagbit = *RExC_parse == 'o' ? WASTED_O : WASTED_G; 8532 if (! (wastedflags & wflagbit) ) { 8533 wastedflags |= wflagbit; 8534 vWARN5( 8535 RExC_parse + 1, 8536 "Useless (%s%c) - %suse /%c modifier", 8537 flagsp == &negflags ? "?-" : "?", 8538 *RExC_parse, 8539 flagsp == &negflags ? "don't " : "", 8540 *RExC_parse 8541 ); 8542 } 8543 } 8544 break; 8545 8546 case CONTINUE_PAT_MOD: /* 'c' */ 8547 if (SIZE_ONLY && ckWARN(WARN_REGEXP)) { 8548 if (! (wastedflags & WASTED_C) ) { 8549 wastedflags |= WASTED_GC; 8550 vWARN3( 8551 RExC_parse + 1, 8552 "Useless (%sc) - %suse /gc modifier", 8553 flagsp == &negflags ? "?-" : "?", 8554 flagsp == &negflags ? "don't " : "" 8555 ); 8556 } 8557 } 8558 break; 8559 case KEEPCOPY_PAT_MOD: /* 'p' */ 8560 if (flagsp == &negflags) { 8561 if (SIZE_ONLY) 8562 ckWARNreg(RExC_parse + 1,"Useless use of (?-p)"); 8563 } else { 8564 *flagsp |= RXf_PMf_KEEPCOPY; 8565 } 8566 break; 8567 case '-': 8568 /* A flag is a default iff it is following a minus, so 8569 * if there is a minus, it means will be trying to 8570 * re-specify a default which is an error */ 8571 if (has_use_defaults || flagsp == &negflags) { 8572 goto fail_modifiers; 8573 } 8574 flagsp = &negflags; 8575 wastedflags = 0; /* reset so (?g-c) warns twice */ 8576 break; 8577 case ':': 8578 case ')': 8579 RExC_flags |= posflags; 8580 RExC_flags &= ~negflags; 8581 set_regex_charset(&RExC_flags, cs); 8582 return; 8583 /*NOTREACHED*/ 8584 default: 8585 fail_modifiers: 8586 RExC_parse++; 8587 vFAIL3("Sequence (%.*s...) not recognized", 8588 RExC_parse-seqstart, seqstart); 8589 /*NOTREACHED*/ 8590 } 8591 8592 ++RExC_parse; 8593 } 8594 } 8595 8596 /* 8597 - reg - regular expression, i.e. main body or parenthesized thing 8598 * 8599 * Caller must absorb opening parenthesis. 8600 * 8601 * Combining parenthesis handling with the base level of regular expression 8602 * is a trifle forced, but the need to tie the tails of the branches to what 8603 * follows makes it hard to avoid. 8604 */ 8605 #define REGTAIL(x,y,z) regtail((x),(y),(z),depth+1) 8606 #ifdef DEBUGGING 8607 #define REGTAIL_STUDY(x,y,z) regtail_study((x),(y),(z),depth+1) 8608 #else 8609 #define REGTAIL_STUDY(x,y,z) regtail((x),(y),(z),depth+1) 8610 #endif 8611 8612 /* Returns NULL, setting *flagp to TRYAGAIN at the end of (?) that only sets 8613 flags. Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan 8614 needs to be restarted. 8615 Otherwise would only return NULL if regbranch() returns NULL, which 8616 cannot happen. */ 8617 STATIC regnode * 8618 S_reg(pTHX_ RExC_state_t *pRExC_state, I32 paren, I32 *flagp,U32 depth) 8619 /* paren: Parenthesized? 0=top; 1,2=inside '(': changed to letter. 8620 * 2 is like 1, but indicates that nextchar() has been called to advance 8621 * RExC_parse beyond the '('. Things like '(?' are indivisible tokens, and 8622 * this flag alerts us to the need to check for that */ 8623 { 8624 dVAR; 8625 regnode *ret; /* Will be the head of the group. */ 8626 regnode *br; 8627 regnode *lastbr; 8628 regnode *ender = NULL; 8629 I32 parno = 0; 8630 I32 flags; 8631 U32 oregflags = RExC_flags; 8632 bool have_branch = 0; 8633 bool is_open = 0; 8634 I32 freeze_paren = 0; 8635 I32 after_freeze = 0; 8636 8637 char * parse_start = RExC_parse; /* MJD */ 8638 char * const oregcomp_parse = RExC_parse; 8639 8640 GET_RE_DEBUG_FLAGS_DECL; 8641 8642 PERL_ARGS_ASSERT_REG; 8643 DEBUG_PARSE("reg "); 8644 8645 *flagp = 0; /* Tentatively. */ 8646 8647 8648 /* Make an OPEN node, if parenthesized. */ 8649 if (paren) { 8650 8651 /* Under /x, space and comments can be gobbled up between the '(' and 8652 * here (if paren ==2). The forms '(*VERB' and '(?...' disallow such 8653 * intervening space, as the sequence is a token, and a token should be 8654 * indivisible */ 8655 bool has_intervening_patws = paren == 2 && *(RExC_parse - 1) != '('; 8656 8657 if ( *RExC_parse == '*') { /* (*VERB:ARG) */ 8658 char *start_verb = RExC_parse; 8659 STRLEN verb_len = 0; 8660 char *start_arg = NULL; 8661 unsigned char op = 0; 8662 int argok = 1; 8663 int internal_argval = 0; /* internal_argval is only useful if !argok */ 8664 8665 if (has_intervening_patws && SIZE_ONLY) { 8666 ckWARNregdep(RExC_parse + 1, "In '(*VERB...)', splitting the initial '(*' is deprecated"); 8667 } 8668 while ( *RExC_parse && *RExC_parse != ')' ) { 8669 if ( *RExC_parse == ':' ) { 8670 start_arg = RExC_parse + 1; 8671 break; 8672 } 8673 RExC_parse++; 8674 } 8675 ++start_verb; 8676 verb_len = RExC_parse - start_verb; 8677 if ( start_arg ) { 8678 RExC_parse++; 8679 while ( *RExC_parse && *RExC_parse != ')' ) 8680 RExC_parse++; 8681 if ( *RExC_parse != ')' ) 8682 vFAIL("Unterminated verb pattern argument"); 8683 if ( RExC_parse == start_arg ) 8684 start_arg = NULL; 8685 } else { 8686 if ( *RExC_parse != ')' ) 8687 vFAIL("Unterminated verb pattern"); 8688 } 8689 8690 switch ( *start_verb ) { 8691 case 'A': /* (*ACCEPT) */ 8692 if ( memEQs(start_verb,verb_len,"ACCEPT") ) { 8693 op = ACCEPT; 8694 internal_argval = RExC_nestroot; 8695 } 8696 break; 8697 case 'C': /* (*COMMIT) */ 8698 if ( memEQs(start_verb,verb_len,"COMMIT") ) 8699 op = COMMIT; 8700 break; 8701 case 'F': /* (*FAIL) */ 8702 if ( verb_len==1 || memEQs(start_verb,verb_len,"FAIL") ) { 8703 op = OPFAIL; 8704 argok = 0; 8705 } 8706 break; 8707 case ':': /* (*:NAME) */ 8708 case 'M': /* (*MARK:NAME) */ 8709 if ( verb_len==0 || memEQs(start_verb,verb_len,"MARK") ) { 8710 op = MARKPOINT; 8711 argok = -1; 8712 } 8713 break; 8714 case 'P': /* (*PRUNE) */ 8715 if ( memEQs(start_verb,verb_len,"PRUNE") ) 8716 op = PRUNE; 8717 break; 8718 case 'S': /* (*SKIP) */ 8719 if ( memEQs(start_verb,verb_len,"SKIP") ) 8720 op = SKIP; 8721 break; 8722 case 'T': /* (*THEN) */ 8723 /* [19:06] <TimToady> :: is then */ 8724 if ( memEQs(start_verb,verb_len,"THEN") ) { 8725 op = CUTGROUP; 8726 RExC_seen |= REG_SEEN_CUTGROUP; 8727 } 8728 break; 8729 } 8730 if ( ! op ) { 8731 RExC_parse++; 8732 vFAIL3("Unknown verb pattern '%.*s'", 8733 verb_len, start_verb); 8734 } 8735 if ( argok ) { 8736 if ( start_arg && internal_argval ) { 8737 vFAIL3("Verb pattern '%.*s' may not have an argument", 8738 verb_len, start_verb); 8739 } else if ( argok < 0 && !start_arg ) { 8740 vFAIL3("Verb pattern '%.*s' has a mandatory argument", 8741 verb_len, start_verb); 8742 } else { 8743 ret = reganode(pRExC_state, op, internal_argval); 8744 if ( ! internal_argval && ! SIZE_ONLY ) { 8745 if (start_arg) { 8746 SV *sv = newSVpvn( start_arg, RExC_parse - start_arg); 8747 ARG(ret) = add_data( pRExC_state, 1, "S" ); 8748 RExC_rxi->data->data[ARG(ret)]=(void*)sv; 8749 ret->flags = 0; 8750 } else { 8751 ret->flags = 1; 8752 } 8753 } 8754 } 8755 if (!internal_argval) 8756 RExC_seen |= REG_SEEN_VERBARG; 8757 } else if ( start_arg ) { 8758 vFAIL3("Verb pattern '%.*s' may not have an argument", 8759 verb_len, start_verb); 8760 } else { 8761 ret = reg_node(pRExC_state, op); 8762 } 8763 nextchar(pRExC_state); 8764 return ret; 8765 } else 8766 if (*RExC_parse == '?') { /* (?...) */ 8767 bool is_logical = 0; 8768 const char * const seqstart = RExC_parse; 8769 if (has_intervening_patws && SIZE_ONLY) { 8770 ckWARNregdep(RExC_parse + 1, "In '(?...)', splitting the initial '(?' is deprecated"); 8771 } 8772 8773 RExC_parse++; 8774 paren = *RExC_parse++; 8775 ret = NULL; /* For look-ahead/behind. */ 8776 switch (paren) { 8777 8778 case 'P': /* (?P...) variants for those used to PCRE/Python */ 8779 paren = *RExC_parse++; 8780 if ( paren == '<') /* (?P<...>) named capture */ 8781 goto named_capture; 8782 else if (paren == '>') { /* (?P>name) named recursion */ 8783 goto named_recursion; 8784 } 8785 else if (paren == '=') { /* (?P=...) named backref */ 8786 /* this pretty much dupes the code for \k<NAME> in regatom(), if 8787 you change this make sure you change that */ 8788 char* name_start = RExC_parse; 8789 U32 num = 0; 8790 SV *sv_dat = reg_scan_name(pRExC_state, 8791 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA); 8792 if (RExC_parse == name_start || *RExC_parse != ')') 8793 vFAIL2("Sequence %.3s... not terminated",parse_start); 8794 8795 if (!SIZE_ONLY) { 8796 num = add_data( pRExC_state, 1, "S" ); 8797 RExC_rxi->data->data[num]=(void*)sv_dat; 8798 SvREFCNT_inc_simple_void(sv_dat); 8799 } 8800 RExC_sawback = 1; 8801 ret = reganode(pRExC_state, 8802 ((! FOLD) 8803 ? NREF 8804 : (ASCII_FOLD_RESTRICTED) 8805 ? NREFFA 8806 : (AT_LEAST_UNI_SEMANTICS) 8807 ? NREFFU 8808 : (LOC) 8809 ? NREFFL 8810 : NREFF), 8811 num); 8812 *flagp |= HASWIDTH; 8813 8814 Set_Node_Offset(ret, parse_start+1); 8815 Set_Node_Cur_Length(ret); /* MJD */ 8816 8817 nextchar(pRExC_state); 8818 return ret; 8819 } 8820 RExC_parse++; 8821 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart); 8822 /*NOTREACHED*/ 8823 case '<': /* (?<...) */ 8824 if (*RExC_parse == '!') 8825 paren = ','; 8826 else if (*RExC_parse != '=') 8827 named_capture: 8828 { /* (?<...>) */ 8829 char *name_start; 8830 SV *svname; 8831 paren= '>'; 8832 case '\'': /* (?'...') */ 8833 name_start= RExC_parse; 8834 svname = reg_scan_name(pRExC_state, 8835 SIZE_ONLY ? /* reverse test from the others */ 8836 REG_RSN_RETURN_NAME : 8837 REG_RSN_RETURN_NULL); 8838 if (RExC_parse == name_start) { 8839 RExC_parse++; 8840 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart); 8841 /*NOTREACHED*/ 8842 } 8843 if (*RExC_parse != paren) 8844 vFAIL2("Sequence (?%c... not terminated", 8845 paren=='>' ? '<' : paren); 8846 if (SIZE_ONLY) { 8847 HE *he_str; 8848 SV *sv_dat = NULL; 8849 if (!svname) /* shouldn't happen */ 8850 Perl_croak(aTHX_ 8851 "panic: reg_scan_name returned NULL"); 8852 if (!RExC_paren_names) { 8853 RExC_paren_names= newHV(); 8854 sv_2mortal(MUTABLE_SV(RExC_paren_names)); 8855 #ifdef DEBUGGING 8856 RExC_paren_name_list= newAV(); 8857 sv_2mortal(MUTABLE_SV(RExC_paren_name_list)); 8858 #endif 8859 } 8860 he_str = hv_fetch_ent( RExC_paren_names, svname, 1, 0 ); 8861 if ( he_str ) 8862 sv_dat = HeVAL(he_str); 8863 if ( ! sv_dat ) { 8864 /* croak baby croak */ 8865 Perl_croak(aTHX_ 8866 "panic: paren_name hash element allocation failed"); 8867 } else if ( SvPOK(sv_dat) ) { 8868 /* (?|...) can mean we have dupes so scan to check 8869 its already been stored. Maybe a flag indicating 8870 we are inside such a construct would be useful, 8871 but the arrays are likely to be quite small, so 8872 for now we punt -- dmq */ 8873 IV count = SvIV(sv_dat); 8874 I32 *pv = (I32*)SvPVX(sv_dat); 8875 IV i; 8876 for ( i = 0 ; i < count ; i++ ) { 8877 if ( pv[i] == RExC_npar ) { 8878 count = 0; 8879 break; 8880 } 8881 } 8882 if ( count ) { 8883 pv = (I32*)SvGROW(sv_dat, SvCUR(sv_dat) + sizeof(I32)+1); 8884 SvCUR_set(sv_dat, SvCUR(sv_dat) + sizeof(I32)); 8885 pv[count] = RExC_npar; 8886 SvIV_set(sv_dat, SvIVX(sv_dat) + 1); 8887 } 8888 } else { 8889 (void)SvUPGRADE(sv_dat,SVt_PVNV); 8890 sv_setpvn(sv_dat, (char *)&(RExC_npar), sizeof(I32)); 8891 SvIOK_on(sv_dat); 8892 SvIV_set(sv_dat, 1); 8893 } 8894 #ifdef DEBUGGING 8895 /* Yes this does cause a memory leak in debugging Perls */ 8896 if (!av_store(RExC_paren_name_list, RExC_npar, SvREFCNT_inc(svname))) 8897 SvREFCNT_dec_NN(svname); 8898 #endif 8899 8900 /*sv_dump(sv_dat);*/ 8901 } 8902 nextchar(pRExC_state); 8903 paren = 1; 8904 goto capturing_parens; 8905 } 8906 RExC_seen |= REG_SEEN_LOOKBEHIND; 8907 RExC_in_lookbehind++; 8908 RExC_parse++; 8909 case '=': /* (?=...) */ 8910 RExC_seen_zerolen++; 8911 break; 8912 case '!': /* (?!...) */ 8913 RExC_seen_zerolen++; 8914 if (*RExC_parse == ')') { 8915 ret=reg_node(pRExC_state, OPFAIL); 8916 nextchar(pRExC_state); 8917 return ret; 8918 } 8919 break; 8920 case '|': /* (?|...) */ 8921 /* branch reset, behave like a (?:...) except that 8922 buffers in alternations share the same numbers */ 8923 paren = ':'; 8924 after_freeze = freeze_paren = RExC_npar; 8925 break; 8926 case ':': /* (?:...) */ 8927 case '>': /* (?>...) */ 8928 break; 8929 case '$': /* (?$...) */ 8930 case '@': /* (?@...) */ 8931 vFAIL2("Sequence (?%c...) not implemented", (int)paren); 8932 break; 8933 case '#': /* (?#...) */ 8934 /* XXX As soon as we disallow separating the '?' and '*' (by 8935 * spaces or (?#...) comment), it is believed that this case 8936 * will be unreachable and can be removed. See 8937 * [perl #117327] */ 8938 while (*RExC_parse && *RExC_parse != ')') 8939 RExC_parse++; 8940 if (*RExC_parse != ')') 8941 FAIL("Sequence (?#... not terminated"); 8942 nextchar(pRExC_state); 8943 *flagp = TRYAGAIN; 8944 return NULL; 8945 case '0' : /* (?0) */ 8946 case 'R' : /* (?R) */ 8947 if (*RExC_parse != ')') 8948 FAIL("Sequence (?R) not terminated"); 8949 ret = reg_node(pRExC_state, GOSTART); 8950 *flagp |= POSTPONED; 8951 nextchar(pRExC_state); 8952 return ret; 8953 /*notreached*/ 8954 { /* named and numeric backreferences */ 8955 I32 num; 8956 case '&': /* (?&NAME) */ 8957 parse_start = RExC_parse - 1; 8958 named_recursion: 8959 { 8960 SV *sv_dat = reg_scan_name(pRExC_state, 8961 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA); 8962 num = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0; 8963 } 8964 goto gen_recurse_regop; 8965 assert(0); /* NOT REACHED */ 8966 case '+': 8967 if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) { 8968 RExC_parse++; 8969 vFAIL("Illegal pattern"); 8970 } 8971 goto parse_recursion; 8972 /* NOT REACHED*/ 8973 case '-': /* (?-1) */ 8974 if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) { 8975 RExC_parse--; /* rewind to let it be handled later */ 8976 goto parse_flags; 8977 } 8978 /*FALLTHROUGH */ 8979 case '1': case '2': case '3': case '4': /* (?1) */ 8980 case '5': case '6': case '7': case '8': case '9': 8981 RExC_parse--; 8982 parse_recursion: 8983 num = atoi(RExC_parse); 8984 parse_start = RExC_parse - 1; /* MJD */ 8985 if (*RExC_parse == '-') 8986 RExC_parse++; 8987 while (isDIGIT(*RExC_parse)) 8988 RExC_parse++; 8989 if (*RExC_parse!=')') 8990 vFAIL("Expecting close bracket"); 8991 8992 gen_recurse_regop: 8993 if ( paren == '-' ) { 8994 /* 8995 Diagram of capture buffer numbering. 8996 Top line is the normal capture buffer numbers 8997 Bottom line is the negative indexing as from 8998 the X (the (?-2)) 8999 9000 + 1 2 3 4 5 X 6 7 9001 /(a(x)y)(a(b(c(?-2)d)e)f)(g(h))/ 9002 - 5 4 3 2 1 X x x 9003 9004 */ 9005 num = RExC_npar + num; 9006 if (num < 1) { 9007 RExC_parse++; 9008 vFAIL("Reference to nonexistent group"); 9009 } 9010 } else if ( paren == '+' ) { 9011 num = RExC_npar + num - 1; 9012 } 9013 9014 ret = reganode(pRExC_state, GOSUB, num); 9015 if (!SIZE_ONLY) { 9016 if (num > (I32)RExC_rx->nparens) { 9017 RExC_parse++; 9018 vFAIL("Reference to nonexistent group"); 9019 } 9020 ARG2L_SET( ret, RExC_recurse_count++); 9021 RExC_emit++; 9022 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log, 9023 "Recurse #%"UVuf" to %"IVdf"\n", (UV)ARG(ret), (IV)ARG2L(ret))); 9024 } else { 9025 RExC_size++; 9026 } 9027 RExC_seen |= REG_SEEN_RECURSE; 9028 Set_Node_Length(ret, 1 + regarglen[OP(ret)]); /* MJD */ 9029 Set_Node_Offset(ret, parse_start); /* MJD */ 9030 9031 *flagp |= POSTPONED; 9032 nextchar(pRExC_state); 9033 return ret; 9034 } /* named and numeric backreferences */ 9035 assert(0); /* NOT REACHED */ 9036 9037 case '?': /* (??...) */ 9038 is_logical = 1; 9039 if (*RExC_parse != '{') { 9040 RExC_parse++; 9041 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart); 9042 /*NOTREACHED*/ 9043 } 9044 *flagp |= POSTPONED; 9045 paren = *RExC_parse++; 9046 /* FALL THROUGH */ 9047 case '{': /* (?{...}) */ 9048 { 9049 U32 n = 0; 9050 struct reg_code_block *cb; 9051 9052 RExC_seen_zerolen++; 9053 9054 if ( !pRExC_state->num_code_blocks 9055 || pRExC_state->code_index >= pRExC_state->num_code_blocks 9056 || pRExC_state->code_blocks[pRExC_state->code_index].start 9057 != (STRLEN)((RExC_parse -3 - (is_logical ? 1 : 0)) 9058 - RExC_start) 9059 ) { 9060 if (RExC_pm_flags & PMf_USE_RE_EVAL) 9061 FAIL("panic: Sequence (?{...}): no code block found\n"); 9062 FAIL("Eval-group not allowed at runtime, use re 'eval'"); 9063 } 9064 /* this is a pre-compiled code block (?{...}) */ 9065 cb = &pRExC_state->code_blocks[pRExC_state->code_index]; 9066 RExC_parse = RExC_start + cb->end; 9067 if (!SIZE_ONLY) { 9068 OP *o = cb->block; 9069 if (cb->src_regex) { 9070 n = add_data(pRExC_state, 2, "rl"); 9071 RExC_rxi->data->data[n] = 9072 (void*)SvREFCNT_inc((SV*)cb->src_regex); 9073 RExC_rxi->data->data[n+1] = (void*)o; 9074 } 9075 else { 9076 n = add_data(pRExC_state, 1, 9077 (RExC_pm_flags & PMf_HAS_CV) ? "L" : "l"); 9078 RExC_rxi->data->data[n] = (void*)o; 9079 } 9080 } 9081 pRExC_state->code_index++; 9082 nextchar(pRExC_state); 9083 9084 if (is_logical) { 9085 regnode *eval; 9086 ret = reg_node(pRExC_state, LOGICAL); 9087 eval = reganode(pRExC_state, EVAL, n); 9088 if (!SIZE_ONLY) { 9089 ret->flags = 2; 9090 /* for later propagation into (??{}) return value */ 9091 eval->flags = (U8) (RExC_flags & RXf_PMf_COMPILETIME); 9092 } 9093 REGTAIL(pRExC_state, ret, eval); 9094 /* deal with the length of this later - MJD */ 9095 return ret; 9096 } 9097 ret = reganode(pRExC_state, EVAL, n); 9098 Set_Node_Length(ret, RExC_parse - parse_start + 1); 9099 Set_Node_Offset(ret, parse_start); 9100 return ret; 9101 } 9102 case '(': /* (?(?{...})...) and (?(?=...)...) */ 9103 { 9104 int is_define= 0; 9105 if (RExC_parse[0] == '?') { /* (?(?...)) */ 9106 if (RExC_parse[1] == '=' || RExC_parse[1] == '!' 9107 || RExC_parse[1] == '<' 9108 || RExC_parse[1] == '{') { /* Lookahead or eval. */ 9109 I32 flag; 9110 regnode *tail; 9111 9112 ret = reg_node(pRExC_state, LOGICAL); 9113 if (!SIZE_ONLY) 9114 ret->flags = 1; 9115 9116 tail = reg(pRExC_state, 1, &flag, depth+1); 9117 if (flag & RESTART_UTF8) { 9118 *flagp = RESTART_UTF8; 9119 return NULL; 9120 } 9121 REGTAIL(pRExC_state, ret, tail); 9122 goto insert_if; 9123 } 9124 } 9125 else if ( RExC_parse[0] == '<' /* (?(<NAME>)...) */ 9126 || RExC_parse[0] == '\'' ) /* (?('NAME')...) */ 9127 { 9128 char ch = RExC_parse[0] == '<' ? '>' : '\''; 9129 char *name_start= RExC_parse++; 9130 U32 num = 0; 9131 SV *sv_dat=reg_scan_name(pRExC_state, 9132 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA); 9133 if (RExC_parse == name_start || *RExC_parse != ch) 9134 vFAIL2("Sequence (?(%c... not terminated", 9135 (ch == '>' ? '<' : ch)); 9136 RExC_parse++; 9137 if (!SIZE_ONLY) { 9138 num = add_data( pRExC_state, 1, "S" ); 9139 RExC_rxi->data->data[num]=(void*)sv_dat; 9140 SvREFCNT_inc_simple_void(sv_dat); 9141 } 9142 ret = reganode(pRExC_state,NGROUPP,num); 9143 goto insert_if_check_paren; 9144 } 9145 else if (RExC_parse[0] == 'D' && 9146 RExC_parse[1] == 'E' && 9147 RExC_parse[2] == 'F' && 9148 RExC_parse[3] == 'I' && 9149 RExC_parse[4] == 'N' && 9150 RExC_parse[5] == 'E') 9151 { 9152 ret = reganode(pRExC_state,DEFINEP,0); 9153 RExC_parse +=6 ; 9154 is_define = 1; 9155 goto insert_if_check_paren; 9156 } 9157 else if (RExC_parse[0] == 'R') { 9158 RExC_parse++; 9159 parno = 0; 9160 if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) { 9161 parno = atoi(RExC_parse++); 9162 while (isDIGIT(*RExC_parse)) 9163 RExC_parse++; 9164 } else if (RExC_parse[0] == '&') { 9165 SV *sv_dat; 9166 RExC_parse++; 9167 sv_dat = reg_scan_name(pRExC_state, 9168 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA); 9169 parno = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0; 9170 } 9171 ret = reganode(pRExC_state,INSUBP,parno); 9172 goto insert_if_check_paren; 9173 } 9174 else if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) { 9175 /* (?(1)...) */ 9176 char c; 9177 parno = atoi(RExC_parse++); 9178 9179 while (isDIGIT(*RExC_parse)) 9180 RExC_parse++; 9181 ret = reganode(pRExC_state, GROUPP, parno); 9182 9183 insert_if_check_paren: 9184 if ((c = *nextchar(pRExC_state)) != ')') 9185 vFAIL("Switch condition not recognized"); 9186 insert_if: 9187 REGTAIL(pRExC_state, ret, reganode(pRExC_state, IFTHEN, 0)); 9188 br = regbranch(pRExC_state, &flags, 1,depth+1); 9189 if (br == NULL) { 9190 if (flags & RESTART_UTF8) { 9191 *flagp = RESTART_UTF8; 9192 return NULL; 9193 } 9194 FAIL2("panic: regbranch returned NULL, flags=%#X", 9195 flags); 9196 } else 9197 REGTAIL(pRExC_state, br, reganode(pRExC_state, LONGJMP, 0)); 9198 c = *nextchar(pRExC_state); 9199 if (flags&HASWIDTH) 9200 *flagp |= HASWIDTH; 9201 if (c == '|') { 9202 if (is_define) 9203 vFAIL("(?(DEFINE)....) does not allow branches"); 9204 lastbr = reganode(pRExC_state, IFTHEN, 0); /* Fake one for optimizer. */ 9205 if (!regbranch(pRExC_state, &flags, 1,depth+1)) { 9206 if (flags & RESTART_UTF8) { 9207 *flagp = RESTART_UTF8; 9208 return NULL; 9209 } 9210 FAIL2("panic: regbranch returned NULL, flags=%#X", 9211 flags); 9212 } 9213 REGTAIL(pRExC_state, ret, lastbr); 9214 if (flags&HASWIDTH) 9215 *flagp |= HASWIDTH; 9216 c = *nextchar(pRExC_state); 9217 } 9218 else 9219 lastbr = NULL; 9220 if (c != ')') 9221 vFAIL("Switch (?(condition)... contains too many branches"); 9222 ender = reg_node(pRExC_state, TAIL); 9223 REGTAIL(pRExC_state, br, ender); 9224 if (lastbr) { 9225 REGTAIL(pRExC_state, lastbr, ender); 9226 REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender); 9227 } 9228 else 9229 REGTAIL(pRExC_state, ret, ender); 9230 RExC_size++; /* XXX WHY do we need this?!! 9231 For large programs it seems to be required 9232 but I can't figure out why. -- dmq*/ 9233 return ret; 9234 } 9235 else { 9236 vFAIL2("Unknown switch condition (?(%.2s", RExC_parse); 9237 } 9238 } 9239 case '[': /* (?[ ... ]) */ 9240 return handle_regex_sets(pRExC_state, NULL, flagp, depth, 9241 oregcomp_parse); 9242 case 0: 9243 RExC_parse--; /* for vFAIL to print correctly */ 9244 vFAIL("Sequence (? incomplete"); 9245 break; 9246 default: /* e.g., (?i) */ 9247 --RExC_parse; 9248 parse_flags: 9249 parse_lparen_question_flags(pRExC_state); 9250 if (UCHARAT(RExC_parse) != ':') { 9251 nextchar(pRExC_state); 9252 *flagp = TRYAGAIN; 9253 return NULL; 9254 } 9255 paren = ':'; 9256 nextchar(pRExC_state); 9257 ret = NULL; 9258 goto parse_rest; 9259 } /* end switch */ 9260 } 9261 else { /* (...) */ 9262 capturing_parens: 9263 parno = RExC_npar; 9264 RExC_npar++; 9265 9266 ret = reganode(pRExC_state, OPEN, parno); 9267 if (!SIZE_ONLY ){ 9268 if (!RExC_nestroot) 9269 RExC_nestroot = parno; 9270 if (RExC_seen & REG_SEEN_RECURSE 9271 && !RExC_open_parens[parno-1]) 9272 { 9273 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log, 9274 "Setting open paren #%"IVdf" to %d\n", 9275 (IV)parno, REG_NODE_NUM(ret))); 9276 RExC_open_parens[parno-1]= ret; 9277 } 9278 } 9279 Set_Node_Length(ret, 1); /* MJD */ 9280 Set_Node_Offset(ret, RExC_parse); /* MJD */ 9281 is_open = 1; 9282 } 9283 } 9284 else /* ! paren */ 9285 ret = NULL; 9286 9287 parse_rest: 9288 /* Pick up the branches, linking them together. */ 9289 parse_start = RExC_parse; /* MJD */ 9290 br = regbranch(pRExC_state, &flags, 1,depth+1); 9291 9292 /* branch_len = (paren != 0); */ 9293 9294 if (br == NULL) { 9295 if (flags & RESTART_UTF8) { 9296 *flagp = RESTART_UTF8; 9297 return NULL; 9298 } 9299 FAIL2("panic: regbranch returned NULL, flags=%#X", flags); 9300 } 9301 if (*RExC_parse == '|') { 9302 if (!SIZE_ONLY && RExC_extralen) { 9303 reginsert(pRExC_state, BRANCHJ, br, depth+1); 9304 } 9305 else { /* MJD */ 9306 reginsert(pRExC_state, BRANCH, br, depth+1); 9307 Set_Node_Length(br, paren != 0); 9308 Set_Node_Offset_To_R(br-RExC_emit_start, parse_start-RExC_start); 9309 } 9310 have_branch = 1; 9311 if (SIZE_ONLY) 9312 RExC_extralen += 1; /* For BRANCHJ-BRANCH. */ 9313 } 9314 else if (paren == ':') { 9315 *flagp |= flags&SIMPLE; 9316 } 9317 if (is_open) { /* Starts with OPEN. */ 9318 REGTAIL(pRExC_state, ret, br); /* OPEN -> first. */ 9319 } 9320 else if (paren != '?') /* Not Conditional */ 9321 ret = br; 9322 *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED); 9323 lastbr = br; 9324 while (*RExC_parse == '|') { 9325 if (!SIZE_ONLY && RExC_extralen) { 9326 ender = reganode(pRExC_state, LONGJMP,0); 9327 REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender); /* Append to the previous. */ 9328 } 9329 if (SIZE_ONLY) 9330 RExC_extralen += 2; /* Account for LONGJMP. */ 9331 nextchar(pRExC_state); 9332 if (freeze_paren) { 9333 if (RExC_npar > after_freeze) 9334 after_freeze = RExC_npar; 9335 RExC_npar = freeze_paren; 9336 } 9337 br = regbranch(pRExC_state, &flags, 0, depth+1); 9338 9339 if (br == NULL) { 9340 if (flags & RESTART_UTF8) { 9341 *flagp = RESTART_UTF8; 9342 return NULL; 9343 } 9344 FAIL2("panic: regbranch returned NULL, flags=%#X", flags); 9345 } 9346 REGTAIL(pRExC_state, lastbr, br); /* BRANCH -> BRANCH. */ 9347 lastbr = br; 9348 *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED); 9349 } 9350 9351 if (have_branch || paren != ':') { 9352 /* Make a closing node, and hook it on the end. */ 9353 switch (paren) { 9354 case ':': 9355 ender = reg_node(pRExC_state, TAIL); 9356 break; 9357 case 1: case 2: 9358 ender = reganode(pRExC_state, CLOSE, parno); 9359 if (!SIZE_ONLY && RExC_seen & REG_SEEN_RECURSE) { 9360 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log, 9361 "Setting close paren #%"IVdf" to %d\n", 9362 (IV)parno, REG_NODE_NUM(ender))); 9363 RExC_close_parens[parno-1]= ender; 9364 if (RExC_nestroot == parno) 9365 RExC_nestroot = 0; 9366 } 9367 Set_Node_Offset(ender,RExC_parse+1); /* MJD */ 9368 Set_Node_Length(ender,1); /* MJD */ 9369 break; 9370 case '<': 9371 case ',': 9372 case '=': 9373 case '!': 9374 *flagp &= ~HASWIDTH; 9375 /* FALL THROUGH */ 9376 case '>': 9377 ender = reg_node(pRExC_state, SUCCEED); 9378 break; 9379 case 0: 9380 ender = reg_node(pRExC_state, END); 9381 if (!SIZE_ONLY) { 9382 assert(!RExC_opend); /* there can only be one! */ 9383 RExC_opend = ender; 9384 } 9385 break; 9386 } 9387 DEBUG_PARSE_r(if (!SIZE_ONLY) { 9388 SV * const mysv_val1=sv_newmortal(); 9389 SV * const mysv_val2=sv_newmortal(); 9390 DEBUG_PARSE_MSG("lsbr"); 9391 regprop(RExC_rx, mysv_val1, lastbr); 9392 regprop(RExC_rx, mysv_val2, ender); 9393 PerlIO_printf(Perl_debug_log, "~ tying lastbr %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n", 9394 SvPV_nolen_const(mysv_val1), 9395 (IV)REG_NODE_NUM(lastbr), 9396 SvPV_nolen_const(mysv_val2), 9397 (IV)REG_NODE_NUM(ender), 9398 (IV)(ender - lastbr) 9399 ); 9400 }); 9401 REGTAIL(pRExC_state, lastbr, ender); 9402 9403 if (have_branch && !SIZE_ONLY) { 9404 char is_nothing= 1; 9405 if (depth==1) 9406 RExC_seen |= REG_TOP_LEVEL_BRANCHES; 9407 9408 /* Hook the tails of the branches to the closing node. */ 9409 for (br = ret; br; br = regnext(br)) { 9410 const U8 op = PL_regkind[OP(br)]; 9411 if (op == BRANCH) { 9412 REGTAIL_STUDY(pRExC_state, NEXTOPER(br), ender); 9413 if (OP(NEXTOPER(br)) != NOTHING || regnext(NEXTOPER(br)) != ender) 9414 is_nothing= 0; 9415 } 9416 else if (op == BRANCHJ) { 9417 REGTAIL_STUDY(pRExC_state, NEXTOPER(NEXTOPER(br)), ender); 9418 /* for now we always disable this optimisation * / 9419 if (OP(NEXTOPER(NEXTOPER(br))) != NOTHING || regnext(NEXTOPER(NEXTOPER(br))) != ender) 9420 */ 9421 is_nothing= 0; 9422 } 9423 } 9424 if (is_nothing) { 9425 br= PL_regkind[OP(ret)] != BRANCH ? regnext(ret) : ret; 9426 DEBUG_PARSE_r(if (!SIZE_ONLY) { 9427 SV * const mysv_val1=sv_newmortal(); 9428 SV * const mysv_val2=sv_newmortal(); 9429 DEBUG_PARSE_MSG("NADA"); 9430 regprop(RExC_rx, mysv_val1, ret); 9431 regprop(RExC_rx, mysv_val2, ender); 9432 PerlIO_printf(Perl_debug_log, "~ converting ret %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n", 9433 SvPV_nolen_const(mysv_val1), 9434 (IV)REG_NODE_NUM(ret), 9435 SvPV_nolen_const(mysv_val2), 9436 (IV)REG_NODE_NUM(ender), 9437 (IV)(ender - ret) 9438 ); 9439 }); 9440 OP(br)= NOTHING; 9441 if (OP(ender) == TAIL) { 9442 NEXT_OFF(br)= 0; 9443 RExC_emit= br + 1; 9444 } else { 9445 regnode *opt; 9446 for ( opt= br + 1; opt < ender ; opt++ ) 9447 OP(opt)= OPTIMIZED; 9448 NEXT_OFF(br)= ender - br; 9449 } 9450 } 9451 } 9452 } 9453 9454 { 9455 const char *p; 9456 static const char parens[] = "=!<,>"; 9457 9458 if (paren && (p = strchr(parens, paren))) { 9459 U8 node = ((p - parens) % 2) ? UNLESSM : IFMATCH; 9460 int flag = (p - parens) > 1; 9461 9462 if (paren == '>') 9463 node = SUSPEND, flag = 0; 9464 reginsert(pRExC_state, node,ret, depth+1); 9465 Set_Node_Cur_Length(ret); 9466 Set_Node_Offset(ret, parse_start + 1); 9467 ret->flags = flag; 9468 REGTAIL_STUDY(pRExC_state, ret, reg_node(pRExC_state, TAIL)); 9469 } 9470 } 9471 9472 /* Check for proper termination. */ 9473 if (paren) { 9474 /* restore original flags, but keep (?p) */ 9475 RExC_flags = oregflags | (RExC_flags & RXf_PMf_KEEPCOPY); 9476 if (RExC_parse >= RExC_end || *nextchar(pRExC_state) != ')') { 9477 RExC_parse = oregcomp_parse; 9478 vFAIL("Unmatched ("); 9479 } 9480 } 9481 else if (!paren && RExC_parse < RExC_end) { 9482 if (*RExC_parse == ')') { 9483 RExC_parse++; 9484 vFAIL("Unmatched )"); 9485 } 9486 else 9487 FAIL("Junk on end of regexp"); /* "Can't happen". */ 9488 assert(0); /* NOTREACHED */ 9489 } 9490 9491 if (RExC_in_lookbehind) { 9492 RExC_in_lookbehind--; 9493 } 9494 if (after_freeze > RExC_npar) 9495 RExC_npar = after_freeze; 9496 return(ret); 9497 } 9498 9499 /* 9500 - regbranch - one alternative of an | operator 9501 * 9502 * Implements the concatenation operator. 9503 * 9504 * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be 9505 * restarted. 9506 */ 9507 STATIC regnode * 9508 S_regbranch(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, I32 first, U32 depth) 9509 { 9510 dVAR; 9511 regnode *ret; 9512 regnode *chain = NULL; 9513 regnode *latest; 9514 I32 flags = 0, c = 0; 9515 GET_RE_DEBUG_FLAGS_DECL; 9516 9517 PERL_ARGS_ASSERT_REGBRANCH; 9518 9519 DEBUG_PARSE("brnc"); 9520 9521 if (first) 9522 ret = NULL; 9523 else { 9524 if (!SIZE_ONLY && RExC_extralen) 9525 ret = reganode(pRExC_state, BRANCHJ,0); 9526 else { 9527 ret = reg_node(pRExC_state, BRANCH); 9528 Set_Node_Length(ret, 1); 9529 } 9530 } 9531 9532 if (!first && SIZE_ONLY) 9533 RExC_extralen += 1; /* BRANCHJ */ 9534 9535 *flagp = WORST; /* Tentatively. */ 9536 9537 RExC_parse--; 9538 nextchar(pRExC_state); 9539 while (RExC_parse < RExC_end && *RExC_parse != '|' && *RExC_parse != ')') { 9540 flags &= ~TRYAGAIN; 9541 latest = regpiece(pRExC_state, &flags,depth+1); 9542 if (latest == NULL) { 9543 if (flags & TRYAGAIN) 9544 continue; 9545 if (flags & RESTART_UTF8) { 9546 *flagp = RESTART_UTF8; 9547 return NULL; 9548 } 9549 FAIL2("panic: regpiece returned NULL, flags=%#X", flags); 9550 } 9551 else if (ret == NULL) 9552 ret = latest; 9553 *flagp |= flags&(HASWIDTH|POSTPONED); 9554 if (chain == NULL) /* First piece. */ 9555 *flagp |= flags&SPSTART; 9556 else { 9557 RExC_naughty++; 9558 REGTAIL(pRExC_state, chain, latest); 9559 } 9560 chain = latest; 9561 c++; 9562 } 9563 if (chain == NULL) { /* Loop ran zero times. */ 9564 chain = reg_node(pRExC_state, NOTHING); 9565 if (ret == NULL) 9566 ret = chain; 9567 } 9568 if (c == 1) { 9569 *flagp |= flags&SIMPLE; 9570 } 9571 9572 return ret; 9573 } 9574 9575 /* 9576 - regpiece - something followed by possible [*+?] 9577 * 9578 * Note that the branching code sequences used for ? and the general cases 9579 * of * and + are somewhat optimized: they use the same NOTHING node as 9580 * both the endmarker for their branch list and the body of the last branch. 9581 * It might seem that this node could be dispensed with entirely, but the 9582 * endmarker role is not redundant. 9583 * 9584 * Returns NULL, setting *flagp to TRYAGAIN if regatom() returns NULL with 9585 * TRYAGAIN. 9586 * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be 9587 * restarted. 9588 */ 9589 STATIC regnode * 9590 S_regpiece(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth) 9591 { 9592 dVAR; 9593 regnode *ret; 9594 char op; 9595 char *next; 9596 I32 flags; 9597 const char * const origparse = RExC_parse; 9598 I32 min; 9599 I32 max = REG_INFTY; 9600 #ifdef RE_TRACK_PATTERN_OFFSETS 9601 char *parse_start; 9602 #endif 9603 const char *maxpos = NULL; 9604 9605 /* Save the original in case we change the emitted regop to a FAIL. */ 9606 regnode * const orig_emit = RExC_emit; 9607 9608 GET_RE_DEBUG_FLAGS_DECL; 9609 9610 PERL_ARGS_ASSERT_REGPIECE; 9611 9612 DEBUG_PARSE("piec"); 9613 9614 ret = regatom(pRExC_state, &flags,depth+1); 9615 if (ret == NULL) { 9616 if (flags & (TRYAGAIN|RESTART_UTF8)) 9617 *flagp |= flags & (TRYAGAIN|RESTART_UTF8); 9618 else 9619 FAIL2("panic: regatom returned NULL, flags=%#X", flags); 9620 return(NULL); 9621 } 9622 9623 op = *RExC_parse; 9624 9625 if (op == '{' && regcurly(RExC_parse, FALSE)) { 9626 maxpos = NULL; 9627 #ifdef RE_TRACK_PATTERN_OFFSETS 9628 parse_start = RExC_parse; /* MJD */ 9629 #endif 9630 next = RExC_parse + 1; 9631 while (isDIGIT(*next) || *next == ',') { 9632 if (*next == ',') { 9633 if (maxpos) 9634 break; 9635 else 9636 maxpos = next; 9637 } 9638 next++; 9639 } 9640 if (*next == '}') { /* got one */ 9641 if (!maxpos) 9642 maxpos = next; 9643 RExC_parse++; 9644 min = atoi(RExC_parse); 9645 if (*maxpos == ',') 9646 maxpos++; 9647 else 9648 maxpos = RExC_parse; 9649 max = atoi(maxpos); 9650 if (!max && *maxpos != '0') 9651 max = REG_INFTY; /* meaning "infinity" */ 9652 else if (max >= REG_INFTY) 9653 vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1); 9654 RExC_parse = next; 9655 nextchar(pRExC_state); 9656 if (max < min) { /* If can't match, warn and optimize to fail 9657 unconditionally */ 9658 if (SIZE_ONLY) { 9659 ckWARNreg(RExC_parse, "Quantifier {n,m} with n > m can't match"); 9660 9661 /* We can't back off the size because we have to reserve 9662 * enough space for all the things we are about to throw 9663 * away, but we can shrink it by the ammount we are about 9664 * to re-use here */ 9665 RExC_size = PREVOPER(RExC_size) - regarglen[(U8)OPFAIL]; 9666 } 9667 else { 9668 RExC_emit = orig_emit; 9669 } 9670 ret = reg_node(pRExC_state, OPFAIL); 9671 return ret; 9672 } 9673 9674 do_curly: 9675 if ((flags&SIMPLE)) { 9676 RExC_naughty += 2 + RExC_naughty / 2; 9677 reginsert(pRExC_state, CURLY, ret, depth+1); 9678 Set_Node_Offset(ret, parse_start+1); /* MJD */ 9679 Set_Node_Cur_Length(ret); 9680 } 9681 else { 9682 regnode * const w = reg_node(pRExC_state, WHILEM); 9683 9684 w->flags = 0; 9685 REGTAIL(pRExC_state, ret, w); 9686 if (!SIZE_ONLY && RExC_extralen) { 9687 reginsert(pRExC_state, LONGJMP,ret, depth+1); 9688 reginsert(pRExC_state, NOTHING,ret, depth+1); 9689 NEXT_OFF(ret) = 3; /* Go over LONGJMP. */ 9690 } 9691 reginsert(pRExC_state, CURLYX,ret, depth+1); 9692 /* MJD hk */ 9693 Set_Node_Offset(ret, parse_start+1); 9694 Set_Node_Length(ret, 9695 op == '{' ? (RExC_parse - parse_start) : 1); 9696 9697 if (!SIZE_ONLY && RExC_extralen) 9698 NEXT_OFF(ret) = 3; /* Go over NOTHING to LONGJMP. */ 9699 REGTAIL(pRExC_state, ret, reg_node(pRExC_state, NOTHING)); 9700 if (SIZE_ONLY) 9701 RExC_whilem_seen++, RExC_extralen += 3; 9702 RExC_naughty += 4 + RExC_naughty; /* compound interest */ 9703 } 9704 ret->flags = 0; 9705 9706 if (min > 0) 9707 *flagp = WORST; 9708 if (max > 0) 9709 *flagp |= HASWIDTH; 9710 if (!SIZE_ONLY) { 9711 ARG1_SET(ret, (U16)min); 9712 ARG2_SET(ret, (U16)max); 9713 } 9714 9715 goto nest_check; 9716 } 9717 } 9718 9719 if (!ISMULT1(op)) { 9720 *flagp = flags; 9721 return(ret); 9722 } 9723 9724 #if 0 /* Now runtime fix should be reliable. */ 9725 9726 /* if this is reinstated, don't forget to put this back into perldiag: 9727 9728 =item Regexp *+ operand could be empty at {#} in regex m/%s/ 9729 9730 (F) The part of the regexp subject to either the * or + quantifier 9731 could match an empty string. The {#} shows in the regular 9732 expression about where the problem was discovered. 9733 9734 */ 9735 9736 if (!(flags&HASWIDTH) && op != '?') 9737 vFAIL("Regexp *+ operand could be empty"); 9738 #endif 9739 9740 #ifdef RE_TRACK_PATTERN_OFFSETS 9741 parse_start = RExC_parse; 9742 #endif 9743 nextchar(pRExC_state); 9744 9745 *flagp = (op != '+') ? (WORST|SPSTART|HASWIDTH) : (WORST|HASWIDTH); 9746 9747 if (op == '*' && (flags&SIMPLE)) { 9748 reginsert(pRExC_state, STAR, ret, depth+1); 9749 ret->flags = 0; 9750 RExC_naughty += 4; 9751 } 9752 else if (op == '*') { 9753 min = 0; 9754 goto do_curly; 9755 } 9756 else if (op == '+' && (flags&SIMPLE)) { 9757 reginsert(pRExC_state, PLUS, ret, depth+1); 9758 ret->flags = 0; 9759 RExC_naughty += 3; 9760 } 9761 else if (op == '+') { 9762 min = 1; 9763 goto do_curly; 9764 } 9765 else if (op == '?') { 9766 min = 0; max = 1; 9767 goto do_curly; 9768 } 9769 nest_check: 9770 if (!SIZE_ONLY && !(flags&(HASWIDTH|POSTPONED)) && max > REG_INFTY/3) { 9771 SAVEFREESV(RExC_rx_sv); /* in case of fatal warnings */ 9772 ckWARN3reg(RExC_parse, 9773 "%.*s matches null string many times", 9774 (int)(RExC_parse >= origparse ? RExC_parse - origparse : 0), 9775 origparse); 9776 (void)ReREFCNT_inc(RExC_rx_sv); 9777 } 9778 9779 if (RExC_parse < RExC_end && *RExC_parse == '?') { 9780 nextchar(pRExC_state); 9781 reginsert(pRExC_state, MINMOD, ret, depth+1); 9782 REGTAIL(pRExC_state, ret, ret + NODE_STEP_REGNODE); 9783 } 9784 #ifndef REG_ALLOW_MINMOD_SUSPEND 9785 else 9786 #endif 9787 if (RExC_parse < RExC_end && *RExC_parse == '+') { 9788 regnode *ender; 9789 nextchar(pRExC_state); 9790 ender = reg_node(pRExC_state, SUCCEED); 9791 REGTAIL(pRExC_state, ret, ender); 9792 reginsert(pRExC_state, SUSPEND, ret, depth+1); 9793 ret->flags = 0; 9794 ender = reg_node(pRExC_state, TAIL); 9795 REGTAIL(pRExC_state, ret, ender); 9796 /*ret= ender;*/ 9797 } 9798 9799 if (RExC_parse < RExC_end && ISMULT2(RExC_parse)) { 9800 RExC_parse++; 9801 vFAIL("Nested quantifiers"); 9802 } 9803 9804 return(ret); 9805 } 9806 9807 STATIC bool 9808 S_grok_bslash_N(pTHX_ RExC_state_t *pRExC_state, regnode** node_p, UV *valuep, I32 *flagp, U32 depth, bool in_char_class, 9809 const bool strict /* Apply stricter parsing rules? */ 9810 ) 9811 { 9812 9813 /* This is expected to be called by a parser routine that has recognized '\N' 9814 and needs to handle the rest. RExC_parse is expected to point at the first 9815 char following the N at the time of the call. On successful return, 9816 RExC_parse has been updated to point to just after the sequence identified 9817 by this routine, and <*flagp> has been updated. 9818 9819 The \N may be inside (indicated by the boolean <in_char_class>) or outside a 9820 character class. 9821 9822 \N may begin either a named sequence, or if outside a character class, mean 9823 to match a non-newline. For non single-quoted regexes, the tokenizer has 9824 attempted to decide which, and in the case of a named sequence, converted it 9825 into one of the forms: \N{} (if the sequence is null), or \N{U+c1.c2...}, 9826 where c1... are the characters in the sequence. For single-quoted regexes, 9827 the tokenizer passes the \N sequence through unchanged; this code will not 9828 attempt to determine this nor expand those, instead raising a syntax error. 9829 The net effect is that if the beginning of the passed-in pattern isn't '{U+' 9830 or there is no '}', it signals that this \N occurrence means to match a 9831 non-newline. 9832 9833 Only the \N{U+...} form should occur in a character class, for the same 9834 reason that '.' inside a character class means to just match a period: it 9835 just doesn't make sense. 9836 9837 The function raises an error (via vFAIL), and doesn't return for various 9838 syntax errors. Otherwise it returns TRUE and sets <node_p> or <valuep> on 9839 success; it returns FALSE otherwise. Returns FALSE, setting *flagp to 9840 RESTART_UTF8 if the sizing scan needs to be restarted. Such a restart is 9841 only possible if node_p is non-NULL. 9842 9843 9844 If <valuep> is non-null, it means the caller can accept an input sequence 9845 consisting of a just a single code point; <*valuep> is set to that value 9846 if the input is such. 9847 9848 If <node_p> is non-null it signifies that the caller can accept any other 9849 legal sequence (i.e., one that isn't just a single code point). <*node_p> 9850 is set as follows: 9851 1) \N means not-a-NL: points to a newly created REG_ANY node; 9852 2) \N{}: points to a new NOTHING node; 9853 3) otherwise: points to a new EXACT node containing the resolved 9854 string. 9855 Note that FALSE is returned for single code point sequences if <valuep> is 9856 null. 9857 */ 9858 9859 char * endbrace; /* '}' following the name */ 9860 char* p; 9861 char *endchar; /* Points to '.' or '}' ending cur char in the input 9862 stream */ 9863 bool has_multiple_chars; /* true if the input stream contains a sequence of 9864 more than one character */ 9865 9866 GET_RE_DEBUG_FLAGS_DECL; 9867 9868 PERL_ARGS_ASSERT_GROK_BSLASH_N; 9869 9870 GET_RE_DEBUG_FLAGS; 9871 9872 assert(cBOOL(node_p) ^ cBOOL(valuep)); /* Exactly one should be set */ 9873 9874 /* The [^\n] meaning of \N ignores spaces and comments under the /x 9875 * modifier. The other meaning does not */ 9876 p = (RExC_flags & RXf_PMf_EXTENDED) 9877 ? regwhite( pRExC_state, RExC_parse ) 9878 : RExC_parse; 9879 9880 /* Disambiguate between \N meaning a named character versus \N meaning 9881 * [^\n]. The former is assumed when it can't be the latter. */ 9882 if (*p != '{' || regcurly(p, FALSE)) { 9883 RExC_parse = p; 9884 if (! node_p) { 9885 /* no bare \N in a charclass */ 9886 if (in_char_class) { 9887 vFAIL("\\N in a character class must be a named character: \\N{...}"); 9888 } 9889 return FALSE; 9890 } 9891 nextchar(pRExC_state); 9892 *node_p = reg_node(pRExC_state, REG_ANY); 9893 *flagp |= HASWIDTH|SIMPLE; 9894 RExC_naughty++; 9895 RExC_parse--; 9896 Set_Node_Length(*node_p, 1); /* MJD */ 9897 return TRUE; 9898 } 9899 9900 /* Here, we have decided it should be a named character or sequence */ 9901 9902 /* The test above made sure that the next real character is a '{', but 9903 * under the /x modifier, it could be separated by space (or a comment and 9904 * \n) and this is not allowed (for consistency with \x{...} and the 9905 * tokenizer handling of \N{NAME}). */ 9906 if (*RExC_parse != '{') { 9907 vFAIL("Missing braces on \\N{}"); 9908 } 9909 9910 RExC_parse++; /* Skip past the '{' */ 9911 9912 if (! (endbrace = strchr(RExC_parse, '}')) /* no trailing brace */ 9913 || ! (endbrace == RExC_parse /* nothing between the {} */ 9914 || (endbrace - RExC_parse >= 2 /* U+ (bad hex is checked below */ 9915 && strnEQ(RExC_parse, "U+", 2)))) /* for a better error msg) */ 9916 { 9917 if (endbrace) RExC_parse = endbrace; /* position msg's '<--HERE' */ 9918 vFAIL("\\N{NAME} must be resolved by the lexer"); 9919 } 9920 9921 if (endbrace == RExC_parse) { /* empty: \N{} */ 9922 bool ret = TRUE; 9923 if (node_p) { 9924 *node_p = reg_node(pRExC_state,NOTHING); 9925 } 9926 else if (in_char_class) { 9927 if (SIZE_ONLY && in_char_class) { 9928 if (strict) { 9929 RExC_parse++; /* Position after the "}" */ 9930 vFAIL("Zero length \\N{}"); 9931 } 9932 else { 9933 ckWARNreg(RExC_parse, 9934 "Ignoring zero length \\N{} in character class"); 9935 } 9936 } 9937 ret = FALSE; 9938 } 9939 else { 9940 return FALSE; 9941 } 9942 nextchar(pRExC_state); 9943 return ret; 9944 } 9945 9946 RExC_uni_semantics = 1; /* Unicode named chars imply Unicode semantics */ 9947 RExC_parse += 2; /* Skip past the 'U+' */ 9948 9949 endchar = RExC_parse + strcspn(RExC_parse, ".}"); 9950 9951 /* Code points are separated by dots. If none, there is only one code 9952 * point, and is terminated by the brace */ 9953 has_multiple_chars = (endchar < endbrace); 9954 9955 if (valuep && (! has_multiple_chars || in_char_class)) { 9956 /* We only pay attention to the first char of 9957 multichar strings being returned in char classes. I kinda wonder 9958 if this makes sense as it does change the behaviour 9959 from earlier versions, OTOH that behaviour was broken 9960 as well. XXX Solution is to recharacterize as 9961 [rest-of-class]|multi1|multi2... */ 9962 9963 STRLEN length_of_hex = (STRLEN)(endchar - RExC_parse); 9964 I32 grok_hex_flags = PERL_SCAN_ALLOW_UNDERSCORES 9965 | PERL_SCAN_DISALLOW_PREFIX 9966 | (SIZE_ONLY ? PERL_SCAN_SILENT_ILLDIGIT : 0); 9967 9968 *valuep = grok_hex(RExC_parse, &length_of_hex, &grok_hex_flags, NULL); 9969 9970 /* The tokenizer should have guaranteed validity, but it's possible to 9971 * bypass it by using single quoting, so check */ 9972 if (length_of_hex == 0 9973 || length_of_hex != (STRLEN)(endchar - RExC_parse) ) 9974 { 9975 RExC_parse += length_of_hex; /* Includes all the valid */ 9976 RExC_parse += (RExC_orig_utf8) /* point to after 1st invalid */ 9977 ? UTF8SKIP(RExC_parse) 9978 : 1; 9979 /* Guard against malformed utf8 */ 9980 if (RExC_parse >= endchar) { 9981 RExC_parse = endchar; 9982 } 9983 vFAIL("Invalid hexadecimal number in \\N{U+...}"); 9984 } 9985 9986 if (in_char_class && has_multiple_chars) { 9987 if (strict) { 9988 RExC_parse = endbrace; 9989 vFAIL("\\N{} in character class restricted to one character"); 9990 } 9991 else { 9992 ckWARNreg(endchar, "Using just the first character returned by \\N{} in character class"); 9993 } 9994 } 9995 9996 RExC_parse = endbrace + 1; 9997 } 9998 else if (! node_p || ! has_multiple_chars) { 9999 10000 /* Here, the input is legal, but not according to the caller's 10001 * options. We fail without advancing the parse, so that the 10002 * caller can try again */ 10003 RExC_parse = p; 10004 return FALSE; 10005 } 10006 else { 10007 10008 /* What is done here is to convert this to a sub-pattern of the form 10009 * (?:\x{char1}\x{char2}...) 10010 * and then call reg recursively. That way, it retains its atomicness, 10011 * while not having to worry about special handling that some code 10012 * points may have. toke.c has converted the original Unicode values 10013 * to native, so that we can just pass on the hex values unchanged. We 10014 * do have to set a flag to keep recoding from happening in the 10015 * recursion */ 10016 10017 SV * substitute_parse = newSVpvn_flags("?:", 2, SVf_UTF8|SVs_TEMP); 10018 STRLEN len; 10019 char *orig_end = RExC_end; 10020 I32 flags; 10021 10022 while (RExC_parse < endbrace) { 10023 10024 /* Convert to notation the rest of the code understands */ 10025 sv_catpv(substitute_parse, "\\x{"); 10026 sv_catpvn(substitute_parse, RExC_parse, endchar - RExC_parse); 10027 sv_catpv(substitute_parse, "}"); 10028 10029 /* Point to the beginning of the next character in the sequence. */ 10030 RExC_parse = endchar + 1; 10031 endchar = RExC_parse + strcspn(RExC_parse, ".}"); 10032 } 10033 sv_catpv(substitute_parse, ")"); 10034 10035 RExC_parse = SvPV(substitute_parse, len); 10036 10037 /* Don't allow empty number */ 10038 if (len < 8) { 10039 vFAIL("Invalid hexadecimal number in \\N{U+...}"); 10040 } 10041 RExC_end = RExC_parse + len; 10042 10043 /* The values are Unicode, and therefore not subject to recoding */ 10044 RExC_override_recoding = 1; 10045 10046 if (!(*node_p = reg(pRExC_state, 1, &flags, depth+1))) { 10047 if (flags & RESTART_UTF8) { 10048 *flagp = RESTART_UTF8; 10049 return FALSE; 10050 } 10051 FAIL2("panic: reg returned NULL to grok_bslash_N, flags=%#X", 10052 flags); 10053 } 10054 *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED); 10055 10056 RExC_parse = endbrace; 10057 RExC_end = orig_end; 10058 RExC_override_recoding = 0; 10059 10060 nextchar(pRExC_state); 10061 } 10062 10063 return TRUE; 10064 } 10065 10066 10067 /* 10068 * reg_recode 10069 * 10070 * It returns the code point in utf8 for the value in *encp. 10071 * value: a code value in the source encoding 10072 * encp: a pointer to an Encode object 10073 * 10074 * If the result from Encode is not a single character, 10075 * it returns U+FFFD (Replacement character) and sets *encp to NULL. 10076 */ 10077 STATIC UV 10078 S_reg_recode(pTHX_ const char value, SV **encp) 10079 { 10080 STRLEN numlen = 1; 10081 SV * const sv = newSVpvn_flags(&value, numlen, SVs_TEMP); 10082 const char * const s = *encp ? sv_recode_to_utf8(sv, *encp) : SvPVX(sv); 10083 const STRLEN newlen = SvCUR(sv); 10084 UV uv = UNICODE_REPLACEMENT; 10085 10086 PERL_ARGS_ASSERT_REG_RECODE; 10087 10088 if (newlen) 10089 uv = SvUTF8(sv) 10090 ? utf8n_to_uvchr((U8*)s, newlen, &numlen, UTF8_ALLOW_DEFAULT) 10091 : *(U8*)s; 10092 10093 if (!newlen || numlen != newlen) { 10094 uv = UNICODE_REPLACEMENT; 10095 *encp = NULL; 10096 } 10097 return uv; 10098 } 10099 10100 PERL_STATIC_INLINE U8 10101 S_compute_EXACTish(pTHX_ RExC_state_t *pRExC_state) 10102 { 10103 U8 op; 10104 10105 PERL_ARGS_ASSERT_COMPUTE_EXACTISH; 10106 10107 if (! FOLD) { 10108 return EXACT; 10109 } 10110 10111 op = get_regex_charset(RExC_flags); 10112 if (op >= REGEX_ASCII_RESTRICTED_CHARSET) { 10113 op--; /* /a is same as /u, and map /aa's offset to what /a's would have 10114 been, so there is no hole */ 10115 } 10116 10117 return op + EXACTF; 10118 } 10119 10120 PERL_STATIC_INLINE void 10121 S_alloc_maybe_populate_EXACT(pTHX_ RExC_state_t *pRExC_state, regnode *node, I32* flagp, STRLEN len, UV code_point) 10122 { 10123 /* This knows the details about sizing an EXACTish node, setting flags for 10124 * it (by setting <*flagp>, and potentially populating it with a single 10125 * character. 10126 * 10127 * If <len> (the length in bytes) is non-zero, this function assumes that 10128 * the node has already been populated, and just does the sizing. In this 10129 * case <code_point> should be the final code point that has already been 10130 * placed into the node. This value will be ignored except that under some 10131 * circumstances <*flagp> is set based on it. 10132 * 10133 * If <len> is zero, the function assumes that the node is to contain only 10134 * the single character given by <code_point> and calculates what <len> 10135 * should be. In pass 1, it sizes the node appropriately. In pass 2, it 10136 * additionally will populate the node's STRING with <code_point>, if <len> 10137 * is 0. In both cases <*flagp> is appropriately set 10138 * 10139 * It knows that under FOLD, the Latin Sharp S and UTF characters above 10140 * 255, must be folded (the former only when the rules indicate it can 10141 * match 'ss') */ 10142 10143 bool len_passed_in = cBOOL(len != 0); 10144 U8 character[UTF8_MAXBYTES_CASE+1]; 10145 10146 PERL_ARGS_ASSERT_ALLOC_MAYBE_POPULATE_EXACT; 10147 10148 if (! len_passed_in) { 10149 if (UTF) { 10150 if (FOLD && (! LOC || code_point > 255)) { 10151 _to_uni_fold_flags(NATIVE_TO_UNI(code_point), 10152 character, 10153 &len, 10154 FOLD_FLAGS_FULL | ((LOC) 10155 ? FOLD_FLAGS_LOCALE 10156 : (ASCII_FOLD_RESTRICTED) 10157 ? FOLD_FLAGS_NOMIX_ASCII 10158 : 0)); 10159 } 10160 else { 10161 uvchr_to_utf8( character, code_point); 10162 len = UTF8SKIP(character); 10163 } 10164 } 10165 else if (! FOLD 10166 || code_point != LATIN_SMALL_LETTER_SHARP_S 10167 || ASCII_FOLD_RESTRICTED 10168 || ! AT_LEAST_UNI_SEMANTICS) 10169 { 10170 *character = (U8) code_point; 10171 len = 1; 10172 } 10173 else { 10174 *character = 's'; 10175 *(character + 1) = 's'; 10176 len = 2; 10177 } 10178 } 10179 10180 if (SIZE_ONLY) { 10181 RExC_size += STR_SZ(len); 10182 } 10183 else { 10184 RExC_emit += STR_SZ(len); 10185 STR_LEN(node) = len; 10186 if (! len_passed_in) { 10187 Copy((char *) character, STRING(node), len, char); 10188 } 10189 } 10190 10191 *flagp |= HASWIDTH; 10192 10193 /* A single character node is SIMPLE, except for the special-cased SHARP S 10194 * under /di. */ 10195 if ((len == 1 || (UTF && len == UNISKIP(code_point))) 10196 && (code_point != LATIN_SMALL_LETTER_SHARP_S 10197 || ! FOLD || ! DEPENDS_SEMANTICS)) 10198 { 10199 *flagp |= SIMPLE; 10200 } 10201 } 10202 10203 /* 10204 - regatom - the lowest level 10205 10206 Try to identify anything special at the start of the pattern. If there 10207 is, then handle it as required. This may involve generating a single regop, 10208 such as for an assertion; or it may involve recursing, such as to 10209 handle a () structure. 10210 10211 If the string doesn't start with something special then we gobble up 10212 as much literal text as we can. 10213 10214 Once we have been able to handle whatever type of thing started the 10215 sequence, we return. 10216 10217 Note: we have to be careful with escapes, as they can be both literal 10218 and special, and in the case of \10 and friends, context determines which. 10219 10220 A summary of the code structure is: 10221 10222 switch (first_byte) { 10223 cases for each special: 10224 handle this special; 10225 break; 10226 case '\\': 10227 switch (2nd byte) { 10228 cases for each unambiguous special: 10229 handle this special; 10230 break; 10231 cases for each ambigous special/literal: 10232 disambiguate; 10233 if (special) handle here 10234 else goto defchar; 10235 default: // unambiguously literal: 10236 goto defchar; 10237 } 10238 default: // is a literal char 10239 // FALL THROUGH 10240 defchar: 10241 create EXACTish node for literal; 10242 while (more input and node isn't full) { 10243 switch (input_byte) { 10244 cases for each special; 10245 make sure parse pointer is set so that the next call to 10246 regatom will see this special first 10247 goto loopdone; // EXACTish node terminated by prev. char 10248 default: 10249 append char to EXACTISH node; 10250 } 10251 get next input byte; 10252 } 10253 loopdone: 10254 } 10255 return the generated node; 10256 10257 Specifically there are two separate switches for handling 10258 escape sequences, with the one for handling literal escapes requiring 10259 a dummy entry for all of the special escapes that are actually handled 10260 by the other. 10261 10262 Returns NULL, setting *flagp to TRYAGAIN if reg() returns NULL with 10263 TRYAGAIN. 10264 Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be 10265 restarted. 10266 Otherwise does not return NULL. 10267 */ 10268 10269 STATIC regnode * 10270 S_regatom(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth) 10271 { 10272 dVAR; 10273 regnode *ret = NULL; 10274 I32 flags = 0; 10275 char *parse_start = RExC_parse; 10276 U8 op; 10277 int invert = 0; 10278 10279 GET_RE_DEBUG_FLAGS_DECL; 10280 10281 *flagp = WORST; /* Tentatively. */ 10282 10283 DEBUG_PARSE("atom"); 10284 10285 PERL_ARGS_ASSERT_REGATOM; 10286 10287 tryagain: 10288 switch ((U8)*RExC_parse) { 10289 case '^': 10290 RExC_seen_zerolen++; 10291 nextchar(pRExC_state); 10292 if (RExC_flags & RXf_PMf_MULTILINE) 10293 ret = reg_node(pRExC_state, MBOL); 10294 else if (RExC_flags & RXf_PMf_SINGLELINE) 10295 ret = reg_node(pRExC_state, SBOL); 10296 else 10297 ret = reg_node(pRExC_state, BOL); 10298 Set_Node_Length(ret, 1); /* MJD */ 10299 break; 10300 case '$': 10301 nextchar(pRExC_state); 10302 if (*RExC_parse) 10303 RExC_seen_zerolen++; 10304 if (RExC_flags & RXf_PMf_MULTILINE) 10305 ret = reg_node(pRExC_state, MEOL); 10306 else if (RExC_flags & RXf_PMf_SINGLELINE) 10307 ret = reg_node(pRExC_state, SEOL); 10308 else 10309 ret = reg_node(pRExC_state, EOL); 10310 Set_Node_Length(ret, 1); /* MJD */ 10311 break; 10312 case '.': 10313 nextchar(pRExC_state); 10314 if (RExC_flags & RXf_PMf_SINGLELINE) 10315 ret = reg_node(pRExC_state, SANY); 10316 else 10317 ret = reg_node(pRExC_state, REG_ANY); 10318 *flagp |= HASWIDTH|SIMPLE; 10319 RExC_naughty++; 10320 Set_Node_Length(ret, 1); /* MJD */ 10321 break; 10322 case '[': 10323 { 10324 char * const oregcomp_parse = ++RExC_parse; 10325 ret = regclass(pRExC_state, flagp,depth+1, 10326 FALSE, /* means parse the whole char class */ 10327 TRUE, /* allow multi-char folds */ 10328 FALSE, /* don't silence non-portable warnings. */ 10329 NULL); 10330 if (*RExC_parse != ']') { 10331 RExC_parse = oregcomp_parse; 10332 vFAIL("Unmatched ["); 10333 } 10334 if (ret == NULL) { 10335 if (*flagp & RESTART_UTF8) 10336 return NULL; 10337 FAIL2("panic: regclass returned NULL to regatom, flags=%#X", 10338 *flagp); 10339 } 10340 nextchar(pRExC_state); 10341 Set_Node_Length(ret, RExC_parse - oregcomp_parse + 1); /* MJD */ 10342 break; 10343 } 10344 case '(': 10345 nextchar(pRExC_state); 10346 ret = reg(pRExC_state, 2, &flags,depth+1); 10347 if (ret == NULL) { 10348 if (flags & TRYAGAIN) { 10349 if (RExC_parse == RExC_end) { 10350 /* Make parent create an empty node if needed. */ 10351 *flagp |= TRYAGAIN; 10352 return(NULL); 10353 } 10354 goto tryagain; 10355 } 10356 if (flags & RESTART_UTF8) { 10357 *flagp = RESTART_UTF8; 10358 return NULL; 10359 } 10360 FAIL2("panic: reg returned NULL to regatom, flags=%#X", flags); 10361 } 10362 *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED); 10363 break; 10364 case '|': 10365 case ')': 10366 if (flags & TRYAGAIN) { 10367 *flagp |= TRYAGAIN; 10368 return NULL; 10369 } 10370 vFAIL("Internal urp"); 10371 /* Supposed to be caught earlier. */ 10372 break; 10373 case '{': 10374 if (!regcurly(RExC_parse, FALSE)) { 10375 RExC_parse++; 10376 goto defchar; 10377 } 10378 /* FALL THROUGH */ 10379 case '?': 10380 case '+': 10381 case '*': 10382 RExC_parse++; 10383 vFAIL("Quantifier follows nothing"); 10384 break; 10385 case '\\': 10386 /* Special Escapes 10387 10388 This switch handles escape sequences that resolve to some kind 10389 of special regop and not to literal text. Escape sequnces that 10390 resolve to literal text are handled below in the switch marked 10391 "Literal Escapes". 10392 10393 Every entry in this switch *must* have a corresponding entry 10394 in the literal escape switch. However, the opposite is not 10395 required, as the default for this switch is to jump to the 10396 literal text handling code. 10397 */ 10398 switch ((U8)*++RExC_parse) { 10399 U8 arg; 10400 /* Special Escapes */ 10401 case 'A': 10402 RExC_seen_zerolen++; 10403 ret = reg_node(pRExC_state, SBOL); 10404 *flagp |= SIMPLE; 10405 goto finish_meta_pat; 10406 case 'G': 10407 ret = reg_node(pRExC_state, GPOS); 10408 RExC_seen |= REG_SEEN_GPOS; 10409 *flagp |= SIMPLE; 10410 goto finish_meta_pat; 10411 case 'K': 10412 RExC_seen_zerolen++; 10413 ret = reg_node(pRExC_state, KEEPS); 10414 *flagp |= SIMPLE; 10415 /* XXX:dmq : disabling in-place substitution seems to 10416 * be necessary here to avoid cases of memory corruption, as 10417 * with: C<$_="x" x 80; s/x\K/y/> -- rgs 10418 */ 10419 RExC_seen |= REG_SEEN_LOOKBEHIND; 10420 goto finish_meta_pat; 10421 case 'Z': 10422 ret = reg_node(pRExC_state, SEOL); 10423 *flagp |= SIMPLE; 10424 RExC_seen_zerolen++; /* Do not optimize RE away */ 10425 goto finish_meta_pat; 10426 case 'z': 10427 ret = reg_node(pRExC_state, EOS); 10428 *flagp |= SIMPLE; 10429 RExC_seen_zerolen++; /* Do not optimize RE away */ 10430 goto finish_meta_pat; 10431 case 'C': 10432 ret = reg_node(pRExC_state, CANY); 10433 RExC_seen |= REG_SEEN_CANY; 10434 *flagp |= HASWIDTH|SIMPLE; 10435 goto finish_meta_pat; 10436 case 'X': 10437 ret = reg_node(pRExC_state, CLUMP); 10438 *flagp |= HASWIDTH; 10439 goto finish_meta_pat; 10440 10441 case 'W': 10442 invert = 1; 10443 /* FALLTHROUGH */ 10444 case 'w': 10445 arg = ANYOF_WORDCHAR; 10446 goto join_posix; 10447 10448 case 'b': 10449 RExC_seen_zerolen++; 10450 RExC_seen |= REG_SEEN_LOOKBEHIND; 10451 op = BOUND + get_regex_charset(RExC_flags); 10452 if (op > BOUNDA) { /* /aa is same as /a */ 10453 op = BOUNDA; 10454 } 10455 ret = reg_node(pRExC_state, op); 10456 FLAGS(ret) = get_regex_charset(RExC_flags); 10457 *flagp |= SIMPLE; 10458 if (! SIZE_ONLY && (U8) *(RExC_parse + 1) == '{') { 10459 ckWARNdep(RExC_parse, "\"\\b{\" is deprecated; use \"\\b\\{\" or \"\\b[{]\" instead"); 10460 } 10461 goto finish_meta_pat; 10462 case 'B': 10463 RExC_seen_zerolen++; 10464 RExC_seen |= REG_SEEN_LOOKBEHIND; 10465 op = NBOUND + get_regex_charset(RExC_flags); 10466 if (op > NBOUNDA) { /* /aa is same as /a */ 10467 op = NBOUNDA; 10468 } 10469 ret = reg_node(pRExC_state, op); 10470 FLAGS(ret) = get_regex_charset(RExC_flags); 10471 *flagp |= SIMPLE; 10472 if (! SIZE_ONLY && (U8) *(RExC_parse + 1) == '{') { 10473 ckWARNdep(RExC_parse, "\"\\B{\" is deprecated; use \"\\B\\{\" or \"\\B[{]\" instead"); 10474 } 10475 goto finish_meta_pat; 10476 10477 case 'D': 10478 invert = 1; 10479 /* FALLTHROUGH */ 10480 case 'd': 10481 arg = ANYOF_DIGIT; 10482 goto join_posix; 10483 10484 case 'R': 10485 ret = reg_node(pRExC_state, LNBREAK); 10486 *flagp |= HASWIDTH|SIMPLE; 10487 goto finish_meta_pat; 10488 10489 case 'H': 10490 invert = 1; 10491 /* FALLTHROUGH */ 10492 case 'h': 10493 arg = ANYOF_BLANK; 10494 op = POSIXU; 10495 goto join_posix_op_known; 10496 10497 case 'V': 10498 invert = 1; 10499 /* FALLTHROUGH */ 10500 case 'v': 10501 arg = ANYOF_VERTWS; 10502 op = POSIXU; 10503 goto join_posix_op_known; 10504 10505 case 'S': 10506 invert = 1; 10507 /* FALLTHROUGH */ 10508 case 's': 10509 arg = ANYOF_SPACE; 10510 10511 join_posix: 10512 10513 op = POSIXD + get_regex_charset(RExC_flags); 10514 if (op > POSIXA) { /* /aa is same as /a */ 10515 op = POSIXA; 10516 } 10517 10518 join_posix_op_known: 10519 10520 if (invert) { 10521 op += NPOSIXD - POSIXD; 10522 } 10523 10524 ret = reg_node(pRExC_state, op); 10525 if (! SIZE_ONLY) { 10526 FLAGS(ret) = namedclass_to_classnum(arg); 10527 } 10528 10529 *flagp |= HASWIDTH|SIMPLE; 10530 /* FALL THROUGH */ 10531 10532 finish_meta_pat: 10533 nextchar(pRExC_state); 10534 Set_Node_Length(ret, 2); /* MJD */ 10535 break; 10536 case 'p': 10537 case 'P': 10538 { 10539 #ifdef DEBUGGING 10540 char* parse_start = RExC_parse - 2; 10541 #endif 10542 10543 RExC_parse--; 10544 10545 ret = regclass(pRExC_state, flagp,depth+1, 10546 TRUE, /* means just parse this element */ 10547 FALSE, /* don't allow multi-char folds */ 10548 FALSE, /* don't silence non-portable warnings. 10549 It would be a bug if these returned 10550 non-portables */ 10551 NULL); 10552 /* regclass() can only return RESTART_UTF8 if multi-char folds 10553 are allowed. */ 10554 if (!ret) 10555 FAIL2("panic: regclass returned NULL to regatom, flags=%#X", 10556 *flagp); 10557 10558 RExC_parse--; 10559 10560 Set_Node_Offset(ret, parse_start + 2); 10561 Set_Node_Cur_Length(ret); 10562 nextchar(pRExC_state); 10563 } 10564 break; 10565 case 'N': 10566 /* Handle \N and \N{NAME} with multiple code points here and not 10567 * below because it can be multicharacter. join_exact() will join 10568 * them up later on. Also this makes sure that things like 10569 * /\N{BLAH}+/ and \N{BLAH} being multi char Just Happen. dmq. 10570 * The options to the grok function call causes it to fail if the 10571 * sequence is just a single code point. We then go treat it as 10572 * just another character in the current EXACT node, and hence it 10573 * gets uniform treatment with all the other characters. The 10574 * special treatment for quantifiers is not needed for such single 10575 * character sequences */ 10576 ++RExC_parse; 10577 if (! grok_bslash_N(pRExC_state, &ret, NULL, flagp, depth, FALSE, 10578 FALSE /* not strict */ )) { 10579 if (*flagp & RESTART_UTF8) 10580 return NULL; 10581 RExC_parse--; 10582 goto defchar; 10583 } 10584 break; 10585 case 'k': /* Handle \k<NAME> and \k'NAME' */ 10586 parse_named_seq: 10587 { 10588 char ch= RExC_parse[1]; 10589 if (ch != '<' && ch != '\'' && ch != '{') { 10590 RExC_parse++; 10591 vFAIL2("Sequence %.2s... not terminated",parse_start); 10592 } else { 10593 /* this pretty much dupes the code for (?P=...) in reg(), if 10594 you change this make sure you change that */ 10595 char* name_start = (RExC_parse += 2); 10596 U32 num = 0; 10597 SV *sv_dat = reg_scan_name(pRExC_state, 10598 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA); 10599 ch= (ch == '<') ? '>' : (ch == '{') ? '}' : '\''; 10600 if (RExC_parse == name_start || *RExC_parse != ch) 10601 vFAIL2("Sequence %.3s... not terminated",parse_start); 10602 10603 if (!SIZE_ONLY) { 10604 num = add_data( pRExC_state, 1, "S" ); 10605 RExC_rxi->data->data[num]=(void*)sv_dat; 10606 SvREFCNT_inc_simple_void(sv_dat); 10607 } 10608 10609 RExC_sawback = 1; 10610 ret = reganode(pRExC_state, 10611 ((! FOLD) 10612 ? NREF 10613 : (ASCII_FOLD_RESTRICTED) 10614 ? NREFFA 10615 : (AT_LEAST_UNI_SEMANTICS) 10616 ? NREFFU 10617 : (LOC) 10618 ? NREFFL 10619 : NREFF), 10620 num); 10621 *flagp |= HASWIDTH; 10622 10623 /* override incorrect value set in reganode MJD */ 10624 Set_Node_Offset(ret, parse_start+1); 10625 Set_Node_Cur_Length(ret); /* MJD */ 10626 nextchar(pRExC_state); 10627 10628 } 10629 break; 10630 } 10631 case 'g': 10632 case '1': case '2': case '3': case '4': 10633 case '5': case '6': case '7': case '8': case '9': 10634 { 10635 I32 num; 10636 bool isg = *RExC_parse == 'g'; 10637 bool isrel = 0; 10638 bool hasbrace = 0; 10639 if (isg) { 10640 RExC_parse++; 10641 if (*RExC_parse == '{') { 10642 RExC_parse++; 10643 hasbrace = 1; 10644 } 10645 if (*RExC_parse == '-') { 10646 RExC_parse++; 10647 isrel = 1; 10648 } 10649 if (hasbrace && !isDIGIT(*RExC_parse)) { 10650 if (isrel) RExC_parse--; 10651 RExC_parse -= 2; 10652 goto parse_named_seq; 10653 } } 10654 num = atoi(RExC_parse); 10655 if (isg && num == 0) 10656 vFAIL("Reference to invalid group 0"); 10657 if (isrel) { 10658 num = RExC_npar - num; 10659 if (num < 1) 10660 vFAIL("Reference to nonexistent or unclosed group"); 10661 } 10662 if (!isg && num > 9 && num >= RExC_npar) 10663 /* Probably a character specified in octal, e.g. \35 */ 10664 goto defchar; 10665 else { 10666 char * const parse_start = RExC_parse - 1; /* MJD */ 10667 while (isDIGIT(*RExC_parse)) 10668 RExC_parse++; 10669 if (parse_start == RExC_parse - 1) 10670 vFAIL("Unterminated \\g... pattern"); 10671 if (hasbrace) { 10672 if (*RExC_parse != '}') 10673 vFAIL("Unterminated \\g{...} pattern"); 10674 RExC_parse++; 10675 } 10676 if (!SIZE_ONLY) { 10677 if (num > (I32)RExC_rx->nparens) 10678 vFAIL("Reference to nonexistent group"); 10679 } 10680 RExC_sawback = 1; 10681 ret = reganode(pRExC_state, 10682 ((! FOLD) 10683 ? REF 10684 : (ASCII_FOLD_RESTRICTED) 10685 ? REFFA 10686 : (AT_LEAST_UNI_SEMANTICS) 10687 ? REFFU 10688 : (LOC) 10689 ? REFFL 10690 : REFF), 10691 num); 10692 *flagp |= HASWIDTH; 10693 10694 /* override incorrect value set in reganode MJD */ 10695 Set_Node_Offset(ret, parse_start+1); 10696 Set_Node_Cur_Length(ret); /* MJD */ 10697 RExC_parse--; 10698 nextchar(pRExC_state); 10699 } 10700 } 10701 break; 10702 case '\0': 10703 if (RExC_parse >= RExC_end) 10704 FAIL("Trailing \\"); 10705 /* FALL THROUGH */ 10706 default: 10707 /* Do not generate "unrecognized" warnings here, we fall 10708 back into the quick-grab loop below */ 10709 parse_start--; 10710 goto defchar; 10711 } 10712 break; 10713 10714 case '#': 10715 if (RExC_flags & RXf_PMf_EXTENDED) { 10716 if ( reg_skipcomment( pRExC_state ) ) 10717 goto tryagain; 10718 } 10719 /* FALL THROUGH */ 10720 10721 default: 10722 10723 parse_start = RExC_parse - 1; 10724 10725 RExC_parse++; 10726 10727 defchar: { 10728 STRLEN len = 0; 10729 UV ender; 10730 char *p; 10731 char *s; 10732 #define MAX_NODE_STRING_SIZE 127 10733 char foldbuf[MAX_NODE_STRING_SIZE+UTF8_MAXBYTES_CASE]; 10734 char *s0; 10735 U8 upper_parse = MAX_NODE_STRING_SIZE; 10736 STRLEN foldlen; 10737 U8 node_type; 10738 bool next_is_quantifier; 10739 char * oldp = NULL; 10740 10741 /* If a folding node contains only code points that don't 10742 * participate in folds, it can be changed into an EXACT node, 10743 * which allows the optimizer more things to look for */ 10744 bool maybe_exact; 10745 10746 ender = 0; 10747 node_type = compute_EXACTish(pRExC_state); 10748 ret = reg_node(pRExC_state, node_type); 10749 10750 /* In pass1, folded, we use a temporary buffer instead of the 10751 * actual node, as the node doesn't exist yet */ 10752 s = (SIZE_ONLY && FOLD) ? foldbuf : STRING(ret); 10753 10754 s0 = s; 10755 10756 reparse: 10757 10758 /* We do the EXACTFish to EXACT node only if folding, and not if in 10759 * locale, as whether a character folds or not isn't known until 10760 * runtime */ 10761 maybe_exact = FOLD && ! LOC; 10762 10763 /* XXX The node can hold up to 255 bytes, yet this only goes to 10764 * 127. I (khw) do not know why. Keeping it somewhat less than 10765 * 255 allows us to not have to worry about overflow due to 10766 * converting to utf8 and fold expansion, but that value is 10767 * 255-UTF8_MAXBYTES_CASE. join_exact() may join adjacent nodes 10768 * split up by this limit into a single one using the real max of 10769 * 255. Even at 127, this breaks under rare circumstances. If 10770 * folding, we do not want to split a node at a character that is a 10771 * non-final in a multi-char fold, as an input string could just 10772 * happen to want to match across the node boundary. The join 10773 * would solve that problem if the join actually happens. But a 10774 * series of more than two nodes in a row each of 127 would cause 10775 * the first join to succeed to get to 254, but then there wouldn't 10776 * be room for the next one, which could at be one of those split 10777 * multi-char folds. I don't know of any fool-proof solution. One 10778 * could back off to end with only a code point that isn't such a 10779 * non-final, but it is possible for there not to be any in the 10780 * entire node. */ 10781 for (p = RExC_parse - 1; 10782 len < upper_parse && p < RExC_end; 10783 len++) 10784 { 10785 oldp = p; 10786 10787 if (RExC_flags & RXf_PMf_EXTENDED) 10788 p = regwhite( pRExC_state, p ); 10789 switch ((U8)*p) { 10790 case '^': 10791 case '$': 10792 case '.': 10793 case '[': 10794 case '(': 10795 case ')': 10796 case '|': 10797 goto loopdone; 10798 case '\\': 10799 /* Literal Escapes Switch 10800 10801 This switch is meant to handle escape sequences that 10802 resolve to a literal character. 10803 10804 Every escape sequence that represents something 10805 else, like an assertion or a char class, is handled 10806 in the switch marked 'Special Escapes' above in this 10807 routine, but also has an entry here as anything that 10808 isn't explicitly mentioned here will be treated as 10809 an unescaped equivalent literal. 10810 */ 10811 10812 switch ((U8)*++p) { 10813 /* These are all the special escapes. */ 10814 case 'A': /* Start assertion */ 10815 case 'b': case 'B': /* Word-boundary assertion*/ 10816 case 'C': /* Single char !DANGEROUS! */ 10817 case 'd': case 'D': /* digit class */ 10818 case 'g': case 'G': /* generic-backref, pos assertion */ 10819 case 'h': case 'H': /* HORIZWS */ 10820 case 'k': case 'K': /* named backref, keep marker */ 10821 case 'p': case 'P': /* Unicode property */ 10822 case 'R': /* LNBREAK */ 10823 case 's': case 'S': /* space class */ 10824 case 'v': case 'V': /* VERTWS */ 10825 case 'w': case 'W': /* word class */ 10826 case 'X': /* eXtended Unicode "combining character sequence" */ 10827 case 'z': case 'Z': /* End of line/string assertion */ 10828 --p; 10829 goto loopdone; 10830 10831 /* Anything after here is an escape that resolves to a 10832 literal. (Except digits, which may or may not) 10833 */ 10834 case 'n': 10835 ender = '\n'; 10836 p++; 10837 break; 10838 case 'N': /* Handle a single-code point named character. */ 10839 /* The options cause it to fail if a multiple code 10840 * point sequence. Handle those in the switch() above 10841 * */ 10842 RExC_parse = p + 1; 10843 if (! grok_bslash_N(pRExC_state, NULL, &ender, 10844 flagp, depth, FALSE, 10845 FALSE /* not strict */ )) 10846 { 10847 if (*flagp & RESTART_UTF8) 10848 FAIL("panic: grok_bslash_N set RESTART_UTF8"); 10849 RExC_parse = p = oldp; 10850 goto loopdone; 10851 } 10852 p = RExC_parse; 10853 if (ender > 0xff) { 10854 REQUIRE_UTF8; 10855 } 10856 break; 10857 case 'r': 10858 ender = '\r'; 10859 p++; 10860 break; 10861 case 't': 10862 ender = '\t'; 10863 p++; 10864 break; 10865 case 'f': 10866 ender = '\f'; 10867 p++; 10868 break; 10869 case 'e': 10870 ender = ASCII_TO_NATIVE('\033'); 10871 p++; 10872 break; 10873 case 'a': 10874 ender = ASCII_TO_NATIVE('\007'); 10875 p++; 10876 break; 10877 case 'o': 10878 { 10879 UV result; 10880 const char* error_msg; 10881 10882 bool valid = grok_bslash_o(&p, 10883 &result, 10884 &error_msg, 10885 TRUE, /* out warnings */ 10886 FALSE, /* not strict */ 10887 TRUE, /* Output warnings 10888 for non- 10889 portables */ 10890 UTF); 10891 if (! valid) { 10892 RExC_parse = p; /* going to die anyway; point 10893 to exact spot of failure */ 10894 vFAIL(error_msg); 10895 } 10896 ender = result; 10897 if (PL_encoding && ender < 0x100) { 10898 goto recode_encoding; 10899 } 10900 if (ender > 0xff) { 10901 REQUIRE_UTF8; 10902 } 10903 break; 10904 } 10905 case 'x': 10906 { 10907 UV result = UV_MAX; /* initialize to erroneous 10908 value */ 10909 const char* error_msg; 10910 10911 bool valid = grok_bslash_x(&p, 10912 &result, 10913 &error_msg, 10914 TRUE, /* out warnings */ 10915 FALSE, /* not strict */ 10916 TRUE, /* Output warnings 10917 for non- 10918 portables */ 10919 UTF); 10920 if (! valid) { 10921 RExC_parse = p; /* going to die anyway; point 10922 to exact spot of failure */ 10923 vFAIL(error_msg); 10924 } 10925 ender = result; 10926 10927 if (PL_encoding && ender < 0x100) { 10928 goto recode_encoding; 10929 } 10930 if (ender > 0xff) { 10931 REQUIRE_UTF8; 10932 } 10933 break; 10934 } 10935 case 'c': 10936 p++; 10937 ender = grok_bslash_c(*p++, UTF, SIZE_ONLY); 10938 break; 10939 case '0': case '1': case '2': case '3':case '4': 10940 case '5': case '6': case '7': 10941 if (*p == '0' || 10942 (isDIGIT(p[1]) && atoi(p) >= RExC_npar)) 10943 { 10944 I32 flags = PERL_SCAN_SILENT_ILLDIGIT; 10945 STRLEN numlen = 3; 10946 ender = grok_oct(p, &numlen, &flags, NULL); 10947 if (ender > 0xff) { 10948 REQUIRE_UTF8; 10949 } 10950 p += numlen; 10951 if (SIZE_ONLY /* like \08, \178 */ 10952 && numlen < 3 10953 && p < RExC_end 10954 && isDIGIT(*p) && ckWARN(WARN_REGEXP)) 10955 { 10956 reg_warn_non_literal_string( 10957 p + 1, 10958 form_short_octal_warning(p, numlen)); 10959 } 10960 } 10961 else { /* Not to be treated as an octal constant, go 10962 find backref */ 10963 --p; 10964 goto loopdone; 10965 } 10966 if (PL_encoding && ender < 0x100) 10967 goto recode_encoding; 10968 break; 10969 case '8': case '9': /* These are illegal unless backrefs */ 10970 if (atoi(p) <= RExC_npar) { 10971 --p; /* backup to backslash; handle as backref */ 10972 goto loopdone; 10973 } 10974 goto unrecognized; 10975 recode_encoding: 10976 if (! RExC_override_recoding) { 10977 SV* enc = PL_encoding; 10978 ender = reg_recode((const char)(U8)ender, &enc); 10979 if (!enc && SIZE_ONLY) 10980 ckWARNreg(p, "Invalid escape in the specified encoding"); 10981 REQUIRE_UTF8; 10982 } 10983 break; 10984 case '\0': 10985 if (p >= RExC_end) 10986 FAIL("Trailing \\"); 10987 /* FALL THROUGH */ 10988 default: 10989 unrecognized: 10990 if (!SIZE_ONLY&& isALPHANUMERIC(*p)) { 10991 /* Include any { following the alpha to emphasize 10992 * that it could be part of an escape at some point 10993 * in the future */ 10994 int len = (isALPHA(*p) && *(p + 1) == '{') ? 2 : 1; 10995 ckWARN3reg(p + len, "Unrecognized escape \\%.*s passed through", len, p); 10996 } 10997 goto normal_default; 10998 } /* End of switch on '\' */ 10999 break; 11000 default: /* A literal character */ 11001 11002 if (! SIZE_ONLY 11003 && RExC_flags & RXf_PMf_EXTENDED 11004 && ckWARN(WARN_DEPRECATED) 11005 && is_PATWS_non_low(p, UTF)) 11006 { 11007 vWARN_dep(p + ((UTF) ? UTF8SKIP(p) : 1), 11008 "Escape literal pattern white space under /x"); 11009 } 11010 11011 normal_default: 11012 if (UTF8_IS_START(*p) && UTF) { 11013 STRLEN numlen; 11014 ender = utf8n_to_uvchr((U8*)p, RExC_end - p, 11015 &numlen, UTF8_ALLOW_DEFAULT); 11016 p += numlen; 11017 } 11018 else 11019 ender = (U8) *p++; 11020 break; 11021 } /* End of switch on the literal */ 11022 11023 /* Here, have looked at the literal character and <ender> 11024 * contains its ordinal, <p> points to the character after it 11025 */ 11026 11027 if ( RExC_flags & RXf_PMf_EXTENDED) 11028 p = regwhite( pRExC_state, p ); 11029 11030 /* If the next thing is a quantifier, it applies to this 11031 * character only, which means that this character has to be in 11032 * its own node and can't just be appended to the string in an 11033 * existing node, so if there are already other characters in 11034 * the node, close the node with just them, and set up to do 11035 * this character again next time through, when it will be the 11036 * only thing in its new node */ 11037 if ((next_is_quantifier = (p < RExC_end && ISMULT2(p))) && len) 11038 { 11039 p = oldp; 11040 goto loopdone; 11041 } 11042 11043 if (FOLD) { 11044 if (UTF 11045 /* See comments for join_exact() as to why we fold 11046 * this non-UTF at compile time */ 11047 || (node_type == EXACTFU 11048 && ender == LATIN_SMALL_LETTER_SHARP_S)) 11049 { 11050 11051 11052 /* Prime the casefolded buffer. Locale rules, which 11053 * apply only to code points < 256, aren't known until 11054 * execution, so for them, just output the original 11055 * character using utf8. If we start to fold non-UTF 11056 * patterns, be sure to update join_exact() */ 11057 if (LOC && ender < 256) { 11058 if (UNI_IS_INVARIANT(ender)) { 11059 *s = (U8) ender; 11060 foldlen = 1; 11061 } else { 11062 *s = UTF8_TWO_BYTE_HI(ender); 11063 *(s + 1) = UTF8_TWO_BYTE_LO(ender); 11064 foldlen = 2; 11065 } 11066 } 11067 else { 11068 UV folded = _to_uni_fold_flags( 11069 ender, 11070 (U8 *) s, 11071 &foldlen, 11072 FOLD_FLAGS_FULL 11073 | ((LOC) ? FOLD_FLAGS_LOCALE 11074 : (ASCII_FOLD_RESTRICTED) 11075 ? FOLD_FLAGS_NOMIX_ASCII 11076 : 0) 11077 ); 11078 11079 /* If this node only contains non-folding code 11080 * points so far, see if this new one is also 11081 * non-folding */ 11082 if (maybe_exact) { 11083 if (folded != ender) { 11084 maybe_exact = FALSE; 11085 } 11086 else { 11087 /* Here the fold is the original; we have 11088 * to check further to see if anything 11089 * folds to it */ 11090 if (! PL_utf8_foldable) { 11091 SV* swash = swash_init("utf8", 11092 "_Perl_Any_Folds", 11093 &PL_sv_undef, 1, 0); 11094 PL_utf8_foldable = 11095 _get_swash_invlist(swash); 11096 SvREFCNT_dec_NN(swash); 11097 } 11098 if (_invlist_contains_cp(PL_utf8_foldable, 11099 ender)) 11100 { 11101 maybe_exact = FALSE; 11102 } 11103 } 11104 } 11105 ender = folded; 11106 } 11107 s += foldlen; 11108 11109 /* The loop increments <len> each time, as all but this 11110 * path (and the one just below for UTF) through it add 11111 * a single byte to the EXACTish node. But this one 11112 * has changed len to be the correct final value, so 11113 * subtract one to cancel out the increment that 11114 * follows */ 11115 len += foldlen - 1; 11116 } 11117 else { 11118 *(s++) = (char) ender; 11119 maybe_exact &= ! IS_IN_SOME_FOLD_L1(ender); 11120 } 11121 } 11122 else if (UTF) { 11123 const STRLEN unilen = reguni(pRExC_state, ender, s); 11124 if (unilen > 0) { 11125 s += unilen; 11126 len += unilen; 11127 } 11128 11129 /* See comment just above for - 1 */ 11130 len--; 11131 } 11132 else { 11133 REGC((char)ender, s++); 11134 } 11135 11136 if (next_is_quantifier) { 11137 11138 /* Here, the next input is a quantifier, and to get here, 11139 * the current character is the only one in the node. 11140 * Also, here <len> doesn't include the final byte for this 11141 * character */ 11142 len++; 11143 goto loopdone; 11144 } 11145 11146 } /* End of loop through literal characters */ 11147 11148 /* Here we have either exhausted the input or ran out of room in 11149 * the node. (If we encountered a character that can't be in the 11150 * node, transfer is made directly to <loopdone>, and so we 11151 * wouldn't have fallen off the end of the loop.) In the latter 11152 * case, we artificially have to split the node into two, because 11153 * we just don't have enough space to hold everything. This 11154 * creates a problem if the final character participates in a 11155 * multi-character fold in the non-final position, as a match that 11156 * should have occurred won't, due to the way nodes are matched, 11157 * and our artificial boundary. So back off until we find a non- 11158 * problematic character -- one that isn't at the beginning or 11159 * middle of such a fold. (Either it doesn't participate in any 11160 * folds, or appears only in the final position of all the folds it 11161 * does participate in.) A better solution with far fewer false 11162 * positives, and that would fill the nodes more completely, would 11163 * be to actually have available all the multi-character folds to 11164 * test against, and to back-off only far enough to be sure that 11165 * this node isn't ending with a partial one. <upper_parse> is set 11166 * further below (if we need to reparse the node) to include just 11167 * up through that final non-problematic character that this code 11168 * identifies, so when it is set to less than the full node, we can 11169 * skip the rest of this */ 11170 if (FOLD && p < RExC_end && upper_parse == MAX_NODE_STRING_SIZE) { 11171 11172 const STRLEN full_len = len; 11173 11174 assert(len >= MAX_NODE_STRING_SIZE); 11175 11176 /* Here, <s> points to the final byte of the final character. 11177 * Look backwards through the string until find a non- 11178 * problematic character */ 11179 11180 if (! UTF) { 11181 11182 /* These two have no multi-char folds to non-UTF characters 11183 */ 11184 if (ASCII_FOLD_RESTRICTED || LOC) { 11185 goto loopdone; 11186 } 11187 11188 while (--s >= s0 && IS_NON_FINAL_FOLD(*s)) { } 11189 len = s - s0 + 1; 11190 } 11191 else { 11192 if (! PL_NonL1NonFinalFold) { 11193 PL_NonL1NonFinalFold = _new_invlist_C_array( 11194 NonL1_Perl_Non_Final_Folds_invlist); 11195 } 11196 11197 /* Point to the first byte of the final character */ 11198 s = (char *) utf8_hop((U8 *) s, -1); 11199 11200 while (s >= s0) { /* Search backwards until find 11201 non-problematic char */ 11202 if (UTF8_IS_INVARIANT(*s)) { 11203 11204 /* There are no ascii characters that participate 11205 * in multi-char folds under /aa. In EBCDIC, the 11206 * non-ascii invariants are all control characters, 11207 * so don't ever participate in any folds. */ 11208 if (ASCII_FOLD_RESTRICTED 11209 || ! IS_NON_FINAL_FOLD(*s)) 11210 { 11211 break; 11212 } 11213 } 11214 else if (UTF8_IS_DOWNGRADEABLE_START(*s)) { 11215 11216 /* No Latin1 characters participate in multi-char 11217 * folds under /l */ 11218 if (LOC 11219 || ! IS_NON_FINAL_FOLD(TWO_BYTE_UTF8_TO_UNI( 11220 *s, *(s+1)))) 11221 { 11222 break; 11223 } 11224 } 11225 else if (! _invlist_contains_cp( 11226 PL_NonL1NonFinalFold, 11227 valid_utf8_to_uvchr((U8 *) s, NULL))) 11228 { 11229 break; 11230 } 11231 11232 /* Here, the current character is problematic in that 11233 * it does occur in the non-final position of some 11234 * fold, so try the character before it, but have to 11235 * special case the very first byte in the string, so 11236 * we don't read outside the string */ 11237 s = (s == s0) ? s -1 : (char *) utf8_hop((U8 *) s, -1); 11238 } /* End of loop backwards through the string */ 11239 11240 /* If there were only problematic characters in the string, 11241 * <s> will point to before s0, in which case the length 11242 * should be 0, otherwise include the length of the 11243 * non-problematic character just found */ 11244 len = (s < s0) ? 0 : s - s0 + UTF8SKIP(s); 11245 } 11246 11247 /* Here, have found the final character, if any, that is 11248 * non-problematic as far as ending the node without splitting 11249 * it across a potential multi-char fold. <len> contains the 11250 * number of bytes in the node up-to and including that 11251 * character, or is 0 if there is no such character, meaning 11252 * the whole node contains only problematic characters. In 11253 * this case, give up and just take the node as-is. We can't 11254 * do any better */ 11255 if (len == 0) { 11256 len = full_len; 11257 } else { 11258 11259 /* Here, the node does contain some characters that aren't 11260 * problematic. If one such is the final character in the 11261 * node, we are done */ 11262 if (len == full_len) { 11263 goto loopdone; 11264 } 11265 else if (len + ((UTF) ? UTF8SKIP(s) : 1) == full_len) { 11266 11267 /* If the final character is problematic, but the 11268 * penultimate is not, back-off that last character to 11269 * later start a new node with it */ 11270 p = oldp; 11271 goto loopdone; 11272 } 11273 11274 /* Here, the final non-problematic character is earlier 11275 * in the input than the penultimate character. What we do 11276 * is reparse from the beginning, going up only as far as 11277 * this final ok one, thus guaranteeing that the node ends 11278 * in an acceptable character. The reason we reparse is 11279 * that we know how far in the character is, but we don't 11280 * know how to correlate its position with the input parse. 11281 * An alternate implementation would be to build that 11282 * correlation as we go along during the original parse, 11283 * but that would entail extra work for every node, whereas 11284 * this code gets executed only when the string is too 11285 * large for the node, and the final two characters are 11286 * problematic, an infrequent occurrence. Yet another 11287 * possible strategy would be to save the tail of the 11288 * string, and the next time regatom is called, initialize 11289 * with that. The problem with this is that unless you 11290 * back off one more character, you won't be guaranteed 11291 * regatom will get called again, unless regbranch, 11292 * regpiece ... are also changed. If you do back off that 11293 * extra character, so that there is input guaranteed to 11294 * force calling regatom, you can't handle the case where 11295 * just the first character in the node is acceptable. I 11296 * (khw) decided to try this method which doesn't have that 11297 * pitfall; if performance issues are found, we can do a 11298 * combination of the current approach plus that one */ 11299 upper_parse = len; 11300 len = 0; 11301 s = s0; 11302 goto reparse; 11303 } 11304 } /* End of verifying node ends with an appropriate char */ 11305 11306 loopdone: /* Jumped to when encounters something that shouldn't be in 11307 the node */ 11308 11309 /* If 'maybe_exact' is still set here, means there are no 11310 * code points in the node that participate in folds */ 11311 if (FOLD && maybe_exact) { 11312 OP(ret) = EXACT; 11313 } 11314 11315 /* I (khw) don't know if you can get here with zero length, but the 11316 * old code handled this situation by creating a zero-length EXACT 11317 * node. Might as well be NOTHING instead */ 11318 if (len == 0) { 11319 OP(ret) = NOTHING; 11320 } 11321 else{ 11322 alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, len, ender); 11323 } 11324 11325 RExC_parse = p - 1; 11326 Set_Node_Cur_Length(ret); /* MJD */ 11327 nextchar(pRExC_state); 11328 { 11329 /* len is STRLEN which is unsigned, need to copy to signed */ 11330 IV iv = len; 11331 if (iv < 0) 11332 vFAIL("Internal disaster"); 11333 } 11334 11335 } /* End of label 'defchar:' */ 11336 break; 11337 } /* End of giant switch on input character */ 11338 11339 return(ret); 11340 } 11341 11342 STATIC char * 11343 S_regwhite( RExC_state_t *pRExC_state, char *p ) 11344 { 11345 const char *e = RExC_end; 11346 11347 PERL_ARGS_ASSERT_REGWHITE; 11348 11349 while (p < e) { 11350 if (isSPACE(*p)) 11351 ++p; 11352 else if (*p == '#') { 11353 bool ended = 0; 11354 do { 11355 if (*p++ == '\n') { 11356 ended = 1; 11357 break; 11358 } 11359 } while (p < e); 11360 if (!ended) 11361 RExC_seen |= REG_SEEN_RUN_ON_COMMENT; 11362 } 11363 else 11364 break; 11365 } 11366 return p; 11367 } 11368 11369 STATIC char * 11370 S_regpatws( RExC_state_t *pRExC_state, char *p , const bool recognize_comment ) 11371 { 11372 /* Returns the next non-pattern-white space, non-comment character (the 11373 * latter only if 'recognize_comment is true) in the string p, which is 11374 * ended by RExC_end. If there is no line break ending a comment, 11375 * RExC_seen has added the REG_SEEN_RUN_ON_COMMENT flag; */ 11376 const char *e = RExC_end; 11377 11378 PERL_ARGS_ASSERT_REGPATWS; 11379 11380 while (p < e) { 11381 STRLEN len; 11382 if ((len = is_PATWS_safe(p, e, UTF))) { 11383 p += len; 11384 } 11385 else if (recognize_comment && *p == '#') { 11386 bool ended = 0; 11387 do { 11388 p++; 11389 if (is_LNBREAK_safe(p, e, UTF)) { 11390 ended = 1; 11391 break; 11392 } 11393 } while (p < e); 11394 if (!ended) 11395 RExC_seen |= REG_SEEN_RUN_ON_COMMENT; 11396 } 11397 else 11398 break; 11399 } 11400 return p; 11401 } 11402 11403 /* Parse POSIX character classes: [[:foo:]], [[=foo=]], [[.foo.]]. 11404 Character classes ([:foo:]) can also be negated ([:^foo:]). 11405 Returns a named class id (ANYOF_XXX) if successful, -1 otherwise. 11406 Equivalence classes ([=foo=]) and composites ([.foo.]) are parsed, 11407 but trigger failures because they are currently unimplemented. */ 11408 11409 #define POSIXCC_DONE(c) ((c) == ':') 11410 #define POSIXCC_NOTYET(c) ((c) == '=' || (c) == '.') 11411 #define POSIXCC(c) (POSIXCC_DONE(c) || POSIXCC_NOTYET(c)) 11412 11413 PERL_STATIC_INLINE I32 11414 S_regpposixcc(pTHX_ RExC_state_t *pRExC_state, I32 value, const bool strict) 11415 { 11416 dVAR; 11417 I32 namedclass = OOB_NAMEDCLASS; 11418 11419 PERL_ARGS_ASSERT_REGPPOSIXCC; 11420 11421 if (value == '[' && RExC_parse + 1 < RExC_end && 11422 /* I smell either [: or [= or [. -- POSIX has been here, right? */ 11423 POSIXCC(UCHARAT(RExC_parse))) 11424 { 11425 const char c = UCHARAT(RExC_parse); 11426 char* const s = RExC_parse++; 11427 11428 while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != c) 11429 RExC_parse++; 11430 if (RExC_parse == RExC_end) { 11431 if (strict) { 11432 11433 /* Try to give a better location for the error (than the end of 11434 * the string) by looking for the matching ']' */ 11435 RExC_parse = s; 11436 while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != ']') { 11437 RExC_parse++; 11438 } 11439 vFAIL2("Unmatched '%c' in POSIX class", c); 11440 } 11441 /* Grandfather lone [:, [=, [. */ 11442 RExC_parse = s; 11443 } 11444 else { 11445 const char* const t = RExC_parse++; /* skip over the c */ 11446 assert(*t == c); 11447 11448 if (UCHARAT(RExC_parse) == ']') { 11449 const char *posixcc = s + 1; 11450 RExC_parse++; /* skip over the ending ] */ 11451 11452 if (*s == ':') { 11453 const I32 complement = *posixcc == '^' ? *posixcc++ : 0; 11454 const I32 skip = t - posixcc; 11455 11456 /* Initially switch on the length of the name. */ 11457 switch (skip) { 11458 case 4: 11459 if (memEQ(posixcc, "word", 4)) /* this is not POSIX, 11460 this is the Perl \w 11461 */ 11462 namedclass = ANYOF_WORDCHAR; 11463 break; 11464 case 5: 11465 /* Names all of length 5. */ 11466 /* alnum alpha ascii blank cntrl digit graph lower 11467 print punct space upper */ 11468 /* Offset 4 gives the best switch position. */ 11469 switch (posixcc[4]) { 11470 case 'a': 11471 if (memEQ(posixcc, "alph", 4)) /* alpha */ 11472 namedclass = ANYOF_ALPHA; 11473 break; 11474 case 'e': 11475 if (memEQ(posixcc, "spac", 4)) /* space */ 11476 namedclass = ANYOF_PSXSPC; 11477 break; 11478 case 'h': 11479 if (memEQ(posixcc, "grap", 4)) /* graph */ 11480 namedclass = ANYOF_GRAPH; 11481 break; 11482 case 'i': 11483 if (memEQ(posixcc, "asci", 4)) /* ascii */ 11484 namedclass = ANYOF_ASCII; 11485 break; 11486 case 'k': 11487 if (memEQ(posixcc, "blan", 4)) /* blank */ 11488 namedclass = ANYOF_BLANK; 11489 break; 11490 case 'l': 11491 if (memEQ(posixcc, "cntr", 4)) /* cntrl */ 11492 namedclass = ANYOF_CNTRL; 11493 break; 11494 case 'm': 11495 if (memEQ(posixcc, "alnu", 4)) /* alnum */ 11496 namedclass = ANYOF_ALPHANUMERIC; 11497 break; 11498 case 'r': 11499 if (memEQ(posixcc, "lowe", 4)) /* lower */ 11500 namedclass = (FOLD) ? ANYOF_CASED : ANYOF_LOWER; 11501 else if (memEQ(posixcc, "uppe", 4)) /* upper */ 11502 namedclass = (FOLD) ? ANYOF_CASED : ANYOF_UPPER; 11503 break; 11504 case 't': 11505 if (memEQ(posixcc, "digi", 4)) /* digit */ 11506 namedclass = ANYOF_DIGIT; 11507 else if (memEQ(posixcc, "prin", 4)) /* print */ 11508 namedclass = ANYOF_PRINT; 11509 else if (memEQ(posixcc, "punc", 4)) /* punct */ 11510 namedclass = ANYOF_PUNCT; 11511 break; 11512 } 11513 break; 11514 case 6: 11515 if (memEQ(posixcc, "xdigit", 6)) 11516 namedclass = ANYOF_XDIGIT; 11517 break; 11518 } 11519 11520 if (namedclass == OOB_NAMEDCLASS) 11521 Simple_vFAIL3("POSIX class [:%.*s:] unknown", 11522 t - s - 1, s + 1); 11523 11524 /* The #defines are structured so each complement is +1 to 11525 * the normal one */ 11526 if (complement) { 11527 namedclass++; 11528 } 11529 assert (posixcc[skip] == ':'); 11530 assert (posixcc[skip+1] == ']'); 11531 } else if (!SIZE_ONLY) { 11532 /* [[=foo=]] and [[.foo.]] are still future. */ 11533 11534 /* adjust RExC_parse so the warning shows after 11535 the class closes */ 11536 while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse) != ']') 11537 RExC_parse++; 11538 vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c); 11539 } 11540 } else { 11541 /* Maternal grandfather: 11542 * "[:" ending in ":" but not in ":]" */ 11543 if (strict) { 11544 vFAIL("Unmatched '[' in POSIX class"); 11545 } 11546 11547 /* Grandfather lone [:, [=, [. */ 11548 RExC_parse = s; 11549 } 11550 } 11551 } 11552 11553 return namedclass; 11554 } 11555 11556 STATIC bool 11557 S_could_it_be_a_POSIX_class(pTHX_ RExC_state_t *pRExC_state) 11558 { 11559 /* This applies some heuristics at the current parse position (which should 11560 * be at a '[') to see if what follows might be intended to be a [:posix:] 11561 * class. It returns true if it really is a posix class, of course, but it 11562 * also can return true if it thinks that what was intended was a posix 11563 * class that didn't quite make it. 11564 * 11565 * It will return true for 11566 * [:alphanumerics: 11567 * [:alphanumerics] (as long as the ] isn't followed immediately by a 11568 * ')' indicating the end of the (?[ 11569 * [:any garbage including %^&$ punctuation:] 11570 * 11571 * This is designed to be called only from S_handle_regex_sets; it could be 11572 * easily adapted to be called from the spot at the beginning of regclass() 11573 * that checks to see in a normal bracketed class if the surrounding [] 11574 * have been omitted ([:word:] instead of [[:word:]]). But doing so would 11575 * change long-standing behavior, so I (khw) didn't do that */ 11576 char* p = RExC_parse + 1; 11577 char first_char = *p; 11578 11579 PERL_ARGS_ASSERT_COULD_IT_BE_A_POSIX_CLASS; 11580 11581 assert(*(p - 1) == '['); 11582 11583 if (! POSIXCC(first_char)) { 11584 return FALSE; 11585 } 11586 11587 p++; 11588 while (p < RExC_end && isWORDCHAR(*p)) p++; 11589 11590 if (p >= RExC_end) { 11591 return FALSE; 11592 } 11593 11594 if (p - RExC_parse > 2 /* Got at least 1 word character */ 11595 && (*p == first_char 11596 || (*p == ']' && p + 1 < RExC_end && *(p + 1) != ')'))) 11597 { 11598 return TRUE; 11599 } 11600 11601 p = (char *) memchr(RExC_parse, ']', RExC_end - RExC_parse); 11602 11603 return (p 11604 && p - RExC_parse > 2 /* [:] evaluates to colon; 11605 [::] is a bad posix class. */ 11606 && first_char == *(p - 1)); 11607 } 11608 11609 STATIC regnode * 11610 S_handle_regex_sets(pTHX_ RExC_state_t *pRExC_state, SV** return_invlist, I32 *flagp, U32 depth, 11611 char * const oregcomp_parse) 11612 { 11613 /* Handle the (?[...]) construct to do set operations */ 11614 11615 U8 curchar; 11616 UV start, end; /* End points of code point ranges */ 11617 SV* result_string; 11618 char *save_end, *save_parse; 11619 SV* final; 11620 STRLEN len; 11621 regnode* node; 11622 AV* stack; 11623 const bool save_fold = FOLD; 11624 11625 GET_RE_DEBUG_FLAGS_DECL; 11626 11627 PERL_ARGS_ASSERT_HANDLE_REGEX_SETS; 11628 11629 if (LOC) { 11630 vFAIL("(?[...]) not valid in locale"); 11631 } 11632 RExC_uni_semantics = 1; 11633 11634 /* This will return only an ANYOF regnode, or (unlikely) something smaller 11635 * (such as EXACT). Thus we can skip most everything if just sizing. We 11636 * call regclass to handle '[]' so as to not have to reinvent its parsing 11637 * rules here (throwing away the size it computes each time). And, we exit 11638 * upon an unescaped ']' that isn't one ending a regclass. To do both 11639 * these things, we need to realize that something preceded by a backslash 11640 * is escaped, so we have to keep track of backslashes */ 11641 if (SIZE_ONLY) { 11642 11643 Perl_ck_warner_d(aTHX_ 11644 packWARN(WARN_EXPERIMENTAL__REGEX_SETS), 11645 "The regex_sets feature is experimental" REPORT_LOCATION, 11646 (int) (RExC_parse - RExC_precomp) , RExC_precomp, RExC_parse); 11647 11648 while (RExC_parse < RExC_end) { 11649 SV* current = NULL; 11650 RExC_parse = regpatws(pRExC_state, RExC_parse, 11651 TRUE); /* means recognize comments */ 11652 switch (*RExC_parse) { 11653 default: 11654 break; 11655 case '\\': 11656 /* Skip the next byte (which could cause us to end up in 11657 * the middle of a UTF-8 character, but since none of those 11658 * are confusable with anything we currently handle in this 11659 * switch (invariants all), it's safe. We'll just hit the 11660 * default: case next time and keep on incrementing until 11661 * we find one of the invariants we do handle. */ 11662 RExC_parse++; 11663 break; 11664 case '[': 11665 { 11666 /* If this looks like it is a [:posix:] class, leave the 11667 * parse pointer at the '[' to fool regclass() into 11668 * thinking it is part of a '[[:posix:]]'. That function 11669 * will use strict checking to force a syntax error if it 11670 * doesn't work out to a legitimate class */ 11671 bool is_posix_class 11672 = could_it_be_a_POSIX_class(pRExC_state); 11673 if (! is_posix_class) { 11674 RExC_parse++; 11675 } 11676 11677 /* regclass() can only return RESTART_UTF8 if multi-char 11678 folds are allowed. */ 11679 if (!regclass(pRExC_state, flagp,depth+1, 11680 is_posix_class, /* parse the whole char 11681 class only if not a 11682 posix class */ 11683 FALSE, /* don't allow multi-char folds */ 11684 TRUE, /* silence non-portable warnings. */ 11685 ¤t)) 11686 FAIL2("panic: regclass returned NULL to handle_sets, flags=%#X", 11687 *flagp); 11688 11689 /* function call leaves parse pointing to the ']', except 11690 * if we faked it */ 11691 if (is_posix_class) { 11692 RExC_parse--; 11693 } 11694 11695 SvREFCNT_dec(current); /* In case it returned something */ 11696 break; 11697 } 11698 11699 case ']': 11700 RExC_parse++; 11701 if (RExC_parse < RExC_end 11702 && *RExC_parse == ')') 11703 { 11704 node = reganode(pRExC_state, ANYOF, 0); 11705 RExC_size += ANYOF_SKIP; 11706 nextchar(pRExC_state); 11707 Set_Node_Length(node, 11708 RExC_parse - oregcomp_parse + 1); /* MJD */ 11709 return node; 11710 } 11711 goto no_close; 11712 } 11713 RExC_parse++; 11714 } 11715 11716 no_close: 11717 FAIL("Syntax error in (?[...])"); 11718 } 11719 11720 /* Pass 2 only after this. Everything in this construct is a 11721 * metacharacter. Operands begin with either a '\' (for an escape 11722 * sequence), or a '[' for a bracketed character class. Any other 11723 * character should be an operator, or parenthesis for grouping. Both 11724 * types of operands are handled by calling regclass() to parse them. It 11725 * is called with a parameter to indicate to return the computed inversion 11726 * list. The parsing here is implemented via a stack. Each entry on the 11727 * stack is a single character representing one of the operators, or the 11728 * '('; or else a pointer to an operand inversion list. */ 11729 11730 #define IS_OPERAND(a) (! SvIOK(a)) 11731 11732 /* The stack starts empty. It is a syntax error if the first thing parsed 11733 * is a binary operator; everything else is pushed on the stack. When an 11734 * operand is parsed, the top of the stack is examined. If it is a binary 11735 * operator, the item before it should be an operand, and both are replaced 11736 * by the result of doing that operation on the new operand and the one on 11737 * the stack. Thus a sequence of binary operands is reduced to a single 11738 * one before the next one is parsed. 11739 * 11740 * A unary operator may immediately follow a binary in the input, for 11741 * example 11742 * [a] + ! [b] 11743 * When an operand is parsed and the top of the stack is a unary operator, 11744 * the operation is performed, and then the stack is rechecked to see if 11745 * this new operand is part of a binary operation; if so, it is handled as 11746 * above. 11747 * 11748 * A '(' is simply pushed on the stack; it is valid only if the stack is 11749 * empty, or the top element of the stack is an operator or another '(' 11750 * (for which the parenthesized expression will become an operand). By the 11751 * time the corresponding ')' is parsed everything in between should have 11752 * been parsed and evaluated to a single operand (or else is a syntax 11753 * error), and is handled as a regular operand */ 11754 11755 sv_2mortal((SV *)(stack = newAV())); 11756 11757 while (RExC_parse < RExC_end) { 11758 I32 top_index = av_tindex(stack); 11759 SV** top_ptr; 11760 SV* current = NULL; 11761 11762 /* Skip white space */ 11763 RExC_parse = regpatws(pRExC_state, RExC_parse, 11764 TRUE); /* means recognize comments */ 11765 if (RExC_parse >= RExC_end) { 11766 Perl_croak(aTHX_ "panic: Read past end of '(?[ ])'"); 11767 } 11768 if ((curchar = UCHARAT(RExC_parse)) == ']') { 11769 break; 11770 } 11771 11772 switch (curchar) { 11773 11774 case '?': 11775 if (av_tindex(stack) >= 0 /* This makes sure that we can 11776 safely subtract 1 from 11777 RExC_parse in the next clause. 11778 If we have something on the 11779 stack, we have parsed something 11780 */ 11781 && UCHARAT(RExC_parse - 1) == '(' 11782 && RExC_parse < RExC_end) 11783 { 11784 /* If is a '(?', could be an embedded '(?flags:(?[...])'. 11785 * This happens when we have some thing like 11786 * 11787 * my $thai_or_lao = qr/(?[ \p{Thai} + \p{Lao} ])/; 11788 * ... 11789 * qr/(?[ \p{Digit} & $thai_or_lao ])/; 11790 * 11791 * Here we would be handling the interpolated 11792 * '$thai_or_lao'. We handle this by a recursive call to 11793 * ourselves which returns the inversion list the 11794 * interpolated expression evaluates to. We use the flags 11795 * from the interpolated pattern. */ 11796 U32 save_flags = RExC_flags; 11797 const char * const save_parse = ++RExC_parse; 11798 11799 parse_lparen_question_flags(pRExC_state); 11800 11801 if (RExC_parse == save_parse /* Makes sure there was at 11802 least one flag (or this 11803 embedding wasn't compiled) 11804 */ 11805 || RExC_parse >= RExC_end - 4 11806 || UCHARAT(RExC_parse) != ':' 11807 || UCHARAT(++RExC_parse) != '(' 11808 || UCHARAT(++RExC_parse) != '?' 11809 || UCHARAT(++RExC_parse) != '[') 11810 { 11811 11812 /* In combination with the above, this moves the 11813 * pointer to the point just after the first erroneous 11814 * character (or if there are no flags, to where they 11815 * should have been) */ 11816 if (RExC_parse >= RExC_end - 4) { 11817 RExC_parse = RExC_end; 11818 } 11819 else if (RExC_parse != save_parse) { 11820 RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1; 11821 } 11822 vFAIL("Expecting '(?flags:(?[...'"); 11823 } 11824 RExC_parse++; 11825 (void) handle_regex_sets(pRExC_state, ¤t, flagp, 11826 depth+1, oregcomp_parse); 11827 11828 /* Here, 'current' contains the embedded expression's 11829 * inversion list, and RExC_parse points to the trailing 11830 * ']'; the next character should be the ')' which will be 11831 * paired with the '(' that has been put on the stack, so 11832 * the whole embedded expression reduces to '(operand)' */ 11833 RExC_parse++; 11834 11835 RExC_flags = save_flags; 11836 goto handle_operand; 11837 } 11838 /* FALL THROUGH */ 11839 11840 default: 11841 RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1; 11842 vFAIL("Unexpected character"); 11843 11844 case '\\': 11845 /* regclass() can only return RESTART_UTF8 if multi-char 11846 folds are allowed. */ 11847 if (!regclass(pRExC_state, flagp,depth+1, 11848 TRUE, /* means parse just the next thing */ 11849 FALSE, /* don't allow multi-char folds */ 11850 FALSE, /* don't silence non-portable warnings. */ 11851 ¤t)) 11852 FAIL2("panic: regclass returned NULL to handle_sets, flags=%#X", 11853 *flagp); 11854 /* regclass() will return with parsing just the \ sequence, 11855 * leaving the parse pointer at the next thing to parse */ 11856 RExC_parse--; 11857 goto handle_operand; 11858 11859 case '[': /* Is a bracketed character class */ 11860 { 11861 bool is_posix_class = could_it_be_a_POSIX_class(pRExC_state); 11862 11863 if (! is_posix_class) { 11864 RExC_parse++; 11865 } 11866 11867 /* regclass() can only return RESTART_UTF8 if multi-char 11868 folds are allowed. */ 11869 if(!regclass(pRExC_state, flagp,depth+1, 11870 is_posix_class, /* parse the whole char class 11871 only if not a posix class */ 11872 FALSE, /* don't allow multi-char folds */ 11873 FALSE, /* don't silence non-portable warnings. */ 11874 ¤t)) 11875 FAIL2("panic: regclass returned NULL to handle_sets, flags=%#X", 11876 *flagp); 11877 /* function call leaves parse pointing to the ']', except if we 11878 * faked it */ 11879 if (is_posix_class) { 11880 RExC_parse--; 11881 } 11882 11883 goto handle_operand; 11884 } 11885 11886 case '&': 11887 case '|': 11888 case '+': 11889 case '-': 11890 case '^': 11891 if (top_index < 0 11892 || ( ! (top_ptr = av_fetch(stack, top_index, FALSE))) 11893 || ! IS_OPERAND(*top_ptr)) 11894 { 11895 RExC_parse++; 11896 vFAIL2("Unexpected binary operator '%c' with no preceding operand", curchar); 11897 } 11898 av_push(stack, newSVuv(curchar)); 11899 break; 11900 11901 case '!': 11902 av_push(stack, newSVuv(curchar)); 11903 break; 11904 11905 case '(': 11906 if (top_index >= 0) { 11907 top_ptr = av_fetch(stack, top_index, FALSE); 11908 assert(top_ptr); 11909 if (IS_OPERAND(*top_ptr)) { 11910 RExC_parse++; 11911 vFAIL("Unexpected '(' with no preceding operator"); 11912 } 11913 } 11914 av_push(stack, newSVuv(curchar)); 11915 break; 11916 11917 case ')': 11918 { 11919 SV* lparen; 11920 if (top_index < 1 11921 || ! (current = av_pop(stack)) 11922 || ! IS_OPERAND(current) 11923 || ! (lparen = av_pop(stack)) 11924 || IS_OPERAND(lparen) 11925 || SvUV(lparen) != '(') 11926 { 11927 SvREFCNT_dec(current); 11928 RExC_parse++; 11929 vFAIL("Unexpected ')'"); 11930 } 11931 top_index -= 2; 11932 SvREFCNT_dec_NN(lparen); 11933 11934 /* FALL THROUGH */ 11935 } 11936 11937 handle_operand: 11938 11939 /* Here, we have an operand to process, in 'current' */ 11940 11941 if (top_index < 0) { /* Just push if stack is empty */ 11942 av_push(stack, current); 11943 } 11944 else { 11945 SV* top = av_pop(stack); 11946 SV *prev = NULL; 11947 char current_operator; 11948 11949 if (IS_OPERAND(top)) { 11950 SvREFCNT_dec_NN(top); 11951 SvREFCNT_dec_NN(current); 11952 vFAIL("Operand with no preceding operator"); 11953 } 11954 current_operator = (char) SvUV(top); 11955 switch (current_operator) { 11956 case '(': /* Push the '(' back on followed by the new 11957 operand */ 11958 av_push(stack, top); 11959 av_push(stack, current); 11960 SvREFCNT_inc(top); /* Counters the '_dec' done 11961 just after the 'break', so 11962 it doesn't get wrongly freed 11963 */ 11964 break; 11965 11966 case '!': 11967 _invlist_invert(current); 11968 11969 /* Unlike binary operators, the top of the stack, 11970 * now that this unary one has been popped off, may 11971 * legally be an operator, and we now have operand 11972 * for it. */ 11973 top_index--; 11974 SvREFCNT_dec_NN(top); 11975 goto handle_operand; 11976 11977 case '&': 11978 prev = av_pop(stack); 11979 _invlist_intersection(prev, 11980 current, 11981 ¤t); 11982 av_push(stack, current); 11983 break; 11984 11985 case '|': 11986 case '+': 11987 prev = av_pop(stack); 11988 _invlist_union(prev, current, ¤t); 11989 av_push(stack, current); 11990 break; 11991 11992 case '-': 11993 prev = av_pop(stack);; 11994 _invlist_subtract(prev, current, ¤t); 11995 av_push(stack, current); 11996 break; 11997 11998 case '^': /* The union minus the intersection */ 11999 { 12000 SV* i = NULL; 12001 SV* u = NULL; 12002 SV* element; 12003 12004 prev = av_pop(stack); 12005 _invlist_union(prev, current, &u); 12006 _invlist_intersection(prev, current, &i); 12007 /* _invlist_subtract will overwrite current 12008 without freeing what it already contains */ 12009 element = current; 12010 _invlist_subtract(u, i, ¤t); 12011 av_push(stack, current); 12012 SvREFCNT_dec_NN(i); 12013 SvREFCNT_dec_NN(u); 12014 SvREFCNT_dec_NN(element); 12015 break; 12016 } 12017 12018 default: 12019 Perl_croak(aTHX_ "panic: Unexpected item on '(?[ ])' stack"); 12020 } 12021 SvREFCNT_dec_NN(top); 12022 SvREFCNT_dec(prev); 12023 } 12024 } 12025 12026 RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1; 12027 } 12028 12029 if (av_tindex(stack) < 0 /* Was empty */ 12030 || ((final = av_pop(stack)) == NULL) 12031 || ! IS_OPERAND(final) 12032 || av_tindex(stack) >= 0) /* More left on stack */ 12033 { 12034 vFAIL("Incomplete expression within '(?[ ])'"); 12035 } 12036 12037 /* Here, 'final' is the resultant inversion list from evaluating the 12038 * expression. Return it if so requested */ 12039 if (return_invlist) { 12040 *return_invlist = final; 12041 return END; 12042 } 12043 12044 /* Otherwise generate a resultant node, based on 'final'. regclass() is 12045 * expecting a string of ranges and individual code points */ 12046 invlist_iterinit(final); 12047 result_string = newSVpvs(""); 12048 while (invlist_iternext(final, &start, &end)) { 12049 if (start == end) { 12050 Perl_sv_catpvf(aTHX_ result_string, "\\x{%"UVXf"}", start); 12051 } 12052 else { 12053 Perl_sv_catpvf(aTHX_ result_string, "\\x{%"UVXf"}-\\x{%"UVXf"}", 12054 start, end); 12055 } 12056 } 12057 12058 save_parse = RExC_parse; 12059 RExC_parse = SvPV(result_string, len); 12060 save_end = RExC_end; 12061 RExC_end = RExC_parse + len; 12062 12063 /* We turn off folding around the call, as the class we have constructed 12064 * already has all folding taken into consideration, and we don't want 12065 * regclass() to add to that */ 12066 RExC_flags &= ~RXf_PMf_FOLD; 12067 /* regclass() can only return RESTART_UTF8 if multi-char folds are allowed. 12068 */ 12069 node = regclass(pRExC_state, flagp,depth+1, 12070 FALSE, /* means parse the whole char class */ 12071 FALSE, /* don't allow multi-char folds */ 12072 TRUE, /* silence non-portable warnings. The above may very 12073 well have generated non-portable code points, but 12074 they're valid on this machine */ 12075 NULL); 12076 if (!node) 12077 FAIL2("panic: regclass returned NULL to handle_sets, flags=%#"UVxf, 12078 PTR2UV(flagp)); 12079 if (save_fold) { 12080 RExC_flags |= RXf_PMf_FOLD; 12081 } 12082 RExC_parse = save_parse + 1; 12083 RExC_end = save_end; 12084 SvREFCNT_dec_NN(final); 12085 SvREFCNT_dec_NN(result_string); 12086 12087 nextchar(pRExC_state); 12088 Set_Node_Length(node, RExC_parse - oregcomp_parse + 1); /* MJD */ 12089 return node; 12090 } 12091 #undef IS_OPERAND 12092 12093 /* The names of properties whose definitions are not known at compile time are 12094 * stored in this SV, after a constant heading. So if the length has been 12095 * changed since initialization, then there is a run-time definition. */ 12096 #define HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION (SvCUR(listsv) != initial_listsv_len) 12097 12098 STATIC regnode * 12099 S_regclass(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth, 12100 const bool stop_at_1, /* Just parse the next thing, don't 12101 look for a full character class */ 12102 bool allow_multi_folds, 12103 const bool silence_non_portable, /* Don't output warnings 12104 about too large 12105 characters */ 12106 SV** ret_invlist) /* Return an inversion list, not a node */ 12107 { 12108 /* parse a bracketed class specification. Most of these will produce an 12109 * ANYOF node; but something like [a] will produce an EXACT node; [aA], an 12110 * EXACTFish node; [[:ascii:]], a POSIXA node; etc. It is more complex 12111 * under /i with multi-character folds: it will be rewritten following the 12112 * paradigm of this example, where the <multi-fold>s are characters which 12113 * fold to multiple character sequences: 12114 * /[abc\x{multi-fold1}def\x{multi-fold2}ghi]/i 12115 * gets effectively rewritten as: 12116 * /(?:\x{multi-fold1}|\x{multi-fold2}|[abcdefghi]/i 12117 * reg() gets called (recursively) on the rewritten version, and this 12118 * function will return what it constructs. (Actually the <multi-fold>s 12119 * aren't physically removed from the [abcdefghi], it's just that they are 12120 * ignored in the recursion by means of a flag: 12121 * <RExC_in_multi_char_class>.) 12122 * 12123 * ANYOF nodes contain a bit map for the first 256 characters, with the 12124 * corresponding bit set if that character is in the list. For characters 12125 * above 255, a range list or swash is used. There are extra bits for \w, 12126 * etc. in locale ANYOFs, as what these match is not determinable at 12127 * compile time 12128 * 12129 * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs 12130 * to be restarted. This can only happen if ret_invlist is non-NULL. 12131 */ 12132 12133 dVAR; 12134 UV prevvalue = OOB_UNICODE, save_prevvalue = OOB_UNICODE; 12135 IV range = 0; 12136 UV value = OOB_UNICODE, save_value = OOB_UNICODE; 12137 regnode *ret; 12138 STRLEN numlen; 12139 IV namedclass = OOB_NAMEDCLASS; 12140 char *rangebegin = NULL; 12141 bool need_class = 0; 12142 SV *listsv = NULL; 12143 STRLEN initial_listsv_len = 0; /* Kind of a kludge to see if it is more 12144 than just initialized. */ 12145 SV* properties = NULL; /* Code points that match \p{} \P{} */ 12146 SV* posixes = NULL; /* Code points that match classes like, [:word:], 12147 extended beyond the Latin1 range */ 12148 UV element_count = 0; /* Number of distinct elements in the class. 12149 Optimizations may be possible if this is tiny */ 12150 AV * multi_char_matches = NULL; /* Code points that fold to more than one 12151 character; used under /i */ 12152 UV n; 12153 char * stop_ptr = RExC_end; /* where to stop parsing */ 12154 const bool skip_white = cBOOL(ret_invlist); /* ignore unescaped white 12155 space? */ 12156 const bool strict = cBOOL(ret_invlist); /* Apply strict parsing rules? */ 12157 12158 /* Unicode properties are stored in a swash; this holds the current one 12159 * being parsed. If this swash is the only above-latin1 component of the 12160 * character class, an optimization is to pass it directly on to the 12161 * execution engine. Otherwise, it is set to NULL to indicate that there 12162 * are other things in the class that have to be dealt with at execution 12163 * time */ 12164 SV* swash = NULL; /* Code points that match \p{} \P{} */ 12165 12166 /* Set if a component of this character class is user-defined; just passed 12167 * on to the engine */ 12168 bool has_user_defined_property = FALSE; 12169 12170 /* inversion list of code points this node matches only when the target 12171 * string is in UTF-8. (Because is under /d) */ 12172 SV* depends_list = NULL; 12173 12174 /* inversion list of code points this node matches. For much of the 12175 * function, it includes only those that match regardless of the utf8ness 12176 * of the target string */ 12177 SV* cp_list = NULL; 12178 12179 #ifdef EBCDIC 12180 /* In a range, counts how many 0-2 of the ends of it came from literals, 12181 * not escapes. Thus we can tell if 'A' was input vs \x{C1} */ 12182 UV literal_endpoint = 0; 12183 #endif 12184 bool invert = FALSE; /* Is this class to be complemented */ 12185 12186 /* Is there any thing like \W or [:^digit:] that matches above the legal 12187 * Unicode range? */ 12188 bool runtime_posix_matches_above_Unicode = FALSE; 12189 12190 regnode * const orig_emit = RExC_emit; /* Save the original RExC_emit in 12191 case we need to change the emitted regop to an EXACT. */ 12192 const char * orig_parse = RExC_parse; 12193 const I32 orig_size = RExC_size; 12194 GET_RE_DEBUG_FLAGS_DECL; 12195 12196 PERL_ARGS_ASSERT_REGCLASS; 12197 #ifndef DEBUGGING 12198 PERL_UNUSED_ARG(depth); 12199 #endif 12200 12201 DEBUG_PARSE("clas"); 12202 12203 /* Assume we are going to generate an ANYOF node. */ 12204 ret = reganode(pRExC_state, ANYOF, 0); 12205 12206 if (SIZE_ONLY) { 12207 RExC_size += ANYOF_SKIP; 12208 listsv = &PL_sv_undef; /* For code scanners: listsv always non-NULL. */ 12209 } 12210 else { 12211 ANYOF_FLAGS(ret) = 0; 12212 12213 RExC_emit += ANYOF_SKIP; 12214 if (LOC) { 12215 ANYOF_FLAGS(ret) |= ANYOF_LOCALE; 12216 } 12217 listsv = newSVpvs_flags("# comment\n", SVs_TEMP); 12218 initial_listsv_len = SvCUR(listsv); 12219 SvTEMP_off(listsv); /* Grr, TEMPs and mortals are conflated. */ 12220 } 12221 12222 if (skip_white) { 12223 RExC_parse = regpatws(pRExC_state, RExC_parse, 12224 FALSE /* means don't recognize comments */); 12225 } 12226 12227 if (UCHARAT(RExC_parse) == '^') { /* Complement of range. */ 12228 RExC_parse++; 12229 invert = TRUE; 12230 allow_multi_folds = FALSE; 12231 RExC_naughty++; 12232 if (skip_white) { 12233 RExC_parse = regpatws(pRExC_state, RExC_parse, 12234 FALSE /* means don't recognize comments */); 12235 } 12236 } 12237 12238 /* Check that they didn't say [:posix:] instead of [[:posix:]] */ 12239 if (!SIZE_ONLY && RExC_parse < RExC_end && POSIXCC(UCHARAT(RExC_parse))) { 12240 const char *s = RExC_parse; 12241 const char c = *s++; 12242 12243 while (isWORDCHAR(*s)) 12244 s++; 12245 if (*s && c == *s && s[1] == ']') { 12246 SAVEFREESV(RExC_rx_sv); 12247 ckWARN3reg(s+2, 12248 "POSIX syntax [%c %c] belongs inside character classes", 12249 c, c); 12250 (void)ReREFCNT_inc(RExC_rx_sv); 12251 } 12252 } 12253 12254 /* If the caller wants us to just parse a single element, accomplish this 12255 * by faking the loop ending condition */ 12256 if (stop_at_1 && RExC_end > RExC_parse) { 12257 stop_ptr = RExC_parse + 1; 12258 } 12259 12260 /* allow 1st char to be ']' (allowing it to be '-' is dealt with later) */ 12261 if (UCHARAT(RExC_parse) == ']') 12262 goto charclassloop; 12263 12264 parseit: 12265 while (1) { 12266 if (RExC_parse >= stop_ptr) { 12267 break; 12268 } 12269 12270 if (skip_white) { 12271 RExC_parse = regpatws(pRExC_state, RExC_parse, 12272 FALSE /* means don't recognize comments */); 12273 } 12274 12275 if (UCHARAT(RExC_parse) == ']') { 12276 break; 12277 } 12278 12279 charclassloop: 12280 12281 namedclass = OOB_NAMEDCLASS; /* initialize as illegal */ 12282 save_value = value; 12283 save_prevvalue = prevvalue; 12284 12285 if (!range) { 12286 rangebegin = RExC_parse; 12287 element_count++; 12288 } 12289 if (UTF) { 12290 value = utf8n_to_uvchr((U8*)RExC_parse, 12291 RExC_end - RExC_parse, 12292 &numlen, UTF8_ALLOW_DEFAULT); 12293 RExC_parse += numlen; 12294 } 12295 else 12296 value = UCHARAT(RExC_parse++); 12297 12298 if (value == '[' 12299 && RExC_parse < RExC_end 12300 && POSIXCC(UCHARAT(RExC_parse))) 12301 { 12302 namedclass = regpposixcc(pRExC_state, value, strict); 12303 } 12304 else if (value == '\\') { 12305 if (UTF) { 12306 value = utf8n_to_uvchr((U8*)RExC_parse, 12307 RExC_end - RExC_parse, 12308 &numlen, UTF8_ALLOW_DEFAULT); 12309 RExC_parse += numlen; 12310 } 12311 else 12312 value = UCHARAT(RExC_parse++); 12313 12314 /* Some compilers cannot handle switching on 64-bit integer 12315 * values, therefore value cannot be an UV. Yes, this will 12316 * be a problem later if we want switch on Unicode. 12317 * A similar issue a little bit later when switching on 12318 * namedclass. --jhi */ 12319 12320 /* If the \ is escaping white space when white space is being 12321 * skipped, it means that that white space is wanted literally, and 12322 * is already in 'value'. Otherwise, need to translate the escape 12323 * into what it signifies. */ 12324 if (! skip_white || ! is_PATWS_cp(value)) switch ((I32)value) { 12325 12326 case 'w': namedclass = ANYOF_WORDCHAR; break; 12327 case 'W': namedclass = ANYOF_NWORDCHAR; break; 12328 case 's': namedclass = ANYOF_SPACE; break; 12329 case 'S': namedclass = ANYOF_NSPACE; break; 12330 case 'd': namedclass = ANYOF_DIGIT; break; 12331 case 'D': namedclass = ANYOF_NDIGIT; break; 12332 case 'v': namedclass = ANYOF_VERTWS; break; 12333 case 'V': namedclass = ANYOF_NVERTWS; break; 12334 case 'h': namedclass = ANYOF_HORIZWS; break; 12335 case 'H': namedclass = ANYOF_NHORIZWS; break; 12336 case 'N': /* Handle \N{NAME} in class */ 12337 { 12338 /* We only pay attention to the first char of 12339 multichar strings being returned. I kinda wonder 12340 if this makes sense as it does change the behaviour 12341 from earlier versions, OTOH that behaviour was broken 12342 as well. */ 12343 if (! grok_bslash_N(pRExC_state, NULL, &value, flagp, depth, 12344 TRUE, /* => charclass */ 12345 strict)) 12346 { 12347 if (*flagp & RESTART_UTF8) 12348 FAIL("panic: grok_bslash_N set RESTART_UTF8"); 12349 goto parseit; 12350 } 12351 } 12352 break; 12353 case 'p': 12354 case 'P': 12355 { 12356 char *e; 12357 12358 /* We will handle any undefined properties ourselves */ 12359 U8 swash_init_flags = _CORE_SWASH_INIT_RETURN_IF_UNDEF; 12360 12361 if (RExC_parse >= RExC_end) 12362 vFAIL2("Empty \\%c{}", (U8)value); 12363 if (*RExC_parse == '{') { 12364 const U8 c = (U8)value; 12365 e = strchr(RExC_parse++, '}'); 12366 if (!e) 12367 vFAIL2("Missing right brace on \\%c{}", c); 12368 while (isSPACE(UCHARAT(RExC_parse))) 12369 RExC_parse++; 12370 if (e == RExC_parse) 12371 vFAIL2("Empty \\%c{}", c); 12372 n = e - RExC_parse; 12373 while (isSPACE(UCHARAT(RExC_parse + n - 1))) 12374 n--; 12375 } 12376 else { 12377 e = RExC_parse; 12378 n = 1; 12379 } 12380 if (!SIZE_ONLY) { 12381 SV* invlist; 12382 char* name; 12383 12384 if (UCHARAT(RExC_parse) == '^') { 12385 RExC_parse++; 12386 n--; 12387 /* toggle. (The rhs xor gets the single bit that 12388 * differs between P and p; the other xor inverts just 12389 * that bit) */ 12390 value ^= 'P' ^ 'p'; 12391 12392 while (isSPACE(UCHARAT(RExC_parse))) { 12393 RExC_parse++; 12394 n--; 12395 } 12396 } 12397 /* Try to get the definition of the property into 12398 * <invlist>. If /i is in effect, the effective property 12399 * will have its name be <__NAME_i>. The design is 12400 * discussed in commit 12401 * 2f833f5208e26b208886e51e09e2c072b5eabb46 */ 12402 Newx(name, n + sizeof("_i__\n"), char); 12403 12404 sprintf(name, "%s%.*s%s\n", 12405 (FOLD) ? "__" : "", 12406 (int)n, 12407 RExC_parse, 12408 (FOLD) ? "_i" : "" 12409 ); 12410 12411 /* Look up the property name, and get its swash and 12412 * inversion list, if the property is found */ 12413 if (swash) { 12414 SvREFCNT_dec_NN(swash); 12415 } 12416 swash = _core_swash_init("utf8", name, &PL_sv_undef, 12417 1, /* binary */ 12418 0, /* not tr/// */ 12419 NULL, /* No inversion list */ 12420 &swash_init_flags 12421 ); 12422 if (! swash || ! (invlist = _get_swash_invlist(swash))) { 12423 if (swash) { 12424 SvREFCNT_dec_NN(swash); 12425 swash = NULL; 12426 } 12427 12428 /* Here didn't find it. It could be a user-defined 12429 * property that will be available at run-time. If we 12430 * accept only compile-time properties, is an error; 12431 * otherwise add it to the list for run-time look up */ 12432 if (ret_invlist) { 12433 RExC_parse = e + 1; 12434 vFAIL3("Property '%.*s' is unknown", (int) n, name); 12435 } 12436 Perl_sv_catpvf(aTHX_ listsv, "%cutf8::%s\n", 12437 (value == 'p' ? '+' : '!'), 12438 name); 12439 has_user_defined_property = TRUE; 12440 12441 /* We don't know yet, so have to assume that the 12442 * property could match something in the Latin1 range, 12443 * hence something that isn't utf8. Note that this 12444 * would cause things in <depends_list> to match 12445 * inappropriately, except that any \p{}, including 12446 * this one forces Unicode semantics, which means there 12447 * is <no depends_list> */ 12448 ANYOF_FLAGS(ret) |= ANYOF_NONBITMAP_NON_UTF8; 12449 } 12450 else { 12451 12452 /* Here, did get the swash and its inversion list. If 12453 * the swash is from a user-defined property, then this 12454 * whole character class should be regarded as such */ 12455 has_user_defined_property = 12456 (swash_init_flags 12457 & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY); 12458 12459 /* Invert if asking for the complement */ 12460 if (value == 'P') { 12461 _invlist_union_complement_2nd(properties, 12462 invlist, 12463 &properties); 12464 12465 /* The swash can't be used as-is, because we've 12466 * inverted things; delay removing it to here after 12467 * have copied its invlist above */ 12468 SvREFCNT_dec_NN(swash); 12469 swash = NULL; 12470 } 12471 else { 12472 _invlist_union(properties, invlist, &properties); 12473 } 12474 } 12475 Safefree(name); 12476 } 12477 RExC_parse = e + 1; 12478 namedclass = ANYOF_UNIPROP; /* no official name, but it's 12479 named */ 12480 12481 /* \p means they want Unicode semantics */ 12482 RExC_uni_semantics = 1; 12483 } 12484 break; 12485 case 'n': value = '\n'; break; 12486 case 'r': value = '\r'; break; 12487 case 't': value = '\t'; break; 12488 case 'f': value = '\f'; break; 12489 case 'b': value = '\b'; break; 12490 case 'e': value = ASCII_TO_NATIVE('\033');break; 12491 case 'a': value = ASCII_TO_NATIVE('\007');break; 12492 case 'o': 12493 RExC_parse--; /* function expects to be pointed at the 'o' */ 12494 { 12495 const char* error_msg; 12496 bool valid = grok_bslash_o(&RExC_parse, 12497 &value, 12498 &error_msg, 12499 SIZE_ONLY, /* warnings in pass 12500 1 only */ 12501 strict, 12502 silence_non_portable, 12503 UTF); 12504 if (! valid) { 12505 vFAIL(error_msg); 12506 } 12507 } 12508 if (PL_encoding && value < 0x100) { 12509 goto recode_encoding; 12510 } 12511 break; 12512 case 'x': 12513 RExC_parse--; /* function expects to be pointed at the 'x' */ 12514 { 12515 const char* error_msg; 12516 bool valid = grok_bslash_x(&RExC_parse, 12517 &value, 12518 &error_msg, 12519 TRUE, /* Output warnings */ 12520 strict, 12521 silence_non_portable, 12522 UTF); 12523 if (! valid) { 12524 vFAIL(error_msg); 12525 } 12526 } 12527 if (PL_encoding && value < 0x100) 12528 goto recode_encoding; 12529 break; 12530 case 'c': 12531 value = grok_bslash_c(*RExC_parse++, UTF, SIZE_ONLY); 12532 break; 12533 case '0': case '1': case '2': case '3': case '4': 12534 case '5': case '6': case '7': 12535 { 12536 /* Take 1-3 octal digits */ 12537 I32 flags = PERL_SCAN_SILENT_ILLDIGIT; 12538 numlen = (strict) ? 4 : 3; 12539 value = grok_oct(--RExC_parse, &numlen, &flags, NULL); 12540 RExC_parse += numlen; 12541 if (numlen != 3) { 12542 if (strict) { 12543 RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1; 12544 vFAIL("Need exactly 3 octal digits"); 12545 } 12546 else if (! SIZE_ONLY /* like \08, \178 */ 12547 && numlen < 3 12548 && RExC_parse < RExC_end 12549 && isDIGIT(*RExC_parse) 12550 && ckWARN(WARN_REGEXP)) 12551 { 12552 SAVEFREESV(RExC_rx_sv); 12553 reg_warn_non_literal_string( 12554 RExC_parse + 1, 12555 form_short_octal_warning(RExC_parse, numlen)); 12556 (void)ReREFCNT_inc(RExC_rx_sv); 12557 } 12558 } 12559 if (PL_encoding && value < 0x100) 12560 goto recode_encoding; 12561 break; 12562 } 12563 recode_encoding: 12564 if (! RExC_override_recoding) { 12565 SV* enc = PL_encoding; 12566 value = reg_recode((const char)(U8)value, &enc); 12567 if (!enc) { 12568 if (strict) { 12569 vFAIL("Invalid escape in the specified encoding"); 12570 } 12571 else if (SIZE_ONLY) { 12572 ckWARNreg(RExC_parse, 12573 "Invalid escape in the specified encoding"); 12574 } 12575 } 12576 break; 12577 } 12578 default: 12579 /* Allow \_ to not give an error */ 12580 if (!SIZE_ONLY && isWORDCHAR(value) && value != '_') { 12581 if (strict) { 12582 vFAIL2("Unrecognized escape \\%c in character class", 12583 (int)value); 12584 } 12585 else { 12586 SAVEFREESV(RExC_rx_sv); 12587 ckWARN2reg(RExC_parse, 12588 "Unrecognized escape \\%c in character class passed through", 12589 (int)value); 12590 (void)ReREFCNT_inc(RExC_rx_sv); 12591 } 12592 } 12593 break; 12594 } /* End of switch on char following backslash */ 12595 } /* end of handling backslash escape sequences */ 12596 #ifdef EBCDIC 12597 else 12598 literal_endpoint++; 12599 #endif 12600 12601 /* Here, we have the current token in 'value' */ 12602 12603 /* What matches in a locale is not known until runtime. This includes 12604 * what the Posix classes (like \w, [:space:]) match. Room must be 12605 * reserved (one time per class) to store such classes, either if Perl 12606 * is compiled so that locale nodes always should have this space, or 12607 * if there is such class info to be stored. The space will contain a 12608 * bit for each named class that is to be matched against. This isn't 12609 * needed for \p{} and pseudo-classes, as they are not affected by 12610 * locale, and hence are dealt with separately */ 12611 if (LOC 12612 && ! need_class 12613 && (ANYOF_LOCALE == ANYOF_CLASS 12614 || (namedclass > OOB_NAMEDCLASS && namedclass < ANYOF_MAX))) 12615 { 12616 need_class = 1; 12617 if (SIZE_ONLY) { 12618 RExC_size += ANYOF_CLASS_SKIP - ANYOF_SKIP; 12619 } 12620 else { 12621 RExC_emit += ANYOF_CLASS_SKIP - ANYOF_SKIP; 12622 ANYOF_CLASS_ZERO(ret); 12623 } 12624 ANYOF_FLAGS(ret) |= ANYOF_CLASS; 12625 } 12626 12627 if (namedclass > OOB_NAMEDCLASS) { /* this is a named class \blah */ 12628 12629 /* a bad range like a-\d, a-[:digit:]. The '-' is taken as a 12630 * literal, as is the character that began the false range, i.e. 12631 * the 'a' in the examples */ 12632 if (range) { 12633 if (!SIZE_ONLY) { 12634 const int w = (RExC_parse >= rangebegin) 12635 ? RExC_parse - rangebegin 12636 : 0; 12637 if (strict) { 12638 vFAIL4("False [] range \"%*.*s\"", w, w, rangebegin); 12639 } 12640 else { 12641 SAVEFREESV(RExC_rx_sv); /* in case of fatal warnings */ 12642 ckWARN4reg(RExC_parse, 12643 "False [] range \"%*.*s\"", 12644 w, w, rangebegin); 12645 (void)ReREFCNT_inc(RExC_rx_sv); 12646 cp_list = add_cp_to_invlist(cp_list, '-'); 12647 cp_list = add_cp_to_invlist(cp_list, prevvalue); 12648 } 12649 } 12650 12651 range = 0; /* this was not a true range */ 12652 element_count += 2; /* So counts for three values */ 12653 } 12654 12655 if (! SIZE_ONLY) { 12656 U8 classnum = namedclass_to_classnum(namedclass); 12657 if (namedclass >= ANYOF_MAX) { /* If a special class */ 12658 if (namedclass != ANYOF_UNIPROP) { /* UNIPROP = \p and \P */ 12659 12660 /* Here, should be \h, \H, \v, or \V. Neither /d nor 12661 * /l make a difference in what these match. There 12662 * would be problems if these characters had folds 12663 * other than themselves, as cp_list is subject to 12664 * folding. */ 12665 if (classnum != _CC_VERTSPACE) { 12666 assert( namedclass == ANYOF_HORIZWS 12667 || namedclass == ANYOF_NHORIZWS); 12668 12669 /* It turns out that \h is just a synonym for 12670 * XPosixBlank */ 12671 classnum = _CC_BLANK; 12672 } 12673 12674 _invlist_union_maybe_complement_2nd( 12675 cp_list, 12676 PL_XPosix_ptrs[classnum], 12677 cBOOL(namedclass % 2), /* Complement if odd 12678 (NHORIZWS, NVERTWS) 12679 */ 12680 &cp_list); 12681 } 12682 } 12683 else if (classnum == _CC_ASCII) { 12684 #ifdef HAS_ISASCII 12685 if (LOC) { 12686 ANYOF_CLASS_SET(ret, namedclass); 12687 } 12688 else 12689 #endif /* Not isascii(); just use the hard-coded definition for it */ 12690 { 12691 _invlist_union_maybe_complement_2nd( 12692 posixes, 12693 PL_ASCII, 12694 cBOOL(namedclass % 2), /* Complement if odd 12695 (NASCII) */ 12696 &posixes); 12697 12698 /* The code points 128-255 added above will be 12699 * subtracted out below under /d, so the flag needs to 12700 * be set */ 12701 if (namedclass == ANYOF_NASCII && DEPENDS_SEMANTICS) { 12702 ANYOF_FLAGS(ret) |= ANYOF_NON_UTF8_LATIN1_ALL; 12703 } 12704 } 12705 } 12706 else { /* Garden variety class */ 12707 12708 /* The ascii range inversion list */ 12709 SV* ascii_source = PL_Posix_ptrs[classnum]; 12710 12711 /* The full Latin1 range inversion list */ 12712 SV* l1_source = PL_L1Posix_ptrs[classnum]; 12713 12714 /* This code is structured into two major clauses. The 12715 * first is for classes whose complete definitions may not 12716 * already be known. It not, the Latin1 definition 12717 * (guaranteed to already known) is used plus code is 12718 * generated to load the rest at run-time (only if needed). 12719 * If the complete definition is known, it drops down to 12720 * the second clause, where the complete definition is 12721 * known */ 12722 12723 if (classnum < _FIRST_NON_SWASH_CC) { 12724 12725 /* Here, the class has a swash, which may or not 12726 * already be loaded */ 12727 12728 /* The name of the property to use to match the full 12729 * eXtended Unicode range swash for this character 12730 * class */ 12731 const char *Xname = swash_property_names[classnum]; 12732 12733 /* If returning the inversion list, we can't defer 12734 * getting this until runtime */ 12735 if (ret_invlist && ! PL_utf8_swash_ptrs[classnum]) { 12736 PL_utf8_swash_ptrs[classnum] = 12737 _core_swash_init("utf8", Xname, &PL_sv_undef, 12738 1, /* binary */ 12739 0, /* not tr/// */ 12740 NULL, /* No inversion list */ 12741 NULL /* No flags */ 12742 ); 12743 assert(PL_utf8_swash_ptrs[classnum]); 12744 } 12745 if ( ! PL_utf8_swash_ptrs[classnum]) { 12746 if (namedclass % 2 == 0) { /* A non-complemented 12747 class */ 12748 /* If not /a matching, there are code points we 12749 * don't know at compile time. Arrange for the 12750 * unknown matches to be loaded at run-time, if 12751 * needed */ 12752 if (! AT_LEAST_ASCII_RESTRICTED) { 12753 Perl_sv_catpvf(aTHX_ listsv, "+utf8::%s\n", 12754 Xname); 12755 } 12756 if (LOC) { /* Under locale, set run-time 12757 lookup */ 12758 ANYOF_CLASS_SET(ret, namedclass); 12759 } 12760 else { 12761 /* Add the current class's code points to 12762 * the running total */ 12763 _invlist_union(posixes, 12764 (AT_LEAST_ASCII_RESTRICTED) 12765 ? ascii_source 12766 : l1_source, 12767 &posixes); 12768 } 12769 } 12770 else { /* A complemented class */ 12771 if (AT_LEAST_ASCII_RESTRICTED) { 12772 /* Under /a should match everything above 12773 * ASCII, plus the complement of the set's 12774 * ASCII matches */ 12775 _invlist_union_complement_2nd(posixes, 12776 ascii_source, 12777 &posixes); 12778 } 12779 else { 12780 /* Arrange for the unknown matches to be 12781 * loaded at run-time, if needed */ 12782 Perl_sv_catpvf(aTHX_ listsv, "!utf8::%s\n", 12783 Xname); 12784 runtime_posix_matches_above_Unicode = TRUE; 12785 if (LOC) { 12786 ANYOF_CLASS_SET(ret, namedclass); 12787 } 12788 else { 12789 12790 /* We want to match everything in 12791 * Latin1, except those things that 12792 * l1_source matches */ 12793 SV* scratch_list = NULL; 12794 _invlist_subtract(PL_Latin1, l1_source, 12795 &scratch_list); 12796 12797 /* Add the list from this class to the 12798 * running total */ 12799 if (! posixes) { 12800 posixes = scratch_list; 12801 } 12802 else { 12803 _invlist_union(posixes, 12804 scratch_list, 12805 &posixes); 12806 SvREFCNT_dec_NN(scratch_list); 12807 } 12808 if (DEPENDS_SEMANTICS) { 12809 ANYOF_FLAGS(ret) 12810 |= ANYOF_NON_UTF8_LATIN1_ALL; 12811 } 12812 } 12813 } 12814 } 12815 goto namedclass_done; 12816 } 12817 12818 /* Here, there is a swash loaded for the class. If no 12819 * inversion list for it yet, get it */ 12820 if (! PL_XPosix_ptrs[classnum]) { 12821 PL_XPosix_ptrs[classnum] 12822 = _swash_to_invlist(PL_utf8_swash_ptrs[classnum]); 12823 } 12824 } 12825 12826 /* Here there is an inversion list already loaded for the 12827 * entire class */ 12828 12829 if (namedclass % 2 == 0) { /* A non-complemented class, 12830 like ANYOF_PUNCT */ 12831 if (! LOC) { 12832 /* For non-locale, just add it to any existing list 12833 * */ 12834 _invlist_union(posixes, 12835 (AT_LEAST_ASCII_RESTRICTED) 12836 ? ascii_source 12837 : PL_XPosix_ptrs[classnum], 12838 &posixes); 12839 } 12840 else { /* Locale */ 12841 SV* scratch_list = NULL; 12842 12843 /* For above Latin1 code points, we use the full 12844 * Unicode range */ 12845 _invlist_intersection(PL_AboveLatin1, 12846 PL_XPosix_ptrs[classnum], 12847 &scratch_list); 12848 /* And set the output to it, adding instead if 12849 * there already is an output. Checking if 12850 * 'posixes' is NULL first saves an extra clone. 12851 * Its reference count will be decremented at the 12852 * next union, etc, or if this is the only 12853 * instance, at the end of the routine */ 12854 if (! posixes) { 12855 posixes = scratch_list; 12856 } 12857 else { 12858 _invlist_union(posixes, scratch_list, &posixes); 12859 SvREFCNT_dec_NN(scratch_list); 12860 } 12861 12862 #ifndef HAS_ISBLANK 12863 if (namedclass != ANYOF_BLANK) { 12864 #endif 12865 /* Set this class in the node for runtime 12866 * matching */ 12867 ANYOF_CLASS_SET(ret, namedclass); 12868 #ifndef HAS_ISBLANK 12869 } 12870 else { 12871 /* No isblank(), use the hard-coded ASCII-range 12872 * blanks, adding them to the running total. */ 12873 12874 _invlist_union(posixes, ascii_source, &posixes); 12875 } 12876 #endif 12877 } 12878 } 12879 else { /* A complemented class, like ANYOF_NPUNCT */ 12880 if (! LOC) { 12881 _invlist_union_complement_2nd( 12882 posixes, 12883 (AT_LEAST_ASCII_RESTRICTED) 12884 ? ascii_source 12885 : PL_XPosix_ptrs[classnum], 12886 &posixes); 12887 /* Under /d, everything in the upper half of the 12888 * Latin1 range matches this complement */ 12889 if (DEPENDS_SEMANTICS) { 12890 ANYOF_FLAGS(ret) |= ANYOF_NON_UTF8_LATIN1_ALL; 12891 } 12892 } 12893 else { /* Locale */ 12894 SV* scratch_list = NULL; 12895 _invlist_subtract(PL_AboveLatin1, 12896 PL_XPosix_ptrs[classnum], 12897 &scratch_list); 12898 if (! posixes) { 12899 posixes = scratch_list; 12900 } 12901 else { 12902 _invlist_union(posixes, scratch_list, &posixes); 12903 SvREFCNT_dec_NN(scratch_list); 12904 } 12905 #ifndef HAS_ISBLANK 12906 if (namedclass != ANYOF_NBLANK) { 12907 #endif 12908 ANYOF_CLASS_SET(ret, namedclass); 12909 #ifndef HAS_ISBLANK 12910 } 12911 else { 12912 /* Get the list of all code points in Latin1 12913 * that are not ASCII blanks, and add them to 12914 * the running total */ 12915 _invlist_subtract(PL_Latin1, ascii_source, 12916 &scratch_list); 12917 _invlist_union(posixes, scratch_list, &posixes); 12918 SvREFCNT_dec_NN(scratch_list); 12919 } 12920 #endif 12921 } 12922 } 12923 } 12924 namedclass_done: 12925 continue; /* Go get next character */ 12926 } 12927 } /* end of namedclass \blah */ 12928 12929 /* Here, we have a single value. If 'range' is set, it is the ending 12930 * of a range--check its validity. Later, we will handle each 12931 * individual code point in the range. If 'range' isn't set, this 12932 * could be the beginning of a range, so check for that by looking 12933 * ahead to see if the next real character to be processed is the range 12934 * indicator--the minus sign */ 12935 12936 if (skip_white) { 12937 RExC_parse = regpatws(pRExC_state, RExC_parse, 12938 FALSE /* means don't recognize comments */); 12939 } 12940 12941 if (range) { 12942 if (prevvalue > value) /* b-a */ { 12943 const int w = RExC_parse - rangebegin; 12944 Simple_vFAIL4("Invalid [] range \"%*.*s\"", w, w, rangebegin); 12945 range = 0; /* not a valid range */ 12946 } 12947 } 12948 else { 12949 prevvalue = value; /* save the beginning of the potential range */ 12950 if (! stop_at_1 /* Can't be a range if parsing just one thing */ 12951 && *RExC_parse == '-') 12952 { 12953 char* next_char_ptr = RExC_parse + 1; 12954 if (skip_white) { /* Get the next real char after the '-' */ 12955 next_char_ptr = regpatws(pRExC_state, 12956 RExC_parse + 1, 12957 FALSE); /* means don't recognize 12958 comments */ 12959 } 12960 12961 /* If the '-' is at the end of the class (just before the ']', 12962 * it is a literal minus; otherwise it is a range */ 12963 if (next_char_ptr < RExC_end && *next_char_ptr != ']') { 12964 RExC_parse = next_char_ptr; 12965 12966 /* a bad range like \w-, [:word:]- ? */ 12967 if (namedclass > OOB_NAMEDCLASS) { 12968 if (strict || ckWARN(WARN_REGEXP)) { 12969 const int w = 12970 RExC_parse >= rangebegin ? 12971 RExC_parse - rangebegin : 0; 12972 if (strict) { 12973 vFAIL4("False [] range \"%*.*s\"", 12974 w, w, rangebegin); 12975 } 12976 else { 12977 vWARN4(RExC_parse, 12978 "False [] range \"%*.*s\"", 12979 w, w, rangebegin); 12980 } 12981 } 12982 if (!SIZE_ONLY) { 12983 cp_list = add_cp_to_invlist(cp_list, '-'); 12984 } 12985 element_count++; 12986 } else 12987 range = 1; /* yeah, it's a range! */ 12988 continue; /* but do it the next time */ 12989 } 12990 } 12991 } 12992 12993 /* Here, <prevvalue> is the beginning of the range, if any; or <value> 12994 * if not */ 12995 12996 /* non-Latin1 code point implies unicode semantics. Must be set in 12997 * pass1 so is there for the whole of pass 2 */ 12998 if (value > 255) { 12999 RExC_uni_semantics = 1; 13000 } 13001 13002 /* Ready to process either the single value, or the completed range. 13003 * For single-valued non-inverted ranges, we consider the possibility 13004 * of multi-char folds. (We made a conscious decision to not do this 13005 * for the other cases because it can often lead to non-intuitive 13006 * results. For example, you have the peculiar case that: 13007 * "s s" =~ /^[^\xDF]+$/i => Y 13008 * "ss" =~ /^[^\xDF]+$/i => N 13009 * 13010 * See [perl #89750] */ 13011 if (FOLD && allow_multi_folds && value == prevvalue) { 13012 if (value == LATIN_SMALL_LETTER_SHARP_S 13013 || (value > 255 && _invlist_contains_cp(PL_HasMultiCharFold, 13014 value))) 13015 { 13016 /* Here <value> is indeed a multi-char fold. Get what it is */ 13017 13018 U8 foldbuf[UTF8_MAXBYTES_CASE]; 13019 STRLEN foldlen; 13020 13021 UV folded = _to_uni_fold_flags( 13022 value, 13023 foldbuf, 13024 &foldlen, 13025 FOLD_FLAGS_FULL 13026 | ((LOC) ? FOLD_FLAGS_LOCALE 13027 : (ASCII_FOLD_RESTRICTED) 13028 ? FOLD_FLAGS_NOMIX_ASCII 13029 : 0) 13030 ); 13031 13032 /* Here, <folded> should be the first character of the 13033 * multi-char fold of <value>, with <foldbuf> containing the 13034 * whole thing. But, if this fold is not allowed (because of 13035 * the flags), <fold> will be the same as <value>, and should 13036 * be processed like any other character, so skip the special 13037 * handling */ 13038 if (folded != value) { 13039 13040 /* Skip if we are recursed, currently parsing the class 13041 * again. Otherwise add this character to the list of 13042 * multi-char folds. */ 13043 if (! RExC_in_multi_char_class) { 13044 AV** this_array_ptr; 13045 AV* this_array; 13046 STRLEN cp_count = utf8_length(foldbuf, 13047 foldbuf + foldlen); 13048 SV* multi_fold = sv_2mortal(newSVpvn("", 0)); 13049 13050 Perl_sv_catpvf(aTHX_ multi_fold, "\\x{%"UVXf"}", value); 13051 13052 13053 if (! multi_char_matches) { 13054 multi_char_matches = newAV(); 13055 } 13056 13057 /* <multi_char_matches> is actually an array of arrays. 13058 * There will be one or two top-level elements: [2], 13059 * and/or [3]. The [2] element is an array, each 13060 * element thereof is a character which folds to two 13061 * characters; likewise for [3]. (Unicode guarantees a 13062 * maximum of 3 characters in any fold.) When we 13063 * rewrite the character class below, we will do so 13064 * such that the longest folds are written first, so 13065 * that it prefers the longest matching strings first. 13066 * This is done even if it turns out that any 13067 * quantifier is non-greedy, out of programmer 13068 * laziness. Tom Christiansen has agreed that this is 13069 * ok. This makes the test for the ligature 'ffi' come 13070 * before the test for 'ff' */ 13071 if (av_exists(multi_char_matches, cp_count)) { 13072 this_array_ptr = (AV**) av_fetch(multi_char_matches, 13073 cp_count, FALSE); 13074 this_array = *this_array_ptr; 13075 } 13076 else { 13077 this_array = newAV(); 13078 av_store(multi_char_matches, cp_count, 13079 (SV*) this_array); 13080 } 13081 av_push(this_array, multi_fold); 13082 } 13083 13084 /* This element should not be processed further in this 13085 * class */ 13086 element_count--; 13087 value = save_value; 13088 prevvalue = save_prevvalue; 13089 continue; 13090 } 13091 } 13092 } 13093 13094 /* Deal with this element of the class */ 13095 if (! SIZE_ONLY) { 13096 #ifndef EBCDIC 13097 cp_list = _add_range_to_invlist(cp_list, prevvalue, value); 13098 #else 13099 SV* this_range = _new_invlist(1); 13100 _append_range_to_invlist(this_range, prevvalue, value); 13101 13102 /* In EBCDIC, the ranges 'A-Z' and 'a-z' are each not contiguous. 13103 * If this range was specified using something like 'i-j', we want 13104 * to include only the 'i' and the 'j', and not anything in 13105 * between, so exclude non-ASCII, non-alphabetics from it. 13106 * However, if the range was specified with something like 13107 * [\x89-\x91] or [\x89-j], all code points within it should be 13108 * included. literal_endpoint==2 means both ends of the range used 13109 * a literal character, not \x{foo} */ 13110 if (literal_endpoint == 2 13111 && (prevvalue >= 'a' && value <= 'z') 13112 || (prevvalue >= 'A' && value <= 'Z')) 13113 { 13114 _invlist_intersection(this_range, PL_Posix_ptrs[_CC_ALPHA], 13115 &this_range); 13116 } 13117 _invlist_union(cp_list, this_range, &cp_list); 13118 literal_endpoint = 0; 13119 #endif 13120 } 13121 13122 range = 0; /* this range (if it was one) is done now */ 13123 } /* End of loop through all the text within the brackets */ 13124 13125 /* If anything in the class expands to more than one character, we have to 13126 * deal with them by building up a substitute parse string, and recursively 13127 * calling reg() on it, instead of proceeding */ 13128 if (multi_char_matches) { 13129 SV * substitute_parse = newSVpvn_flags("?:", 2, SVs_TEMP); 13130 I32 cp_count; 13131 STRLEN len; 13132 char *save_end = RExC_end; 13133 char *save_parse = RExC_parse; 13134 bool first_time = TRUE; /* First multi-char occurrence doesn't get 13135 a "|" */ 13136 I32 reg_flags; 13137 13138 assert(! invert); 13139 #if 0 /* Have decided not to deal with multi-char folds in inverted classes, 13140 because too confusing */ 13141 if (invert) { 13142 sv_catpv(substitute_parse, "(?:"); 13143 } 13144 #endif 13145 13146 /* Look at the longest folds first */ 13147 for (cp_count = av_len(multi_char_matches); cp_count > 0; cp_count--) { 13148 13149 if (av_exists(multi_char_matches, cp_count)) { 13150 AV** this_array_ptr; 13151 SV* this_sequence; 13152 13153 this_array_ptr = (AV**) av_fetch(multi_char_matches, 13154 cp_count, FALSE); 13155 while ((this_sequence = av_pop(*this_array_ptr)) != 13156 &PL_sv_undef) 13157 { 13158 if (! first_time) { 13159 sv_catpv(substitute_parse, "|"); 13160 } 13161 first_time = FALSE; 13162 13163 sv_catpv(substitute_parse, SvPVX(this_sequence)); 13164 } 13165 } 13166 } 13167 13168 /* If the character class contains anything else besides these 13169 * multi-character folds, have to include it in recursive parsing */ 13170 if (element_count) { 13171 sv_catpv(substitute_parse, "|["); 13172 sv_catpvn(substitute_parse, orig_parse, RExC_parse - orig_parse); 13173 sv_catpv(substitute_parse, "]"); 13174 } 13175 13176 sv_catpv(substitute_parse, ")"); 13177 #if 0 13178 if (invert) { 13179 /* This is a way to get the parse to skip forward a whole named 13180 * sequence instead of matching the 2nd character when it fails the 13181 * first */ 13182 sv_catpv(substitute_parse, "(*THEN)(*SKIP)(*FAIL)|.)"); 13183 } 13184 #endif 13185 13186 RExC_parse = SvPV(substitute_parse, len); 13187 RExC_end = RExC_parse + len; 13188 RExC_in_multi_char_class = 1; 13189 RExC_emit = (regnode *)orig_emit; 13190 13191 ret = reg(pRExC_state, 1, ®_flags, depth+1); 13192 13193 *flagp |= reg_flags&(HASWIDTH|SIMPLE|SPSTART|POSTPONED|RESTART_UTF8); 13194 13195 RExC_parse = save_parse; 13196 RExC_end = save_end; 13197 RExC_in_multi_char_class = 0; 13198 SvREFCNT_dec_NN(multi_char_matches); 13199 return ret; 13200 } 13201 13202 /* If the character class contains only a single element, it may be 13203 * optimizable into another node type which is smaller and runs faster. 13204 * Check if this is the case for this class */ 13205 if (element_count == 1 && ! ret_invlist) { 13206 U8 op = END; 13207 U8 arg = 0; 13208 13209 if (namedclass > OOB_NAMEDCLASS) { /* this is a named class, like \w or 13210 [:digit:] or \p{foo} */ 13211 13212 /* All named classes are mapped into POSIXish nodes, with its FLAG 13213 * argument giving which class it is */ 13214 switch ((I32)namedclass) { 13215 case ANYOF_UNIPROP: 13216 break; 13217 13218 /* These don't depend on the charset modifiers. They always 13219 * match under /u rules */ 13220 case ANYOF_NHORIZWS: 13221 case ANYOF_HORIZWS: 13222 namedclass = ANYOF_BLANK + namedclass - ANYOF_HORIZWS; 13223 /* FALLTHROUGH */ 13224 13225 case ANYOF_NVERTWS: 13226 case ANYOF_VERTWS: 13227 op = POSIXU; 13228 goto join_posix; 13229 13230 /* The actual POSIXish node for all the rest depends on the 13231 * charset modifier. The ones in the first set depend only on 13232 * ASCII or, if available on this platform, locale */ 13233 case ANYOF_ASCII: 13234 case ANYOF_NASCII: 13235 #ifdef HAS_ISASCII 13236 op = (LOC) ? POSIXL : POSIXA; 13237 #else 13238 op = POSIXA; 13239 #endif 13240 goto join_posix; 13241 13242 case ANYOF_NCASED: 13243 case ANYOF_LOWER: 13244 case ANYOF_NLOWER: 13245 case ANYOF_UPPER: 13246 case ANYOF_NUPPER: 13247 /* under /a could be alpha */ 13248 if (FOLD) { 13249 if (ASCII_RESTRICTED) { 13250 namedclass = ANYOF_ALPHA + (namedclass % 2); 13251 } 13252 else if (! LOC) { 13253 break; 13254 } 13255 } 13256 /* FALLTHROUGH */ 13257 13258 /* The rest have more possibilities depending on the charset. 13259 * We take advantage of the enum ordering of the charset 13260 * modifiers to get the exact node type, */ 13261 default: 13262 op = POSIXD + get_regex_charset(RExC_flags); 13263 if (op > POSIXA) { /* /aa is same as /a */ 13264 op = POSIXA; 13265 } 13266 #ifndef HAS_ISBLANK 13267 if (op == POSIXL 13268 && (namedclass == ANYOF_BLANK 13269 || namedclass == ANYOF_NBLANK)) 13270 { 13271 op = POSIXA; 13272 } 13273 #endif 13274 13275 join_posix: 13276 /* The odd numbered ones are the complements of the 13277 * next-lower even number one */ 13278 if (namedclass % 2 == 1) { 13279 invert = ! invert; 13280 namedclass--; 13281 } 13282 arg = namedclass_to_classnum(namedclass); 13283 break; 13284 } 13285 } 13286 else if (value == prevvalue) { 13287 13288 /* Here, the class consists of just a single code point */ 13289 13290 if (invert) { 13291 if (! LOC && value == '\n') { 13292 op = REG_ANY; /* Optimize [^\n] */ 13293 *flagp |= HASWIDTH|SIMPLE; 13294 RExC_naughty++; 13295 } 13296 } 13297 else if (value < 256 || UTF) { 13298 13299 /* Optimize a single value into an EXACTish node, but not if it 13300 * would require converting the pattern to UTF-8. */ 13301 op = compute_EXACTish(pRExC_state); 13302 } 13303 } /* Otherwise is a range */ 13304 else if (! LOC) { /* locale could vary these */ 13305 if (prevvalue == '0') { 13306 if (value == '9') { 13307 arg = _CC_DIGIT; 13308 op = POSIXA; 13309 } 13310 } 13311 } 13312 13313 /* Here, we have changed <op> away from its initial value iff we found 13314 * an optimization */ 13315 if (op != END) { 13316 13317 /* Throw away this ANYOF regnode, and emit the calculated one, 13318 * which should correspond to the beginning, not current, state of 13319 * the parse */ 13320 const char * cur_parse = RExC_parse; 13321 RExC_parse = (char *)orig_parse; 13322 if ( SIZE_ONLY) { 13323 if (! LOC) { 13324 13325 /* To get locale nodes to not use the full ANYOF size would 13326 * require moving the code above that writes the portions 13327 * of it that aren't in other nodes to after this point. 13328 * e.g. ANYOF_CLASS_SET */ 13329 RExC_size = orig_size; 13330 } 13331 } 13332 else { 13333 RExC_emit = (regnode *)orig_emit; 13334 if (PL_regkind[op] == POSIXD) { 13335 if (invert) { 13336 op += NPOSIXD - POSIXD; 13337 } 13338 } 13339 } 13340 13341 ret = reg_node(pRExC_state, op); 13342 13343 if (PL_regkind[op] == POSIXD || PL_regkind[op] == NPOSIXD) { 13344 if (! SIZE_ONLY) { 13345 FLAGS(ret) = arg; 13346 } 13347 *flagp |= HASWIDTH|SIMPLE; 13348 } 13349 else if (PL_regkind[op] == EXACT) { 13350 alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, 0, value); 13351 } 13352 13353 RExC_parse = (char *) cur_parse; 13354 13355 SvREFCNT_dec(posixes); 13356 SvREFCNT_dec(cp_list); 13357 return ret; 13358 } 13359 } 13360 13361 if (SIZE_ONLY) 13362 return ret; 13363 /****** !SIZE_ONLY (Pass 2) AFTER HERE *********/ 13364 13365 /* If folding, we calculate all characters that could fold to or from the 13366 * ones already on the list */ 13367 if (FOLD && cp_list) { 13368 UV start, end; /* End points of code point ranges */ 13369 13370 SV* fold_intersection = NULL; 13371 13372 /* If the highest code point is within Latin1, we can use the 13373 * compiled-in Alphas list, and not have to go out to disk. This 13374 * yields two false positives, the masculine and feminine ordinal 13375 * indicators, which are weeded out below using the 13376 * IS_IN_SOME_FOLD_L1() macro */ 13377 if (invlist_highest(cp_list) < 256) { 13378 _invlist_intersection(PL_L1Posix_ptrs[_CC_ALPHA], cp_list, 13379 &fold_intersection); 13380 } 13381 else { 13382 13383 /* Here, there are non-Latin1 code points, so we will have to go 13384 * fetch the list of all the characters that participate in folds 13385 */ 13386 if (! PL_utf8_foldable) { 13387 SV* swash = swash_init("utf8", "_Perl_Any_Folds", 13388 &PL_sv_undef, 1, 0); 13389 PL_utf8_foldable = _get_swash_invlist(swash); 13390 SvREFCNT_dec_NN(swash); 13391 } 13392 13393 /* This is a hash that for a particular fold gives all characters 13394 * that are involved in it */ 13395 if (! PL_utf8_foldclosures) { 13396 13397 /* If we were unable to find any folds, then we likely won't be 13398 * able to find the closures. So just create an empty list. 13399 * Folding will effectively be restricted to the non-Unicode 13400 * rules hard-coded into Perl. (This case happens legitimately 13401 * during compilation of Perl itself before the Unicode tables 13402 * are generated) */ 13403 if (_invlist_len(PL_utf8_foldable) == 0) { 13404 PL_utf8_foldclosures = newHV(); 13405 } 13406 else { 13407 /* If the folds haven't been read in, call a fold function 13408 * to force that */ 13409 if (! PL_utf8_tofold) { 13410 U8 dummy[UTF8_MAXBYTES+1]; 13411 13412 /* This string is just a short named one above \xff */ 13413 to_utf8_fold((U8*) HYPHEN_UTF8, dummy, NULL); 13414 assert(PL_utf8_tofold); /* Verify that worked */ 13415 } 13416 PL_utf8_foldclosures = 13417 _swash_inversion_hash(PL_utf8_tofold); 13418 } 13419 } 13420 13421 /* Only the characters in this class that participate in folds need 13422 * be checked. Get the intersection of this class and all the 13423 * possible characters that are foldable. This can quickly narrow 13424 * down a large class */ 13425 _invlist_intersection(PL_utf8_foldable, cp_list, 13426 &fold_intersection); 13427 } 13428 13429 /* Now look at the foldable characters in this class individually */ 13430 invlist_iterinit(fold_intersection); 13431 while (invlist_iternext(fold_intersection, &start, &end)) { 13432 UV j; 13433 13434 /* Locale folding for Latin1 characters is deferred until runtime */ 13435 if (LOC && start < 256) { 13436 start = 256; 13437 } 13438 13439 /* Look at every character in the range */ 13440 for (j = start; j <= end; j++) { 13441 13442 U8 foldbuf[UTF8_MAXBYTES_CASE+1]; 13443 STRLEN foldlen; 13444 SV** listp; 13445 13446 if (j < 256) { 13447 13448 /* We have the latin1 folding rules hard-coded here so that 13449 * an innocent-looking character class, like /[ks]/i won't 13450 * have to go out to disk to find the possible matches. 13451 * XXX It would be better to generate these via regen, in 13452 * case a new version of the Unicode standard adds new 13453 * mappings, though that is not really likely, and may be 13454 * caught by the default: case of the switch below. */ 13455 13456 if (IS_IN_SOME_FOLD_L1(j)) { 13457 13458 /* ASCII is always matched; non-ASCII is matched only 13459 * under Unicode rules */ 13460 if (isASCII(j) || AT_LEAST_UNI_SEMANTICS) { 13461 cp_list = 13462 add_cp_to_invlist(cp_list, PL_fold_latin1[j]); 13463 } 13464 else { 13465 depends_list = 13466 add_cp_to_invlist(depends_list, PL_fold_latin1[j]); 13467 } 13468 } 13469 13470 if (HAS_NONLATIN1_FOLD_CLOSURE(j) 13471 && (! isASCII(j) || ! ASCII_FOLD_RESTRICTED)) 13472 { 13473 /* Certain Latin1 characters have matches outside 13474 * Latin1. To get here, <j> is one of those 13475 * characters. None of these matches is valid for 13476 * ASCII characters under /aa, which is why the 'if' 13477 * just above excludes those. These matches only 13478 * happen when the target string is utf8. The code 13479 * below adds the single fold closures for <j> to the 13480 * inversion list. */ 13481 switch (j) { 13482 case 'k': 13483 case 'K': 13484 cp_list = 13485 add_cp_to_invlist(cp_list, KELVIN_SIGN); 13486 break; 13487 case 's': 13488 case 'S': 13489 cp_list = add_cp_to_invlist(cp_list, 13490 LATIN_SMALL_LETTER_LONG_S); 13491 break; 13492 case MICRO_SIGN: 13493 cp_list = add_cp_to_invlist(cp_list, 13494 GREEK_CAPITAL_LETTER_MU); 13495 cp_list = add_cp_to_invlist(cp_list, 13496 GREEK_SMALL_LETTER_MU); 13497 break; 13498 case LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE: 13499 case LATIN_SMALL_LETTER_A_WITH_RING_ABOVE: 13500 cp_list = 13501 add_cp_to_invlist(cp_list, ANGSTROM_SIGN); 13502 break; 13503 case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS: 13504 cp_list = add_cp_to_invlist(cp_list, 13505 LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS); 13506 break; 13507 case LATIN_SMALL_LETTER_SHARP_S: 13508 cp_list = add_cp_to_invlist(cp_list, 13509 LATIN_CAPITAL_LETTER_SHARP_S); 13510 break; 13511 case 'F': case 'f': 13512 case 'I': case 'i': 13513 case 'L': case 'l': 13514 case 'T': case 't': 13515 case 'A': case 'a': 13516 case 'H': case 'h': 13517 case 'J': case 'j': 13518 case 'N': case 'n': 13519 case 'W': case 'w': 13520 case 'Y': case 'y': 13521 /* These all are targets of multi-character 13522 * folds from code points that require UTF8 to 13523 * express, so they can't match unless the 13524 * target string is in UTF-8, so no action here 13525 * is necessary, as regexec.c properly handles 13526 * the general case for UTF-8 matching and 13527 * multi-char folds */ 13528 break; 13529 default: 13530 /* Use deprecated warning to increase the 13531 * chances of this being output */ 13532 ckWARN2regdep(RExC_parse, "Perl folding rules are not up-to-date for 0x%"UVXf"; please use the perlbug utility to report;", j); 13533 break; 13534 } 13535 } 13536 continue; 13537 } 13538 13539 /* Here is an above Latin1 character. We don't have the rules 13540 * hard-coded for it. First, get its fold. This is the simple 13541 * fold, as the multi-character folds have been handled earlier 13542 * and separated out */ 13543 _to_uni_fold_flags(j, foldbuf, &foldlen, 13544 ((LOC) 13545 ? FOLD_FLAGS_LOCALE 13546 : (ASCII_FOLD_RESTRICTED) 13547 ? FOLD_FLAGS_NOMIX_ASCII 13548 : 0)); 13549 13550 /* Single character fold of above Latin1. Add everything in 13551 * its fold closure to the list that this node should match. 13552 * The fold closures data structure is a hash with the keys 13553 * being the UTF-8 of every character that is folded to, like 13554 * 'k', and the values each an array of all code points that 13555 * fold to its key. e.g. [ 'k', 'K', KELVIN_SIGN ]. 13556 * Multi-character folds are not included */ 13557 if ((listp = hv_fetch(PL_utf8_foldclosures, 13558 (char *) foldbuf, foldlen, FALSE))) 13559 { 13560 AV* list = (AV*) *listp; 13561 IV k; 13562 for (k = 0; k <= av_len(list); k++) { 13563 SV** c_p = av_fetch(list, k, FALSE); 13564 UV c; 13565 if (c_p == NULL) { 13566 Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure"); 13567 } 13568 c = SvUV(*c_p); 13569 13570 /* /aa doesn't allow folds between ASCII and non-; /l 13571 * doesn't allow them between above and below 256 */ 13572 if ((ASCII_FOLD_RESTRICTED 13573 && (isASCII(c) != isASCII(j))) 13574 || (LOC && ((c < 256) != (j < 256)))) 13575 { 13576 continue; 13577 } 13578 13579 /* Folds involving non-ascii Latin1 characters 13580 * under /d are added to a separate list */ 13581 if (isASCII(c) || c > 255 || AT_LEAST_UNI_SEMANTICS) 13582 { 13583 cp_list = add_cp_to_invlist(cp_list, c); 13584 } 13585 else { 13586 depends_list = add_cp_to_invlist(depends_list, c); 13587 } 13588 } 13589 } 13590 } 13591 } 13592 SvREFCNT_dec_NN(fold_intersection); 13593 } 13594 13595 /* And combine the result (if any) with any inversion list from posix 13596 * classes. The lists are kept separate up to now because we don't want to 13597 * fold the classes (folding of those is automatically handled by the swash 13598 * fetching code) */ 13599 if (posixes) { 13600 if (! DEPENDS_SEMANTICS) { 13601 if (cp_list) { 13602 _invlist_union(cp_list, posixes, &cp_list); 13603 SvREFCNT_dec_NN(posixes); 13604 } 13605 else { 13606 cp_list = posixes; 13607 } 13608 } 13609 else { 13610 /* Under /d, we put into a separate list the Latin1 things that 13611 * match only when the target string is utf8 */ 13612 SV* nonascii_but_latin1_properties = NULL; 13613 _invlist_intersection(posixes, PL_Latin1, 13614 &nonascii_but_latin1_properties); 13615 _invlist_subtract(nonascii_but_latin1_properties, PL_ASCII, 13616 &nonascii_but_latin1_properties); 13617 _invlist_subtract(posixes, nonascii_but_latin1_properties, 13618 &posixes); 13619 if (cp_list) { 13620 _invlist_union(cp_list, posixes, &cp_list); 13621 SvREFCNT_dec_NN(posixes); 13622 } 13623 else { 13624 cp_list = posixes; 13625 } 13626 13627 if (depends_list) { 13628 _invlist_union(depends_list, nonascii_but_latin1_properties, 13629 &depends_list); 13630 SvREFCNT_dec_NN(nonascii_but_latin1_properties); 13631 } 13632 else { 13633 depends_list = nonascii_but_latin1_properties; 13634 } 13635 } 13636 } 13637 13638 /* And combine the result (if any) with any inversion list from properties. 13639 * The lists are kept separate up to now so that we can distinguish the two 13640 * in regards to matching above-Unicode. A run-time warning is generated 13641 * if a Unicode property is matched against a non-Unicode code point. But, 13642 * we allow user-defined properties to match anything, without any warning, 13643 * and we also suppress the warning if there is a portion of the character 13644 * class that isn't a Unicode property, and which matches above Unicode, \W 13645 * or [\x{110000}] for example. 13646 * (Note that in this case, unlike the Posix one above, there is no 13647 * <depends_list>, because having a Unicode property forces Unicode 13648 * semantics */ 13649 if (properties) { 13650 bool warn_super = ! has_user_defined_property; 13651 if (cp_list) { 13652 13653 /* If it matters to the final outcome, see if a non-property 13654 * component of the class matches above Unicode. If so, the 13655 * warning gets suppressed. This is true even if just a single 13656 * such code point is specified, as though not strictly correct if 13657 * another such code point is matched against, the fact that they 13658 * are using above-Unicode code points indicates they should know 13659 * the issues involved */ 13660 if (warn_super) { 13661 bool non_prop_matches_above_Unicode = 13662 runtime_posix_matches_above_Unicode 13663 | (invlist_highest(cp_list) > PERL_UNICODE_MAX); 13664 if (invert) { 13665 non_prop_matches_above_Unicode = 13666 ! non_prop_matches_above_Unicode; 13667 } 13668 warn_super = ! non_prop_matches_above_Unicode; 13669 } 13670 13671 _invlist_union(properties, cp_list, &cp_list); 13672 SvREFCNT_dec_NN(properties); 13673 } 13674 else { 13675 cp_list = properties; 13676 } 13677 13678 if (warn_super) { 13679 OP(ret) = ANYOF_WARN_SUPER; 13680 } 13681 } 13682 13683 /* Here, we have calculated what code points should be in the character 13684 * class. 13685 * 13686 * Now we can see about various optimizations. Fold calculation (which we 13687 * did above) needs to take place before inversion. Otherwise /[^k]/i 13688 * would invert to include K, which under /i would match k, which it 13689 * shouldn't. Therefore we can't invert folded locale now, as it won't be 13690 * folded until runtime */ 13691 13692 /* Optimize inverted simple patterns (e.g. [^a-z]) when everything is known 13693 * at compile time. Besides not inverting folded locale now, we can't 13694 * invert if there are things such as \w, which aren't known until runtime 13695 * */ 13696 if (invert 13697 && ! (LOC && (FOLD || (ANYOF_FLAGS(ret) & ANYOF_CLASS))) 13698 && ! depends_list 13699 && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION) 13700 { 13701 _invlist_invert(cp_list); 13702 13703 /* Any swash can't be used as-is, because we've inverted things */ 13704 if (swash) { 13705 SvREFCNT_dec_NN(swash); 13706 swash = NULL; 13707 } 13708 13709 /* Clear the invert flag since have just done it here */ 13710 invert = FALSE; 13711 } 13712 13713 if (ret_invlist) { 13714 *ret_invlist = cp_list; 13715 SvREFCNT_dec(swash); 13716 13717 /* Discard the generated node */ 13718 if (SIZE_ONLY) { 13719 RExC_size = orig_size; 13720 } 13721 else { 13722 RExC_emit = orig_emit; 13723 } 13724 return orig_emit; 13725 } 13726 13727 /* If we didn't do folding, it's because some information isn't available 13728 * until runtime; set the run-time fold flag for these. (We don't have to 13729 * worry about properties folding, as that is taken care of by the swash 13730 * fetching) */ 13731 if (FOLD && LOC) 13732 { 13733 ANYOF_FLAGS(ret) |= ANYOF_LOC_FOLD; 13734 } 13735 13736 /* Some character classes are equivalent to other nodes. Such nodes take 13737 * up less room and generally fewer operations to execute than ANYOF nodes. 13738 * Above, we checked for and optimized into some such equivalents for 13739 * certain common classes that are easy to test. Getting to this point in 13740 * the code means that the class didn't get optimized there. Since this 13741 * code is only executed in Pass 2, it is too late to save space--it has 13742 * been allocated in Pass 1, and currently isn't given back. But turning 13743 * things into an EXACTish node can allow the optimizer to join it to any 13744 * adjacent such nodes. And if the class is equivalent to things like /./, 13745 * expensive run-time swashes can be avoided. Now that we have more 13746 * complete information, we can find things necessarily missed by the 13747 * earlier code. I (khw) am not sure how much to look for here. It would 13748 * be easy, but perhaps too slow, to check any candidates against all the 13749 * node types they could possibly match using _invlistEQ(). */ 13750 13751 if (cp_list 13752 && ! invert 13753 && ! depends_list 13754 && ! (ANYOF_FLAGS(ret) & ANYOF_CLASS) 13755 && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION) 13756 { 13757 UV start, end; 13758 U8 op = END; /* The optimzation node-type */ 13759 const char * cur_parse= RExC_parse; 13760 13761 invlist_iterinit(cp_list); 13762 if (! invlist_iternext(cp_list, &start, &end)) { 13763 13764 /* Here, the list is empty. This happens, for example, when a 13765 * Unicode property is the only thing in the character class, and 13766 * it doesn't match anything. (perluniprops.pod notes such 13767 * properties) */ 13768 op = OPFAIL; 13769 *flagp |= HASWIDTH|SIMPLE; 13770 } 13771 else if (start == end) { /* The range is a single code point */ 13772 if (! invlist_iternext(cp_list, &start, &end) 13773 13774 /* Don't do this optimization if it would require changing 13775 * the pattern to UTF-8 */ 13776 && (start < 256 || UTF)) 13777 { 13778 /* Here, the list contains a single code point. Can optimize 13779 * into an EXACT node */ 13780 13781 value = start; 13782 13783 if (! FOLD) { 13784 op = EXACT; 13785 } 13786 else if (LOC) { 13787 13788 /* A locale node under folding with one code point can be 13789 * an EXACTFL, as its fold won't be calculated until 13790 * runtime */ 13791 op = EXACTFL; 13792 } 13793 else { 13794 13795 /* Here, we are generally folding, but there is only one 13796 * code point to match. If we have to, we use an EXACT 13797 * node, but it would be better for joining with adjacent 13798 * nodes in the optimization pass if we used the same 13799 * EXACTFish node that any such are likely to be. We can 13800 * do this iff the code point doesn't participate in any 13801 * folds. For example, an EXACTF of a colon is the same as 13802 * an EXACT one, since nothing folds to or from a colon. */ 13803 if (value < 256) { 13804 if (IS_IN_SOME_FOLD_L1(value)) { 13805 op = EXACT; 13806 } 13807 } 13808 else { 13809 if (! PL_utf8_foldable) { 13810 SV* swash = swash_init("utf8", "_Perl_Any_Folds", 13811 &PL_sv_undef, 1, 0); 13812 PL_utf8_foldable = _get_swash_invlist(swash); 13813 SvREFCNT_dec_NN(swash); 13814 } 13815 if (_invlist_contains_cp(PL_utf8_foldable, value)) { 13816 op = EXACT; 13817 } 13818 } 13819 13820 /* If we haven't found the node type, above, it means we 13821 * can use the prevailing one */ 13822 if (op == END) { 13823 op = compute_EXACTish(pRExC_state); 13824 } 13825 } 13826 } 13827 } 13828 else if (start == 0) { 13829 if (end == UV_MAX) { 13830 op = SANY; 13831 *flagp |= HASWIDTH|SIMPLE; 13832 RExC_naughty++; 13833 } 13834 else if (end == '\n' - 1 13835 && invlist_iternext(cp_list, &start, &end) 13836 && start == '\n' + 1 && end == UV_MAX) 13837 { 13838 op = REG_ANY; 13839 *flagp |= HASWIDTH|SIMPLE; 13840 RExC_naughty++; 13841 } 13842 } 13843 invlist_iterfinish(cp_list); 13844 13845 if (op != END) { 13846 RExC_parse = (char *)orig_parse; 13847 RExC_emit = (regnode *)orig_emit; 13848 13849 ret = reg_node(pRExC_state, op); 13850 13851 RExC_parse = (char *)cur_parse; 13852 13853 if (PL_regkind[op] == EXACT) { 13854 alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, 0, value); 13855 } 13856 13857 SvREFCNT_dec_NN(cp_list); 13858 return ret; 13859 } 13860 } 13861 13862 /* Here, <cp_list> contains all the code points we can determine at 13863 * compile time that match under all conditions. Go through it, and 13864 * for things that belong in the bitmap, put them there, and delete from 13865 * <cp_list>. While we are at it, see if everything above 255 is in the 13866 * list, and if so, set a flag to speed up execution */ 13867 ANYOF_BITMAP_ZERO(ret); 13868 if (cp_list) { 13869 13870 /* This gets set if we actually need to modify things */ 13871 bool change_invlist = FALSE; 13872 13873 UV start, end; 13874 13875 /* Start looking through <cp_list> */ 13876 invlist_iterinit(cp_list); 13877 while (invlist_iternext(cp_list, &start, &end)) { 13878 UV high; 13879 int i; 13880 13881 if (end == UV_MAX && start <= 256) { 13882 ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL; 13883 } 13884 13885 /* Quit if are above what we should change */ 13886 if (start > 255) { 13887 break; 13888 } 13889 13890 change_invlist = TRUE; 13891 13892 /* Set all the bits in the range, up to the max that we are doing */ 13893 high = (end < 255) ? end : 255; 13894 for (i = start; i <= (int) high; i++) { 13895 if (! ANYOF_BITMAP_TEST(ret, i)) { 13896 ANYOF_BITMAP_SET(ret, i); 13897 prevvalue = value; 13898 value = i; 13899 } 13900 } 13901 } 13902 invlist_iterfinish(cp_list); 13903 13904 /* Done with loop; remove any code points that are in the bitmap from 13905 * <cp_list> */ 13906 if (change_invlist) { 13907 _invlist_subtract(cp_list, PL_Latin1, &cp_list); 13908 } 13909 13910 /* If have completely emptied it, remove it completely */ 13911 if (_invlist_len(cp_list) == 0) { 13912 SvREFCNT_dec_NN(cp_list); 13913 cp_list = NULL; 13914 } 13915 } 13916 13917 if (invert) { 13918 ANYOF_FLAGS(ret) |= ANYOF_INVERT; 13919 } 13920 13921 /* Here, the bitmap has been populated with all the Latin1 code points that 13922 * always match. Can now add to the overall list those that match only 13923 * when the target string is UTF-8 (<depends_list>). */ 13924 if (depends_list) { 13925 if (cp_list) { 13926 _invlist_union(cp_list, depends_list, &cp_list); 13927 SvREFCNT_dec_NN(depends_list); 13928 } 13929 else { 13930 cp_list = depends_list; 13931 } 13932 } 13933 13934 /* If there is a swash and more than one element, we can't use the swash in 13935 * the optimization below. */ 13936 if (swash && element_count > 1) { 13937 SvREFCNT_dec_NN(swash); 13938 swash = NULL; 13939 } 13940 13941 if (! cp_list 13942 && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION) 13943 { 13944 ARG_SET(ret, ANYOF_NONBITMAP_EMPTY); 13945 } 13946 else { 13947 /* av[0] stores the character class description in its textual form: 13948 * used later (regexec.c:Perl_regclass_swash()) to initialize the 13949 * appropriate swash, and is also useful for dumping the regnode. 13950 * av[1] if NULL, is a placeholder to later contain the swash computed 13951 * from av[0]. But if no further computation need be done, the 13952 * swash is stored there now. 13953 * av[2] stores the cp_list inversion list for use in addition or 13954 * instead of av[0]; used only if av[1] is NULL 13955 * av[3] is set if any component of the class is from a user-defined 13956 * property; used only if av[1] is NULL */ 13957 AV * const av = newAV(); 13958 SV *rv; 13959 13960 av_store(av, 0, (HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION) 13961 ? SvREFCNT_inc(listsv) : &PL_sv_undef); 13962 if (swash) { 13963 av_store(av, 1, swash); 13964 SvREFCNT_dec_NN(cp_list); 13965 } 13966 else { 13967 av_store(av, 1, NULL); 13968 if (cp_list) { 13969 av_store(av, 2, cp_list); 13970 av_store(av, 3, newSVuv(has_user_defined_property)); 13971 } 13972 } 13973 13974 rv = newRV_noinc(MUTABLE_SV(av)); 13975 n = add_data(pRExC_state, 1, "s"); 13976 RExC_rxi->data->data[n] = (void*)rv; 13977 ARG_SET(ret, n); 13978 } 13979 13980 *flagp |= HASWIDTH|SIMPLE; 13981 return ret; 13982 } 13983 #undef HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION 13984 13985 13986 /* reg_skipcomment() 13987 13988 Absorbs an /x style # comments from the input stream. 13989 Returns true if there is more text remaining in the stream. 13990 Will set the REG_SEEN_RUN_ON_COMMENT flag if the comment 13991 terminates the pattern without including a newline. 13992 13993 Note its the callers responsibility to ensure that we are 13994 actually in /x mode 13995 13996 */ 13997 13998 STATIC bool 13999 S_reg_skipcomment(pTHX_ RExC_state_t *pRExC_state) 14000 { 14001 bool ended = 0; 14002 14003 PERL_ARGS_ASSERT_REG_SKIPCOMMENT; 14004 14005 while (RExC_parse < RExC_end) 14006 if (*RExC_parse++ == '\n') { 14007 ended = 1; 14008 break; 14009 } 14010 if (!ended) { 14011 /* we ran off the end of the pattern without ending 14012 the comment, so we have to add an \n when wrapping */ 14013 RExC_seen |= REG_SEEN_RUN_ON_COMMENT; 14014 return 0; 14015 } else 14016 return 1; 14017 } 14018 14019 /* nextchar() 14020 14021 Advances the parse position, and optionally absorbs 14022 "whitespace" from the inputstream. 14023 14024 Without /x "whitespace" means (?#...) style comments only, 14025 with /x this means (?#...) and # comments and whitespace proper. 14026 14027 Returns the RExC_parse point from BEFORE the scan occurs. 14028 14029 This is the /x friendly way of saying RExC_parse++. 14030 */ 14031 14032 STATIC char* 14033 S_nextchar(pTHX_ RExC_state_t *pRExC_state) 14034 { 14035 char* const retval = RExC_parse++; 14036 14037 PERL_ARGS_ASSERT_NEXTCHAR; 14038 14039 for (;;) { 14040 if (RExC_end - RExC_parse >= 3 14041 && *RExC_parse == '(' 14042 && RExC_parse[1] == '?' 14043 && RExC_parse[2] == '#') 14044 { 14045 while (*RExC_parse != ')') { 14046 if (RExC_parse == RExC_end) 14047 FAIL("Sequence (?#... not terminated"); 14048 RExC_parse++; 14049 } 14050 RExC_parse++; 14051 continue; 14052 } 14053 if (RExC_flags & RXf_PMf_EXTENDED) { 14054 if (isSPACE(*RExC_parse)) { 14055 RExC_parse++; 14056 continue; 14057 } 14058 else if (*RExC_parse == '#') { 14059 if ( reg_skipcomment( pRExC_state ) ) 14060 continue; 14061 } 14062 } 14063 return retval; 14064 } 14065 } 14066 14067 /* 14068 - reg_node - emit a node 14069 */ 14070 STATIC regnode * /* Location. */ 14071 S_reg_node(pTHX_ RExC_state_t *pRExC_state, U8 op) 14072 { 14073 dVAR; 14074 regnode *ptr; 14075 regnode * const ret = RExC_emit; 14076 GET_RE_DEBUG_FLAGS_DECL; 14077 14078 PERL_ARGS_ASSERT_REG_NODE; 14079 14080 if (SIZE_ONLY) { 14081 SIZE_ALIGN(RExC_size); 14082 RExC_size += 1; 14083 return(ret); 14084 } 14085 if (RExC_emit >= RExC_emit_bound) 14086 Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p", 14087 op, RExC_emit, RExC_emit_bound); 14088 14089 NODE_ALIGN_FILL(ret); 14090 ptr = ret; 14091 FILL_ADVANCE_NODE(ptr, op); 14092 #ifdef RE_TRACK_PATTERN_OFFSETS 14093 if (RExC_offsets) { /* MJD */ 14094 MJD_OFFSET_DEBUG(("%s:%d: (op %s) %s %"UVuf" (len %"UVuf") (max %"UVuf").\n", 14095 "reg_node", __LINE__, 14096 PL_reg_name[op], 14097 (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0] 14098 ? "Overwriting end of array!\n" : "OK", 14099 (UV)(RExC_emit - RExC_emit_start), 14100 (UV)(RExC_parse - RExC_start), 14101 (UV)RExC_offsets[0])); 14102 Set_Node_Offset(RExC_emit, RExC_parse + (op == END)); 14103 } 14104 #endif 14105 RExC_emit = ptr; 14106 return(ret); 14107 } 14108 14109 /* 14110 - reganode - emit a node with an argument 14111 */ 14112 STATIC regnode * /* Location. */ 14113 S_reganode(pTHX_ RExC_state_t *pRExC_state, U8 op, U32 arg) 14114 { 14115 dVAR; 14116 regnode *ptr; 14117 regnode * const ret = RExC_emit; 14118 GET_RE_DEBUG_FLAGS_DECL; 14119 14120 PERL_ARGS_ASSERT_REGANODE; 14121 14122 if (SIZE_ONLY) { 14123 SIZE_ALIGN(RExC_size); 14124 RExC_size += 2; 14125 /* 14126 We can't do this: 14127 14128 assert(2==regarglen[op]+1); 14129 14130 Anything larger than this has to allocate the extra amount. 14131 If we changed this to be: 14132 14133 RExC_size += (1 + regarglen[op]); 14134 14135 then it wouldn't matter. Its not clear what side effect 14136 might come from that so its not done so far. 14137 -- dmq 14138 */ 14139 return(ret); 14140 } 14141 if (RExC_emit >= RExC_emit_bound) 14142 Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p", 14143 op, RExC_emit, RExC_emit_bound); 14144 14145 NODE_ALIGN_FILL(ret); 14146 ptr = ret; 14147 FILL_ADVANCE_NODE_ARG(ptr, op, arg); 14148 #ifdef RE_TRACK_PATTERN_OFFSETS 14149 if (RExC_offsets) { /* MJD */ 14150 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n", 14151 "reganode", 14152 __LINE__, 14153 PL_reg_name[op], 14154 (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0] ? 14155 "Overwriting end of array!\n" : "OK", 14156 (UV)(RExC_emit - RExC_emit_start), 14157 (UV)(RExC_parse - RExC_start), 14158 (UV)RExC_offsets[0])); 14159 Set_Cur_Node_Offset; 14160 } 14161 #endif 14162 RExC_emit = ptr; 14163 return(ret); 14164 } 14165 14166 /* 14167 - reguni - emit (if appropriate) a Unicode character 14168 */ 14169 STATIC STRLEN 14170 S_reguni(pTHX_ const RExC_state_t *pRExC_state, UV uv, char* s) 14171 { 14172 dVAR; 14173 14174 PERL_ARGS_ASSERT_REGUNI; 14175 14176 return SIZE_ONLY ? UNISKIP(uv) : (uvchr_to_utf8((U8*)s, uv) - (U8*)s); 14177 } 14178 14179 /* 14180 - reginsert - insert an operator in front of already-emitted operand 14181 * 14182 * Means relocating the operand. 14183 */ 14184 STATIC void 14185 S_reginsert(pTHX_ RExC_state_t *pRExC_state, U8 op, regnode *opnd, U32 depth) 14186 { 14187 dVAR; 14188 regnode *src; 14189 regnode *dst; 14190 regnode *place; 14191 const int offset = regarglen[(U8)op]; 14192 const int size = NODE_STEP_REGNODE + offset; 14193 GET_RE_DEBUG_FLAGS_DECL; 14194 14195 PERL_ARGS_ASSERT_REGINSERT; 14196 PERL_UNUSED_ARG(depth); 14197 /* (PL_regkind[(U8)op] == CURLY ? EXTRA_STEP_2ARGS : 0); */ 14198 DEBUG_PARSE_FMT("inst"," - %s",PL_reg_name[op]); 14199 if (SIZE_ONLY) { 14200 RExC_size += size; 14201 return; 14202 } 14203 14204 src = RExC_emit; 14205 RExC_emit += size; 14206 dst = RExC_emit; 14207 if (RExC_open_parens) { 14208 int paren; 14209 /*DEBUG_PARSE_FMT("inst"," - %"IVdf, (IV)RExC_npar);*/ 14210 for ( paren=0 ; paren < RExC_npar ; paren++ ) { 14211 if ( RExC_open_parens[paren] >= opnd ) { 14212 /*DEBUG_PARSE_FMT("open"," - %d",size);*/ 14213 RExC_open_parens[paren] += size; 14214 } else { 14215 /*DEBUG_PARSE_FMT("open"," - %s","ok");*/ 14216 } 14217 if ( RExC_close_parens[paren] >= opnd ) { 14218 /*DEBUG_PARSE_FMT("close"," - %d",size);*/ 14219 RExC_close_parens[paren] += size; 14220 } else { 14221 /*DEBUG_PARSE_FMT("close"," - %s","ok");*/ 14222 } 14223 } 14224 } 14225 14226 while (src > opnd) { 14227 StructCopy(--src, --dst, regnode); 14228 #ifdef RE_TRACK_PATTERN_OFFSETS 14229 if (RExC_offsets) { /* MJD 20010112 */ 14230 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s copy %"UVuf" -> %"UVuf" (max %"UVuf").\n", 14231 "reg_insert", 14232 __LINE__, 14233 PL_reg_name[op], 14234 (UV)(dst - RExC_emit_start) > RExC_offsets[0] 14235 ? "Overwriting end of array!\n" : "OK", 14236 (UV)(src - RExC_emit_start), 14237 (UV)(dst - RExC_emit_start), 14238 (UV)RExC_offsets[0])); 14239 Set_Node_Offset_To_R(dst-RExC_emit_start, Node_Offset(src)); 14240 Set_Node_Length_To_R(dst-RExC_emit_start, Node_Length(src)); 14241 } 14242 #endif 14243 } 14244 14245 14246 place = opnd; /* Op node, where operand used to be. */ 14247 #ifdef RE_TRACK_PATTERN_OFFSETS 14248 if (RExC_offsets) { /* MJD */ 14249 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n", 14250 "reginsert", 14251 __LINE__, 14252 PL_reg_name[op], 14253 (UV)(place - RExC_emit_start) > RExC_offsets[0] 14254 ? "Overwriting end of array!\n" : "OK", 14255 (UV)(place - RExC_emit_start), 14256 (UV)(RExC_parse - RExC_start), 14257 (UV)RExC_offsets[0])); 14258 Set_Node_Offset(place, RExC_parse); 14259 Set_Node_Length(place, 1); 14260 } 14261 #endif 14262 src = NEXTOPER(place); 14263 FILL_ADVANCE_NODE(place, op); 14264 Zero(src, offset, regnode); 14265 } 14266 14267 /* 14268 - regtail - set the next-pointer at the end of a node chain of p to val. 14269 - SEE ALSO: regtail_study 14270 */ 14271 /* TODO: All three parms should be const */ 14272 STATIC void 14273 S_regtail(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth) 14274 { 14275 dVAR; 14276 regnode *scan; 14277 GET_RE_DEBUG_FLAGS_DECL; 14278 14279 PERL_ARGS_ASSERT_REGTAIL; 14280 #ifndef DEBUGGING 14281 PERL_UNUSED_ARG(depth); 14282 #endif 14283 14284 if (SIZE_ONLY) 14285 return; 14286 14287 /* Find last node. */ 14288 scan = p; 14289 for (;;) { 14290 regnode * const temp = regnext(scan); 14291 DEBUG_PARSE_r({ 14292 SV * const mysv=sv_newmortal(); 14293 DEBUG_PARSE_MSG((scan==p ? "tail" : "")); 14294 regprop(RExC_rx, mysv, scan); 14295 PerlIO_printf(Perl_debug_log, "~ %s (%d) %s %s\n", 14296 SvPV_nolen_const(mysv), REG_NODE_NUM(scan), 14297 (temp == NULL ? "->" : ""), 14298 (temp == NULL ? PL_reg_name[OP(val)] : "") 14299 ); 14300 }); 14301 if (temp == NULL) 14302 break; 14303 scan = temp; 14304 } 14305 14306 if (reg_off_by_arg[OP(scan)]) { 14307 ARG_SET(scan, val - scan); 14308 } 14309 else { 14310 NEXT_OFF(scan) = val - scan; 14311 } 14312 } 14313 14314 #ifdef DEBUGGING 14315 /* 14316 - regtail_study - set the next-pointer at the end of a node chain of p to val. 14317 - Look for optimizable sequences at the same time. 14318 - currently only looks for EXACT chains. 14319 14320 This is experimental code. The idea is to use this routine to perform 14321 in place optimizations on branches and groups as they are constructed, 14322 with the long term intention of removing optimization from study_chunk so 14323 that it is purely analytical. 14324 14325 Currently only used when in DEBUG mode. The macro REGTAIL_STUDY() is used 14326 to control which is which. 14327 14328 */ 14329 /* TODO: All four parms should be const */ 14330 14331 STATIC U8 14332 S_regtail_study(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth) 14333 { 14334 dVAR; 14335 regnode *scan; 14336 U8 exact = PSEUDO; 14337 #ifdef EXPERIMENTAL_INPLACESCAN 14338 I32 min = 0; 14339 #endif 14340 GET_RE_DEBUG_FLAGS_DECL; 14341 14342 PERL_ARGS_ASSERT_REGTAIL_STUDY; 14343 14344 14345 if (SIZE_ONLY) 14346 return exact; 14347 14348 /* Find last node. */ 14349 14350 scan = p; 14351 for (;;) { 14352 regnode * const temp = regnext(scan); 14353 #ifdef EXPERIMENTAL_INPLACESCAN 14354 if (PL_regkind[OP(scan)] == EXACT) { 14355 bool has_exactf_sharp_s; /* Unexamined in this routine */ 14356 if (join_exact(pRExC_state,scan,&min, &has_exactf_sharp_s, 1,val,depth+1)) 14357 return EXACT; 14358 } 14359 #endif 14360 if ( exact ) { 14361 switch (OP(scan)) { 14362 case EXACT: 14363 case EXACTF: 14364 case EXACTFA: 14365 case EXACTFU: 14366 case EXACTFU_SS: 14367 case EXACTFU_TRICKYFOLD: 14368 case EXACTFL: 14369 if( exact == PSEUDO ) 14370 exact= OP(scan); 14371 else if ( exact != OP(scan) ) 14372 exact= 0; 14373 case NOTHING: 14374 break; 14375 default: 14376 exact= 0; 14377 } 14378 } 14379 DEBUG_PARSE_r({ 14380 SV * const mysv=sv_newmortal(); 14381 DEBUG_PARSE_MSG((scan==p ? "tsdy" : "")); 14382 regprop(RExC_rx, mysv, scan); 14383 PerlIO_printf(Perl_debug_log, "~ %s (%d) -> %s\n", 14384 SvPV_nolen_const(mysv), 14385 REG_NODE_NUM(scan), 14386 PL_reg_name[exact]); 14387 }); 14388 if (temp == NULL) 14389 break; 14390 scan = temp; 14391 } 14392 DEBUG_PARSE_r({ 14393 SV * const mysv_val=sv_newmortal(); 14394 DEBUG_PARSE_MSG(""); 14395 regprop(RExC_rx, mysv_val, val); 14396 PerlIO_printf(Perl_debug_log, "~ attach to %s (%"IVdf") offset to %"IVdf"\n", 14397 SvPV_nolen_const(mysv_val), 14398 (IV)REG_NODE_NUM(val), 14399 (IV)(val - scan) 14400 ); 14401 }); 14402 if (reg_off_by_arg[OP(scan)]) { 14403 ARG_SET(scan, val - scan); 14404 } 14405 else { 14406 NEXT_OFF(scan) = val - scan; 14407 } 14408 14409 return exact; 14410 } 14411 #endif 14412 14413 /* 14414 - regdump - dump a regexp onto Perl_debug_log in vaguely comprehensible form 14415 */ 14416 #ifdef DEBUGGING 14417 static void 14418 S_regdump_extflags(pTHX_ const char *lead, const U32 flags) 14419 { 14420 int bit; 14421 int set=0; 14422 regex_charset cs; 14423 14424 for (bit=0; bit<32; bit++) { 14425 if (flags & (1<<bit)) { 14426 if ((1<<bit) & RXf_PMf_CHARSET) { /* Output separately, below */ 14427 continue; 14428 } 14429 if (!set++ && lead) 14430 PerlIO_printf(Perl_debug_log, "%s",lead); 14431 PerlIO_printf(Perl_debug_log, "%s ",PL_reg_extflags_name[bit]); 14432 } 14433 } 14434 if ((cs = get_regex_charset(flags)) != REGEX_DEPENDS_CHARSET) { 14435 if (!set++ && lead) { 14436 PerlIO_printf(Perl_debug_log, "%s",lead); 14437 } 14438 switch (cs) { 14439 case REGEX_UNICODE_CHARSET: 14440 PerlIO_printf(Perl_debug_log, "UNICODE"); 14441 break; 14442 case REGEX_LOCALE_CHARSET: 14443 PerlIO_printf(Perl_debug_log, "LOCALE"); 14444 break; 14445 case REGEX_ASCII_RESTRICTED_CHARSET: 14446 PerlIO_printf(Perl_debug_log, "ASCII-RESTRICTED"); 14447 break; 14448 case REGEX_ASCII_MORE_RESTRICTED_CHARSET: 14449 PerlIO_printf(Perl_debug_log, "ASCII-MORE_RESTRICTED"); 14450 break; 14451 default: 14452 PerlIO_printf(Perl_debug_log, "UNKNOWN CHARACTER SET"); 14453 break; 14454 } 14455 } 14456 if (lead) { 14457 if (set) 14458 PerlIO_printf(Perl_debug_log, "\n"); 14459 else 14460 PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead); 14461 } 14462 } 14463 #endif 14464 14465 void 14466 Perl_regdump(pTHX_ const regexp *r) 14467 { 14468 #ifdef DEBUGGING 14469 dVAR; 14470 SV * const sv = sv_newmortal(); 14471 SV *dsv= sv_newmortal(); 14472 RXi_GET_DECL(r,ri); 14473 GET_RE_DEBUG_FLAGS_DECL; 14474 14475 PERL_ARGS_ASSERT_REGDUMP; 14476 14477 (void)dumpuntil(r, ri->program, ri->program + 1, NULL, NULL, sv, 0, 0); 14478 14479 /* Header fields of interest. */ 14480 if (r->anchored_substr) { 14481 RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->anchored_substr), 14482 RE_SV_DUMPLEN(r->anchored_substr), 30); 14483 PerlIO_printf(Perl_debug_log, 14484 "anchored %s%s at %"IVdf" ", 14485 s, RE_SV_TAIL(r->anchored_substr), 14486 (IV)r->anchored_offset); 14487 } else if (r->anchored_utf8) { 14488 RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->anchored_utf8), 14489 RE_SV_DUMPLEN(r->anchored_utf8), 30); 14490 PerlIO_printf(Perl_debug_log, 14491 "anchored utf8 %s%s at %"IVdf" ", 14492 s, RE_SV_TAIL(r->anchored_utf8), 14493 (IV)r->anchored_offset); 14494 } 14495 if (r->float_substr) { 14496 RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->float_substr), 14497 RE_SV_DUMPLEN(r->float_substr), 30); 14498 PerlIO_printf(Perl_debug_log, 14499 "floating %s%s at %"IVdf"..%"UVuf" ", 14500 s, RE_SV_TAIL(r->float_substr), 14501 (IV)r->float_min_offset, (UV)r->float_max_offset); 14502 } else if (r->float_utf8) { 14503 RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->float_utf8), 14504 RE_SV_DUMPLEN(r->float_utf8), 30); 14505 PerlIO_printf(Perl_debug_log, 14506 "floating utf8 %s%s at %"IVdf"..%"UVuf" ", 14507 s, RE_SV_TAIL(r->float_utf8), 14508 (IV)r->float_min_offset, (UV)r->float_max_offset); 14509 } 14510 if (r->check_substr || r->check_utf8) 14511 PerlIO_printf(Perl_debug_log, 14512 (const char *) 14513 (r->check_substr == r->float_substr 14514 && r->check_utf8 == r->float_utf8 14515 ? "(checking floating" : "(checking anchored")); 14516 if (r->extflags & RXf_NOSCAN) 14517 PerlIO_printf(Perl_debug_log, " noscan"); 14518 if (r->extflags & RXf_CHECK_ALL) 14519 PerlIO_printf(Perl_debug_log, " isall"); 14520 if (r->check_substr || r->check_utf8) 14521 PerlIO_printf(Perl_debug_log, ") "); 14522 14523 if (ri->regstclass) { 14524 regprop(r, sv, ri->regstclass); 14525 PerlIO_printf(Perl_debug_log, "stclass %s ", SvPVX_const(sv)); 14526 } 14527 if (r->extflags & RXf_ANCH) { 14528 PerlIO_printf(Perl_debug_log, "anchored"); 14529 if (r->extflags & RXf_ANCH_BOL) 14530 PerlIO_printf(Perl_debug_log, "(BOL)"); 14531 if (r->extflags & RXf_ANCH_MBOL) 14532 PerlIO_printf(Perl_debug_log, "(MBOL)"); 14533 if (r->extflags & RXf_ANCH_SBOL) 14534 PerlIO_printf(Perl_debug_log, "(SBOL)"); 14535 if (r->extflags & RXf_ANCH_GPOS) 14536 PerlIO_printf(Perl_debug_log, "(GPOS)"); 14537 PerlIO_putc(Perl_debug_log, ' '); 14538 } 14539 if (r->extflags & RXf_GPOS_SEEN) 14540 PerlIO_printf(Perl_debug_log, "GPOS:%"UVuf" ", (UV)r->gofs); 14541 if (r->intflags & PREGf_SKIP) 14542 PerlIO_printf(Perl_debug_log, "plus "); 14543 if (r->intflags & PREGf_IMPLICIT) 14544 PerlIO_printf(Perl_debug_log, "implicit "); 14545 PerlIO_printf(Perl_debug_log, "minlen %"IVdf" ", (IV)r->minlen); 14546 if (r->extflags & RXf_EVAL_SEEN) 14547 PerlIO_printf(Perl_debug_log, "with eval "); 14548 PerlIO_printf(Perl_debug_log, "\n"); 14549 DEBUG_FLAGS_r(regdump_extflags("r->extflags: ",r->extflags)); 14550 #else 14551 PERL_ARGS_ASSERT_REGDUMP; 14552 PERL_UNUSED_CONTEXT; 14553 PERL_UNUSED_ARG(r); 14554 #endif /* DEBUGGING */ 14555 } 14556 14557 /* 14558 - regprop - printable representation of opcode 14559 */ 14560 #define EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags) \ 14561 STMT_START { \ 14562 if (do_sep) { \ 14563 Perl_sv_catpvf(aTHX_ sv,"%s][%s",PL_colors[1],PL_colors[0]); \ 14564 if (flags & ANYOF_INVERT) \ 14565 /*make sure the invert info is in each */ \ 14566 sv_catpvs(sv, "^"); \ 14567 do_sep = 0; \ 14568 } \ 14569 } STMT_END 14570 14571 void 14572 Perl_regprop(pTHX_ const regexp *prog, SV *sv, const regnode *o) 14573 { 14574 #ifdef DEBUGGING 14575 dVAR; 14576 int k; 14577 14578 /* Should be synchronized with * ANYOF_ #xdefines in regcomp.h */ 14579 static const char * const anyofs[] = { 14580 #if _CC_WORDCHAR != 0 || _CC_DIGIT != 1 || _CC_ALPHA != 2 || _CC_LOWER != 3 \ 14581 || _CC_UPPER != 4 || _CC_PUNCT != 5 || _CC_PRINT != 6 \ 14582 || _CC_ALPHANUMERIC != 7 || _CC_GRAPH != 8 || _CC_CASED != 9 \ 14583 || _CC_SPACE != 10 || _CC_BLANK != 11 || _CC_XDIGIT != 12 \ 14584 || _CC_PSXSPC != 13 || _CC_CNTRL != 14 || _CC_ASCII != 15 \ 14585 || _CC_VERTSPACE != 16 14586 #error Need to adjust order of anyofs[] 14587 #endif 14588 "[\\w]", 14589 "[\\W]", 14590 "[\\d]", 14591 "[\\D]", 14592 "[:alpha:]", 14593 "[:^alpha:]", 14594 "[:lower:]", 14595 "[:^lower:]", 14596 "[:upper:]", 14597 "[:^upper:]", 14598 "[:punct:]", 14599 "[:^punct:]", 14600 "[:print:]", 14601 "[:^print:]", 14602 "[:alnum:]", 14603 "[:^alnum:]", 14604 "[:graph:]", 14605 "[:^graph:]", 14606 "[:cased:]", 14607 "[:^cased:]", 14608 "[\\s]", 14609 "[\\S]", 14610 "[:blank:]", 14611 "[:^blank:]", 14612 "[:xdigit:]", 14613 "[:^xdigit:]", 14614 "[:space:]", 14615 "[:^space:]", 14616 "[:cntrl:]", 14617 "[:^cntrl:]", 14618 "[:ascii:]", 14619 "[:^ascii:]", 14620 "[\\v]", 14621 "[\\V]" 14622 }; 14623 RXi_GET_DECL(prog,progi); 14624 GET_RE_DEBUG_FLAGS_DECL; 14625 14626 PERL_ARGS_ASSERT_REGPROP; 14627 14628 sv_setpvs(sv, ""); 14629 14630 if (OP(o) > REGNODE_MAX) /* regnode.type is unsigned */ 14631 /* It would be nice to FAIL() here, but this may be called from 14632 regexec.c, and it would be hard to supply pRExC_state. */ 14633 Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(o), (int)REGNODE_MAX); 14634 sv_catpv(sv, PL_reg_name[OP(o)]); /* Take off const! */ 14635 14636 k = PL_regkind[OP(o)]; 14637 14638 if (k == EXACT) { 14639 sv_catpvs(sv, " "); 14640 /* Using is_utf8_string() (via PERL_PV_UNI_DETECT) 14641 * is a crude hack but it may be the best for now since 14642 * we have no flag "this EXACTish node was UTF-8" 14643 * --jhi */ 14644 pv_pretty(sv, STRING(o), STR_LEN(o), 60, PL_colors[0], PL_colors[1], 14645 PERL_PV_ESCAPE_UNI_DETECT | 14646 PERL_PV_ESCAPE_NONASCII | 14647 PERL_PV_PRETTY_ELLIPSES | 14648 PERL_PV_PRETTY_LTGT | 14649 PERL_PV_PRETTY_NOCLEAR 14650 ); 14651 } else if (k == TRIE) { 14652 /* print the details of the trie in dumpuntil instead, as 14653 * progi->data isn't available here */ 14654 const char op = OP(o); 14655 const U32 n = ARG(o); 14656 const reg_ac_data * const ac = IS_TRIE_AC(op) ? 14657 (reg_ac_data *)progi->data->data[n] : 14658 NULL; 14659 const reg_trie_data * const trie 14660 = (reg_trie_data*)progi->data->data[!IS_TRIE_AC(op) ? n : ac->trie]; 14661 14662 Perl_sv_catpvf(aTHX_ sv, "-%s",PL_reg_name[o->flags]); 14663 DEBUG_TRIE_COMPILE_r( 14664 Perl_sv_catpvf(aTHX_ sv, 14665 "<S:%"UVuf"/%"IVdf" W:%"UVuf" L:%"UVuf"/%"UVuf" C:%"UVuf"/%"UVuf">", 14666 (UV)trie->startstate, 14667 (IV)trie->statecount-1, /* -1 because of the unused 0 element */ 14668 (UV)trie->wordcount, 14669 (UV)trie->minlen, 14670 (UV)trie->maxlen, 14671 (UV)TRIE_CHARCOUNT(trie), 14672 (UV)trie->uniquecharcount 14673 ) 14674 ); 14675 if ( IS_ANYOF_TRIE(op) || trie->bitmap ) { 14676 int i; 14677 int rangestart = -1; 14678 U8* bitmap = IS_ANYOF_TRIE(op) ? (U8*)ANYOF_BITMAP(o) : (U8*)TRIE_BITMAP(trie); 14679 sv_catpvs(sv, "["); 14680 for (i = 0; i <= 256; i++) { 14681 if (i < 256 && BITMAP_TEST(bitmap,i)) { 14682 if (rangestart == -1) 14683 rangestart = i; 14684 } else if (rangestart != -1) { 14685 if (i <= rangestart + 3) 14686 for (; rangestart < i; rangestart++) 14687 put_byte(sv, rangestart); 14688 else { 14689 put_byte(sv, rangestart); 14690 sv_catpvs(sv, "-"); 14691 put_byte(sv, i - 1); 14692 } 14693 rangestart = -1; 14694 } 14695 } 14696 sv_catpvs(sv, "]"); 14697 } 14698 14699 } else if (k == CURLY) { 14700 if (OP(o) == CURLYM || OP(o) == CURLYN || OP(o) == CURLYX) 14701 Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* Parenth number */ 14702 Perl_sv_catpvf(aTHX_ sv, " {%d,%d}", ARG1(o), ARG2(o)); 14703 } 14704 else if (k == WHILEM && o->flags) /* Ordinal/of */ 14705 Perl_sv_catpvf(aTHX_ sv, "[%d/%d]", o->flags & 0xf, o->flags>>4); 14706 else if (k == REF || k == OPEN || k == CLOSE || k == GROUPP || OP(o)==ACCEPT) { 14707 Perl_sv_catpvf(aTHX_ sv, "%d", (int)ARG(o)); /* Parenth number */ 14708 if ( RXp_PAREN_NAMES(prog) ) { 14709 if ( k != REF || (OP(o) < NREF)) { 14710 AV *list= MUTABLE_AV(progi->data->data[progi->name_list_idx]); 14711 SV **name= av_fetch(list, ARG(o), 0 ); 14712 if (name) 14713 Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name)); 14714 } 14715 else { 14716 AV *list= MUTABLE_AV(progi->data->data[ progi->name_list_idx ]); 14717 SV *sv_dat= MUTABLE_SV(progi->data->data[ ARG( o ) ]); 14718 I32 *nums=(I32*)SvPVX(sv_dat); 14719 SV **name= av_fetch(list, nums[0], 0 ); 14720 I32 n; 14721 if (name) { 14722 for ( n=0; n<SvIVX(sv_dat); n++ ) { 14723 Perl_sv_catpvf(aTHX_ sv, "%s%"IVdf, 14724 (n ? "," : ""), (IV)nums[n]); 14725 } 14726 Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name)); 14727 } 14728 } 14729 } 14730 } else if (k == GOSUB) 14731 Perl_sv_catpvf(aTHX_ sv, "%d[%+d]", (int)ARG(o),(int)ARG2L(o)); /* Paren and offset */ 14732 else if (k == VERB) { 14733 if (!o->flags) 14734 Perl_sv_catpvf(aTHX_ sv, ":%"SVf, 14735 SVfARG((MUTABLE_SV(progi->data->data[ ARG( o ) ])))); 14736 } else if (k == LOGICAL) 14737 Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* 2: embedded, otherwise 1 */ 14738 else if (k == ANYOF) { 14739 int i, rangestart = -1; 14740 const U8 flags = ANYOF_FLAGS(o); 14741 int do_sep = 0; 14742 14743 14744 if (flags & ANYOF_LOCALE) 14745 sv_catpvs(sv, "{loc}"); 14746 if (flags & ANYOF_LOC_FOLD) 14747 sv_catpvs(sv, "{i}"); 14748 Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]); 14749 if (flags & ANYOF_INVERT) 14750 sv_catpvs(sv, "^"); 14751 14752 /* output what the standard cp 0-255 bitmap matches */ 14753 for (i = 0; i <= 256; i++) { 14754 if (i < 256 && ANYOF_BITMAP_TEST(o,i)) { 14755 if (rangestart == -1) 14756 rangestart = i; 14757 } else if (rangestart != -1) { 14758 if (i <= rangestart + 3) 14759 for (; rangestart < i; rangestart++) 14760 put_byte(sv, rangestart); 14761 else { 14762 put_byte(sv, rangestart); 14763 sv_catpvs(sv, "-"); 14764 put_byte(sv, i - 1); 14765 } 14766 do_sep = 1; 14767 rangestart = -1; 14768 } 14769 } 14770 14771 EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags); 14772 /* output any special charclass tests (used entirely under use locale) */ 14773 if (ANYOF_CLASS_TEST_ANY_SET(o)) 14774 for (i = 0; i < (int)(sizeof(anyofs)/sizeof(char*)); i++) 14775 if (ANYOF_CLASS_TEST(o,i)) { 14776 sv_catpv(sv, anyofs[i]); 14777 do_sep = 1; 14778 } 14779 14780 EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags); 14781 14782 if (flags & ANYOF_NON_UTF8_LATIN1_ALL) { 14783 sv_catpvs(sv, "{non-utf8-latin1-all}"); 14784 } 14785 14786 /* output information about the unicode matching */ 14787 if (flags & ANYOF_UNICODE_ALL) 14788 sv_catpvs(sv, "{unicode_all}"); 14789 else if (ANYOF_NONBITMAP(o)) 14790 sv_catpvs(sv, "{unicode}"); 14791 if (flags & ANYOF_NONBITMAP_NON_UTF8) 14792 sv_catpvs(sv, "{outside bitmap}"); 14793 14794 if (ANYOF_NONBITMAP(o)) { 14795 SV *lv; /* Set if there is something outside the bit map */ 14796 SV * const sw = regclass_swash(prog, o, FALSE, &lv, NULL); 14797 bool byte_output = FALSE; /* If something in the bitmap has been 14798 output */ 14799 14800 if (lv && lv != &PL_sv_undef) { 14801 if (sw) { 14802 U8 s[UTF8_MAXBYTES_CASE+1]; 14803 14804 for (i = 0; i <= 256; i++) { /* Look at chars in bitmap */ 14805 uvchr_to_utf8(s, i); 14806 14807 if (i < 256 14808 && ! ANYOF_BITMAP_TEST(o, i) /* Don't duplicate 14809 things already 14810 output as part 14811 of the bitmap */ 14812 && swash_fetch(sw, s, TRUE)) 14813 { 14814 if (rangestart == -1) 14815 rangestart = i; 14816 } else if (rangestart != -1) { 14817 byte_output = TRUE; 14818 if (i <= rangestart + 3) 14819 for (; rangestart < i; rangestart++) { 14820 put_byte(sv, rangestart); 14821 } 14822 else { 14823 put_byte(sv, rangestart); 14824 sv_catpvs(sv, "-"); 14825 put_byte(sv, i-1); 14826 } 14827 rangestart = -1; 14828 } 14829 } 14830 } 14831 14832 { 14833 char *s = savesvpv(lv); 14834 char * const origs = s; 14835 14836 while (*s && *s != '\n') 14837 s++; 14838 14839 if (*s == '\n') { 14840 const char * const t = ++s; 14841 14842 if (byte_output) { 14843 sv_catpvs(sv, " "); 14844 } 14845 14846 while (*s) { 14847 if (*s == '\n') { 14848 14849 /* Truncate very long output */ 14850 if (s - origs > 256) { 14851 Perl_sv_catpvf(aTHX_ sv, 14852 "%.*s...", 14853 (int) (s - origs - 1), 14854 t); 14855 goto out_dump; 14856 } 14857 *s = ' '; 14858 } 14859 else if (*s == '\t') { 14860 *s = '-'; 14861 } 14862 s++; 14863 } 14864 if (s[-1] == ' ') 14865 s[-1] = 0; 14866 14867 sv_catpv(sv, t); 14868 } 14869 14870 out_dump: 14871 14872 Safefree(origs); 14873 } 14874 SvREFCNT_dec_NN(lv); 14875 } 14876 } 14877 14878 Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]); 14879 } 14880 else if (k == POSIXD || k == NPOSIXD) { 14881 U8 index = FLAGS(o) * 2; 14882 if (index > (sizeof(anyofs) / sizeof(anyofs[0]))) { 14883 Perl_sv_catpvf(aTHX_ sv, "[illegal type=%d])", index); 14884 } 14885 else { 14886 sv_catpv(sv, anyofs[index]); 14887 } 14888 } 14889 else if (k == BRANCHJ && (OP(o) == UNLESSM || OP(o) == IFMATCH)) 14890 Perl_sv_catpvf(aTHX_ sv, "[%d]", -(o->flags)); 14891 #else 14892 PERL_UNUSED_CONTEXT; 14893 PERL_UNUSED_ARG(sv); 14894 PERL_UNUSED_ARG(o); 14895 PERL_UNUSED_ARG(prog); 14896 #endif /* DEBUGGING */ 14897 } 14898 14899 SV * 14900 Perl_re_intuit_string(pTHX_ REGEXP * const r) 14901 { /* Assume that RE_INTUIT is set */ 14902 dVAR; 14903 struct regexp *const prog = ReANY(r); 14904 GET_RE_DEBUG_FLAGS_DECL; 14905 14906 PERL_ARGS_ASSERT_RE_INTUIT_STRING; 14907 PERL_UNUSED_CONTEXT; 14908 14909 DEBUG_COMPILE_r( 14910 { 14911 const char * const s = SvPV_nolen_const(prog->check_substr 14912 ? prog->check_substr : prog->check_utf8); 14913 14914 if (!PL_colorset) reginitcolors(); 14915 PerlIO_printf(Perl_debug_log, 14916 "%sUsing REx %ssubstr:%s \"%s%.60s%s%s\"\n", 14917 PL_colors[4], 14918 prog->check_substr ? "" : "utf8 ", 14919 PL_colors[5],PL_colors[0], 14920 s, 14921 PL_colors[1], 14922 (strlen(s) > 60 ? "..." : "")); 14923 } ); 14924 14925 return prog->check_substr ? prog->check_substr : prog->check_utf8; 14926 } 14927 14928 /* 14929 pregfree() 14930 14931 handles refcounting and freeing the perl core regexp structure. When 14932 it is necessary to actually free the structure the first thing it 14933 does is call the 'free' method of the regexp_engine associated to 14934 the regexp, allowing the handling of the void *pprivate; member 14935 first. (This routine is not overridable by extensions, which is why 14936 the extensions free is called first.) 14937 14938 See regdupe and regdupe_internal if you change anything here. 14939 */ 14940 #ifndef PERL_IN_XSUB_RE 14941 void 14942 Perl_pregfree(pTHX_ REGEXP *r) 14943 { 14944 SvREFCNT_dec(r); 14945 } 14946 14947 void 14948 Perl_pregfree2(pTHX_ REGEXP *rx) 14949 { 14950 dVAR; 14951 struct regexp *const r = ReANY(rx); 14952 GET_RE_DEBUG_FLAGS_DECL; 14953 14954 PERL_ARGS_ASSERT_PREGFREE2; 14955 14956 if (r->mother_re) { 14957 ReREFCNT_dec(r->mother_re); 14958 } else { 14959 CALLREGFREE_PVT(rx); /* free the private data */ 14960 SvREFCNT_dec(RXp_PAREN_NAMES(r)); 14961 Safefree(r->xpv_len_u.xpvlenu_pv); 14962 } 14963 if (r->substrs) { 14964 SvREFCNT_dec(r->anchored_substr); 14965 SvREFCNT_dec(r->anchored_utf8); 14966 SvREFCNT_dec(r->float_substr); 14967 SvREFCNT_dec(r->float_utf8); 14968 Safefree(r->substrs); 14969 } 14970 RX_MATCH_COPY_FREE(rx); 14971 #ifdef PERL_ANY_COW 14972 SvREFCNT_dec(r->saved_copy); 14973 #endif 14974 Safefree(r->offs); 14975 SvREFCNT_dec(r->qr_anoncv); 14976 rx->sv_u.svu_rx = 0; 14977 } 14978 14979 /* reg_temp_copy() 14980 14981 This is a hacky workaround to the structural issue of match results 14982 being stored in the regexp structure which is in turn stored in 14983 PL_curpm/PL_reg_curpm. The problem is that due to qr// the pattern 14984 could be PL_curpm in multiple contexts, and could require multiple 14985 result sets being associated with the pattern simultaneously, such 14986 as when doing a recursive match with (??{$qr}) 14987 14988 The solution is to make a lightweight copy of the regexp structure 14989 when a qr// is returned from the code executed by (??{$qr}) this 14990 lightweight copy doesn't actually own any of its data except for 14991 the starp/end and the actual regexp structure itself. 14992 14993 */ 14994 14995 14996 REGEXP * 14997 Perl_reg_temp_copy (pTHX_ REGEXP *ret_x, REGEXP *rx) 14998 { 14999 struct regexp *ret; 15000 struct regexp *const r = ReANY(rx); 15001 const bool islv = ret_x && SvTYPE(ret_x) == SVt_PVLV; 15002 15003 PERL_ARGS_ASSERT_REG_TEMP_COPY; 15004 15005 if (!ret_x) 15006 ret_x = (REGEXP*) newSV_type(SVt_REGEXP); 15007 else { 15008 SvOK_off((SV *)ret_x); 15009 if (islv) { 15010 /* For PVLVs, SvANY points to the xpvlv body while sv_u points 15011 to the regexp. (For SVt_REGEXPs, sv_upgrade has already 15012 made both spots point to the same regexp body.) */ 15013 REGEXP *temp = (REGEXP *)newSV_type(SVt_REGEXP); 15014 assert(!SvPVX(ret_x)); 15015 ret_x->sv_u.svu_rx = temp->sv_any; 15016 temp->sv_any = NULL; 15017 SvFLAGS(temp) = (SvFLAGS(temp) & ~SVTYPEMASK) | SVt_NULL; 15018 SvREFCNT_dec_NN(temp); 15019 /* SvCUR still resides in the xpvlv struct, so the regexp copy- 15020 ing below will not set it. */ 15021 SvCUR_set(ret_x, SvCUR(rx)); 15022 } 15023 } 15024 /* This ensures that SvTHINKFIRST(sv) is true, and hence that 15025 sv_force_normal(sv) is called. */ 15026 SvFAKE_on(ret_x); 15027 ret = ReANY(ret_x); 15028 15029 SvFLAGS(ret_x) |= SvUTF8(rx); 15030 /* We share the same string buffer as the original regexp, on which we 15031 hold a reference count, incremented when mother_re is set below. 15032 The string pointer is copied here, being part of the regexp struct. 15033 */ 15034 memcpy(&(ret->xpv_cur), &(r->xpv_cur), 15035 sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur)); 15036 if (r->offs) { 15037 const I32 npar = r->nparens+1; 15038 Newx(ret->offs, npar, regexp_paren_pair); 15039 Copy(r->offs, ret->offs, npar, regexp_paren_pair); 15040 } 15041 if (r->substrs) { 15042 Newx(ret->substrs, 1, struct reg_substr_data); 15043 StructCopy(r->substrs, ret->substrs, struct reg_substr_data); 15044 15045 SvREFCNT_inc_void(ret->anchored_substr); 15046 SvREFCNT_inc_void(ret->anchored_utf8); 15047 SvREFCNT_inc_void(ret->float_substr); 15048 SvREFCNT_inc_void(ret->float_utf8); 15049 15050 /* check_substr and check_utf8, if non-NULL, point to either their 15051 anchored or float namesakes, and don't hold a second reference. */ 15052 } 15053 RX_MATCH_COPIED_off(ret_x); 15054 #ifdef PERL_ANY_COW 15055 ret->saved_copy = NULL; 15056 #endif 15057 ret->mother_re = ReREFCNT_inc(r->mother_re ? r->mother_re : rx); 15058 SvREFCNT_inc_void(ret->qr_anoncv); 15059 15060 return ret_x; 15061 } 15062 #endif 15063 15064 /* regfree_internal() 15065 15066 Free the private data in a regexp. This is overloadable by 15067 extensions. Perl takes care of the regexp structure in pregfree(), 15068 this covers the *pprivate pointer which technically perl doesn't 15069 know about, however of course we have to handle the 15070 regexp_internal structure when no extension is in use. 15071 15072 Note this is called before freeing anything in the regexp 15073 structure. 15074 */ 15075 15076 void 15077 Perl_regfree_internal(pTHX_ REGEXP * const rx) 15078 { 15079 dVAR; 15080 struct regexp *const r = ReANY(rx); 15081 RXi_GET_DECL(r,ri); 15082 GET_RE_DEBUG_FLAGS_DECL; 15083 15084 PERL_ARGS_ASSERT_REGFREE_INTERNAL; 15085 15086 DEBUG_COMPILE_r({ 15087 if (!PL_colorset) 15088 reginitcolors(); 15089 { 15090 SV *dsv= sv_newmortal(); 15091 RE_PV_QUOTED_DECL(s, RX_UTF8(rx), 15092 dsv, RX_PRECOMP(rx), RX_PRELEN(rx), 60); 15093 PerlIO_printf(Perl_debug_log,"%sFreeing REx:%s %s\n", 15094 PL_colors[4],PL_colors[5],s); 15095 } 15096 }); 15097 #ifdef RE_TRACK_PATTERN_OFFSETS 15098 if (ri->u.offsets) 15099 Safefree(ri->u.offsets); /* 20010421 MJD */ 15100 #endif 15101 if (ri->code_blocks) { 15102 int n; 15103 for (n = 0; n < ri->num_code_blocks; n++) 15104 SvREFCNT_dec(ri->code_blocks[n].src_regex); 15105 Safefree(ri->code_blocks); 15106 } 15107 15108 if (ri->data) { 15109 int n = ri->data->count; 15110 15111 while (--n >= 0) { 15112 /* If you add a ->what type here, update the comment in regcomp.h */ 15113 switch (ri->data->what[n]) { 15114 case 'a': 15115 case 'r': 15116 case 's': 15117 case 'S': 15118 case 'u': 15119 SvREFCNT_dec(MUTABLE_SV(ri->data->data[n])); 15120 break; 15121 case 'f': 15122 Safefree(ri->data->data[n]); 15123 break; 15124 case 'l': 15125 case 'L': 15126 break; 15127 case 'T': 15128 { /* Aho Corasick add-on structure for a trie node. 15129 Used in stclass optimization only */ 15130 U32 refcount; 15131 reg_ac_data *aho=(reg_ac_data*)ri->data->data[n]; 15132 OP_REFCNT_LOCK; 15133 refcount = --aho->refcount; 15134 OP_REFCNT_UNLOCK; 15135 if ( !refcount ) { 15136 PerlMemShared_free(aho->states); 15137 PerlMemShared_free(aho->fail); 15138 /* do this last!!!! */ 15139 PerlMemShared_free(ri->data->data[n]); 15140 PerlMemShared_free(ri->regstclass); 15141 } 15142 } 15143 break; 15144 case 't': 15145 { 15146 /* trie structure. */ 15147 U32 refcount; 15148 reg_trie_data *trie=(reg_trie_data*)ri->data->data[n]; 15149 OP_REFCNT_LOCK; 15150 refcount = --trie->refcount; 15151 OP_REFCNT_UNLOCK; 15152 if ( !refcount ) { 15153 PerlMemShared_free(trie->charmap); 15154 PerlMemShared_free(trie->states); 15155 PerlMemShared_free(trie->trans); 15156 if (trie->bitmap) 15157 PerlMemShared_free(trie->bitmap); 15158 if (trie->jump) 15159 PerlMemShared_free(trie->jump); 15160 PerlMemShared_free(trie->wordinfo); 15161 /* do this last!!!! */ 15162 PerlMemShared_free(ri->data->data[n]); 15163 } 15164 } 15165 break; 15166 default: 15167 Perl_croak(aTHX_ "panic: regfree data code '%c'", ri->data->what[n]); 15168 } 15169 } 15170 Safefree(ri->data->what); 15171 Safefree(ri->data); 15172 } 15173 15174 Safefree(ri); 15175 } 15176 15177 #define av_dup_inc(s,t) MUTABLE_AV(sv_dup_inc((const SV *)s,t)) 15178 #define hv_dup_inc(s,t) MUTABLE_HV(sv_dup_inc((const SV *)s,t)) 15179 #define SAVEPVN(p,n) ((p) ? savepvn(p,n) : NULL) 15180 15181 /* 15182 re_dup - duplicate a regexp. 15183 15184 This routine is expected to clone a given regexp structure. It is only 15185 compiled under USE_ITHREADS. 15186 15187 After all of the core data stored in struct regexp is duplicated 15188 the regexp_engine.dupe method is used to copy any private data 15189 stored in the *pprivate pointer. This allows extensions to handle 15190 any duplication it needs to do. 15191 15192 See pregfree() and regfree_internal() if you change anything here. 15193 */ 15194 #if defined(USE_ITHREADS) 15195 #ifndef PERL_IN_XSUB_RE 15196 void 15197 Perl_re_dup_guts(pTHX_ const REGEXP *sstr, REGEXP *dstr, CLONE_PARAMS *param) 15198 { 15199 dVAR; 15200 I32 npar; 15201 const struct regexp *r = ReANY(sstr); 15202 struct regexp *ret = ReANY(dstr); 15203 15204 PERL_ARGS_ASSERT_RE_DUP_GUTS; 15205 15206 npar = r->nparens+1; 15207 Newx(ret->offs, npar, regexp_paren_pair); 15208 Copy(r->offs, ret->offs, npar, regexp_paren_pair); 15209 15210 if (ret->substrs) { 15211 /* Do it this way to avoid reading from *r after the StructCopy(). 15212 That way, if any of the sv_dup_inc()s dislodge *r from the L1 15213 cache, it doesn't matter. */ 15214 const bool anchored = r->check_substr 15215 ? r->check_substr == r->anchored_substr 15216 : r->check_utf8 == r->anchored_utf8; 15217 Newx(ret->substrs, 1, struct reg_substr_data); 15218 StructCopy(r->substrs, ret->substrs, struct reg_substr_data); 15219 15220 ret->anchored_substr = sv_dup_inc(ret->anchored_substr, param); 15221 ret->anchored_utf8 = sv_dup_inc(ret->anchored_utf8, param); 15222 ret->float_substr = sv_dup_inc(ret->float_substr, param); 15223 ret->float_utf8 = sv_dup_inc(ret->float_utf8, param); 15224 15225 /* check_substr and check_utf8, if non-NULL, point to either their 15226 anchored or float namesakes, and don't hold a second reference. */ 15227 15228 if (ret->check_substr) { 15229 if (anchored) { 15230 assert(r->check_utf8 == r->anchored_utf8); 15231 ret->check_substr = ret->anchored_substr; 15232 ret->check_utf8 = ret->anchored_utf8; 15233 } else { 15234 assert(r->check_substr == r->float_substr); 15235 assert(r->check_utf8 == r->float_utf8); 15236 ret->check_substr = ret->float_substr; 15237 ret->check_utf8 = ret->float_utf8; 15238 } 15239 } else if (ret->check_utf8) { 15240 if (anchored) { 15241 ret->check_utf8 = ret->anchored_utf8; 15242 } else { 15243 ret->check_utf8 = ret->float_utf8; 15244 } 15245 } 15246 } 15247 15248 RXp_PAREN_NAMES(ret) = hv_dup_inc(RXp_PAREN_NAMES(ret), param); 15249 ret->qr_anoncv = MUTABLE_CV(sv_dup_inc((const SV *)ret->qr_anoncv, param)); 15250 15251 if (ret->pprivate) 15252 RXi_SET(ret,CALLREGDUPE_PVT(dstr,param)); 15253 15254 if (RX_MATCH_COPIED(dstr)) 15255 ret->subbeg = SAVEPVN(ret->subbeg, ret->sublen); 15256 else 15257 ret->subbeg = NULL; 15258 #ifdef PERL_ANY_COW 15259 ret->saved_copy = NULL; 15260 #endif 15261 15262 /* Whether mother_re be set or no, we need to copy the string. We 15263 cannot refrain from copying it when the storage points directly to 15264 our mother regexp, because that's 15265 1: a buffer in a different thread 15266 2: something we no longer hold a reference on 15267 so we need to copy it locally. */ 15268 RX_WRAPPED(dstr) = SAVEPVN(RX_WRAPPED(sstr), SvCUR(sstr)+1); 15269 ret->mother_re = NULL; 15270 ret->gofs = 0; 15271 } 15272 #endif /* PERL_IN_XSUB_RE */ 15273 15274 /* 15275 regdupe_internal() 15276 15277 This is the internal complement to regdupe() which is used to copy 15278 the structure pointed to by the *pprivate pointer in the regexp. 15279 This is the core version of the extension overridable cloning hook. 15280 The regexp structure being duplicated will be copied by perl prior 15281 to this and will be provided as the regexp *r argument, however 15282 with the /old/ structures pprivate pointer value. Thus this routine 15283 may override any copying normally done by perl. 15284 15285 It returns a pointer to the new regexp_internal structure. 15286 */ 15287 15288 void * 15289 Perl_regdupe_internal(pTHX_ REGEXP * const rx, CLONE_PARAMS *param) 15290 { 15291 dVAR; 15292 struct regexp *const r = ReANY(rx); 15293 regexp_internal *reti; 15294 int len; 15295 RXi_GET_DECL(r,ri); 15296 15297 PERL_ARGS_ASSERT_REGDUPE_INTERNAL; 15298 15299 len = ProgLen(ri); 15300 15301 Newxc(reti, sizeof(regexp_internal) + len*sizeof(regnode), char, regexp_internal); 15302 Copy(ri->program, reti->program, len+1, regnode); 15303 15304 reti->num_code_blocks = ri->num_code_blocks; 15305 if (ri->code_blocks) { 15306 int n; 15307 Newxc(reti->code_blocks, ri->num_code_blocks, struct reg_code_block, 15308 struct reg_code_block); 15309 Copy(ri->code_blocks, reti->code_blocks, ri->num_code_blocks, 15310 struct reg_code_block); 15311 for (n = 0; n < ri->num_code_blocks; n++) 15312 reti->code_blocks[n].src_regex = (REGEXP*) 15313 sv_dup_inc((SV*)(ri->code_blocks[n].src_regex), param); 15314 } 15315 else 15316 reti->code_blocks = NULL; 15317 15318 reti->regstclass = NULL; 15319 15320 if (ri->data) { 15321 struct reg_data *d; 15322 const int count = ri->data->count; 15323 int i; 15324 15325 Newxc(d, sizeof(struct reg_data) + count*sizeof(void *), 15326 char, struct reg_data); 15327 Newx(d->what, count, U8); 15328 15329 d->count = count; 15330 for (i = 0; i < count; i++) { 15331 d->what[i] = ri->data->what[i]; 15332 switch (d->what[i]) { 15333 /* see also regcomp.h and regfree_internal() */ 15334 case 'a': /* actually an AV, but the dup function is identical. */ 15335 case 'r': 15336 case 's': 15337 case 'S': 15338 case 'u': /* actually an HV, but the dup function is identical. */ 15339 d->data[i] = sv_dup_inc((const SV *)ri->data->data[i], param); 15340 break; 15341 case 'f': 15342 /* This is cheating. */ 15343 Newx(d->data[i], 1, struct regnode_charclass_class); 15344 StructCopy(ri->data->data[i], d->data[i], 15345 struct regnode_charclass_class); 15346 reti->regstclass = (regnode*)d->data[i]; 15347 break; 15348 case 'T': 15349 /* Trie stclasses are readonly and can thus be shared 15350 * without duplication. We free the stclass in pregfree 15351 * when the corresponding reg_ac_data struct is freed. 15352 */ 15353 reti->regstclass= ri->regstclass; 15354 /* Fall through */ 15355 case 't': 15356 OP_REFCNT_LOCK; 15357 ((reg_trie_data*)ri->data->data[i])->refcount++; 15358 OP_REFCNT_UNLOCK; 15359 /* Fall through */ 15360 case 'l': 15361 case 'L': 15362 d->data[i] = ri->data->data[i]; 15363 break; 15364 default: 15365 Perl_croak(aTHX_ "panic: re_dup unknown data code '%c'", ri->data->what[i]); 15366 } 15367 } 15368 15369 reti->data = d; 15370 } 15371 else 15372 reti->data = NULL; 15373 15374 reti->name_list_idx = ri->name_list_idx; 15375 15376 #ifdef RE_TRACK_PATTERN_OFFSETS 15377 if (ri->u.offsets) { 15378 Newx(reti->u.offsets, 2*len+1, U32); 15379 Copy(ri->u.offsets, reti->u.offsets, 2*len+1, U32); 15380 } 15381 #else 15382 SetProgLen(reti,len); 15383 #endif 15384 15385 return (void*)reti; 15386 } 15387 15388 #endif /* USE_ITHREADS */ 15389 15390 #ifndef PERL_IN_XSUB_RE 15391 15392 /* 15393 - regnext - dig the "next" pointer out of a node 15394 */ 15395 regnode * 15396 Perl_regnext(pTHX_ regnode *p) 15397 { 15398 dVAR; 15399 I32 offset; 15400 15401 if (!p) 15402 return(NULL); 15403 15404 if (OP(p) > REGNODE_MAX) { /* regnode.type is unsigned */ 15405 Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(p), (int)REGNODE_MAX); 15406 } 15407 15408 offset = (reg_off_by_arg[OP(p)] ? ARG(p) : NEXT_OFF(p)); 15409 if (offset == 0) 15410 return(NULL); 15411 15412 return(p+offset); 15413 } 15414 #endif 15415 15416 STATIC void 15417 S_re_croak2(pTHX_ const char* pat1,const char* pat2,...) 15418 { 15419 va_list args; 15420 STRLEN l1 = strlen(pat1); 15421 STRLEN l2 = strlen(pat2); 15422 char buf[512]; 15423 SV *msv; 15424 const char *message; 15425 15426 PERL_ARGS_ASSERT_RE_CROAK2; 15427 15428 if (l1 > 510) 15429 l1 = 510; 15430 if (l1 + l2 > 510) 15431 l2 = 510 - l1; 15432 Copy(pat1, buf, l1 , char); 15433 Copy(pat2, buf + l1, l2 , char); 15434 buf[l1 + l2] = '\n'; 15435 buf[l1 + l2 + 1] = '\0'; 15436 #ifdef I_STDARG 15437 /* ANSI variant takes additional second argument */ 15438 va_start(args, pat2); 15439 #else 15440 va_start(args); 15441 #endif 15442 msv = vmess(buf, &args); 15443 va_end(args); 15444 message = SvPV_const(msv,l1); 15445 if (l1 > 512) 15446 l1 = 512; 15447 Copy(message, buf, l1 , char); 15448 buf[l1-1] = '\0'; /* Overwrite \n */ 15449 Perl_croak(aTHX_ "%s", buf); 15450 } 15451 15452 /* XXX Here's a total kludge. But we need to re-enter for swash routines. */ 15453 15454 #ifndef PERL_IN_XSUB_RE 15455 void 15456 Perl_save_re_context(pTHX) 15457 { 15458 dVAR; 15459 15460 struct re_save_state *state; 15461 15462 SAVEVPTR(PL_curcop); 15463 SSGROW(SAVESTACK_ALLOC_FOR_RE_SAVE_STATE + 1); 15464 15465 state = (struct re_save_state *)(PL_savestack + PL_savestack_ix); 15466 PL_savestack_ix += SAVESTACK_ALLOC_FOR_RE_SAVE_STATE; 15467 SSPUSHUV(SAVEt_RE_STATE); 15468 15469 Copy(&PL_reg_state, state, 1, struct re_save_state); 15470 15471 PL_reg_oldsaved = NULL; 15472 PL_reg_oldsavedlen = 0; 15473 PL_reg_oldsavedoffset = 0; 15474 PL_reg_oldsavedcoffset = 0; 15475 PL_reg_maxiter = 0; 15476 PL_reg_leftiter = 0; 15477 PL_reg_poscache = NULL; 15478 PL_reg_poscache_size = 0; 15479 #ifdef PERL_ANY_COW 15480 PL_nrs = NULL; 15481 #endif 15482 15483 /* Save $1..$n (#18107: UTF-8 s/(\w+)/uc($1)/e); AMS 20021106. */ 15484 if (PL_curpm) { 15485 const REGEXP * const rx = PM_GETRE(PL_curpm); 15486 if (rx) { 15487 U32 i; 15488 for (i = 1; i <= RX_NPARENS(rx); i++) { 15489 char digits[TYPE_CHARS(long)]; 15490 const STRLEN len = my_snprintf(digits, sizeof(digits), "%lu", (long)i); 15491 GV *const *const gvp 15492 = (GV**)hv_fetch(PL_defstash, digits, len, 0); 15493 15494 if (gvp) { 15495 GV * const gv = *gvp; 15496 if (SvTYPE(gv) == SVt_PVGV && GvSV(gv)) 15497 save_scalar(gv); 15498 } 15499 } 15500 } 15501 } 15502 } 15503 #endif 15504 15505 #ifdef DEBUGGING 15506 15507 STATIC void 15508 S_put_byte(pTHX_ SV *sv, int c) 15509 { 15510 PERL_ARGS_ASSERT_PUT_BYTE; 15511 15512 /* Our definition of isPRINT() ignores locales, so only bytes that are 15513 not part of UTF-8 are considered printable. I assume that the same 15514 holds for UTF-EBCDIC. 15515 Also, code point 255 is not printable in either (it's E0 in EBCDIC, 15516 which Wikipedia says: 15517 15518 EO, or Eight Ones, is an 8-bit EBCDIC character code represented as all 15519 ones (binary 1111 1111, hexadecimal FF). It is similar, but not 15520 identical, to the ASCII delete (DEL) or rubout control character. ... 15521 it is typically mapped to hexadecimal code 9F, in order to provide a 15522 unique character mapping in both directions) 15523 15524 So the old condition can be simplified to !isPRINT(c) */ 15525 if (!isPRINT(c)) { 15526 if (c < 256) { 15527 Perl_sv_catpvf(aTHX_ sv, "\\x%02x", c); 15528 } 15529 else { 15530 Perl_sv_catpvf(aTHX_ sv, "\\x{%x}", c); 15531 } 15532 } 15533 else { 15534 const char string = c; 15535 if (c == '-' || c == ']' || c == '\\' || c == '^') 15536 sv_catpvs(sv, "\\"); 15537 sv_catpvn(sv, &string, 1); 15538 } 15539 } 15540 15541 15542 #define CLEAR_OPTSTART \ 15543 if (optstart) STMT_START { \ 15544 DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log, " (%"IVdf" nodes)\n", (IV)(node - optstart))); \ 15545 optstart=NULL; \ 15546 } STMT_END 15547 15548 #define DUMPUNTIL(b,e) CLEAR_OPTSTART; node=dumpuntil(r,start,(b),(e),last,sv,indent+1,depth+1); 15549 15550 STATIC const regnode * 15551 S_dumpuntil(pTHX_ const regexp *r, const regnode *start, const regnode *node, 15552 const regnode *last, const regnode *plast, 15553 SV* sv, I32 indent, U32 depth) 15554 { 15555 dVAR; 15556 U8 op = PSEUDO; /* Arbitrary non-END op. */ 15557 const regnode *next; 15558 const regnode *optstart= NULL; 15559 15560 RXi_GET_DECL(r,ri); 15561 GET_RE_DEBUG_FLAGS_DECL; 15562 15563 PERL_ARGS_ASSERT_DUMPUNTIL; 15564 15565 #ifdef DEBUG_DUMPUNTIL 15566 PerlIO_printf(Perl_debug_log, "--- %d : %d - %d - %d\n",indent,node-start, 15567 last ? last-start : 0,plast ? plast-start : 0); 15568 #endif 15569 15570 if (plast && plast < last) 15571 last= plast; 15572 15573 while (PL_regkind[op] != END && (!last || node < last)) { 15574 /* While that wasn't END last time... */ 15575 NODE_ALIGN(node); 15576 op = OP(node); 15577 if (op == CLOSE || op == WHILEM) 15578 indent--; 15579 next = regnext((regnode *)node); 15580 15581 /* Where, what. */ 15582 if (OP(node) == OPTIMIZED) { 15583 if (!optstart && RE_DEBUG_FLAG(RE_DEBUG_COMPILE_OPTIMISE)) 15584 optstart = node; 15585 else 15586 goto after_print; 15587 } else 15588 CLEAR_OPTSTART; 15589 15590 regprop(r, sv, node); 15591 PerlIO_printf(Perl_debug_log, "%4"IVdf":%*s%s", (IV)(node - start), 15592 (int)(2*indent + 1), "", SvPVX_const(sv)); 15593 15594 if (OP(node) != OPTIMIZED) { 15595 if (next == NULL) /* Next ptr. */ 15596 PerlIO_printf(Perl_debug_log, " (0)"); 15597 else if (PL_regkind[(U8)op] == BRANCH && PL_regkind[OP(next)] != BRANCH ) 15598 PerlIO_printf(Perl_debug_log, " (FAIL)"); 15599 else 15600 PerlIO_printf(Perl_debug_log, " (%"IVdf")", (IV)(next - start)); 15601 (void)PerlIO_putc(Perl_debug_log, '\n'); 15602 } 15603 15604 after_print: 15605 if (PL_regkind[(U8)op] == BRANCHJ) { 15606 assert(next); 15607 { 15608 const regnode *nnode = (OP(next) == LONGJMP 15609 ? regnext((regnode *)next) 15610 : next); 15611 if (last && nnode > last) 15612 nnode = last; 15613 DUMPUNTIL(NEXTOPER(NEXTOPER(node)), nnode); 15614 } 15615 } 15616 else if (PL_regkind[(U8)op] == BRANCH) { 15617 assert(next); 15618 DUMPUNTIL(NEXTOPER(node), next); 15619 } 15620 else if ( PL_regkind[(U8)op] == TRIE ) { 15621 const regnode *this_trie = node; 15622 const char op = OP(node); 15623 const U32 n = ARG(node); 15624 const reg_ac_data * const ac = op>=AHOCORASICK ? 15625 (reg_ac_data *)ri->data->data[n] : 15626 NULL; 15627 const reg_trie_data * const trie = 15628 (reg_trie_data*)ri->data->data[op<AHOCORASICK ? n : ac->trie]; 15629 #ifdef DEBUGGING 15630 AV *const trie_words = MUTABLE_AV(ri->data->data[n + TRIE_WORDS_OFFSET]); 15631 #endif 15632 const regnode *nextbranch= NULL; 15633 I32 word_idx; 15634 sv_setpvs(sv, ""); 15635 for (word_idx= 0; word_idx < (I32)trie->wordcount; word_idx++) { 15636 SV ** const elem_ptr = av_fetch(trie_words,word_idx,0); 15637 15638 PerlIO_printf(Perl_debug_log, "%*s%s ", 15639 (int)(2*(indent+3)), "", 15640 elem_ptr ? pv_pretty(sv, SvPV_nolen_const(*elem_ptr), SvCUR(*elem_ptr), 60, 15641 PL_colors[0], PL_colors[1], 15642 (SvUTF8(*elem_ptr) ? PERL_PV_ESCAPE_UNI : 0) | 15643 PERL_PV_PRETTY_ELLIPSES | 15644 PERL_PV_PRETTY_LTGT 15645 ) 15646 : "???" 15647 ); 15648 if (trie->jump) { 15649 U16 dist= trie->jump[word_idx+1]; 15650 PerlIO_printf(Perl_debug_log, "(%"UVuf")\n", 15651 (UV)((dist ? this_trie + dist : next) - start)); 15652 if (dist) { 15653 if (!nextbranch) 15654 nextbranch= this_trie + trie->jump[0]; 15655 DUMPUNTIL(this_trie + dist, nextbranch); 15656 } 15657 if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH) 15658 nextbranch= regnext((regnode *)nextbranch); 15659 } else { 15660 PerlIO_printf(Perl_debug_log, "\n"); 15661 } 15662 } 15663 if (last && next > last) 15664 node= last; 15665 else 15666 node= next; 15667 } 15668 else if ( op == CURLY ) { /* "next" might be very big: optimizer */ 15669 DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS, 15670 NEXTOPER(node) + EXTRA_STEP_2ARGS + 1); 15671 } 15672 else if (PL_regkind[(U8)op] == CURLY && op != CURLYX) { 15673 assert(next); 15674 DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS, next); 15675 } 15676 else if ( op == PLUS || op == STAR) { 15677 DUMPUNTIL(NEXTOPER(node), NEXTOPER(node) + 1); 15678 } 15679 else if (PL_regkind[(U8)op] == ANYOF) { 15680 /* arglen 1 + class block */ 15681 node += 1 + ((ANYOF_FLAGS(node) & ANYOF_CLASS) 15682 ? ANYOF_CLASS_SKIP : ANYOF_SKIP); 15683 node = NEXTOPER(node); 15684 } 15685 else if (PL_regkind[(U8)op] == EXACT) { 15686 /* Literal string, where present. */ 15687 node += NODE_SZ_STR(node) - 1; 15688 node = NEXTOPER(node); 15689 } 15690 else { 15691 node = NEXTOPER(node); 15692 node += regarglen[(U8)op]; 15693 } 15694 if (op == CURLYX || op == OPEN) 15695 indent++; 15696 } 15697 CLEAR_OPTSTART; 15698 #ifdef DEBUG_DUMPUNTIL 15699 PerlIO_printf(Perl_debug_log, "--- %d\n", (int)indent); 15700 #endif 15701 return node; 15702 } 15703 15704 #endif /* DEBUGGING */ 15705 15706 /* 15707 * Local variables: 15708 * c-indentation-style: bsd 15709 * c-basic-offset: 4 15710 * indent-tabs-mode: nil 15711 * End: 15712 * 15713 * ex: set ts=8 sts=4 sw=4 et: 15714 */ 15715