xref: /openbsd-src/gnu/usr.bin/perl/regcomp.c (revision 50b7afb2c2c0993b0894d4e34bf857cb13ed9c80)
1 /*    regcomp.c
2  */
3 
4 /*
5  * 'A fair jaw-cracker dwarf-language must be.'            --Samwise Gamgee
6  *
7  *     [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
8  */
9 
10 /* This file contains functions for compiling a regular expression.  See
11  * also regexec.c which funnily enough, contains functions for executing
12  * a regular expression.
13  *
14  * This file is also copied at build time to ext/re/re_comp.c, where
15  * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
16  * This causes the main functions to be compiled under new names and with
17  * debugging support added, which makes "use re 'debug'" work.
18  */
19 
20 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
21  * confused with the original package (see point 3 below).  Thanks, Henry!
22  */
23 
24 /* Additional note: this code is very heavily munged from Henry's version
25  * in places.  In some spots I've traded clarity for efficiency, so don't
26  * blame Henry for some of the lack of readability.
27  */
28 
29 /* The names of the functions have been changed from regcomp and
30  * regexec to pregcomp and pregexec in order to avoid conflicts
31  * with the POSIX routines of the same names.
32 */
33 
34 #ifdef PERL_EXT_RE_BUILD
35 #include "re_top.h"
36 #endif
37 
38 /*
39  * pregcomp and pregexec -- regsub and regerror are not used in perl
40  *
41  *	Copyright (c) 1986 by University of Toronto.
42  *	Written by Henry Spencer.  Not derived from licensed software.
43  *
44  *	Permission is granted to anyone to use this software for any
45  *	purpose on any computer system, and to redistribute it freely,
46  *	subject to the following restrictions:
47  *
48  *	1. The author is not responsible for the consequences of use of
49  *		this software, no matter how awful, even if they arise
50  *		from defects in it.
51  *
52  *	2. The origin of this software must not be misrepresented, either
53  *		by explicit claim or by omission.
54  *
55  *	3. Altered versions must be plainly marked as such, and must not
56  *		be misrepresented as being the original software.
57  *
58  *
59  ****    Alterations to Henry's code are...
60  ****
61  ****    Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
62  ****    2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
63  ****    by Larry Wall and others
64  ****
65  ****    You may distribute under the terms of either the GNU General Public
66  ****    License or the Artistic License, as specified in the README file.
67 
68  *
69  * Beware that some of this code is subtly aware of the way operator
70  * precedence is structured in regular expressions.  Serious changes in
71  * regular-expression syntax might require a total rethink.
72  */
73 #include "EXTERN.h"
74 #define PERL_IN_REGCOMP_C
75 #include "perl.h"
76 
77 #ifndef PERL_IN_XSUB_RE
78 #  include "INTERN.h"
79 #endif
80 
81 #define REG_COMP_C
82 #ifdef PERL_IN_XSUB_RE
83 #  include "re_comp.h"
84 extern const struct regexp_engine my_reg_engine;
85 #else
86 #  include "regcomp.h"
87 #endif
88 
89 #include "dquote_static.c"
90 #include "charclass_invlists.h"
91 #include "inline_invlist.c"
92 #include "unicode_constants.h"
93 
94 #define HAS_NONLATIN1_FOLD_CLOSURE(i) _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
95 #define IS_NON_FINAL_FOLD(c) _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
96 #define IS_IN_SOME_FOLD_L1(c) _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
97 
98 #ifdef op
99 #undef op
100 #endif /* op */
101 
102 #ifdef MSDOS
103 #  if defined(BUGGY_MSC6)
104  /* MSC 6.00A breaks on op/regexp.t test 85 unless we turn this off */
105 #    pragma optimize("a",off)
106  /* But MSC 6.00A is happy with 'w', for aliases only across function calls*/
107 #    pragma optimize("w",on )
108 #  endif /* BUGGY_MSC6 */
109 #endif /* MSDOS */
110 
111 #ifndef STATIC
112 #define	STATIC	static
113 #endif
114 
115 
116 typedef struct RExC_state_t {
117     U32		flags;			/* RXf_* are we folding, multilining? */
118     U32		pm_flags;		/* PMf_* stuff from the calling PMOP */
119     char	*precomp;		/* uncompiled string. */
120     REGEXP	*rx_sv;			/* The SV that is the regexp. */
121     regexp	*rx;                    /* perl core regexp structure */
122     regexp_internal	*rxi;           /* internal data for regexp object pprivate field */
123     char	*start;			/* Start of input for compile */
124     char	*end;			/* End of input for compile */
125     char	*parse;			/* Input-scan pointer. */
126     I32		whilem_seen;		/* number of WHILEM in this expr */
127     regnode	*emit_start;		/* Start of emitted-code area */
128     regnode	*emit_bound;		/* First regnode outside of the allocated space */
129     regnode	*emit;			/* Code-emit pointer; &regdummy = don't = compiling */
130     I32		naughty;		/* How bad is this pattern? */
131     I32		sawback;		/* Did we see \1, ...? */
132     U32		seen;
133     I32		size;			/* Code size. */
134     I32		npar;			/* Capture buffer count, (OPEN). */
135     I32		cpar;			/* Capture buffer count, (CLOSE). */
136     I32		nestroot;		/* root parens we are in - used by accept */
137     I32		extralen;
138     I32		seen_zerolen;
139     regnode	**open_parens;		/* pointers to open parens */
140     regnode	**close_parens;		/* pointers to close parens */
141     regnode	*opend;			/* END node in program */
142     I32		utf8;		/* whether the pattern is utf8 or not */
143     I32		orig_utf8;	/* whether the pattern was originally in utf8 */
144 				/* XXX use this for future optimisation of case
145 				 * where pattern must be upgraded to utf8. */
146     I32		uni_semantics;	/* If a d charset modifier should use unicode
147 				   rules, even if the pattern is not in
148 				   utf8 */
149     HV		*paren_names;		/* Paren names */
150 
151     regnode	**recurse;		/* Recurse regops */
152     I32		recurse_count;		/* Number of recurse regops */
153     I32		in_lookbehind;
154     I32		contains_locale;
155     I32		override_recoding;
156     I32		in_multi_char_class;
157     struct reg_code_block *code_blocks;	/* positions of literal (?{})
158 					    within pattern */
159     int		num_code_blocks;	/* size of code_blocks[] */
160     int		code_index;		/* next code_blocks[] slot */
161 #if ADD_TO_REGEXEC
162     char 	*starttry;		/* -Dr: where regtry was called. */
163 #define RExC_starttry	(pRExC_state->starttry)
164 #endif
165     SV		*runtime_code_qr;	/* qr with the runtime code blocks */
166 #ifdef DEBUGGING
167     const char  *lastparse;
168     I32         lastnum;
169     AV          *paren_name_list;       /* idx -> name */
170 #define RExC_lastparse	(pRExC_state->lastparse)
171 #define RExC_lastnum	(pRExC_state->lastnum)
172 #define RExC_paren_name_list    (pRExC_state->paren_name_list)
173 #endif
174 } RExC_state_t;
175 
176 #define RExC_flags	(pRExC_state->flags)
177 #define RExC_pm_flags	(pRExC_state->pm_flags)
178 #define RExC_precomp	(pRExC_state->precomp)
179 #define RExC_rx_sv	(pRExC_state->rx_sv)
180 #define RExC_rx		(pRExC_state->rx)
181 #define RExC_rxi	(pRExC_state->rxi)
182 #define RExC_start	(pRExC_state->start)
183 #define RExC_end	(pRExC_state->end)
184 #define RExC_parse	(pRExC_state->parse)
185 #define RExC_whilem_seen	(pRExC_state->whilem_seen)
186 #ifdef RE_TRACK_PATTERN_OFFSETS
187 #define RExC_offsets	(pRExC_state->rxi->u.offsets) /* I am not like the others */
188 #endif
189 #define RExC_emit	(pRExC_state->emit)
190 #define RExC_emit_start	(pRExC_state->emit_start)
191 #define RExC_emit_bound	(pRExC_state->emit_bound)
192 #define RExC_naughty	(pRExC_state->naughty)
193 #define RExC_sawback	(pRExC_state->sawback)
194 #define RExC_seen	(pRExC_state->seen)
195 #define RExC_size	(pRExC_state->size)
196 #define RExC_npar	(pRExC_state->npar)
197 #define RExC_nestroot   (pRExC_state->nestroot)
198 #define RExC_extralen	(pRExC_state->extralen)
199 #define RExC_seen_zerolen	(pRExC_state->seen_zerolen)
200 #define RExC_utf8	(pRExC_state->utf8)
201 #define RExC_uni_semantics	(pRExC_state->uni_semantics)
202 #define RExC_orig_utf8	(pRExC_state->orig_utf8)
203 #define RExC_open_parens	(pRExC_state->open_parens)
204 #define RExC_close_parens	(pRExC_state->close_parens)
205 #define RExC_opend	(pRExC_state->opend)
206 #define RExC_paren_names	(pRExC_state->paren_names)
207 #define RExC_recurse	(pRExC_state->recurse)
208 #define RExC_recurse_count	(pRExC_state->recurse_count)
209 #define RExC_in_lookbehind	(pRExC_state->in_lookbehind)
210 #define RExC_contains_locale	(pRExC_state->contains_locale)
211 #define RExC_override_recoding (pRExC_state->override_recoding)
212 #define RExC_in_multi_char_class (pRExC_state->in_multi_char_class)
213 
214 
215 #define	ISMULT1(c)	((c) == '*' || (c) == '+' || (c) == '?')
216 #define	ISMULT2(s)	((*s) == '*' || (*s) == '+' || (*s) == '?' || \
217 	((*s) == '{' && regcurly(s, FALSE)))
218 
219 #ifdef SPSTART
220 #undef SPSTART		/* dratted cpp namespace... */
221 #endif
222 /*
223  * Flags to be passed up and down.
224  */
225 #define	WORST		0	/* Worst case. */
226 #define	HASWIDTH	0x01	/* Known to match non-null strings. */
227 
228 /* Simple enough to be STAR/PLUS operand; in an EXACTish node must be a single
229  * character.  (There needs to be a case: in the switch statement in regexec.c
230  * for any node marked SIMPLE.)  Note that this is not the same thing as
231  * REGNODE_SIMPLE */
232 #define	SIMPLE		0x02
233 #define	SPSTART		0x04	/* Starts with * or + */
234 #define POSTPONED	0x08    /* (?1),(?&name), (??{...}) or similar */
235 #define TRYAGAIN	0x10	/* Weeded out a declaration. */
236 #define RESTART_UTF8    0x20    /* Restart, need to calcuate sizes as UTF-8 */
237 
238 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
239 
240 /* whether trie related optimizations are enabled */
241 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
242 #define TRIE_STUDY_OPT
243 #define FULL_TRIE_STUDY
244 #define TRIE_STCLASS
245 #endif
246 
247 
248 
249 #define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
250 #define PBITVAL(paren) (1 << ((paren) & 7))
251 #define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
252 #define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
253 #define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
254 
255 #define REQUIRE_UTF8	STMT_START {                                       \
256                                      if (!UTF) {                           \
257                                          *flagp = RESTART_UTF8;            \
258                                          return NULL;                      \
259                                      }                                     \
260                         } STMT_END
261 
262 /* This converts the named class defined in regcomp.h to its equivalent class
263  * number defined in handy.h. */
264 #define namedclass_to_classnum(class)  ((int) ((class) / 2))
265 #define classnum_to_namedclass(classnum)  ((classnum) * 2)
266 
267 /* About scan_data_t.
268 
269   During optimisation we recurse through the regexp program performing
270   various inplace (keyhole style) optimisations. In addition study_chunk
271   and scan_commit populate this data structure with information about
272   what strings MUST appear in the pattern. We look for the longest
273   string that must appear at a fixed location, and we look for the
274   longest string that may appear at a floating location. So for instance
275   in the pattern:
276 
277     /FOO[xX]A.*B[xX]BAR/
278 
279   Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
280   strings (because they follow a .* construct). study_chunk will identify
281   both FOO and BAR as being the longest fixed and floating strings respectively.
282 
283   The strings can be composites, for instance
284 
285      /(f)(o)(o)/
286 
287   will result in a composite fixed substring 'foo'.
288 
289   For each string some basic information is maintained:
290 
291   - offset or min_offset
292     This is the position the string must appear at, or not before.
293     It also implicitly (when combined with minlenp) tells us how many
294     characters must match before the string we are searching for.
295     Likewise when combined with minlenp and the length of the string it
296     tells us how many characters must appear after the string we have
297     found.
298 
299   - max_offset
300     Only used for floating strings. This is the rightmost point that
301     the string can appear at. If set to I32 max it indicates that the
302     string can occur infinitely far to the right.
303 
304   - minlenp
305     A pointer to the minimum number of characters of the pattern that the
306     string was found inside. This is important as in the case of positive
307     lookahead or positive lookbehind we can have multiple patterns
308     involved. Consider
309 
310     /(?=FOO).*F/
311 
312     The minimum length of the pattern overall is 3, the minimum length
313     of the lookahead part is 3, but the minimum length of the part that
314     will actually match is 1. So 'FOO's minimum length is 3, but the
315     minimum length for the F is 1. This is important as the minimum length
316     is used to determine offsets in front of and behind the string being
317     looked for.  Since strings can be composites this is the length of the
318     pattern at the time it was committed with a scan_commit. Note that
319     the length is calculated by study_chunk, so that the minimum lengths
320     are not known until the full pattern has been compiled, thus the
321     pointer to the value.
322 
323   - lookbehind
324 
325     In the case of lookbehind the string being searched for can be
326     offset past the start point of the final matching string.
327     If this value was just blithely removed from the min_offset it would
328     invalidate some of the calculations for how many chars must match
329     before or after (as they are derived from min_offset and minlen and
330     the length of the string being searched for).
331     When the final pattern is compiled and the data is moved from the
332     scan_data_t structure into the regexp structure the information
333     about lookbehind is factored in, with the information that would
334     have been lost precalculated in the end_shift field for the
335     associated string.
336 
337   The fields pos_min and pos_delta are used to store the minimum offset
338   and the delta to the maximum offset at the current point in the pattern.
339 
340 */
341 
342 typedef struct scan_data_t {
343     /*I32 len_min;      unused */
344     /*I32 len_delta;    unused */
345     I32 pos_min;
346     I32 pos_delta;
347     SV *last_found;
348     I32 last_end;	    /* min value, <0 unless valid. */
349     I32 last_start_min;
350     I32 last_start_max;
351     SV **longest;	    /* Either &l_fixed, or &l_float. */
352     SV *longest_fixed;      /* longest fixed string found in pattern */
353     I32 offset_fixed;       /* offset where it starts */
354     I32 *minlen_fixed;      /* pointer to the minlen relevant to the string */
355     I32 lookbehind_fixed;   /* is the position of the string modfied by LB */
356     SV *longest_float;      /* longest floating string found in pattern */
357     I32 offset_float_min;   /* earliest point in string it can appear */
358     I32 offset_float_max;   /* latest point in string it can appear */
359     I32 *minlen_float;      /* pointer to the minlen relevant to the string */
360     I32 lookbehind_float;   /* is the position of the string modified by LB */
361     I32 flags;
362     I32 whilem_c;
363     I32 *last_closep;
364     struct regnode_charclass_class *start_class;
365 } scan_data_t;
366 
367 /*
368  * Forward declarations for pregcomp()'s friends.
369  */
370 
371 static const scan_data_t zero_scan_data =
372   { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
373 
374 #define SF_BEFORE_EOL		(SF_BEFORE_SEOL|SF_BEFORE_MEOL)
375 #define SF_BEFORE_SEOL		0x0001
376 #define SF_BEFORE_MEOL		0x0002
377 #define SF_FIX_BEFORE_EOL	(SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
378 #define SF_FL_BEFORE_EOL	(SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
379 
380 #ifdef NO_UNARY_PLUS
381 #  define SF_FIX_SHIFT_EOL	(0+2)
382 #  define SF_FL_SHIFT_EOL		(0+4)
383 #else
384 #  define SF_FIX_SHIFT_EOL	(+2)
385 #  define SF_FL_SHIFT_EOL		(+4)
386 #endif
387 
388 #define SF_FIX_BEFORE_SEOL	(SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
389 #define SF_FIX_BEFORE_MEOL	(SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
390 
391 #define SF_FL_BEFORE_SEOL	(SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
392 #define SF_FL_BEFORE_MEOL	(SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
393 #define SF_IS_INF		0x0040
394 #define SF_HAS_PAR		0x0080
395 #define SF_IN_PAR		0x0100
396 #define SF_HAS_EVAL		0x0200
397 #define SCF_DO_SUBSTR		0x0400
398 #define SCF_DO_STCLASS_AND	0x0800
399 #define SCF_DO_STCLASS_OR	0x1000
400 #define SCF_DO_STCLASS		(SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
401 #define SCF_WHILEM_VISITED_POS	0x2000
402 
403 #define SCF_TRIE_RESTUDY        0x4000 /* Do restudy? */
404 #define SCF_SEEN_ACCEPT         0x8000
405 
406 #define UTF cBOOL(RExC_utf8)
407 
408 /* The enums for all these are ordered so things work out correctly */
409 #define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
410 #define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_DEPENDS_CHARSET)
411 #define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
412 #define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) >= REGEX_UNICODE_CHARSET)
413 #define ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_RESTRICTED_CHARSET)
414 #define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) >= REGEX_ASCII_RESTRICTED_CHARSET)
415 #define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
416 
417 #define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
418 
419 #define OOB_NAMEDCLASS		-1
420 
421 /* There is no code point that is out-of-bounds, so this is problematic.  But
422  * its only current use is to initialize a variable that is always set before
423  * looked at. */
424 #define OOB_UNICODE		0xDEADBEEF
425 
426 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
427 #define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
428 
429 
430 /* length of regex to show in messages that don't mark a position within */
431 #define RegexLengthToShowInErrorMessages 127
432 
433 /*
434  * If MARKER[12] are adjusted, be sure to adjust the constants at the top
435  * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
436  * op/pragma/warn/regcomp.
437  */
438 #define MARKER1 "<-- HERE"    /* marker as it appears in the description */
439 #define MARKER2 " <-- HERE "  /* marker as it appears within the regex */
440 
441 #define REPORT_LOCATION " in regex; marked by " MARKER1 " in m/%.*s" MARKER2 "%s/"
442 
443 /*
444  * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
445  * arg. Show regex, up to a maximum length. If it's too long, chop and add
446  * "...".
447  */
448 #define _FAIL(code) STMT_START {					\
449     const char *ellipses = "";						\
450     IV len = RExC_end - RExC_precomp;					\
451 									\
452     if (!SIZE_ONLY)							\
453 	SAVEFREESV(RExC_rx_sv);						\
454     if (len > RegexLengthToShowInErrorMessages) {			\
455 	/* chop 10 shorter than the max, to ensure meaning of "..." */	\
456 	len = RegexLengthToShowInErrorMessages - 10;			\
457 	ellipses = "...";						\
458     }									\
459     code;                                                               \
460 } STMT_END
461 
462 #define	FAIL(msg) _FAIL(			    \
463     Perl_croak(aTHX_ "%s in regex m/%.*s%s/",	    \
464 	    msg, (int)len, RExC_precomp, ellipses))
465 
466 #define	FAIL2(msg,arg) _FAIL(			    \
467     Perl_croak(aTHX_ msg " in regex m/%.*s%s/",	    \
468 	    arg, (int)len, RExC_precomp, ellipses))
469 
470 /*
471  * Simple_vFAIL -- like FAIL, but marks the current location in the scan
472  */
473 #define	Simple_vFAIL(m) STMT_START {					\
474     const IV offset = RExC_parse - RExC_precomp;			\
475     Perl_croak(aTHX_ "%s" REPORT_LOCATION,				\
476 	    m, (int)offset, RExC_precomp, RExC_precomp + offset);	\
477 } STMT_END
478 
479 /*
480  * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
481  */
482 #define	vFAIL(m) STMT_START {				\
483     if (!SIZE_ONLY)					\
484 	SAVEFREESV(RExC_rx_sv);				\
485     Simple_vFAIL(m);					\
486 } STMT_END
487 
488 /*
489  * Like Simple_vFAIL(), but accepts two arguments.
490  */
491 #define	Simple_vFAIL2(m,a1) STMT_START {			\
492     const IV offset = RExC_parse - RExC_precomp;			\
493     S_re_croak2(aTHX_ m, REPORT_LOCATION, a1,			\
494 	    (int)offset, RExC_precomp, RExC_precomp + offset);	\
495 } STMT_END
496 
497 /*
498  * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
499  */
500 #define	vFAIL2(m,a1) STMT_START {			\
501     if (!SIZE_ONLY)					\
502 	SAVEFREESV(RExC_rx_sv);				\
503     Simple_vFAIL2(m, a1);				\
504 } STMT_END
505 
506 
507 /*
508  * Like Simple_vFAIL(), but accepts three arguments.
509  */
510 #define	Simple_vFAIL3(m, a1, a2) STMT_START {			\
511     const IV offset = RExC_parse - RExC_precomp;		\
512     S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2,		\
513 	    (int)offset, RExC_precomp, RExC_precomp + offset);	\
514 } STMT_END
515 
516 /*
517  * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
518  */
519 #define	vFAIL3(m,a1,a2) STMT_START {			\
520     if (!SIZE_ONLY)					\
521 	SAVEFREESV(RExC_rx_sv);				\
522     Simple_vFAIL3(m, a1, a2);				\
523 } STMT_END
524 
525 /*
526  * Like Simple_vFAIL(), but accepts four arguments.
527  */
528 #define	Simple_vFAIL4(m, a1, a2, a3) STMT_START {		\
529     const IV offset = RExC_parse - RExC_precomp;		\
530     S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, a3,		\
531 	    (int)offset, RExC_precomp, RExC_precomp + offset);	\
532 } STMT_END
533 
534 #define	vFAIL4(m,a1,a2,a3) STMT_START {			\
535     if (!SIZE_ONLY)					\
536 	SAVEFREESV(RExC_rx_sv);				\
537     Simple_vFAIL4(m, a1, a2, a3);			\
538 } STMT_END
539 
540 /* m is not necessarily a "literal string", in this macro */
541 #define reg_warn_non_literal_string(loc, m) STMT_START {                \
542     const IV offset = loc - RExC_precomp;                               \
543     Perl_warner(aTHX_ packWARN(WARN_REGEXP), "%s" REPORT_LOCATION,      \
544             m, (int)offset, RExC_precomp, RExC_precomp + offset);       \
545 } STMT_END
546 
547 #define	ckWARNreg(loc,m) STMT_START {					\
548     const IV offset = loc - RExC_precomp;				\
549     Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION,	\
550 	    (int)offset, RExC_precomp, RExC_precomp + offset);		\
551 } STMT_END
552 
553 #define	vWARN_dep(loc, m) STMT_START {				        \
554     const IV offset = loc - RExC_precomp;				\
555     Perl_warner(aTHX_ packWARN(WARN_DEPRECATED), m REPORT_LOCATION,	\
556 	    (int)offset, RExC_precomp, RExC_precomp + offset);	        \
557 } STMT_END
558 
559 #define	ckWARNdep(loc,m) STMT_START {				        \
560     const IV offset = loc - RExC_precomp;				\
561     Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED),	                \
562 	    m REPORT_LOCATION,						\
563 	    (int)offset, RExC_precomp, RExC_precomp + offset);		\
564 } STMT_END
565 
566 #define	ckWARNregdep(loc,m) STMT_START {				\
567     const IV offset = loc - RExC_precomp;				\
568     Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP),	\
569 	    m REPORT_LOCATION,						\
570 	    (int)offset, RExC_precomp, RExC_precomp + offset);		\
571 } STMT_END
572 
573 #define	ckWARN2regdep(loc,m, a1) STMT_START {				\
574     const IV offset = loc - RExC_precomp;				\
575     Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP),	\
576 	    m REPORT_LOCATION,						\
577 	    a1, (int)offset, RExC_precomp, RExC_precomp + offset);	\
578 } STMT_END
579 
580 #define	ckWARN2reg(loc, m, a1) STMT_START {				\
581     const IV offset = loc - RExC_precomp;				\
582     Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION,	\
583 	    a1, (int)offset, RExC_precomp, RExC_precomp + offset);	\
584 } STMT_END
585 
586 #define	vWARN3(loc, m, a1, a2) STMT_START {				\
587     const IV offset = loc - RExC_precomp;				\
588     Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION,		\
589 	    a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset);	\
590 } STMT_END
591 
592 #define	ckWARN3reg(loc, m, a1, a2) STMT_START {				\
593     const IV offset = loc - RExC_precomp;				\
594     Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION,	\
595 	    a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset);	\
596 } STMT_END
597 
598 #define	vWARN4(loc, m, a1, a2, a3) STMT_START {				\
599     const IV offset = loc - RExC_precomp;				\
600     Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION,		\
601 	    a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
602 } STMT_END
603 
604 #define	ckWARN4reg(loc, m, a1, a2, a3) STMT_START {			\
605     const IV offset = loc - RExC_precomp;				\
606     Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION,	\
607 	    a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
608 } STMT_END
609 
610 #define	vWARN5(loc, m, a1, a2, a3, a4) STMT_START {			\
611     const IV offset = loc - RExC_precomp;				\
612     Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION,		\
613 	    a1, a2, a3, a4, (int)offset, RExC_precomp, RExC_precomp + offset); \
614 } STMT_END
615 
616 
617 /* Allow for side effects in s */
618 #define REGC(c,s) STMT_START {			\
619     if (!SIZE_ONLY) *(s) = (c); else (void)(s);	\
620 } STMT_END
621 
622 /* Macros for recording node offsets.   20001227 mjd@plover.com
623  * Nodes are numbered 1, 2, 3, 4.  Node #n's position is recorded in
624  * element 2*n-1 of the array.  Element #2n holds the byte length node #n.
625  * Element 0 holds the number n.
626  * Position is 1 indexed.
627  */
628 #ifndef RE_TRACK_PATTERN_OFFSETS
629 #define Set_Node_Offset_To_R(node,byte)
630 #define Set_Node_Offset(node,byte)
631 #define Set_Cur_Node_Offset
632 #define Set_Node_Length_To_R(node,len)
633 #define Set_Node_Length(node,len)
634 #define Set_Node_Cur_Length(node)
635 #define Node_Offset(n)
636 #define Node_Length(n)
637 #define Set_Node_Offset_Length(node,offset,len)
638 #define ProgLen(ri) ri->u.proglen
639 #define SetProgLen(ri,x) ri->u.proglen = x
640 #else
641 #define ProgLen(ri) ri->u.offsets[0]
642 #define SetProgLen(ri,x) ri->u.offsets[0] = x
643 #define Set_Node_Offset_To_R(node,byte) STMT_START {			\
644     if (! SIZE_ONLY) {							\
645 	MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n",		\
646 		    __LINE__, (int)(node), (int)(byte)));		\
647 	if((node) < 0) {						\
648 	    Perl_croak(aTHX_ "value of node is %d in Offset macro", (int)(node)); \
649 	} else {							\
650 	    RExC_offsets[2*(node)-1] = (byte);				\
651 	}								\
652     }									\
653 } STMT_END
654 
655 #define Set_Node_Offset(node,byte) \
656     Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
657 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
658 
659 #define Set_Node_Length_To_R(node,len) STMT_START {			\
660     if (! SIZE_ONLY) {							\
661 	MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n",		\
662 		__LINE__, (int)(node), (int)(len)));			\
663 	if((node) < 0) {						\
664 	    Perl_croak(aTHX_ "value of node is %d in Length macro", (int)(node)); \
665 	} else {							\
666 	    RExC_offsets[2*(node)] = (len);				\
667 	}								\
668     }									\
669 } STMT_END
670 
671 #define Set_Node_Length(node,len) \
672     Set_Node_Length_To_R((node)-RExC_emit_start, len)
673 #define Set_Cur_Node_Length(len) Set_Node_Length(RExC_emit, len)
674 #define Set_Node_Cur_Length(node) \
675     Set_Node_Length(node, RExC_parse - parse_start)
676 
677 /* Get offsets and lengths */
678 #define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
679 #define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
680 
681 #define Set_Node_Offset_Length(node,offset,len) STMT_START {	\
682     Set_Node_Offset_To_R((node)-RExC_emit_start, (offset));	\
683     Set_Node_Length_To_R((node)-RExC_emit_start, (len));	\
684 } STMT_END
685 #endif
686 
687 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
688 #define EXPERIMENTAL_INPLACESCAN
689 #endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
690 
691 #define DEBUG_STUDYDATA(str,data,depth)                              \
692 DEBUG_OPTIMISE_MORE_r(if(data){                                      \
693     PerlIO_printf(Perl_debug_log,                                    \
694         "%*s" str "Pos:%"IVdf"/%"IVdf                                \
695         " Flags: 0x%"UVXf" Whilem_c: %"IVdf" Lcp: %"IVdf" %s",       \
696         (int)(depth)*2, "",                                          \
697         (IV)((data)->pos_min),                                       \
698         (IV)((data)->pos_delta),                                     \
699         (UV)((data)->flags),                                         \
700         (IV)((data)->whilem_c),                                      \
701         (IV)((data)->last_closep ? *((data)->last_closep) : -1),     \
702         is_inf ? "INF " : ""                                         \
703     );                                                               \
704     if ((data)->last_found)                                          \
705         PerlIO_printf(Perl_debug_log,                                \
706             "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
707             " %sFloat: '%s' @ %"IVdf"/%"IVdf"",                      \
708             SvPVX_const((data)->last_found),                         \
709             (IV)((data)->last_end),                                  \
710             (IV)((data)->last_start_min),                            \
711             (IV)((data)->last_start_max),                            \
712             ((data)->longest &&                                      \
713              (data)->longest==&((data)->longest_fixed)) ? "*" : "",  \
714             SvPVX_const((data)->longest_fixed),                      \
715             (IV)((data)->offset_fixed),                              \
716             ((data)->longest &&                                      \
717              (data)->longest==&((data)->longest_float)) ? "*" : "",  \
718             SvPVX_const((data)->longest_float),                      \
719             (IV)((data)->offset_float_min),                          \
720             (IV)((data)->offset_float_max)                           \
721         );                                                           \
722     PerlIO_printf(Perl_debug_log,"\n");                              \
723 });
724 
725 /* Mark that we cannot extend a found fixed substring at this point.
726    Update the longest found anchored substring and the longest found
727    floating substrings if needed. */
728 
729 STATIC void
730 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data, I32 *minlenp, int is_inf)
731 {
732     const STRLEN l = CHR_SVLEN(data->last_found);
733     const STRLEN old_l = CHR_SVLEN(*data->longest);
734     GET_RE_DEBUG_FLAGS_DECL;
735 
736     PERL_ARGS_ASSERT_SCAN_COMMIT;
737 
738     if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
739 	SvSetMagicSV(*data->longest, data->last_found);
740 	if (*data->longest == data->longest_fixed) {
741 	    data->offset_fixed = l ? data->last_start_min : data->pos_min;
742 	    if (data->flags & SF_BEFORE_EOL)
743 		data->flags
744 		    |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
745 	    else
746 		data->flags &= ~SF_FIX_BEFORE_EOL;
747 	    data->minlen_fixed=minlenp;
748 	    data->lookbehind_fixed=0;
749 	}
750 	else { /* *data->longest == data->longest_float */
751 	    data->offset_float_min = l ? data->last_start_min : data->pos_min;
752 	    data->offset_float_max = (l
753 				      ? data->last_start_max
754 				      : (data->pos_delta == I32_MAX ? I32_MAX : data->pos_min + data->pos_delta));
755 	    if (is_inf || (U32)data->offset_float_max > (U32)I32_MAX)
756 		data->offset_float_max = I32_MAX;
757 	    if (data->flags & SF_BEFORE_EOL)
758 		data->flags
759 		    |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
760 	    else
761 		data->flags &= ~SF_FL_BEFORE_EOL;
762             data->minlen_float=minlenp;
763             data->lookbehind_float=0;
764 	}
765     }
766     SvCUR_set(data->last_found, 0);
767     {
768 	SV * const sv = data->last_found;
769 	if (SvUTF8(sv) && SvMAGICAL(sv)) {
770 	    MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
771 	    if (mg)
772 		mg->mg_len = 0;
773 	}
774     }
775     data->last_end = -1;
776     data->flags &= ~SF_BEFORE_EOL;
777     DEBUG_STUDYDATA("commit: ",data,0);
778 }
779 
780 /* These macros set, clear and test whether the synthetic start class ('ssc',
781  * given by the parameter) matches an empty string (EOS).  This uses the
782  * 'next_off' field in the node, to save a bit in the flags field.  The ssc
783  * stands alone, so there is never a next_off, so this field is otherwise
784  * unused.  The EOS information is used only for compilation, but theoretically
785  * it could be passed on to the execution code.  This could be used to store
786  * more than one bit of information, but only this one is currently used. */
787 #define SET_SSC_EOS(node)   STMT_START { (node)->next_off = TRUE; } STMT_END
788 #define CLEAR_SSC_EOS(node) STMT_START { (node)->next_off = FALSE; } STMT_END
789 #define TEST_SSC_EOS(node)  cBOOL((node)->next_off)
790 
791 /* Can match anything (initialization) */
792 STATIC void
793 S_cl_anything(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
794 {
795     PERL_ARGS_ASSERT_CL_ANYTHING;
796 
797     ANYOF_BITMAP_SETALL(cl);
798     cl->flags = ANYOF_UNICODE_ALL;
799     SET_SSC_EOS(cl);
800 
801     /* If any portion of the regex is to operate under locale rules,
802      * initialization includes it.  The reason this isn't done for all regexes
803      * is that the optimizer was written under the assumption that locale was
804      * all-or-nothing.  Given the complexity and lack of documentation in the
805      * optimizer, and that there are inadequate test cases for locale, so many
806      * parts of it may not work properly, it is safest to avoid locale unless
807      * necessary. */
808     if (RExC_contains_locale) {
809 	ANYOF_CLASS_SETALL(cl);	    /* /l uses class */
810 	cl->flags |= ANYOF_LOCALE|ANYOF_CLASS|ANYOF_LOC_FOLD;
811     }
812     else {
813 	ANYOF_CLASS_ZERO(cl);	    /* Only /l uses class now */
814     }
815 }
816 
817 /* Can match anything (initialization) */
818 STATIC int
819 S_cl_is_anything(const struct regnode_charclass_class *cl)
820 {
821     int value;
822 
823     PERL_ARGS_ASSERT_CL_IS_ANYTHING;
824 
825     for (value = 0; value < ANYOF_MAX; value += 2)
826 	if (ANYOF_CLASS_TEST(cl, value) && ANYOF_CLASS_TEST(cl, value + 1))
827 	    return 1;
828     if (!(cl->flags & ANYOF_UNICODE_ALL))
829 	return 0;
830     if (!ANYOF_BITMAP_TESTALLSET((const void*)cl))
831 	return 0;
832     return 1;
833 }
834 
835 /* Can match anything (initialization) */
836 STATIC void
837 S_cl_init(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
838 {
839     PERL_ARGS_ASSERT_CL_INIT;
840 
841     Zero(cl, 1, struct regnode_charclass_class);
842     cl->type = ANYOF;
843     cl_anything(pRExC_state, cl);
844     ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
845 }
846 
847 /* These two functions currently do the exact same thing */
848 #define cl_init_zero		S_cl_init
849 
850 /* 'AND' a given class with another one.  Can create false positives.  'cl'
851  * should not be inverted.  'and_with->flags & ANYOF_CLASS' should be 0 if
852  * 'and_with' is a regnode_charclass instead of a regnode_charclass_class. */
853 STATIC void
854 S_cl_and(struct regnode_charclass_class *cl,
855 	const struct regnode_charclass_class *and_with)
856 {
857     PERL_ARGS_ASSERT_CL_AND;
858 
859     assert(PL_regkind[and_with->type] == ANYOF);
860 
861     /* I (khw) am not sure all these restrictions are necessary XXX */
862     if (!(ANYOF_CLASS_TEST_ANY_SET(and_with))
863 	&& !(ANYOF_CLASS_TEST_ANY_SET(cl))
864 	&& (and_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
865 	&& !(and_with->flags & ANYOF_LOC_FOLD)
866 	&& !(cl->flags & ANYOF_LOC_FOLD)) {
867 	int i;
868 
869 	if (and_with->flags & ANYOF_INVERT)
870 	    for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
871 		cl->bitmap[i] &= ~and_with->bitmap[i];
872 	else
873 	    for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
874 		cl->bitmap[i] &= and_with->bitmap[i];
875     } /* XXXX: logic is complicated otherwise, leave it along for a moment. */
876 
877     if (and_with->flags & ANYOF_INVERT) {
878 
879         /* Here, the and'ed node is inverted.  Get the AND of the flags that
880          * aren't affected by the inversion.  Those that are affected are
881          * handled individually below */
882 	U8 affected_flags = cl->flags & ~INVERSION_UNAFFECTED_FLAGS;
883 	cl->flags &= (and_with->flags & INVERSION_UNAFFECTED_FLAGS);
884 	cl->flags |= affected_flags;
885 
886         /* We currently don't know how to deal with things that aren't in the
887          * bitmap, but we know that the intersection is no greater than what
888          * is already in cl, so let there be false positives that get sorted
889          * out after the synthetic start class succeeds, and the node is
890          * matched for real. */
891 
892         /* The inversion of these two flags indicate that the resulting
893          * intersection doesn't have them */
894 	if (and_with->flags & ANYOF_UNICODE_ALL) {
895 	    cl->flags &= ~ANYOF_UNICODE_ALL;
896 	}
897 	if (and_with->flags & ANYOF_NON_UTF8_LATIN1_ALL) {
898 	    cl->flags &= ~ANYOF_NON_UTF8_LATIN1_ALL;
899 	}
900     }
901     else {   /* and'd node is not inverted */
902 	U8 outside_bitmap_but_not_utf8; /* Temp variable */
903 
904 	if (! ANYOF_NONBITMAP(and_with)) {
905 
906             /* Here 'and_with' doesn't match anything outside the bitmap
907              * (except possibly ANYOF_UNICODE_ALL), which means the
908              * intersection can't either, except for ANYOF_UNICODE_ALL, in
909              * which case we don't know what the intersection is, but it's no
910              * greater than what cl already has, so can just leave it alone,
911              * with possible false positives */
912             if (! (and_with->flags & ANYOF_UNICODE_ALL)) {
913                 ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
914 		cl->flags &= ~ANYOF_NONBITMAP_NON_UTF8;
915             }
916 	}
917 	else if (! ANYOF_NONBITMAP(cl)) {
918 
919 	    /* Here, 'and_with' does match something outside the bitmap, and cl
920 	     * doesn't have a list of things to match outside the bitmap.  If
921              * cl can match all code points above 255, the intersection will
922              * be those above-255 code points that 'and_with' matches.  If cl
923              * can't match all Unicode code points, it means that it can't
924              * match anything outside the bitmap (since the 'if' that got us
925              * into this block tested for that), so we leave the bitmap empty.
926              */
927 	    if (cl->flags & ANYOF_UNICODE_ALL) {
928 		ARG_SET(cl, ARG(and_with));
929 
930                 /* and_with's ARG may match things that don't require UTF8.
931                  * And now cl's will too, in spite of this being an 'and'.  See
932                  * the comments below about the kludge */
933 		cl->flags |= and_with->flags & ANYOF_NONBITMAP_NON_UTF8;
934 	    }
935 	}
936 	else {
937             /* Here, both 'and_with' and cl match something outside the
938              * bitmap.  Currently we do not do the intersection, so just match
939              * whatever cl had at the beginning.  */
940 	}
941 
942 
943         /* Take the intersection of the two sets of flags.  However, the
944          * ANYOF_NONBITMAP_NON_UTF8 flag is treated as an 'or'.  This is a
945          * kludge around the fact that this flag is not treated like the others
946          * which are initialized in cl_anything().  The way the optimizer works
947          * is that the synthetic start class (SSC) is initialized to match
948          * anything, and then the first time a real node is encountered, its
949          * values are AND'd with the SSC's with the result being the values of
950          * the real node.  However, there are paths through the optimizer where
951          * the AND never gets called, so those initialized bits are set
952          * inappropriately, which is not usually a big deal, as they just cause
953          * false positives in the SSC, which will just mean a probably
954          * imperceptible slow down in execution.  However this bit has a
955          * higher false positive consequence in that it can cause utf8.pm,
956          * utf8_heavy.pl ... to be loaded when not necessary, which is a much
957          * bigger slowdown and also causes significant extra memory to be used.
958          * In order to prevent this, the code now takes a different tack.  The
959          * bit isn't set unless some part of the regular expression needs it,
960          * but once set it won't get cleared.  This means that these extra
961          * modules won't get loaded unless there was some path through the
962          * pattern that would have required them anyway, and  so any false
963          * positives that occur by not ANDing them out when they could be
964          * aren't as severe as they would be if we treated this bit like all
965          * the others */
966         outside_bitmap_but_not_utf8 = (cl->flags | and_with->flags)
967                                       & ANYOF_NONBITMAP_NON_UTF8;
968 	cl->flags &= and_with->flags;
969 	cl->flags |= outside_bitmap_but_not_utf8;
970     }
971 }
972 
973 /* 'OR' a given class with another one.  Can create false positives.  'cl'
974  * should not be inverted.  'or_with->flags & ANYOF_CLASS' should be 0 if
975  * 'or_with' is a regnode_charclass instead of a regnode_charclass_class. */
976 STATIC void
977 S_cl_or(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl, const struct regnode_charclass_class *or_with)
978 {
979     PERL_ARGS_ASSERT_CL_OR;
980 
981     if (or_with->flags & ANYOF_INVERT) {
982 
983         /* Here, the or'd node is to be inverted.  This means we take the
984          * complement of everything not in the bitmap, but currently we don't
985          * know what that is, so give up and match anything */
986 	if (ANYOF_NONBITMAP(or_with)) {
987 	    cl_anything(pRExC_state, cl);
988 	}
989 	/* We do not use
990 	 * (B1 | CL1) | (!B2 & !CL2) = (B1 | !B2 & !CL2) | (CL1 | (!B2 & !CL2))
991 	 *   <= (B1 | !B2) | (CL1 | !CL2)
992 	 * which is wasteful if CL2 is small, but we ignore CL2:
993 	 *   (B1 | CL1) | (!B2 & !CL2) <= (B1 | CL1) | !B2 = (B1 | !B2) | CL1
994 	 * XXXX Can we handle case-fold?  Unclear:
995 	 *   (OK1(i) | OK1(i')) | !(OK1(i) | OK1(i')) =
996 	 *   (OK1(i) | OK1(i')) | (!OK1(i) & !OK1(i'))
997 	 */
998 	else if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
999 	     && !(or_with->flags & ANYOF_LOC_FOLD)
1000 	     && !(cl->flags & ANYOF_LOC_FOLD) ) {
1001 	    int i;
1002 
1003 	    for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
1004 		cl->bitmap[i] |= ~or_with->bitmap[i];
1005 	} /* XXXX: logic is complicated otherwise */
1006 	else {
1007 	    cl_anything(pRExC_state, cl);
1008 	}
1009 
1010         /* And, we can just take the union of the flags that aren't affected
1011          * by the inversion */
1012 	cl->flags |= or_with->flags & INVERSION_UNAFFECTED_FLAGS;
1013 
1014         /* For the remaining flags:
1015             ANYOF_UNICODE_ALL and inverted means to not match anything above
1016                     255, which means that the union with cl should just be
1017                     what cl has in it, so can ignore this flag
1018             ANYOF_NON_UTF8_LATIN1_ALL and inverted means if not utf8 and ord
1019                     is 127-255 to match them, but then invert that, so the
1020                     union with cl should just be what cl has in it, so can
1021                     ignore this flag
1022          */
1023     } else {    /* 'or_with' is not inverted */
1024 	/* (B1 | CL1) | (B2 | CL2) = (B1 | B2) | (CL1 | CL2)) */
1025 	if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
1026 	     && (!(or_with->flags & ANYOF_LOC_FOLD)
1027 		 || (cl->flags & ANYOF_LOC_FOLD)) ) {
1028 	    int i;
1029 
1030 	    /* OR char bitmap and class bitmap separately */
1031 	    for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
1032 		cl->bitmap[i] |= or_with->bitmap[i];
1033             if (or_with->flags & ANYOF_CLASS) {
1034                 ANYOF_CLASS_OR(or_with, cl);
1035             }
1036 	}
1037 	else { /* XXXX: logic is complicated, leave it along for a moment. */
1038 	    cl_anything(pRExC_state, cl);
1039 	}
1040 
1041 	if (ANYOF_NONBITMAP(or_with)) {
1042 
1043 	    /* Use the added node's outside-the-bit-map match if there isn't a
1044 	     * conflict.  If there is a conflict (both nodes match something
1045 	     * outside the bitmap, but what they match outside is not the same
1046 	     * pointer, and hence not easily compared until XXX we extend
1047 	     * inversion lists this far), give up and allow the start class to
1048 	     * match everything outside the bitmap.  If that stuff is all above
1049 	     * 255, can just set UNICODE_ALL, otherwise caould be anything. */
1050 	    if (! ANYOF_NONBITMAP(cl)) {
1051 		ARG_SET(cl, ARG(or_with));
1052 	    }
1053 	    else if (ARG(cl) != ARG(or_with)) {
1054 
1055 		if ((or_with->flags & ANYOF_NONBITMAP_NON_UTF8)) {
1056 		    cl_anything(pRExC_state, cl);
1057 		}
1058 		else {
1059 		    cl->flags |= ANYOF_UNICODE_ALL;
1060 		}
1061 	    }
1062 	}
1063 
1064         /* Take the union */
1065 	cl->flags |= or_with->flags;
1066     }
1067 }
1068 
1069 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
1070 #define TRIE_LIST_CUR(state)  ( TRIE_LIST_ITEM( state, 0 ).forid )
1071 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
1072 #define TRIE_LIST_USED(idx)  ( trie->states[state].trans.list ? (TRIE_LIST_CUR( idx ) - 1) : 0 )
1073 
1074 
1075 #ifdef DEBUGGING
1076 /*
1077    dump_trie(trie,widecharmap,revcharmap)
1078    dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
1079    dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
1080 
1081    These routines dump out a trie in a somewhat readable format.
1082    The _interim_ variants are used for debugging the interim
1083    tables that are used to generate the final compressed
1084    representation which is what dump_trie expects.
1085 
1086    Part of the reason for their existence is to provide a form
1087    of documentation as to how the different representations function.
1088 
1089 */
1090 
1091 /*
1092   Dumps the final compressed table form of the trie to Perl_debug_log.
1093   Used for debugging make_trie().
1094 */
1095 
1096 STATIC void
1097 S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
1098 	    AV *revcharmap, U32 depth)
1099 {
1100     U32 state;
1101     SV *sv=sv_newmortal();
1102     int colwidth= widecharmap ? 6 : 4;
1103     U16 word;
1104     GET_RE_DEBUG_FLAGS_DECL;
1105 
1106     PERL_ARGS_ASSERT_DUMP_TRIE;
1107 
1108     PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
1109         (int)depth * 2 + 2,"",
1110         "Match","Base","Ofs" );
1111 
1112     for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
1113 	SV ** const tmp = av_fetch( revcharmap, state, 0);
1114         if ( tmp ) {
1115             PerlIO_printf( Perl_debug_log, "%*s",
1116                 colwidth,
1117                 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1118 	                    PL_colors[0], PL_colors[1],
1119 	                    (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1120 	                    PERL_PV_ESCAPE_FIRSTCHAR
1121                 )
1122             );
1123         }
1124     }
1125     PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
1126         (int)depth * 2 + 2,"");
1127 
1128     for( state = 0 ; state < trie->uniquecharcount ; state++ )
1129         PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
1130     PerlIO_printf( Perl_debug_log, "\n");
1131 
1132     for( state = 1 ; state < trie->statecount ; state++ ) {
1133 	const U32 base = trie->states[ state ].trans.base;
1134 
1135         PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|", (int)depth * 2 + 2,"", (UV)state);
1136 
1137         if ( trie->states[ state ].wordnum ) {
1138             PerlIO_printf( Perl_debug_log, " W%4X", trie->states[ state ].wordnum );
1139         } else {
1140             PerlIO_printf( Perl_debug_log, "%6s", "" );
1141         }
1142 
1143         PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
1144 
1145         if ( base ) {
1146             U32 ofs = 0;
1147 
1148             while( ( base + ofs  < trie->uniquecharcount ) ||
1149                    ( base + ofs - trie->uniquecharcount < trie->lasttrans
1150                      && trie->trans[ base + ofs - trie->uniquecharcount ].check != state))
1151                     ofs++;
1152 
1153             PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
1154 
1155             for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
1156                 if ( ( base + ofs >= trie->uniquecharcount ) &&
1157                      ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
1158                      trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
1159                 {
1160                    PerlIO_printf( Perl_debug_log, "%*"UVXf,
1161                     colwidth,
1162                     (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next );
1163                 } else {
1164                     PerlIO_printf( Perl_debug_log, "%*s",colwidth,"   ." );
1165                 }
1166             }
1167 
1168             PerlIO_printf( Perl_debug_log, "]");
1169 
1170         }
1171         PerlIO_printf( Perl_debug_log, "\n" );
1172     }
1173     PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=", (int)depth*2, "");
1174     for (word=1; word <= trie->wordcount; word++) {
1175 	PerlIO_printf(Perl_debug_log, " %d:(%d,%d)",
1176 	    (int)word, (int)(trie->wordinfo[word].prev),
1177 	    (int)(trie->wordinfo[word].len));
1178     }
1179     PerlIO_printf(Perl_debug_log, "\n" );
1180 }
1181 /*
1182   Dumps a fully constructed but uncompressed trie in list form.
1183   List tries normally only are used for construction when the number of
1184   possible chars (trie->uniquecharcount) is very high.
1185   Used for debugging make_trie().
1186 */
1187 STATIC void
1188 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
1189 			 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1190 			 U32 depth)
1191 {
1192     U32 state;
1193     SV *sv=sv_newmortal();
1194     int colwidth= widecharmap ? 6 : 4;
1195     GET_RE_DEBUG_FLAGS_DECL;
1196 
1197     PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
1198 
1199     /* print out the table precompression.  */
1200     PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
1201         (int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
1202         "------:-----+-----------------\n" );
1203 
1204     for( state=1 ; state < next_alloc ; state ++ ) {
1205         U16 charid;
1206 
1207         PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
1208             (int)depth * 2 + 2,"", (UV)state  );
1209         if ( ! trie->states[ state ].wordnum ) {
1210             PerlIO_printf( Perl_debug_log, "%5s| ","");
1211         } else {
1212             PerlIO_printf( Perl_debug_log, "W%4x| ",
1213                 trie->states[ state ].wordnum
1214             );
1215         }
1216         for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
1217 	    SV ** const tmp = av_fetch( revcharmap, TRIE_LIST_ITEM(state,charid).forid, 0);
1218 	    if ( tmp ) {
1219                 PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
1220                     colwidth,
1221                     pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1222 	                    PL_colors[0], PL_colors[1],
1223 	                    (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1224 	                    PERL_PV_ESCAPE_FIRSTCHAR
1225                     ) ,
1226                     TRIE_LIST_ITEM(state,charid).forid,
1227                     (UV)TRIE_LIST_ITEM(state,charid).newstate
1228                 );
1229                 if (!(charid % 10))
1230                     PerlIO_printf(Perl_debug_log, "\n%*s| ",
1231                         (int)((depth * 2) + 14), "");
1232             }
1233         }
1234         PerlIO_printf( Perl_debug_log, "\n");
1235     }
1236 }
1237 
1238 /*
1239   Dumps a fully constructed but uncompressed trie in table form.
1240   This is the normal DFA style state transition table, with a few
1241   twists to facilitate compression later.
1242   Used for debugging make_trie().
1243 */
1244 STATIC void
1245 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
1246 			  HV *widecharmap, AV *revcharmap, U32 next_alloc,
1247 			  U32 depth)
1248 {
1249     U32 state;
1250     U16 charid;
1251     SV *sv=sv_newmortal();
1252     int colwidth= widecharmap ? 6 : 4;
1253     GET_RE_DEBUG_FLAGS_DECL;
1254 
1255     PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
1256 
1257     /*
1258        print out the table precompression so that we can do a visual check
1259        that they are identical.
1260      */
1261 
1262     PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
1263 
1264     for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1265 	SV ** const tmp = av_fetch( revcharmap, charid, 0);
1266         if ( tmp ) {
1267             PerlIO_printf( Perl_debug_log, "%*s",
1268                 colwidth,
1269                 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1270 	                    PL_colors[0], PL_colors[1],
1271 	                    (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1272 	                    PERL_PV_ESCAPE_FIRSTCHAR
1273                 )
1274             );
1275         }
1276     }
1277 
1278     PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
1279 
1280     for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
1281         PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
1282     }
1283 
1284     PerlIO_printf( Perl_debug_log, "\n" );
1285 
1286     for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
1287 
1288         PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
1289             (int)depth * 2 + 2,"",
1290             (UV)TRIE_NODENUM( state ) );
1291 
1292         for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1293             UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
1294             if (v)
1295                 PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
1296             else
1297                 PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
1298         }
1299         if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
1300             PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n", (UV)trie->trans[ state ].check );
1301         } else {
1302             PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n", (UV)trie->trans[ state ].check,
1303             trie->states[ TRIE_NODENUM( state ) ].wordnum );
1304         }
1305     }
1306 }
1307 
1308 #endif
1309 
1310 
1311 /* make_trie(startbranch,first,last,tail,word_count,flags,depth)
1312   startbranch: the first branch in the whole branch sequence
1313   first      : start branch of sequence of branch-exact nodes.
1314 	       May be the same as startbranch
1315   last       : Thing following the last branch.
1316 	       May be the same as tail.
1317   tail       : item following the branch sequence
1318   count      : words in the sequence
1319   flags      : currently the OP() type we will be building one of /EXACT(|F|Fl)/
1320   depth      : indent depth
1321 
1322 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
1323 
1324 A trie is an N'ary tree where the branches are determined by digital
1325 decomposition of the key. IE, at the root node you look up the 1st character and
1326 follow that branch repeat until you find the end of the branches. Nodes can be
1327 marked as "accepting" meaning they represent a complete word. Eg:
1328 
1329   /he|she|his|hers/
1330 
1331 would convert into the following structure. Numbers represent states, letters
1332 following numbers represent valid transitions on the letter from that state, if
1333 the number is in square brackets it represents an accepting state, otherwise it
1334 will be in parenthesis.
1335 
1336       +-h->+-e->[3]-+-r->(8)-+-s->[9]
1337       |    |
1338       |   (2)
1339       |    |
1340      (1)   +-i->(6)-+-s->[7]
1341       |
1342       +-s->(3)-+-h->(4)-+-e->[5]
1343 
1344       Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
1345 
1346 This shows that when matching against the string 'hers' we will begin at state 1
1347 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
1348 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
1349 is also accepting. Thus we know that we can match both 'he' and 'hers' with a
1350 single traverse. We store a mapping from accepting to state to which word was
1351 matched, and then when we have multiple possibilities we try to complete the
1352 rest of the regex in the order in which they occured in the alternation.
1353 
1354 The only prior NFA like behaviour that would be changed by the TRIE support is
1355 the silent ignoring of duplicate alternations which are of the form:
1356 
1357  / (DUPE|DUPE) X? (?{ ... }) Y /x
1358 
1359 Thus EVAL blocks following a trie may be called a different number of times with
1360 and without the optimisation. With the optimisations dupes will be silently
1361 ignored. This inconsistent behaviour of EVAL type nodes is well established as
1362 the following demonstrates:
1363 
1364  'words'=~/(word|word|word)(?{ print $1 })[xyz]/
1365 
1366 which prints out 'word' three times, but
1367 
1368  'words'=~/(word|word|word)(?{ print $1 })S/
1369 
1370 which doesnt print it out at all. This is due to other optimisations kicking in.
1371 
1372 Example of what happens on a structural level:
1373 
1374 The regexp /(ac|ad|ab)+/ will produce the following debug output:
1375 
1376    1: CURLYM[1] {1,32767}(18)
1377    5:   BRANCH(8)
1378    6:     EXACT <ac>(16)
1379    8:   BRANCH(11)
1380    9:     EXACT <ad>(16)
1381   11:   BRANCH(14)
1382   12:     EXACT <ab>(16)
1383   16:   SUCCEED(0)
1384   17:   NOTHING(18)
1385   18: END(0)
1386 
1387 This would be optimizable with startbranch=5, first=5, last=16, tail=16
1388 and should turn into:
1389 
1390    1: CURLYM[1] {1,32767}(18)
1391    5:   TRIE(16)
1392 	[Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
1393 	  <ac>
1394 	  <ad>
1395 	  <ab>
1396   16:   SUCCEED(0)
1397   17:   NOTHING(18)
1398   18: END(0)
1399 
1400 Cases where tail != last would be like /(?foo|bar)baz/:
1401 
1402    1: BRANCH(4)
1403    2:   EXACT <foo>(8)
1404    4: BRANCH(7)
1405    5:   EXACT <bar>(8)
1406    7: TAIL(8)
1407    8: EXACT <baz>(10)
1408   10: END(0)
1409 
1410 which would be optimizable with startbranch=1, first=1, last=7, tail=8
1411 and would end up looking like:
1412 
1413     1: TRIE(8)
1414       [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
1415 	<foo>
1416 	<bar>
1417    7: TAIL(8)
1418    8: EXACT <baz>(10)
1419   10: END(0)
1420 
1421     d = uvuni_to_utf8_flags(d, uv, 0);
1422 
1423 is the recommended Unicode-aware way of saying
1424 
1425     *(d++) = uv;
1426 */
1427 
1428 #define TRIE_STORE_REVCHAR(val)                                            \
1429     STMT_START {                                                           \
1430 	if (UTF) {							   \
1431             SV *zlopp = newSV(7); /* XXX: optimize me */                   \
1432 	    unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp);	   \
1433             unsigned const char *const kapow = uvuni_to_utf8(flrbbbbb, val); \
1434 	    SvCUR_set(zlopp, kapow - flrbbbbb);				   \
1435 	    SvPOK_on(zlopp);						   \
1436 	    SvUTF8_on(zlopp);						   \
1437 	    av_push(revcharmap, zlopp);					   \
1438 	} else {							   \
1439             char ooooff = (char)val;                                           \
1440 	    av_push(revcharmap, newSVpvn(&ooooff, 1));			   \
1441 	}								   \
1442         } STMT_END
1443 
1444 #define TRIE_READ_CHAR STMT_START {                                                     \
1445     wordlen++;                                                                          \
1446     if ( UTF ) {                                                                        \
1447         /* if it is UTF then it is either already folded, or does not need folding */   \
1448         uvc = utf8n_to_uvuni( (const U8*) uc, UTF8_MAXLEN, &len, uniflags);             \
1449     }                                                                                   \
1450     else if (folder == PL_fold_latin1) {                                                \
1451         /* if we use this folder we have to obey unicode rules on latin-1 data */       \
1452         if ( foldlen > 0 ) {                                                            \
1453            uvc = utf8n_to_uvuni( (const U8*) scan, UTF8_MAXLEN, &len, uniflags );       \
1454            foldlen -= len;                                                              \
1455            scan += len;                                                                 \
1456            len = 0;                                                                     \
1457         } else {                                                                        \
1458             len = 1;                                                                    \
1459             uvc = _to_fold_latin1( (U8) *uc, foldbuf, &foldlen, 1);                     \
1460             skiplen = UNISKIP(uvc);                                                     \
1461             foldlen -= skiplen;                                                         \
1462             scan = foldbuf + skiplen;                                                   \
1463         }                                                                               \
1464     } else {                                                                            \
1465         /* raw data, will be folded later if needed */                                  \
1466         uvc = (U32)*uc;                                                                 \
1467         len = 1;                                                                        \
1468     }                                                                                   \
1469 } STMT_END
1470 
1471 
1472 
1473 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START {               \
1474     if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) {    \
1475 	U32 ging = TRIE_LIST_LEN( state ) *= 2;                 \
1476 	Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
1477     }                                                           \
1478     TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid;     \
1479     TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns;   \
1480     TRIE_LIST_CUR( state )++;                                   \
1481 } STMT_END
1482 
1483 #define TRIE_LIST_NEW(state) STMT_START {                       \
1484     Newxz( trie->states[ state ].trans.list,               \
1485 	4, reg_trie_trans_le );                                 \
1486      TRIE_LIST_CUR( state ) = 1;                                \
1487      TRIE_LIST_LEN( state ) = 4;                                \
1488 } STMT_END
1489 
1490 #define TRIE_HANDLE_WORD(state) STMT_START {                    \
1491     U16 dupe= trie->states[ state ].wordnum;                    \
1492     regnode * const noper_next = regnext( noper );              \
1493                                                                 \
1494     DEBUG_r({                                                   \
1495         /* store the word for dumping */                        \
1496         SV* tmp;                                                \
1497         if (OP(noper) != NOTHING)                               \
1498             tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF);	\
1499         else                                                    \
1500             tmp = newSVpvn_utf8( "", 0, UTF );			\
1501         av_push( trie_words, tmp );                             \
1502     });                                                         \
1503                                                                 \
1504     curword++;                                                  \
1505     trie->wordinfo[curword].prev   = 0;                         \
1506     trie->wordinfo[curword].len    = wordlen;                   \
1507     trie->wordinfo[curword].accept = state;                     \
1508                                                                 \
1509     if ( noper_next < tail ) {                                  \
1510         if (!trie->jump)                                        \
1511             trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, sizeof(U16) ); \
1512         trie->jump[curword] = (U16)(noper_next - convert);      \
1513         if (!jumper)                                            \
1514             jumper = noper_next;                                \
1515         if (!nextbranch)                                        \
1516             nextbranch= regnext(cur);                           \
1517     }                                                           \
1518                                                                 \
1519     if ( dupe ) {                                               \
1520         /* It's a dupe. Pre-insert into the wordinfo[].prev   */\
1521         /* chain, so that when the bits of chain are later    */\
1522         /* linked together, the dups appear in the chain      */\
1523 	trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
1524 	trie->wordinfo[dupe].prev = curword;                    \
1525     } else {                                                    \
1526         /* we haven't inserted this word yet.                */ \
1527         trie->states[ state ].wordnum = curword;                \
1528     }                                                           \
1529 } STMT_END
1530 
1531 
1532 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special)		\
1533      ( ( base + charid >=  ucharcount					\
1534          && base + charid < ubound					\
1535          && state == trie->trans[ base - ucharcount + charid ].check	\
1536          && trie->trans[ base - ucharcount + charid ].next )		\
1537            ? trie->trans[ base - ucharcount + charid ].next		\
1538            : ( state==1 ? special : 0 )					\
1539       )
1540 
1541 #define MADE_TRIE       1
1542 #define MADE_JUMP_TRIE  2
1543 #define MADE_EXACT_TRIE 4
1544 
1545 STATIC I32
1546 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch, regnode *first, regnode *last, regnode *tail, U32 word_count, U32 flags, U32 depth)
1547 {
1548     dVAR;
1549     /* first pass, loop through and scan words */
1550     reg_trie_data *trie;
1551     HV *widecharmap = NULL;
1552     AV *revcharmap = newAV();
1553     regnode *cur;
1554     const U32 uniflags = UTF8_ALLOW_DEFAULT;
1555     STRLEN len = 0;
1556     UV uvc = 0;
1557     U16 curword = 0;
1558     U32 next_alloc = 0;
1559     regnode *jumper = NULL;
1560     regnode *nextbranch = NULL;
1561     regnode *convert = NULL;
1562     U32 *prev_states; /* temp array mapping each state to previous one */
1563     /* we just use folder as a flag in utf8 */
1564     const U8 * folder = NULL;
1565 
1566 #ifdef DEBUGGING
1567     const U32 data_slot = add_data( pRExC_state, 4, "tuuu" );
1568     AV *trie_words = NULL;
1569     /* along with revcharmap, this only used during construction but both are
1570      * useful during debugging so we store them in the struct when debugging.
1571      */
1572 #else
1573     const U32 data_slot = add_data( pRExC_state, 2, "tu" );
1574     STRLEN trie_charcount=0;
1575 #endif
1576     SV *re_trie_maxbuff;
1577     GET_RE_DEBUG_FLAGS_DECL;
1578 
1579     PERL_ARGS_ASSERT_MAKE_TRIE;
1580 #ifndef DEBUGGING
1581     PERL_UNUSED_ARG(depth);
1582 #endif
1583 
1584     switch (flags) {
1585         case EXACT: break;
1586 	case EXACTFA:
1587         case EXACTFU_SS:
1588         case EXACTFU_TRICKYFOLD:
1589 	case EXACTFU: folder = PL_fold_latin1; break;
1590 	case EXACTF:  folder = PL_fold; break;
1591 	case EXACTFL: folder = PL_fold_locale; break;
1592         default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
1593     }
1594 
1595     trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
1596     trie->refcount = 1;
1597     trie->startstate = 1;
1598     trie->wordcount = word_count;
1599     RExC_rxi->data->data[ data_slot ] = (void*)trie;
1600     trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
1601     if (flags == EXACT)
1602 	trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
1603     trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
1604                        trie->wordcount+1, sizeof(reg_trie_wordinfo));
1605 
1606     DEBUG_r({
1607         trie_words = newAV();
1608     });
1609 
1610     re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
1611     if (!SvIOK(re_trie_maxbuff)) {
1612         sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
1613     }
1614     DEBUG_TRIE_COMPILE_r({
1615                 PerlIO_printf( Perl_debug_log,
1616                   "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
1617                   (int)depth * 2 + 2, "",
1618                   REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
1619                   REG_NODE_NUM(last), REG_NODE_NUM(tail),
1620                   (int)depth);
1621     });
1622 
1623    /* Find the node we are going to overwrite */
1624     if ( first == startbranch && OP( last ) != BRANCH ) {
1625         /* whole branch chain */
1626         convert = first;
1627     } else {
1628         /* branch sub-chain */
1629         convert = NEXTOPER( first );
1630     }
1631 
1632     /*  -- First loop and Setup --
1633 
1634        We first traverse the branches and scan each word to determine if it
1635        contains widechars, and how many unique chars there are, this is
1636        important as we have to build a table with at least as many columns as we
1637        have unique chars.
1638 
1639        We use an array of integers to represent the character codes 0..255
1640        (trie->charmap) and we use a an HV* to store Unicode characters. We use the
1641        native representation of the character value as the key and IV's for the
1642        coded index.
1643 
1644        *TODO* If we keep track of how many times each character is used we can
1645        remap the columns so that the table compression later on is more
1646        efficient in terms of memory by ensuring the most common value is in the
1647        middle and the least common are on the outside.  IMO this would be better
1648        than a most to least common mapping as theres a decent chance the most
1649        common letter will share a node with the least common, meaning the node
1650        will not be compressible. With a middle is most common approach the worst
1651        case is when we have the least common nodes twice.
1652 
1653      */
1654 
1655     for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1656         regnode *noper = NEXTOPER( cur );
1657         const U8 *uc = (U8*)STRING( noper );
1658         const U8 *e  = uc + STR_LEN( noper );
1659         STRLEN foldlen = 0;
1660         U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1661         STRLEN skiplen = 0;
1662         const U8 *scan = (U8*)NULL;
1663         U32 wordlen      = 0;         /* required init */
1664         STRLEN chars = 0;
1665         bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the bitmap?*/
1666 
1667         if (OP(noper) == NOTHING) {
1668             regnode *noper_next= regnext(noper);
1669             if (noper_next != tail && OP(noper_next) == flags) {
1670                 noper = noper_next;
1671                 uc= (U8*)STRING(noper);
1672                 e= uc + STR_LEN(noper);
1673 		trie->minlen= STR_LEN(noper);
1674             } else {
1675 		trie->minlen= 0;
1676 		continue;
1677 	    }
1678         }
1679 
1680         if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
1681             TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
1682                                           regardless of encoding */
1683             if (OP( noper ) == EXACTFU_SS) {
1684                 /* false positives are ok, so just set this */
1685                 TRIE_BITMAP_SET(trie,0xDF);
1686             }
1687         }
1688         for ( ; uc < e ; uc += len ) {
1689             TRIE_CHARCOUNT(trie)++;
1690             TRIE_READ_CHAR;
1691             chars++;
1692             if ( uvc < 256 ) {
1693                 if ( folder ) {
1694                     U8 folded= folder[ (U8) uvc ];
1695                     if ( !trie->charmap[ folded ] ) {
1696                         trie->charmap[ folded ]=( ++trie->uniquecharcount );
1697                         TRIE_STORE_REVCHAR( folded );
1698                     }
1699                 }
1700                 if ( !trie->charmap[ uvc ] ) {
1701                     trie->charmap[ uvc ]=( ++trie->uniquecharcount );
1702                     TRIE_STORE_REVCHAR( uvc );
1703                 }
1704                 if ( set_bit ) {
1705 		    /* store the codepoint in the bitmap, and its folded
1706 		     * equivalent. */
1707                     TRIE_BITMAP_SET(trie, uvc);
1708 
1709 		    /* store the folded codepoint */
1710                     if ( folder ) TRIE_BITMAP_SET(trie, folder[(U8) uvc ]);
1711 
1712 		    if ( !UTF ) {
1713 			/* store first byte of utf8 representation of
1714 			   variant codepoints */
1715 			if (! UNI_IS_INVARIANT(uvc)) {
1716 			    TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
1717 			}
1718 		    }
1719                     set_bit = 0; /* We've done our bit :-) */
1720                 }
1721             } else {
1722                 SV** svpp;
1723                 if ( !widecharmap )
1724                     widecharmap = newHV();
1725 
1726                 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
1727 
1728                 if ( !svpp )
1729                     Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
1730 
1731                 if ( !SvTRUE( *svpp ) ) {
1732                     sv_setiv( *svpp, ++trie->uniquecharcount );
1733                     TRIE_STORE_REVCHAR(uvc);
1734                 }
1735             }
1736         }
1737         if( cur == first ) {
1738             trie->minlen = chars;
1739             trie->maxlen = chars;
1740         } else if (chars < trie->minlen) {
1741             trie->minlen = chars;
1742         } else if (chars > trie->maxlen) {
1743             trie->maxlen = chars;
1744         }
1745         if (OP( noper ) == EXACTFU_SS) {
1746             /* XXX: workaround - 'ss' could match "\x{DF}" so minlen could be 1 and not 2*/
1747 	    if (trie->minlen > 1)
1748                 trie->minlen= 1;
1749         }
1750 	if (OP( noper ) == EXACTFU_TRICKYFOLD) {
1751 	    /* XXX: workround - things like "\x{1FBE}\x{0308}\x{0301}" can match "\x{0390}"
1752 	     *		      - We assume that any such sequence might match a 2 byte string */
1753             if (trie->minlen > 2 )
1754                 trie->minlen= 2;
1755         }
1756 
1757     } /* end first pass */
1758     DEBUG_TRIE_COMPILE_r(
1759         PerlIO_printf( Perl_debug_log, "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
1760                 (int)depth * 2 + 2,"",
1761                 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
1762 		(int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
1763 		(int)trie->minlen, (int)trie->maxlen )
1764     );
1765 
1766     /*
1767         We now know what we are dealing with in terms of unique chars and
1768         string sizes so we can calculate how much memory a naive
1769         representation using a flat table  will take. If it's over a reasonable
1770         limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
1771         conservative but potentially much slower representation using an array
1772         of lists.
1773 
1774         At the end we convert both representations into the same compressed
1775         form that will be used in regexec.c for matching with. The latter
1776         is a form that cannot be used to construct with but has memory
1777         properties similar to the list form and access properties similar
1778         to the table form making it both suitable for fast searches and
1779         small enough that its feasable to store for the duration of a program.
1780 
1781         See the comment in the code where the compressed table is produced
1782         inplace from the flat tabe representation for an explanation of how
1783         the compression works.
1784 
1785     */
1786 
1787 
1788     Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
1789     prev_states[1] = 0;
1790 
1791     if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1) > SvIV(re_trie_maxbuff) ) {
1792         /*
1793             Second Pass -- Array Of Lists Representation
1794 
1795             Each state will be represented by a list of charid:state records
1796             (reg_trie_trans_le) the first such element holds the CUR and LEN
1797             points of the allocated array. (See defines above).
1798 
1799             We build the initial structure using the lists, and then convert
1800             it into the compressed table form which allows faster lookups
1801             (but cant be modified once converted).
1802         */
1803 
1804         STRLEN transcount = 1;
1805 
1806         DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
1807             "%*sCompiling trie using list compiler\n",
1808             (int)depth * 2 + 2, ""));
1809 
1810 	trie->states = (reg_trie_state *)
1811 	    PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
1812 				  sizeof(reg_trie_state) );
1813         TRIE_LIST_NEW(1);
1814         next_alloc = 2;
1815 
1816         for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1817 
1818             regnode *noper   = NEXTOPER( cur );
1819 	    U8 *uc           = (U8*)STRING( noper );
1820             const U8 *e      = uc + STR_LEN( noper );
1821 	    U32 state        = 1;         /* required init */
1822 	    U16 charid       = 0;         /* sanity init */
1823 	    U8 *scan         = (U8*)NULL; /* sanity init */
1824 	    STRLEN foldlen   = 0;         /* required init */
1825             U32 wordlen      = 0;         /* required init */
1826 	    U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1827             STRLEN skiplen   = 0;
1828 
1829             if (OP(noper) == NOTHING) {
1830                 regnode *noper_next= regnext(noper);
1831                 if (noper_next != tail && OP(noper_next) == flags) {
1832                     noper = noper_next;
1833                     uc= (U8*)STRING(noper);
1834                     e= uc + STR_LEN(noper);
1835                 }
1836             }
1837 
1838             if (OP(noper) != NOTHING) {
1839                 for ( ; uc < e ; uc += len ) {
1840 
1841                     TRIE_READ_CHAR;
1842 
1843                     if ( uvc < 256 ) {
1844                         charid = trie->charmap[ uvc ];
1845 		    } else {
1846                         SV** const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
1847                         if ( !svpp ) {
1848                             charid = 0;
1849                         } else {
1850                             charid=(U16)SvIV( *svpp );
1851                         }
1852 		    }
1853                     /* charid is now 0 if we dont know the char read, or nonzero if we do */
1854                     if ( charid ) {
1855 
1856                         U16 check;
1857                         U32 newstate = 0;
1858 
1859                         charid--;
1860                         if ( !trie->states[ state ].trans.list ) {
1861                             TRIE_LIST_NEW( state );
1862 			}
1863                         for ( check = 1; check <= TRIE_LIST_USED( state ); check++ ) {
1864                             if ( TRIE_LIST_ITEM( state, check ).forid == charid ) {
1865                                 newstate = TRIE_LIST_ITEM( state, check ).newstate;
1866                                 break;
1867                             }
1868                         }
1869                         if ( ! newstate ) {
1870                             newstate = next_alloc++;
1871 			    prev_states[newstate] = state;
1872                             TRIE_LIST_PUSH( state, charid, newstate );
1873                             transcount++;
1874                         }
1875                         state = newstate;
1876                     } else {
1877                         Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
1878 		    }
1879 		}
1880 	    }
1881             TRIE_HANDLE_WORD(state);
1882 
1883         } /* end second pass */
1884 
1885         /* next alloc is the NEXT state to be allocated */
1886         trie->statecount = next_alloc;
1887         trie->states = (reg_trie_state *)
1888 	    PerlMemShared_realloc( trie->states,
1889 				   next_alloc
1890 				   * sizeof(reg_trie_state) );
1891 
1892         /* and now dump it out before we compress it */
1893         DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
1894 							 revcharmap, next_alloc,
1895 							 depth+1)
1896         );
1897 
1898         trie->trans = (reg_trie_trans *)
1899 	    PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
1900         {
1901             U32 state;
1902             U32 tp = 0;
1903             U32 zp = 0;
1904 
1905 
1906             for( state=1 ; state < next_alloc ; state ++ ) {
1907                 U32 base=0;
1908 
1909                 /*
1910                 DEBUG_TRIE_COMPILE_MORE_r(
1911                     PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
1912                 );
1913                 */
1914 
1915                 if (trie->states[state].trans.list) {
1916                     U16 minid=TRIE_LIST_ITEM( state, 1).forid;
1917                     U16 maxid=minid;
1918 		    U16 idx;
1919 
1920                     for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1921 			const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
1922 			if ( forid < minid ) {
1923 			    minid=forid;
1924 			} else if ( forid > maxid ) {
1925 			    maxid=forid;
1926 			}
1927                     }
1928                     if ( transcount < tp + maxid - minid + 1) {
1929                         transcount *= 2;
1930 			trie->trans = (reg_trie_trans *)
1931 			    PerlMemShared_realloc( trie->trans,
1932 						     transcount
1933 						     * sizeof(reg_trie_trans) );
1934                         Zero( trie->trans + (transcount / 2), transcount / 2 , reg_trie_trans );
1935                     }
1936                     base = trie->uniquecharcount + tp - minid;
1937                     if ( maxid == minid ) {
1938                         U32 set = 0;
1939                         for ( ; zp < tp ; zp++ ) {
1940                             if ( ! trie->trans[ zp ].next ) {
1941                                 base = trie->uniquecharcount + zp - minid;
1942                                 trie->trans[ zp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1943                                 trie->trans[ zp ].check = state;
1944                                 set = 1;
1945                                 break;
1946                             }
1947                         }
1948                         if ( !set ) {
1949                             trie->trans[ tp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1950                             trie->trans[ tp ].check = state;
1951                             tp++;
1952                             zp = tp;
1953                         }
1954                     } else {
1955                         for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1956                             const U32 tid = base -  trie->uniquecharcount + TRIE_LIST_ITEM( state, idx ).forid;
1957                             trie->trans[ tid ].next = TRIE_LIST_ITEM( state, idx ).newstate;
1958                             trie->trans[ tid ].check = state;
1959                         }
1960                         tp += ( maxid - minid + 1 );
1961                     }
1962                     Safefree(trie->states[ state ].trans.list);
1963                 }
1964                 /*
1965                 DEBUG_TRIE_COMPILE_MORE_r(
1966                     PerlIO_printf( Perl_debug_log, " base: %d\n",base);
1967                 );
1968                 */
1969                 trie->states[ state ].trans.base=base;
1970             }
1971             trie->lasttrans = tp + 1;
1972         }
1973     } else {
1974         /*
1975            Second Pass -- Flat Table Representation.
1976 
1977            we dont use the 0 slot of either trans[] or states[] so we add 1 to each.
1978            We know that we will need Charcount+1 trans at most to store the data
1979            (one row per char at worst case) So we preallocate both structures
1980            assuming worst case.
1981 
1982            We then construct the trie using only the .next slots of the entry
1983            structs.
1984 
1985            We use the .check field of the first entry of the node temporarily to
1986            make compression both faster and easier by keeping track of how many non
1987            zero fields are in the node.
1988 
1989            Since trans are numbered from 1 any 0 pointer in the table is a FAIL
1990            transition.
1991 
1992            There are two terms at use here: state as a TRIE_NODEIDX() which is a
1993            number representing the first entry of the node, and state as a
1994            TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1) and
1995            TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3) if there
1996            are 2 entrys per node. eg:
1997 
1998              A B       A B
1999           1. 2 4    1. 3 7
2000           2. 0 3    3. 0 5
2001           3. 0 0    5. 0 0
2002           4. 0 0    7. 0 0
2003 
2004            The table is internally in the right hand, idx form. However as we also
2005            have to deal with the states array which is indexed by nodenum we have to
2006            use TRIE_NODENUM() to convert.
2007 
2008         */
2009         DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
2010             "%*sCompiling trie using table compiler\n",
2011             (int)depth * 2 + 2, ""));
2012 
2013 	trie->trans = (reg_trie_trans *)
2014 	    PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
2015 				  * trie->uniquecharcount + 1,
2016 				  sizeof(reg_trie_trans) );
2017         trie->states = (reg_trie_state *)
2018 	    PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
2019 				  sizeof(reg_trie_state) );
2020         next_alloc = trie->uniquecharcount + 1;
2021 
2022 
2023         for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2024 
2025             regnode *noper   = NEXTOPER( cur );
2026 	    const U8 *uc     = (U8*)STRING( noper );
2027             const U8 *e      = uc + STR_LEN( noper );
2028 
2029             U32 state        = 1;         /* required init */
2030 
2031             U16 charid       = 0;         /* sanity init */
2032             U32 accept_state = 0;         /* sanity init */
2033             U8 *scan         = (U8*)NULL; /* sanity init */
2034 
2035             STRLEN foldlen   = 0;         /* required init */
2036             U32 wordlen      = 0;         /* required init */
2037             STRLEN skiplen   = 0;
2038             U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
2039 
2040             if (OP(noper) == NOTHING) {
2041                 regnode *noper_next= regnext(noper);
2042                 if (noper_next != tail && OP(noper_next) == flags) {
2043                     noper = noper_next;
2044                     uc= (U8*)STRING(noper);
2045                     e= uc + STR_LEN(noper);
2046                 }
2047             }
2048 
2049             if ( OP(noper) != NOTHING ) {
2050                 for ( ; uc < e ; uc += len ) {
2051 
2052                     TRIE_READ_CHAR;
2053 
2054                     if ( uvc < 256 ) {
2055                         charid = trie->charmap[ uvc ];
2056                     } else {
2057                         SV* const * const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
2058                         charid = svpp ? (U16)SvIV(*svpp) : 0;
2059                     }
2060                     if ( charid ) {
2061                         charid--;
2062                         if ( !trie->trans[ state + charid ].next ) {
2063                             trie->trans[ state + charid ].next = next_alloc;
2064                             trie->trans[ state ].check++;
2065 			    prev_states[TRIE_NODENUM(next_alloc)]
2066 				    = TRIE_NODENUM(state);
2067                             next_alloc += trie->uniquecharcount;
2068                         }
2069                         state = trie->trans[ state + charid ].next;
2070                     } else {
2071                         Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
2072                     }
2073                     /* charid is now 0 if we dont know the char read, or nonzero if we do */
2074                 }
2075             }
2076             accept_state = TRIE_NODENUM( state );
2077             TRIE_HANDLE_WORD(accept_state);
2078 
2079         } /* end second pass */
2080 
2081         /* and now dump it out before we compress it */
2082         DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
2083 							  revcharmap,
2084 							  next_alloc, depth+1));
2085 
2086         {
2087         /*
2088            * Inplace compress the table.*
2089 
2090            For sparse data sets the table constructed by the trie algorithm will
2091            be mostly 0/FAIL transitions or to put it another way mostly empty.
2092            (Note that leaf nodes will not contain any transitions.)
2093 
2094            This algorithm compresses the tables by eliminating most such
2095            transitions, at the cost of a modest bit of extra work during lookup:
2096 
2097            - Each states[] entry contains a .base field which indicates the
2098            index in the state[] array wheres its transition data is stored.
2099 
2100            - If .base is 0 there are no valid transitions from that node.
2101 
2102            - If .base is nonzero then charid is added to it to find an entry in
2103            the trans array.
2104 
2105            -If trans[states[state].base+charid].check!=state then the
2106            transition is taken to be a 0/Fail transition. Thus if there are fail
2107            transitions at the front of the node then the .base offset will point
2108            somewhere inside the previous nodes data (or maybe even into a node
2109            even earlier), but the .check field determines if the transition is
2110            valid.
2111 
2112            XXX - wrong maybe?
2113            The following process inplace converts the table to the compressed
2114            table: We first do not compress the root node 1,and mark all its
2115            .check pointers as 1 and set its .base pointer as 1 as well. This
2116            allows us to do a DFA construction from the compressed table later,
2117            and ensures that any .base pointers we calculate later are greater
2118            than 0.
2119 
2120            - We set 'pos' to indicate the first entry of the second node.
2121 
2122            - We then iterate over the columns of the node, finding the first and
2123            last used entry at l and m. We then copy l..m into pos..(pos+m-l),
2124            and set the .check pointers accordingly, and advance pos
2125            appropriately and repreat for the next node. Note that when we copy
2126            the next pointers we have to convert them from the original
2127            NODEIDX form to NODENUM form as the former is not valid post
2128            compression.
2129 
2130            - If a node has no transitions used we mark its base as 0 and do not
2131            advance the pos pointer.
2132 
2133            - If a node only has one transition we use a second pointer into the
2134            structure to fill in allocated fail transitions from other states.
2135            This pointer is independent of the main pointer and scans forward
2136            looking for null transitions that are allocated to a state. When it
2137            finds one it writes the single transition into the "hole".  If the
2138            pointer doesnt find one the single transition is appended as normal.
2139 
2140            - Once compressed we can Renew/realloc the structures to release the
2141            excess space.
2142 
2143            See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
2144            specifically Fig 3.47 and the associated pseudocode.
2145 
2146            demq
2147         */
2148         const U32 laststate = TRIE_NODENUM( next_alloc );
2149 	U32 state, charid;
2150         U32 pos = 0, zp=0;
2151         trie->statecount = laststate;
2152 
2153         for ( state = 1 ; state < laststate ; state++ ) {
2154             U8 flag = 0;
2155 	    const U32 stateidx = TRIE_NODEIDX( state );
2156 	    const U32 o_used = trie->trans[ stateidx ].check;
2157 	    U32 used = trie->trans[ stateidx ].check;
2158             trie->trans[ stateidx ].check = 0;
2159 
2160             for ( charid = 0 ; used && charid < trie->uniquecharcount ; charid++ ) {
2161                 if ( flag || trie->trans[ stateidx + charid ].next ) {
2162                     if ( trie->trans[ stateidx + charid ].next ) {
2163                         if (o_used == 1) {
2164                             for ( ; zp < pos ; zp++ ) {
2165                                 if ( ! trie->trans[ zp ].next ) {
2166                                     break;
2167                                 }
2168                             }
2169                             trie->states[ state ].trans.base = zp + trie->uniquecharcount - charid ;
2170                             trie->trans[ zp ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
2171                             trie->trans[ zp ].check = state;
2172                             if ( ++zp > pos ) pos = zp;
2173                             break;
2174                         }
2175                         used--;
2176                     }
2177                     if ( !flag ) {
2178                         flag = 1;
2179                         trie->states[ state ].trans.base = pos + trie->uniquecharcount - charid ;
2180                     }
2181                     trie->trans[ pos ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
2182                     trie->trans[ pos ].check = state;
2183                     pos++;
2184                 }
2185             }
2186         }
2187         trie->lasttrans = pos + 1;
2188         trie->states = (reg_trie_state *)
2189 	    PerlMemShared_realloc( trie->states, laststate
2190 				   * sizeof(reg_trie_state) );
2191         DEBUG_TRIE_COMPILE_MORE_r(
2192                 PerlIO_printf( Perl_debug_log,
2193 		    "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
2194 		    (int)depth * 2 + 2,"",
2195                     (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1 ),
2196 		    (IV)next_alloc,
2197 		    (IV)pos,
2198                     ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
2199             );
2200 
2201         } /* end table compress */
2202     }
2203     DEBUG_TRIE_COMPILE_MORE_r(
2204             PerlIO_printf(Perl_debug_log, "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
2205                 (int)depth * 2 + 2, "",
2206                 (UV)trie->statecount,
2207                 (UV)trie->lasttrans)
2208     );
2209     /* resize the trans array to remove unused space */
2210     trie->trans = (reg_trie_trans *)
2211 	PerlMemShared_realloc( trie->trans, trie->lasttrans
2212 			       * sizeof(reg_trie_trans) );
2213 
2214     {   /* Modify the program and insert the new TRIE node */
2215         U8 nodetype =(U8)(flags & 0xFF);
2216         char *str=NULL;
2217 
2218 #ifdef DEBUGGING
2219         regnode *optimize = NULL;
2220 #ifdef RE_TRACK_PATTERN_OFFSETS
2221 
2222         U32 mjd_offset = 0;
2223         U32 mjd_nodelen = 0;
2224 #endif /* RE_TRACK_PATTERN_OFFSETS */
2225 #endif /* DEBUGGING */
2226         /*
2227            This means we convert either the first branch or the first Exact,
2228            depending on whether the thing following (in 'last') is a branch
2229            or not and whther first is the startbranch (ie is it a sub part of
2230            the alternation or is it the whole thing.)
2231            Assuming its a sub part we convert the EXACT otherwise we convert
2232            the whole branch sequence, including the first.
2233          */
2234         /* Find the node we are going to overwrite */
2235         if ( first != startbranch || OP( last ) == BRANCH ) {
2236             /* branch sub-chain */
2237             NEXT_OFF( first ) = (U16)(last - first);
2238 #ifdef RE_TRACK_PATTERN_OFFSETS
2239             DEBUG_r({
2240                 mjd_offset= Node_Offset((convert));
2241                 mjd_nodelen= Node_Length((convert));
2242             });
2243 #endif
2244             /* whole branch chain */
2245         }
2246 #ifdef RE_TRACK_PATTERN_OFFSETS
2247         else {
2248             DEBUG_r({
2249                 const  regnode *nop = NEXTOPER( convert );
2250                 mjd_offset= Node_Offset((nop));
2251                 mjd_nodelen= Node_Length((nop));
2252             });
2253         }
2254         DEBUG_OPTIMISE_r(
2255             PerlIO_printf(Perl_debug_log, "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
2256                 (int)depth * 2 + 2, "",
2257                 (UV)mjd_offset, (UV)mjd_nodelen)
2258         );
2259 #endif
2260         /* But first we check to see if there is a common prefix we can
2261            split out as an EXACT and put in front of the TRIE node.  */
2262         trie->startstate= 1;
2263         if ( trie->bitmap && !widecharmap && !trie->jump  ) {
2264             U32 state;
2265             for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
2266                 U32 ofs = 0;
2267                 I32 idx = -1;
2268                 U32 count = 0;
2269                 const U32 base = trie->states[ state ].trans.base;
2270 
2271                 if ( trie->states[state].wordnum )
2272                         count = 1;
2273 
2274                 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
2275                     if ( ( base + ofs >= trie->uniquecharcount ) &&
2276                          ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
2277                          trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
2278                     {
2279                         if ( ++count > 1 ) {
2280                             SV **tmp = av_fetch( revcharmap, ofs, 0);
2281 			    const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
2282                             if ( state == 1 ) break;
2283                             if ( count == 2 ) {
2284                                 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
2285                                 DEBUG_OPTIMISE_r(
2286                                     PerlIO_printf(Perl_debug_log,
2287 					"%*sNew Start State=%"UVuf" Class: [",
2288                                         (int)depth * 2 + 2, "",
2289                                         (UV)state));
2290 				if (idx >= 0) {
2291 				    SV ** const tmp = av_fetch( revcharmap, idx, 0);
2292 				    const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
2293 
2294                                     TRIE_BITMAP_SET(trie,*ch);
2295                                     if ( folder )
2296                                         TRIE_BITMAP_SET(trie, folder[ *ch ]);
2297                                     DEBUG_OPTIMISE_r(
2298                                         PerlIO_printf(Perl_debug_log, "%s", (char*)ch)
2299                                     );
2300 				}
2301 			    }
2302 			    TRIE_BITMAP_SET(trie,*ch);
2303 			    if ( folder )
2304 				TRIE_BITMAP_SET(trie,folder[ *ch ]);
2305 			    DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
2306 			}
2307                         idx = ofs;
2308 		    }
2309                 }
2310                 if ( count == 1 ) {
2311                     SV **tmp = av_fetch( revcharmap, idx, 0);
2312                     STRLEN len;
2313                     char *ch = SvPV( *tmp, len );
2314                     DEBUG_OPTIMISE_r({
2315                         SV *sv=sv_newmortal();
2316                         PerlIO_printf( Perl_debug_log,
2317 			    "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
2318                             (int)depth * 2 + 2, "",
2319                             (UV)state, (UV)idx,
2320                             pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
2321 	                        PL_colors[0], PL_colors[1],
2322 	                        (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2323 	                        PERL_PV_ESCAPE_FIRSTCHAR
2324                             )
2325                         );
2326                     });
2327                     if ( state==1 ) {
2328                         OP( convert ) = nodetype;
2329                         str=STRING(convert);
2330                         STR_LEN(convert)=0;
2331                     }
2332                     STR_LEN(convert) += len;
2333                     while (len--)
2334                         *str++ = *ch++;
2335 		} else {
2336 #ifdef DEBUGGING
2337 		    if (state>1)
2338 			DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
2339 #endif
2340 		    break;
2341 		}
2342 	    }
2343 	    trie->prefixlen = (state-1);
2344             if (str) {
2345                 regnode *n = convert+NODE_SZ_STR(convert);
2346                 NEXT_OFF(convert) = NODE_SZ_STR(convert);
2347                 trie->startstate = state;
2348                 trie->minlen -= (state - 1);
2349                 trie->maxlen -= (state - 1);
2350 #ifdef DEBUGGING
2351                /* At least the UNICOS C compiler choked on this
2352                 * being argument to DEBUG_r(), so let's just have
2353                 * it right here. */
2354                if (
2355 #ifdef PERL_EXT_RE_BUILD
2356                    1
2357 #else
2358                    DEBUG_r_TEST
2359 #endif
2360                    ) {
2361                    regnode *fix = convert;
2362                    U32 word = trie->wordcount;
2363                    mjd_nodelen++;
2364                    Set_Node_Offset_Length(convert, mjd_offset, state - 1);
2365                    while( ++fix < n ) {
2366                        Set_Node_Offset_Length(fix, 0, 0);
2367                    }
2368                    while (word--) {
2369                        SV ** const tmp = av_fetch( trie_words, word, 0 );
2370                        if (tmp) {
2371                            if ( STR_LEN(convert) <= SvCUR(*tmp) )
2372                                sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
2373                            else
2374                                sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
2375                        }
2376                    }
2377                }
2378 #endif
2379                 if (trie->maxlen) {
2380                     convert = n;
2381 		} else {
2382                     NEXT_OFF(convert) = (U16)(tail - convert);
2383                     DEBUG_r(optimize= n);
2384                 }
2385             }
2386         }
2387         if (!jumper)
2388             jumper = last;
2389         if ( trie->maxlen ) {
2390 	    NEXT_OFF( convert ) = (U16)(tail - convert);
2391 	    ARG_SET( convert, data_slot );
2392 	    /* Store the offset to the first unabsorbed branch in
2393 	       jump[0], which is otherwise unused by the jump logic.
2394 	       We use this when dumping a trie and during optimisation. */
2395 	    if (trie->jump)
2396 	        trie->jump[0] = (U16)(nextbranch - convert);
2397 
2398             /* If the start state is not accepting (meaning there is no empty string/NOTHING)
2399 	     *   and there is a bitmap
2400 	     *   and the first "jump target" node we found leaves enough room
2401 	     * then convert the TRIE node into a TRIEC node, with the bitmap
2402 	     * embedded inline in the opcode - this is hypothetically faster.
2403 	     */
2404             if ( !trie->states[trie->startstate].wordnum
2405 		 && trie->bitmap
2406 		 && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
2407             {
2408                 OP( convert ) = TRIEC;
2409                 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
2410                 PerlMemShared_free(trie->bitmap);
2411                 trie->bitmap= NULL;
2412             } else
2413                 OP( convert ) = TRIE;
2414 
2415             /* store the type in the flags */
2416             convert->flags = nodetype;
2417             DEBUG_r({
2418             optimize = convert
2419                       + NODE_STEP_REGNODE
2420                       + regarglen[ OP( convert ) ];
2421             });
2422             /* XXX We really should free up the resource in trie now,
2423                    as we won't use them - (which resources?) dmq */
2424         }
2425         /* needed for dumping*/
2426         DEBUG_r(if (optimize) {
2427             regnode *opt = convert;
2428 
2429             while ( ++opt < optimize) {
2430                 Set_Node_Offset_Length(opt,0,0);
2431             }
2432             /*
2433                 Try to clean up some of the debris left after the
2434                 optimisation.
2435              */
2436             while( optimize < jumper ) {
2437                 mjd_nodelen += Node_Length((optimize));
2438                 OP( optimize ) = OPTIMIZED;
2439                 Set_Node_Offset_Length(optimize,0,0);
2440                 optimize++;
2441             }
2442             Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
2443         });
2444     } /* end node insert */
2445 
2446     /*  Finish populating the prev field of the wordinfo array.  Walk back
2447      *  from each accept state until we find another accept state, and if
2448      *  so, point the first word's .prev field at the second word. If the
2449      *  second already has a .prev field set, stop now. This will be the
2450      *  case either if we've already processed that word's accept state,
2451      *  or that state had multiple words, and the overspill words were
2452      *  already linked up earlier.
2453      */
2454     {
2455 	U16 word;
2456 	U32 state;
2457 	U16 prev;
2458 
2459 	for (word=1; word <= trie->wordcount; word++) {
2460 	    prev = 0;
2461 	    if (trie->wordinfo[word].prev)
2462 		continue;
2463 	    state = trie->wordinfo[word].accept;
2464 	    while (state) {
2465 		state = prev_states[state];
2466 		if (!state)
2467 		    break;
2468 		prev = trie->states[state].wordnum;
2469 		if (prev)
2470 		    break;
2471 	    }
2472 	    trie->wordinfo[word].prev = prev;
2473 	}
2474 	Safefree(prev_states);
2475     }
2476 
2477 
2478     /* and now dump out the compressed format */
2479     DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
2480 
2481     RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
2482 #ifdef DEBUGGING
2483     RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
2484     RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
2485 #else
2486     SvREFCNT_dec_NN(revcharmap);
2487 #endif
2488     return trie->jump
2489            ? MADE_JUMP_TRIE
2490            : trie->startstate>1
2491              ? MADE_EXACT_TRIE
2492              : MADE_TRIE;
2493 }
2494 
2495 STATIC void
2496 S_make_trie_failtable(pTHX_ RExC_state_t *pRExC_state, regnode *source,  regnode *stclass, U32 depth)
2497 {
2498 /* The Trie is constructed and compressed now so we can build a fail array if it's needed
2499 
2500    This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and 3.32 in the
2501    "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi, Ullman 1985/88
2502    ISBN 0-201-10088-6
2503 
2504    We find the fail state for each state in the trie, this state is the longest proper
2505    suffix of the current state's 'word' that is also a proper prefix of another word in our
2506    trie. State 1 represents the word '' and is thus the default fail state. This allows
2507    the DFA not to have to restart after its tried and failed a word at a given point, it
2508    simply continues as though it had been matching the other word in the first place.
2509    Consider
2510       'abcdgu'=~/abcdefg|cdgu/
2511    When we get to 'd' we are still matching the first word, we would encounter 'g' which would
2512    fail, which would bring us to the state representing 'd' in the second word where we would
2513    try 'g' and succeed, proceeding to match 'cdgu'.
2514  */
2515  /* add a fail transition */
2516     const U32 trie_offset = ARG(source);
2517     reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
2518     U32 *q;
2519     const U32 ucharcount = trie->uniquecharcount;
2520     const U32 numstates = trie->statecount;
2521     const U32 ubound = trie->lasttrans + ucharcount;
2522     U32 q_read = 0;
2523     U32 q_write = 0;
2524     U32 charid;
2525     U32 base = trie->states[ 1 ].trans.base;
2526     U32 *fail;
2527     reg_ac_data *aho;
2528     const U32 data_slot = add_data( pRExC_state, 1, "T" );
2529     GET_RE_DEBUG_FLAGS_DECL;
2530 
2531     PERL_ARGS_ASSERT_MAKE_TRIE_FAILTABLE;
2532 #ifndef DEBUGGING
2533     PERL_UNUSED_ARG(depth);
2534 #endif
2535 
2536 
2537     ARG_SET( stclass, data_slot );
2538     aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
2539     RExC_rxi->data->data[ data_slot ] = (void*)aho;
2540     aho->trie=trie_offset;
2541     aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
2542     Copy( trie->states, aho->states, numstates, reg_trie_state );
2543     Newxz( q, numstates, U32);
2544     aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
2545     aho->refcount = 1;
2546     fail = aho->fail;
2547     /* initialize fail[0..1] to be 1 so that we always have
2548        a valid final fail state */
2549     fail[ 0 ] = fail[ 1 ] = 1;
2550 
2551     for ( charid = 0; charid < ucharcount ; charid++ ) {
2552 	const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
2553 	if ( newstate ) {
2554             q[ q_write ] = newstate;
2555             /* set to point at the root */
2556             fail[ q[ q_write++ ] ]=1;
2557         }
2558     }
2559     while ( q_read < q_write) {
2560 	const U32 cur = q[ q_read++ % numstates ];
2561         base = trie->states[ cur ].trans.base;
2562 
2563         for ( charid = 0 ; charid < ucharcount ; charid++ ) {
2564 	    const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
2565 	    if (ch_state) {
2566                 U32 fail_state = cur;
2567                 U32 fail_base;
2568                 do {
2569                     fail_state = fail[ fail_state ];
2570                     fail_base = aho->states[ fail_state ].trans.base;
2571                 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
2572 
2573                 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
2574                 fail[ ch_state ] = fail_state;
2575                 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
2576                 {
2577                         aho->states[ ch_state ].wordnum =  aho->states[ fail_state ].wordnum;
2578                 }
2579                 q[ q_write++ % numstates] = ch_state;
2580             }
2581         }
2582     }
2583     /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
2584        when we fail in state 1, this allows us to use the
2585        charclass scan to find a valid start char. This is based on the principle
2586        that theres a good chance the string being searched contains lots of stuff
2587        that cant be a start char.
2588      */
2589     fail[ 0 ] = fail[ 1 ] = 0;
2590     DEBUG_TRIE_COMPILE_r({
2591         PerlIO_printf(Perl_debug_log,
2592 		      "%*sStclass Failtable (%"UVuf" states): 0",
2593 		      (int)(depth * 2), "", (UV)numstates
2594         );
2595         for( q_read=1; q_read<numstates; q_read++ ) {
2596             PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
2597         }
2598         PerlIO_printf(Perl_debug_log, "\n");
2599     });
2600     Safefree(q);
2601     /*RExC_seen |= REG_SEEN_TRIEDFA;*/
2602 }
2603 
2604 
2605 /*
2606  * There are strange code-generation bugs caused on sparc64 by gcc-2.95.2.
2607  * These need to be revisited when a newer toolchain becomes available.
2608  */
2609 #if defined(__sparc64__) && defined(__GNUC__)
2610 #   if __GNUC__ < 2 || (__GNUC__ == 2 && __GNUC_MINOR__ < 96)
2611 #       undef  SPARC64_GCC_WORKAROUND
2612 #       define SPARC64_GCC_WORKAROUND 1
2613 #   endif
2614 #endif
2615 
2616 #define DEBUG_PEEP(str,scan,depth) \
2617     DEBUG_OPTIMISE_r({if (scan){ \
2618        SV * const mysv=sv_newmortal(); \
2619        regnode *Next = regnext(scan); \
2620        regprop(RExC_rx, mysv, scan); \
2621        PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)\n", \
2622        (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(mysv),\
2623        Next ? (REG_NODE_NUM(Next)) : 0 ); \
2624    }});
2625 
2626 
2627 /* The below joins as many adjacent EXACTish nodes as possible into a single
2628  * one.  The regop may be changed if the node(s) contain certain sequences that
2629  * require special handling.  The joining is only done if:
2630  * 1) there is room in the current conglomerated node to entirely contain the
2631  *    next one.
2632  * 2) they are the exact same node type
2633  *
2634  * The adjacent nodes actually may be separated by NOTHING-kind nodes, and
2635  * these get optimized out
2636  *
2637  * If a node is to match under /i (folded), the number of characters it matches
2638  * can be different than its character length if it contains a multi-character
2639  * fold.  *min_subtract is set to the total delta of the input nodes.
2640  *
2641  * And *has_exactf_sharp_s is set to indicate whether or not the node is EXACTF
2642  * and contains LATIN SMALL LETTER SHARP S
2643  *
2644  * This is as good a place as any to discuss the design of handling these
2645  * multi-character fold sequences.  It's been wrong in Perl for a very long
2646  * time.  There are three code points in Unicode whose multi-character folds
2647  * were long ago discovered to mess things up.  The previous designs for
2648  * dealing with these involved assigning a special node for them.  This
2649  * approach doesn't work, as evidenced by this example:
2650  *      "\xDFs" =~ /s\xDF/ui    # Used to fail before these patches
2651  * Both these fold to "sss", but if the pattern is parsed to create a node that
2652  * would match just the \xDF, it won't be able to handle the case where a
2653  * successful match would have to cross the node's boundary.  The new approach
2654  * that hopefully generally solves the problem generates an EXACTFU_SS node
2655  * that is "sss".
2656  *
2657  * It turns out that there are problems with all multi-character folds, and not
2658  * just these three.  Now the code is general, for all such cases, but the
2659  * three still have some special handling.  The approach taken is:
2660  * 1)   This routine examines each EXACTFish node that could contain multi-
2661  *      character fold sequences.  It returns in *min_subtract how much to
2662  *      subtract from the the actual length of the string to get a real minimum
2663  *      match length; it is 0 if there are no multi-char folds.  This delta is
2664  *      used by the caller to adjust the min length of the match, and the delta
2665  *      between min and max, so that the optimizer doesn't reject these
2666  *      possibilities based on size constraints.
2667  * 2)   Certain of these sequences require special handling by the trie code,
2668  *      so, if found, this code changes the joined node type to special ops:
2669  *      EXACTFU_TRICKYFOLD and EXACTFU_SS.
2670  * 3)   For the sequence involving the Sharp s (\xDF), the node type EXACTFU_SS
2671  *      is used for an EXACTFU node that contains at least one "ss" sequence in
2672  *      it.  For non-UTF-8 patterns and strings, this is the only case where
2673  *      there is a possible fold length change.  That means that a regular
2674  *      EXACTFU node without UTF-8 involvement doesn't have to concern itself
2675  *      with length changes, and so can be processed faster.  regexec.c takes
2676  *      advantage of this.  Generally, an EXACTFish node that is in UTF-8 is
2677  *      pre-folded by regcomp.c.  This saves effort in regex matching.
2678  *      However, the pre-folding isn't done for non-UTF8 patterns because the
2679  *      fold of the MICRO SIGN requires UTF-8, and we don't want to slow things
2680  *      down by forcing the pattern into UTF8 unless necessary.  Also what
2681  *      EXACTF and EXACTFL nodes fold to isn't known until runtime.  The fold
2682  *      possibilities for the non-UTF8 patterns are quite simple, except for
2683  *      the sharp s.  All the ones that don't involve a UTF-8 target string are
2684  *      members of a fold-pair, and arrays are set up for all of them so that
2685  *      the other member of the pair can be found quickly.  Code elsewhere in
2686  *      this file makes sure that in EXACTFU nodes, the sharp s gets folded to
2687  *      'ss', even if the pattern isn't UTF-8.  This avoids the issues
2688  *      described in the next item.
2689  * 4)   A problem remains for the sharp s in EXACTF nodes.  Whether it matches
2690  *      'ss' or not is not knowable at compile time.  It will match iff the
2691  *      target string is in UTF-8, unlike the EXACTFU nodes, where it always
2692  *      matches; and the EXACTFL and EXACTFA nodes where it never does.  Thus
2693  *      it can't be folded to "ss" at compile time, unlike EXACTFU does (as
2694  *      described in item 3).  An assumption that the optimizer part of
2695  *      regexec.c (probably unwittingly) makes is that a character in the
2696  *      pattern corresponds to at most a single character in the target string.
2697  *      (And I do mean character, and not byte here, unlike other parts of the
2698  *      documentation that have never been updated to account for multibyte
2699  *      Unicode.)  This assumption is wrong only in this case, as all other
2700  *      cases are either 1-1 folds when no UTF-8 is involved; or is true by
2701  *      virtue of having this file pre-fold UTF-8 patterns.   I'm
2702  *      reluctant to try to change this assumption, so instead the code punts.
2703  *      This routine examines EXACTF nodes for the sharp s, and returns a
2704  *      boolean indicating whether or not the node is an EXACTF node that
2705  *      contains a sharp s.  When it is true, the caller sets a flag that later
2706  *      causes the optimizer in this file to not set values for the floating
2707  *      and fixed string lengths, and thus avoids the optimizer code in
2708  *      regexec.c that makes the invalid assumption.  Thus, there is no
2709  *      optimization based on string lengths for EXACTF nodes that contain the
2710  *      sharp s.  This only happens for /id rules (which means the pattern
2711  *      isn't in UTF-8).
2712  */
2713 
2714 #define JOIN_EXACT(scan,min_subtract,has_exactf_sharp_s, flags) \
2715     if (PL_regkind[OP(scan)] == EXACT) \
2716         join_exact(pRExC_state,(scan),(min_subtract),has_exactf_sharp_s, (flags),NULL,depth+1)
2717 
2718 STATIC U32
2719 S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan, UV *min_subtract, bool *has_exactf_sharp_s, U32 flags,regnode *val, U32 depth) {
2720     /* Merge several consecutive EXACTish nodes into one. */
2721     regnode *n = regnext(scan);
2722     U32 stringok = 1;
2723     regnode *next = scan + NODE_SZ_STR(scan);
2724     U32 merged = 0;
2725     U32 stopnow = 0;
2726 #ifdef DEBUGGING
2727     regnode *stop = scan;
2728     GET_RE_DEBUG_FLAGS_DECL;
2729 #else
2730     PERL_UNUSED_ARG(depth);
2731 #endif
2732 
2733     PERL_ARGS_ASSERT_JOIN_EXACT;
2734 #ifndef EXPERIMENTAL_INPLACESCAN
2735     PERL_UNUSED_ARG(flags);
2736     PERL_UNUSED_ARG(val);
2737 #endif
2738     DEBUG_PEEP("join",scan,depth);
2739 
2740     /* Look through the subsequent nodes in the chain.  Skip NOTHING, merge
2741      * EXACT ones that are mergeable to the current one. */
2742     while (n
2743            && (PL_regkind[OP(n)] == NOTHING
2744                || (stringok && OP(n) == OP(scan)))
2745            && NEXT_OFF(n)
2746            && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
2747     {
2748 
2749         if (OP(n) == TAIL || n > next)
2750             stringok = 0;
2751         if (PL_regkind[OP(n)] == NOTHING) {
2752             DEBUG_PEEP("skip:",n,depth);
2753             NEXT_OFF(scan) += NEXT_OFF(n);
2754             next = n + NODE_STEP_REGNODE;
2755 #ifdef DEBUGGING
2756             if (stringok)
2757                 stop = n;
2758 #endif
2759             n = regnext(n);
2760         }
2761         else if (stringok) {
2762             const unsigned int oldl = STR_LEN(scan);
2763             regnode * const nnext = regnext(n);
2764 
2765             /* XXX I (khw) kind of doubt that this works on platforms where
2766              * U8_MAX is above 255 because of lots of other assumptions */
2767             /* Don't join if the sum can't fit into a single node */
2768             if (oldl + STR_LEN(n) > U8_MAX)
2769                 break;
2770 
2771             DEBUG_PEEP("merg",n,depth);
2772             merged++;
2773 
2774             NEXT_OFF(scan) += NEXT_OFF(n);
2775             STR_LEN(scan) += STR_LEN(n);
2776             next = n + NODE_SZ_STR(n);
2777             /* Now we can overwrite *n : */
2778             Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
2779 #ifdef DEBUGGING
2780             stop = next - 1;
2781 #endif
2782             n = nnext;
2783             if (stopnow) break;
2784         }
2785 
2786 #ifdef EXPERIMENTAL_INPLACESCAN
2787 	if (flags && !NEXT_OFF(n)) {
2788 	    DEBUG_PEEP("atch", val, depth);
2789 	    if (reg_off_by_arg[OP(n)]) {
2790 		ARG_SET(n, val - n);
2791 	    }
2792 	    else {
2793 		NEXT_OFF(n) = val - n;
2794 	    }
2795 	    stopnow = 1;
2796 	}
2797 #endif
2798     }
2799 
2800     *min_subtract = 0;
2801     *has_exactf_sharp_s = FALSE;
2802 
2803     /* Here, all the adjacent mergeable EXACTish nodes have been merged.  We
2804      * can now analyze for sequences of problematic code points.  (Prior to
2805      * this final joining, sequences could have been split over boundaries, and
2806      * hence missed).  The sequences only happen in folding, hence for any
2807      * non-EXACT EXACTish node */
2808     if (OP(scan) != EXACT) {
2809         const U8 * const s0 = (U8*) STRING(scan);
2810         const U8 * s = s0;
2811         const U8 * const s_end = s0 + STR_LEN(scan);
2812 
2813 	/* One pass is made over the node's string looking for all the
2814 	 * possibilities.  to avoid some tests in the loop, there are two main
2815 	 * cases, for UTF-8 patterns (which can't have EXACTF nodes) and
2816 	 * non-UTF-8 */
2817 	if (UTF) {
2818 
2819             /* Examine the string for a multi-character fold sequence.  UTF-8
2820              * patterns have all characters pre-folded by the time this code is
2821              * executed */
2822             while (s < s_end - 1) /* Can stop 1 before the end, as minimum
2823                                      length sequence we are looking for is 2 */
2824 	    {
2825                 int count = 0;
2826                 int len = is_MULTI_CHAR_FOLD_utf8_safe(s, s_end);
2827                 if (! len) {    /* Not a multi-char fold: get next char */
2828                     s += UTF8SKIP(s);
2829                     continue;
2830                 }
2831 
2832                 /* Nodes with 'ss' require special handling, except for EXACTFL
2833                  * and EXACTFA for which there is no multi-char fold to this */
2834                 if (len == 2 && *s == 's' && *(s+1) == 's'
2835                     && OP(scan) != EXACTFL && OP(scan) != EXACTFA)
2836                 {
2837                     count = 2;
2838                     OP(scan) = EXACTFU_SS;
2839                     s += 2;
2840                 }
2841                 else if (len == 6   /* len is the same in both ASCII and EBCDIC for these */
2842                          && (memEQ(s, GREEK_SMALL_LETTER_IOTA_UTF8
2843                                       COMBINING_DIAERESIS_UTF8
2844                                       COMBINING_ACUTE_ACCENT_UTF8,
2845                                    6)
2846                              || memEQ(s, GREEK_SMALL_LETTER_UPSILON_UTF8
2847                                          COMBINING_DIAERESIS_UTF8
2848                                          COMBINING_ACUTE_ACCENT_UTF8,
2849                                      6)))
2850                 {
2851                     count = 3;
2852 
2853                     /* These two folds require special handling by trie's, so
2854                      * change the node type to indicate this.  If EXACTFA and
2855                      * EXACTFL were ever to be handled by trie's, this would
2856                      * have to be changed.  If this node has already been
2857                      * changed to EXACTFU_SS in this loop, leave it as is.  (I
2858                      * (khw) think it doesn't matter in regexec.c for UTF
2859                      * patterns, but no need to change it */
2860                     if (OP(scan) == EXACTFU) {
2861                         OP(scan) = EXACTFU_TRICKYFOLD;
2862                     }
2863                     s += 6;
2864                 }
2865                 else { /* Here is a generic multi-char fold. */
2866                     const U8* multi_end  = s + len;
2867 
2868                     /* Count how many characters in it.  In the case of /l and
2869                      * /aa, no folds which contain ASCII code points are
2870                      * allowed, so check for those, and skip if found.  (In
2871                      * EXACTFL, no folds are allowed to any Latin1 code point,
2872                      * not just ASCII.  But there aren't any of these
2873                      * currently, nor ever likely, so don't take the time to
2874                      * test for them.  The code that generates the
2875                      * is_MULTI_foo() macros croaks should one actually get put
2876                      * into Unicode .) */
2877                     if (OP(scan) != EXACTFL && OP(scan) != EXACTFA) {
2878                         count = utf8_length(s, multi_end);
2879                         s = multi_end;
2880                     }
2881                     else {
2882                         while (s < multi_end) {
2883                             if (isASCII(*s)) {
2884                                 s++;
2885                                 goto next_iteration;
2886                             }
2887                             else {
2888                                 s += UTF8SKIP(s);
2889                             }
2890                             count++;
2891                         }
2892                     }
2893                 }
2894 
2895                 /* The delta is how long the sequence is minus 1 (1 is how long
2896                  * the character that folds to the sequence is) */
2897                 *min_subtract += count - 1;
2898             next_iteration: ;
2899 	    }
2900 	}
2901 	else if (OP(scan) != EXACTFL && OP(scan) != EXACTFA) {
2902 
2903             /* Here, the pattern is not UTF-8.  Look for the multi-char folds
2904              * that are all ASCII.  As in the above case, EXACTFL and EXACTFA
2905              * nodes can't have multi-char folds to this range (and there are
2906              * no existing ones in the upper latin1 range).  In the EXACTF
2907              * case we look also for the sharp s, which can be in the final
2908              * position.  Otherwise we can stop looking 1 byte earlier because
2909              * have to find at least two characters for a multi-fold */
2910 	    const U8* upper = (OP(scan) == EXACTF) ? s_end : s_end -1;
2911 
2912             /* The below is perhaps overboard, but this allows us to save a
2913              * test each time through the loop at the expense of a mask.  This
2914              * is because on both EBCDIC and ASCII machines, 'S' and 's' differ
2915              * by a single bit.  On ASCII they are 32 apart; on EBCDIC, they
2916              * are 64.  This uses an exclusive 'or' to find that bit and then
2917              * inverts it to form a mask, with just a single 0, in the bit
2918              * position where 'S' and 's' differ. */
2919             const U8 S_or_s_mask = (U8) ~ ('S' ^ 's');
2920             const U8 s_masked = 's' & S_or_s_mask;
2921 
2922 	    while (s < upper) {
2923                 int len = is_MULTI_CHAR_FOLD_latin1_safe(s, s_end);
2924                 if (! len) {    /* Not a multi-char fold. */
2925                     if (*s == LATIN_SMALL_LETTER_SHARP_S && OP(scan) == EXACTF)
2926                     {
2927                         *has_exactf_sharp_s = TRUE;
2928                     }
2929                     s++;
2930                     continue;
2931                 }
2932 
2933                 if (len == 2
2934                     && ((*s & S_or_s_mask) == s_masked)
2935                     && ((*(s+1) & S_or_s_mask) == s_masked))
2936                 {
2937 
2938                     /* EXACTF nodes need to know that the minimum length
2939                      * changed so that a sharp s in the string can match this
2940                      * ss in the pattern, but they remain EXACTF nodes, as they
2941                      * won't match this unless the target string is is UTF-8,
2942                      * which we don't know until runtime */
2943                     if (OP(scan) != EXACTF) {
2944                         OP(scan) = EXACTFU_SS;
2945                     }
2946 		}
2947 
2948                 *min_subtract += len - 1;
2949                 s += len;
2950 	    }
2951 	}
2952     }
2953 
2954 #ifdef DEBUGGING
2955     /* Allow dumping but overwriting the collection of skipped
2956      * ops and/or strings with fake optimized ops */
2957     n = scan + NODE_SZ_STR(scan);
2958     while (n <= stop) {
2959 	OP(n) = OPTIMIZED;
2960 	FLAGS(n) = 0;
2961 	NEXT_OFF(n) = 0;
2962         n++;
2963     }
2964 #endif
2965     DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
2966     return stopnow;
2967 }
2968 
2969 /* REx optimizer.  Converts nodes into quicker variants "in place".
2970    Finds fixed substrings.  */
2971 
2972 /* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
2973    to the position after last scanned or to NULL. */
2974 
2975 #define INIT_AND_WITHP \
2976     assert(!and_withp); \
2977     Newx(and_withp,1,struct regnode_charclass_class); \
2978     SAVEFREEPV(and_withp)
2979 
2980 /* this is a chain of data about sub patterns we are processing that
2981    need to be handled separately/specially in study_chunk. Its so
2982    we can simulate recursion without losing state.  */
2983 struct scan_frame;
2984 typedef struct scan_frame {
2985     regnode *last;  /* last node to process in this frame */
2986     regnode *next;  /* next node to process when last is reached */
2987     struct scan_frame *prev; /*previous frame*/
2988     I32 stop; /* what stopparen do we use */
2989 } scan_frame;
2990 
2991 
2992 #define SCAN_COMMIT(s, data, m) scan_commit(s, data, m, is_inf)
2993 
2994 STATIC I32
2995 S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
2996                         I32 *minlenp, I32 *deltap,
2997 			regnode *last,
2998 			scan_data_t *data,
2999 			I32 stopparen,
3000 			U8* recursed,
3001 			struct regnode_charclass_class *and_withp,
3002 			U32 flags, U32 depth)
3003 			/* scanp: Start here (read-write). */
3004 			/* deltap: Write maxlen-minlen here. */
3005 			/* last: Stop before this one. */
3006 			/* data: string data about the pattern */
3007 			/* stopparen: treat close N as END */
3008 			/* recursed: which subroutines have we recursed into */
3009 			/* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
3010 {
3011     dVAR;
3012     I32 min = 0;    /* There must be at least this number of characters to match */
3013     I32 pars = 0, code;
3014     regnode *scan = *scanp, *next;
3015     I32 delta = 0;
3016     int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
3017     int is_inf_internal = 0;		/* The studied chunk is infinite */
3018     I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
3019     scan_data_t data_fake;
3020     SV *re_trie_maxbuff = NULL;
3021     regnode *first_non_open = scan;
3022     I32 stopmin = I32_MAX;
3023     scan_frame *frame = NULL;
3024     GET_RE_DEBUG_FLAGS_DECL;
3025 
3026     PERL_ARGS_ASSERT_STUDY_CHUNK;
3027 
3028 #ifdef DEBUGGING
3029     StructCopy(&zero_scan_data, &data_fake, scan_data_t);
3030 #endif
3031 
3032     if ( depth == 0 ) {
3033         while (first_non_open && OP(first_non_open) == OPEN)
3034             first_non_open=regnext(first_non_open);
3035     }
3036 
3037 
3038   fake_study_recurse:
3039     while ( scan && OP(scan) != END && scan < last ){
3040         UV min_subtract = 0;    /* How mmany chars to subtract from the minimum
3041                                    node length to get a real minimum (because
3042                                    the folded version may be shorter) */
3043 	bool has_exactf_sharp_s = FALSE;
3044 	/* Peephole optimizer: */
3045 	DEBUG_STUDYDATA("Peep:", data,depth);
3046 	DEBUG_PEEP("Peep",scan,depth);
3047 
3048         /* Its not clear to khw or hv why this is done here, and not in the
3049          * clauses that deal with EXACT nodes.  khw's guess is that it's
3050          * because of a previous design */
3051         JOIN_EXACT(scan,&min_subtract, &has_exactf_sharp_s, 0);
3052 
3053 	/* Follow the next-chain of the current node and optimize
3054 	   away all the NOTHINGs from it.  */
3055 	if (OP(scan) != CURLYX) {
3056 	    const int max = (reg_off_by_arg[OP(scan)]
3057 		       ? I32_MAX
3058 		       /* I32 may be smaller than U16 on CRAYs! */
3059 		       : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
3060 	    int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
3061 	    int noff;
3062 	    regnode *n = scan;
3063 
3064 	    /* Skip NOTHING and LONGJMP. */
3065 	    while ((n = regnext(n))
3066 		   && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
3067 		       || ((OP(n) == LONGJMP) && (noff = ARG(n))))
3068 		   && off + noff < max)
3069 		off += noff;
3070 	    if (reg_off_by_arg[OP(scan)])
3071 		ARG(scan) = off;
3072 	    else
3073 		NEXT_OFF(scan) = off;
3074 	}
3075 
3076 
3077 
3078 	/* The principal pseudo-switch.  Cannot be a switch, since we
3079 	   look into several different things.  */
3080 	if (OP(scan) == BRANCH || OP(scan) == BRANCHJ
3081 		   || OP(scan) == IFTHEN) {
3082 	    next = regnext(scan);
3083 	    code = OP(scan);
3084 	    /* demq: the op(next)==code check is to see if we have "branch-branch" AFAICT */
3085 
3086 	    if (OP(next) == code || code == IFTHEN) {
3087 	        /* NOTE - There is similar code to this block below for handling
3088 	           TRIE nodes on a re-study.  If you change stuff here check there
3089 	           too. */
3090 		I32 max1 = 0, min1 = I32_MAX, num = 0;
3091 		struct regnode_charclass_class accum;
3092 		regnode * const startbranch=scan;
3093 
3094 		if (flags & SCF_DO_SUBSTR)
3095 		    SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot merge strings after this. */
3096 		if (flags & SCF_DO_STCLASS)
3097 		    cl_init_zero(pRExC_state, &accum);
3098 
3099 		while (OP(scan) == code) {
3100 		    I32 deltanext, minnext, f = 0, fake;
3101 		    struct regnode_charclass_class this_class;
3102 
3103 		    num++;
3104 		    data_fake.flags = 0;
3105 		    if (data) {
3106 			data_fake.whilem_c = data->whilem_c;
3107 			data_fake.last_closep = data->last_closep;
3108 		    }
3109 		    else
3110 			data_fake.last_closep = &fake;
3111 
3112 		    data_fake.pos_delta = delta;
3113 		    next = regnext(scan);
3114 		    scan = NEXTOPER(scan);
3115 		    if (code != BRANCH)
3116 			scan = NEXTOPER(scan);
3117 		    if (flags & SCF_DO_STCLASS) {
3118 			cl_init(pRExC_state, &this_class);
3119 			data_fake.start_class = &this_class;
3120 			f = SCF_DO_STCLASS_AND;
3121 		    }
3122 		    if (flags & SCF_WHILEM_VISITED_POS)
3123 			f |= SCF_WHILEM_VISITED_POS;
3124 
3125 		    /* we suppose the run is continuous, last=next...*/
3126 		    minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
3127 					  next, &data_fake,
3128 					  stopparen, recursed, NULL, f,depth+1);
3129 		    if (min1 > minnext)
3130 			min1 = minnext;
3131 		    if (deltanext == I32_MAX) {
3132 			is_inf = is_inf_internal = 1;
3133 			max1 = I32_MAX;
3134 		    } else if (max1 < minnext + deltanext)
3135 			max1 = minnext + deltanext;
3136 		    scan = next;
3137 		    if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
3138 			pars++;
3139 	            if (data_fake.flags & SCF_SEEN_ACCEPT) {
3140 	                if ( stopmin > minnext)
3141 	                    stopmin = min + min1;
3142 	                flags &= ~SCF_DO_SUBSTR;
3143 	                if (data)
3144 	                    data->flags |= SCF_SEEN_ACCEPT;
3145 	            }
3146 		    if (data) {
3147 			if (data_fake.flags & SF_HAS_EVAL)
3148 			    data->flags |= SF_HAS_EVAL;
3149 			data->whilem_c = data_fake.whilem_c;
3150 		    }
3151 		    if (flags & SCF_DO_STCLASS)
3152 			cl_or(pRExC_state, &accum, &this_class);
3153 		}
3154 		if (code == IFTHEN && num < 2) /* Empty ELSE branch */
3155 		    min1 = 0;
3156 		if (flags & SCF_DO_SUBSTR) {
3157 		    data->pos_min += min1;
3158 		    if (data->pos_delta >= I32_MAX - (max1 - min1))
3159 		        data->pos_delta = I32_MAX;
3160 		    else
3161 		        data->pos_delta += max1 - min1;
3162 		    if (max1 != min1 || is_inf)
3163 			data->longest = &(data->longest_float);
3164 		}
3165 		min += min1;
3166 		if (delta == I32_MAX || I32_MAX - delta - (max1 - min1) < 0)
3167 		    delta = I32_MAX;
3168 		else
3169 		    delta += max1 - min1;
3170 		if (flags & SCF_DO_STCLASS_OR) {
3171 		    cl_or(pRExC_state, data->start_class, &accum);
3172 		    if (min1) {
3173 			cl_and(data->start_class, and_withp);
3174 			flags &= ~SCF_DO_STCLASS;
3175 		    }
3176 		}
3177 		else if (flags & SCF_DO_STCLASS_AND) {
3178 		    if (min1) {
3179 			cl_and(data->start_class, &accum);
3180 			flags &= ~SCF_DO_STCLASS;
3181 		    }
3182 		    else {
3183 			/* Switch to OR mode: cache the old value of
3184 			 * data->start_class */
3185 			INIT_AND_WITHP;
3186 			StructCopy(data->start_class, and_withp,
3187 				   struct regnode_charclass_class);
3188 			flags &= ~SCF_DO_STCLASS_AND;
3189 			StructCopy(&accum, data->start_class,
3190 				   struct regnode_charclass_class);
3191 			flags |= SCF_DO_STCLASS_OR;
3192                         SET_SSC_EOS(data->start_class);
3193 		    }
3194 		}
3195 
3196                 if (PERL_ENABLE_TRIE_OPTIMISATION && OP( startbranch ) == BRANCH ) {
3197 		/* demq.
3198 
3199 		   Assuming this was/is a branch we are dealing with: 'scan' now
3200 		   points at the item that follows the branch sequence, whatever
3201 		   it is. We now start at the beginning of the sequence and look
3202 		   for subsequences of
3203 
3204 		   BRANCH->EXACT=>x1
3205 		   BRANCH->EXACT=>x2
3206 		   tail
3207 
3208 		   which would be constructed from a pattern like /A|LIST|OF|WORDS/
3209 
3210 		   If we can find such a subsequence we need to turn the first
3211 		   element into a trie and then add the subsequent branch exact
3212 		   strings to the trie.
3213 
3214 		   We have two cases
3215 
3216 		     1. patterns where the whole set of branches can be converted.
3217 
3218 		     2. patterns where only a subset can be converted.
3219 
3220 		   In case 1 we can replace the whole set with a single regop
3221 		   for the trie. In case 2 we need to keep the start and end
3222 		   branches so
3223 
3224 		     'BRANCH EXACT; BRANCH EXACT; BRANCH X'
3225 		     becomes BRANCH TRIE; BRANCH X;
3226 
3227 		  There is an additional case, that being where there is a
3228 		  common prefix, which gets split out into an EXACT like node
3229 		  preceding the TRIE node.
3230 
3231 		  If x(1..n)==tail then we can do a simple trie, if not we make
3232 		  a "jump" trie, such that when we match the appropriate word
3233 		  we "jump" to the appropriate tail node. Essentially we turn
3234 		  a nested if into a case structure of sorts.
3235 
3236 		*/
3237 
3238 		    int made=0;
3239 		    if (!re_trie_maxbuff) {
3240 			re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
3241 			if (!SvIOK(re_trie_maxbuff))
3242 			    sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
3243 		    }
3244                     if ( SvIV(re_trie_maxbuff)>=0  ) {
3245                         regnode *cur;
3246                         regnode *first = (regnode *)NULL;
3247                         regnode *last = (regnode *)NULL;
3248                         regnode *tail = scan;
3249                         U8 trietype = 0;
3250                         U32 count=0;
3251 
3252 #ifdef DEBUGGING
3253                         SV * const mysv = sv_newmortal();       /* for dumping */
3254 #endif
3255                         /* var tail is used because there may be a TAIL
3256                            regop in the way. Ie, the exacts will point to the
3257                            thing following the TAIL, but the last branch will
3258                            point at the TAIL. So we advance tail. If we
3259                            have nested (?:) we may have to move through several
3260                            tails.
3261                          */
3262 
3263                         while ( OP( tail ) == TAIL ) {
3264                             /* this is the TAIL generated by (?:) */
3265                             tail = regnext( tail );
3266                         }
3267 
3268 
3269                         DEBUG_TRIE_COMPILE_r({
3270                             regprop(RExC_rx, mysv, tail );
3271                             PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
3272                                 (int)depth * 2 + 2, "",
3273                                 "Looking for TRIE'able sequences. Tail node is: ",
3274                                 SvPV_nolen_const( mysv )
3275                             );
3276                         });
3277 
3278                         /*
3279 
3280                             Step through the branches
3281                                 cur represents each branch,
3282                                 noper is the first thing to be matched as part of that branch
3283                                 noper_next is the regnext() of that node.
3284 
3285                             We normally handle a case like this /FOO[xyz]|BAR[pqr]/
3286                             via a "jump trie" but we also support building with NOJUMPTRIE,
3287                             which restricts the trie logic to structures like /FOO|BAR/.
3288 
3289                             If noper is a trieable nodetype then the branch is a possible optimization
3290                             target. If we are building under NOJUMPTRIE then we require that noper_next
3291                             is the same as scan (our current position in the regex program).
3292 
3293                             Once we have two or more consecutive such branches we can create a
3294                             trie of the EXACT's contents and stitch it in place into the program.
3295 
3296                             If the sequence represents all of the branches in the alternation we
3297                             replace the entire thing with a single TRIE node.
3298 
3299                             Otherwise when it is a subsequence we need to stitch it in place and
3300                             replace only the relevant branches. This means the first branch has
3301                             to remain as it is used by the alternation logic, and its next pointer,
3302                             and needs to be repointed at the item on the branch chain following
3303                             the last branch we have optimized away.
3304 
3305                             This could be either a BRANCH, in which case the subsequence is internal,
3306                             or it could be the item following the branch sequence in which case the
3307                             subsequence is at the end (which does not necessarily mean the first node
3308                             is the start of the alternation).
3309 
3310                             TRIE_TYPE(X) is a define which maps the optype to a trietype.
3311 
3312                                 optype          |  trietype
3313                                 ----------------+-----------
3314                                 NOTHING         | NOTHING
3315                                 EXACT           | EXACT
3316                                 EXACTFU         | EXACTFU
3317                                 EXACTFU_SS      | EXACTFU
3318                                 EXACTFU_TRICKYFOLD | EXACTFU
3319                                 EXACTFA         | 0
3320 
3321 
3322                         */
3323 #define TRIE_TYPE(X) ( ( NOTHING == (X) ) ? NOTHING :   \
3324                        ( EXACT == (X) )   ? EXACT :        \
3325                        ( EXACTFU == (X) || EXACTFU_SS == (X) || EXACTFU_TRICKYFOLD == (X) ) ? EXACTFU :        \
3326                        0 )
3327 
3328                         /* dont use tail as the end marker for this traverse */
3329                         for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
3330                             regnode * const noper = NEXTOPER( cur );
3331                             U8 noper_type = OP( noper );
3332                             U8 noper_trietype = TRIE_TYPE( noper_type );
3333 #if defined(DEBUGGING) || defined(NOJUMPTRIE)
3334                             regnode * const noper_next = regnext( noper );
3335 			    U8 noper_next_type = (noper_next && noper_next != tail) ? OP(noper_next) : 0;
3336 			    U8 noper_next_trietype = (noper_next && noper_next != tail) ? TRIE_TYPE( noper_next_type ) :0;
3337 #endif
3338 
3339                             DEBUG_TRIE_COMPILE_r({
3340                                 regprop(RExC_rx, mysv, cur);
3341                                 PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
3342                                    (int)depth * 2 + 2,"", SvPV_nolen_const( mysv ), REG_NODE_NUM(cur) );
3343 
3344                                 regprop(RExC_rx, mysv, noper);
3345                                 PerlIO_printf( Perl_debug_log, " -> %s",
3346                                     SvPV_nolen_const(mysv));
3347 
3348                                 if ( noper_next ) {
3349                                   regprop(RExC_rx, mysv, noper_next );
3350                                   PerlIO_printf( Perl_debug_log,"\t=> %s\t",
3351                                     SvPV_nolen_const(mysv));
3352                                 }
3353                                 PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d,tt==%s,nt==%s,nnt==%s)\n",
3354                                    REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur),
3355 				   PL_reg_name[trietype], PL_reg_name[noper_trietype], PL_reg_name[noper_next_trietype]
3356 				);
3357                             });
3358 
3359                             /* Is noper a trieable nodetype that can be merged with the
3360                              * current trie (if there is one)? */
3361                             if ( noper_trietype
3362                                   &&
3363                                   (
3364                                         ( noper_trietype == NOTHING)
3365                                         || ( trietype == NOTHING )
3366                                         || ( trietype == noper_trietype )
3367                                   )
3368 #ifdef NOJUMPTRIE
3369                                   && noper_next == tail
3370 #endif
3371                                   && count < U16_MAX)
3372                             {
3373                                 /* Handle mergable triable node
3374                                  * Either we are the first node in a new trieable sequence,
3375                                  * in which case we do some bookkeeping, otherwise we update
3376                                  * the end pointer. */
3377                                 if ( !first ) {
3378                                     first = cur;
3379 				    if ( noper_trietype == NOTHING ) {
3380 #if !defined(DEBUGGING) && !defined(NOJUMPTRIE)
3381 					regnode * const noper_next = regnext( noper );
3382                                         U8 noper_next_type = (noper_next && noper_next!=tail) ? OP(noper_next) : 0;
3383 					U8 noper_next_trietype = noper_next_type ? TRIE_TYPE( noper_next_type ) :0;
3384 #endif
3385 
3386                                         if ( noper_next_trietype ) {
3387 					    trietype = noper_next_trietype;
3388                                         } else if (noper_next_type)  {
3389                                             /* a NOTHING regop is 1 regop wide. We need at least two
3390                                              * for a trie so we can't merge this in */
3391                                             first = NULL;
3392                                         }
3393                                     } else {
3394                                         trietype = noper_trietype;
3395                                     }
3396                                 } else {
3397                                     if ( trietype == NOTHING )
3398                                         trietype = noper_trietype;
3399                                     last = cur;
3400                                 }
3401 				if (first)
3402 				    count++;
3403                             } /* end handle mergable triable node */
3404                             else {
3405                                 /* handle unmergable node -
3406                                  * noper may either be a triable node which can not be tried
3407                                  * together with the current trie, or a non triable node */
3408                                 if ( last ) {
3409                                     /* If last is set and trietype is not NOTHING then we have found
3410                                      * at least two triable branch sequences in a row of a similar
3411                                      * trietype so we can turn them into a trie. If/when we
3412                                      * allow NOTHING to start a trie sequence this condition will be
3413                                      * required, and it isn't expensive so we leave it in for now. */
3414                                     if ( trietype && trietype != NOTHING )
3415                                         make_trie( pRExC_state,
3416                                                 startbranch, first, cur, tail, count,
3417                                                 trietype, depth+1 );
3418                                     last = NULL; /* note: we clear/update first, trietype etc below, so we dont do it here */
3419                                 }
3420                                 if ( noper_trietype
3421 #ifdef NOJUMPTRIE
3422                                      && noper_next == tail
3423 #endif
3424                                 ){
3425                                     /* noper is triable, so we can start a new trie sequence */
3426                                     count = 1;
3427                                     first = cur;
3428                                     trietype = noper_trietype;
3429                                 } else if (first) {
3430                                     /* if we already saw a first but the current node is not triable then we have
3431                                      * to reset the first information. */
3432                                     count = 0;
3433                                     first = NULL;
3434                                     trietype = 0;
3435                                 }
3436                             } /* end handle unmergable node */
3437                         } /* loop over branches */
3438                         DEBUG_TRIE_COMPILE_r({
3439                             regprop(RExC_rx, mysv, cur);
3440                             PerlIO_printf( Perl_debug_log,
3441                               "%*s- %s (%d) <SCAN FINISHED>\n", (int)depth * 2 + 2,
3442                               "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
3443 
3444                         });
3445                         if ( last && trietype ) {
3446                             if ( trietype != NOTHING ) {
3447                                 /* the last branch of the sequence was part of a trie,
3448                                  * so we have to construct it here outside of the loop
3449                                  */
3450                                 made= make_trie( pRExC_state, startbranch, first, scan, tail, count, trietype, depth+1 );
3451 #ifdef TRIE_STUDY_OPT
3452                                 if ( ((made == MADE_EXACT_TRIE &&
3453                                      startbranch == first)
3454                                      || ( first_non_open == first )) &&
3455                                      depth==0 ) {
3456                                     flags |= SCF_TRIE_RESTUDY;
3457                                     if ( startbranch == first
3458                                          && scan == tail )
3459                                     {
3460                                         RExC_seen &=~REG_TOP_LEVEL_BRANCHES;
3461                                     }
3462                                 }
3463 #endif
3464                             } else {
3465                                 /* at this point we know whatever we have is a NOTHING sequence/branch
3466                                  * AND if 'startbranch' is 'first' then we can turn the whole thing into a NOTHING
3467                                  */
3468                                 if ( startbranch == first ) {
3469                                     regnode *opt;
3470                                     /* the entire thing is a NOTHING sequence, something like this:
3471                                      * (?:|) So we can turn it into a plain NOTHING op. */
3472                                     DEBUG_TRIE_COMPILE_r({
3473                                         regprop(RExC_rx, mysv, cur);
3474                                         PerlIO_printf( Perl_debug_log,
3475                                           "%*s- %s (%d) <NOTHING BRANCH SEQUENCE>\n", (int)depth * 2 + 2,
3476                                           "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
3477 
3478                                     });
3479                                     OP(startbranch)= NOTHING;
3480                                     NEXT_OFF(startbranch)= tail - startbranch;
3481                                     for ( opt= startbranch + 1; opt < tail ; opt++ )
3482                                         OP(opt)= OPTIMIZED;
3483                                 }
3484                             }
3485                         } /* end if ( last) */
3486                     } /* TRIE_MAXBUF is non zero */
3487 
3488                 } /* do trie */
3489 
3490 	    }
3491 	    else if ( code == BRANCHJ ) {  /* single branch is optimized. */
3492 		scan = NEXTOPER(NEXTOPER(scan));
3493 	    } else			/* single branch is optimized. */
3494 		scan = NEXTOPER(scan);
3495 	    continue;
3496 	} else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) {
3497 	    scan_frame *newframe = NULL;
3498 	    I32 paren;
3499 	    regnode *start;
3500 	    regnode *end;
3501 
3502 	    if (OP(scan) != SUSPEND) {
3503 	    /* set the pointer */
3504 	        if (OP(scan) == GOSUB) {
3505 	            paren = ARG(scan);
3506 	            RExC_recurse[ARG2L(scan)] = scan;
3507                     start = RExC_open_parens[paren-1];
3508                     end   = RExC_close_parens[paren-1];
3509                 } else {
3510                     paren = 0;
3511                     start = RExC_rxi->program + 1;
3512                     end   = RExC_opend;
3513                 }
3514                 if (!recursed) {
3515                     Newxz(recursed, (((RExC_npar)>>3) +1), U8);
3516                     SAVEFREEPV(recursed);
3517                 }
3518                 if (!PAREN_TEST(recursed,paren+1)) {
3519 		    PAREN_SET(recursed,paren+1);
3520                     Newx(newframe,1,scan_frame);
3521                 } else {
3522                     if (flags & SCF_DO_SUBSTR) {
3523                         SCAN_COMMIT(pRExC_state,data,minlenp);
3524                         data->longest = &(data->longest_float);
3525                     }
3526                     is_inf = is_inf_internal = 1;
3527                     if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
3528                         cl_anything(pRExC_state, data->start_class);
3529                     flags &= ~SCF_DO_STCLASS;
3530 	        }
3531             } else {
3532 	        Newx(newframe,1,scan_frame);
3533 	        paren = stopparen;
3534 	        start = scan+2;
3535 	        end = regnext(scan);
3536 	    }
3537 	    if (newframe) {
3538                 assert(start);
3539                 assert(end);
3540 	        SAVEFREEPV(newframe);
3541 	        newframe->next = regnext(scan);
3542 	        newframe->last = last;
3543 	        newframe->stop = stopparen;
3544 	        newframe->prev = frame;
3545 
3546 	        frame = newframe;
3547 	        scan =  start;
3548 	        stopparen = paren;
3549 	        last = end;
3550 
3551 	        continue;
3552 	    }
3553 	}
3554 	else if (OP(scan) == EXACT) {
3555 	    I32 l = STR_LEN(scan);
3556 	    UV uc;
3557 	    if (UTF) {
3558 		const U8 * const s = (U8*)STRING(scan);
3559 		uc = utf8_to_uvchr_buf(s, s + l, NULL);
3560 		l = utf8_length(s, s + l);
3561 	    } else {
3562 		uc = *((U8*)STRING(scan));
3563 	    }
3564 	    min += l;
3565 	    if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
3566 		/* The code below prefers earlier match for fixed
3567 		   offset, later match for variable offset.  */
3568 		if (data->last_end == -1) { /* Update the start info. */
3569 		    data->last_start_min = data->pos_min;
3570  		    data->last_start_max = is_inf
3571  			? I32_MAX : data->pos_min + data->pos_delta;
3572 		}
3573 		sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan));
3574 		if (UTF)
3575 		    SvUTF8_on(data->last_found);
3576 		{
3577 		    SV * const sv = data->last_found;
3578 		    MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
3579 			mg_find(sv, PERL_MAGIC_utf8) : NULL;
3580 		    if (mg && mg->mg_len >= 0)
3581 			mg->mg_len += utf8_length((U8*)STRING(scan),
3582 						  (U8*)STRING(scan)+STR_LEN(scan));
3583 		}
3584 		data->last_end = data->pos_min + l;
3585 		data->pos_min += l; /* As in the first entry. */
3586 		data->flags &= ~SF_BEFORE_EOL;
3587 	    }
3588 	    if (flags & SCF_DO_STCLASS_AND) {
3589 		/* Check whether it is compatible with what we know already! */
3590 		int compat = 1;
3591 
3592 
3593 		/* If compatible, we or it in below.  It is compatible if is
3594 		 * in the bitmp and either 1) its bit or its fold is set, or 2)
3595 		 * it's for a locale.  Even if there isn't unicode semantics
3596 		 * here, at runtime there may be because of matching against a
3597 		 * utf8 string, so accept a possible false positive for
3598 		 * latin1-range folds */
3599 		if (uc >= 0x100 ||
3600 		    (!(data->start_class->flags & ANYOF_LOCALE)
3601 		    && !ANYOF_BITMAP_TEST(data->start_class, uc)
3602 		    && (!(data->start_class->flags & ANYOF_LOC_FOLD)
3603 			|| !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
3604                     )
3605 		{
3606 		    compat = 0;
3607 		}
3608 		ANYOF_CLASS_ZERO(data->start_class);
3609 		ANYOF_BITMAP_ZERO(data->start_class);
3610 		if (compat)
3611 		    ANYOF_BITMAP_SET(data->start_class, uc);
3612 		else if (uc >= 0x100) {
3613 		    int i;
3614 
3615 		    /* Some Unicode code points fold to the Latin1 range; as
3616 		     * XXX temporary code, instead of figuring out if this is
3617 		     * one, just assume it is and set all the start class bits
3618 		     * that could be some such above 255 code point's fold
3619 		     * which will generate fals positives.  As the code
3620 		     * elsewhere that does compute the fold settles down, it
3621 		     * can be extracted out and re-used here */
3622 		    for (i = 0; i < 256; i++){
3623 			if (HAS_NONLATIN1_FOLD_CLOSURE(i)) {
3624 			    ANYOF_BITMAP_SET(data->start_class, i);
3625 			}
3626 		    }
3627 		}
3628                 CLEAR_SSC_EOS(data->start_class);
3629 		if (uc < 0x100)
3630 		  data->start_class->flags &= ~ANYOF_UNICODE_ALL;
3631 	    }
3632 	    else if (flags & SCF_DO_STCLASS_OR) {
3633 		/* false positive possible if the class is case-folded */
3634 		if (uc < 0x100)
3635 		    ANYOF_BITMAP_SET(data->start_class, uc);
3636 		else
3637 		    data->start_class->flags |= ANYOF_UNICODE_ALL;
3638                 CLEAR_SSC_EOS(data->start_class);
3639 		cl_and(data->start_class, and_withp);
3640 	    }
3641 	    flags &= ~SCF_DO_STCLASS;
3642 	}
3643 	else if (PL_regkind[OP(scan)] == EXACT) { /* But OP != EXACT! */
3644 	    I32 l = STR_LEN(scan);
3645 	    UV uc = *((U8*)STRING(scan));
3646 
3647 	    /* Search for fixed substrings supports EXACT only. */
3648 	    if (flags & SCF_DO_SUBSTR) {
3649 		assert(data);
3650 		SCAN_COMMIT(pRExC_state, data, minlenp);
3651 	    }
3652 	    if (UTF) {
3653 		const U8 * const s = (U8 *)STRING(scan);
3654 		uc = utf8_to_uvchr_buf(s, s + l, NULL);
3655 		l = utf8_length(s, s + l);
3656 	    }
3657 	    if (has_exactf_sharp_s) {
3658 		RExC_seen |= REG_SEEN_EXACTF_SHARP_S;
3659 	    }
3660 	    min += l - min_subtract;
3661             assert (min >= 0);
3662             delta += min_subtract;
3663 	    if (flags & SCF_DO_SUBSTR) {
3664 		data->pos_min += l - min_subtract;
3665 		if (data->pos_min < 0) {
3666                     data->pos_min = 0;
3667                 }
3668                 data->pos_delta += min_subtract;
3669 		if (min_subtract) {
3670 		    data->longest = &(data->longest_float);
3671 		}
3672 	    }
3673 	    if (flags & SCF_DO_STCLASS_AND) {
3674 		/* Check whether it is compatible with what we know already! */
3675 		int compat = 1;
3676 		if (uc >= 0x100 ||
3677 		 (!(data->start_class->flags & ANYOF_LOCALE)
3678 		  && !ANYOF_BITMAP_TEST(data->start_class, uc)
3679 		  && !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
3680 		{
3681 		    compat = 0;
3682 		}
3683 		ANYOF_CLASS_ZERO(data->start_class);
3684 		ANYOF_BITMAP_ZERO(data->start_class);
3685 		if (compat) {
3686 		    ANYOF_BITMAP_SET(data->start_class, uc);
3687                     CLEAR_SSC_EOS(data->start_class);
3688 		    if (OP(scan) == EXACTFL) {
3689 			/* XXX This set is probably no longer necessary, and
3690 			 * probably wrong as LOCALE now is on in the initial
3691 			 * state */
3692 			data->start_class->flags |= ANYOF_LOCALE|ANYOF_LOC_FOLD;
3693 		    }
3694 		    else {
3695 
3696 			/* Also set the other member of the fold pair.  In case
3697 			 * that unicode semantics is called for at runtime, use
3698 			 * the full latin1 fold.  (Can't do this for locale,
3699 			 * because not known until runtime) */
3700 			ANYOF_BITMAP_SET(data->start_class, PL_fold_latin1[uc]);
3701 
3702                         /* All other (EXACTFL handled above) folds except under
3703                          * /iaa that include s, S, and sharp_s also may include
3704                          * the others */
3705 			if (OP(scan) != EXACTFA) {
3706 			    if (uc == 's' || uc == 'S') {
3707 				ANYOF_BITMAP_SET(data->start_class,
3708 					         LATIN_SMALL_LETTER_SHARP_S);
3709 			    }
3710 			    else if (uc == LATIN_SMALL_LETTER_SHARP_S) {
3711 				ANYOF_BITMAP_SET(data->start_class, 's');
3712 				ANYOF_BITMAP_SET(data->start_class, 'S');
3713 			    }
3714 			}
3715 		    }
3716 		}
3717 		else if (uc >= 0x100) {
3718 		    int i;
3719 		    for (i = 0; i < 256; i++){
3720 			if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) {
3721 			    ANYOF_BITMAP_SET(data->start_class, i);
3722 			}
3723 		    }
3724 		}
3725 	    }
3726 	    else if (flags & SCF_DO_STCLASS_OR) {
3727 		if (data->start_class->flags & ANYOF_LOC_FOLD) {
3728 		    /* false positive possible if the class is case-folded.
3729 		       Assume that the locale settings are the same... */
3730 		    if (uc < 0x100) {
3731 			ANYOF_BITMAP_SET(data->start_class, uc);
3732                         if (OP(scan) != EXACTFL) {
3733 
3734                             /* And set the other member of the fold pair, but
3735                              * can't do that in locale because not known until
3736                              * run-time */
3737                             ANYOF_BITMAP_SET(data->start_class,
3738 					     PL_fold_latin1[uc]);
3739 
3740 			    /* All folds except under /iaa that include s, S,
3741 			     * and sharp_s also may include the others */
3742 			    if (OP(scan) != EXACTFA) {
3743 				if (uc == 's' || uc == 'S') {
3744 				    ANYOF_BITMAP_SET(data->start_class,
3745 					           LATIN_SMALL_LETTER_SHARP_S);
3746 				}
3747 				else if (uc == LATIN_SMALL_LETTER_SHARP_S) {
3748 				    ANYOF_BITMAP_SET(data->start_class, 's');
3749 				    ANYOF_BITMAP_SET(data->start_class, 'S');
3750 				}
3751 			    }
3752                         }
3753 		    }
3754                     CLEAR_SSC_EOS(data->start_class);
3755 		}
3756 		cl_and(data->start_class, and_withp);
3757 	    }
3758 	    flags &= ~SCF_DO_STCLASS;
3759 	}
3760 	else if (REGNODE_VARIES(OP(scan))) {
3761 	    I32 mincount, maxcount, minnext, deltanext, fl = 0;
3762 	    I32 f = flags, pos_before = 0;
3763 	    regnode * const oscan = scan;
3764 	    struct regnode_charclass_class this_class;
3765 	    struct regnode_charclass_class *oclass = NULL;
3766 	    I32 next_is_eval = 0;
3767 
3768 	    switch (PL_regkind[OP(scan)]) {
3769 	    case WHILEM:		/* End of (?:...)* . */
3770 		scan = NEXTOPER(scan);
3771 		goto finish;
3772 	    case PLUS:
3773 		if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
3774 		    next = NEXTOPER(scan);
3775 		    if (OP(next) == EXACT || (flags & SCF_DO_STCLASS)) {
3776 			mincount = 1;
3777 			maxcount = REG_INFTY;
3778 			next = regnext(scan);
3779 			scan = NEXTOPER(scan);
3780 			goto do_curly;
3781 		    }
3782 		}
3783 		if (flags & SCF_DO_SUBSTR)
3784 		    data->pos_min++;
3785 		min++;
3786 		/* Fall through. */
3787 	    case STAR:
3788 		if (flags & SCF_DO_STCLASS) {
3789 		    mincount = 0;
3790 		    maxcount = REG_INFTY;
3791 		    next = regnext(scan);
3792 		    scan = NEXTOPER(scan);
3793 		    goto do_curly;
3794 		}
3795 		is_inf = is_inf_internal = 1;
3796 		scan = regnext(scan);
3797 		if (flags & SCF_DO_SUBSTR) {
3798 		    SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot extend fixed substrings */
3799 		    data->longest = &(data->longest_float);
3800 		}
3801 		goto optimize_curly_tail;
3802 	    case CURLY:
3803 	        if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
3804 	            && (scan->flags == stopparen))
3805 		{
3806 		    mincount = 1;
3807 		    maxcount = 1;
3808 		} else {
3809 		    mincount = ARG1(scan);
3810 		    maxcount = ARG2(scan);
3811 		}
3812 		next = regnext(scan);
3813 		if (OP(scan) == CURLYX) {
3814 		    I32 lp = (data ? *(data->last_closep) : 0);
3815 		    scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
3816 		}
3817 		scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
3818 		next_is_eval = (OP(scan) == EVAL);
3819 	      do_curly:
3820 		if (flags & SCF_DO_SUBSTR) {
3821 		    if (mincount == 0) SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot extend fixed substrings */
3822 		    pos_before = data->pos_min;
3823 		}
3824 		if (data) {
3825 		    fl = data->flags;
3826 		    data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
3827 		    if (is_inf)
3828 			data->flags |= SF_IS_INF;
3829 		}
3830 		if (flags & SCF_DO_STCLASS) {
3831 		    cl_init(pRExC_state, &this_class);
3832 		    oclass = data->start_class;
3833 		    data->start_class = &this_class;
3834 		    f |= SCF_DO_STCLASS_AND;
3835 		    f &= ~SCF_DO_STCLASS_OR;
3836 		}
3837 	        /* Exclude from super-linear cache processing any {n,m}
3838 		   regops for which the combination of input pos and regex
3839 		   pos is not enough information to determine if a match
3840 		   will be possible.
3841 
3842 		   For example, in the regex /foo(bar\s*){4,8}baz/ with the
3843 		   regex pos at the \s*, the prospects for a match depend not
3844 		   only on the input position but also on how many (bar\s*)
3845 		   repeats into the {4,8} we are. */
3846                if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY))
3847 		    f &= ~SCF_WHILEM_VISITED_POS;
3848 
3849 		/* This will finish on WHILEM, setting scan, or on NULL: */
3850 		minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
3851 		                      last, data, stopparen, recursed, NULL,
3852 				      (mincount == 0
3853 					? (f & ~SCF_DO_SUBSTR) : f),depth+1);
3854 
3855 		if (flags & SCF_DO_STCLASS)
3856 		    data->start_class = oclass;
3857 		if (mincount == 0 || minnext == 0) {
3858 		    if (flags & SCF_DO_STCLASS_OR) {
3859 			cl_or(pRExC_state, data->start_class, &this_class);
3860 		    }
3861 		    else if (flags & SCF_DO_STCLASS_AND) {
3862 			/* Switch to OR mode: cache the old value of
3863 			 * data->start_class */
3864 			INIT_AND_WITHP;
3865 			StructCopy(data->start_class, and_withp,
3866 				   struct regnode_charclass_class);
3867 			flags &= ~SCF_DO_STCLASS_AND;
3868 			StructCopy(&this_class, data->start_class,
3869 				   struct regnode_charclass_class);
3870 			flags |= SCF_DO_STCLASS_OR;
3871                         SET_SSC_EOS(data->start_class);
3872 		    }
3873 		} else {		/* Non-zero len */
3874 		    if (flags & SCF_DO_STCLASS_OR) {
3875 			cl_or(pRExC_state, data->start_class, &this_class);
3876 			cl_and(data->start_class, and_withp);
3877 		    }
3878 		    else if (flags & SCF_DO_STCLASS_AND)
3879 			cl_and(data->start_class, &this_class);
3880 		    flags &= ~SCF_DO_STCLASS;
3881 		}
3882 		if (!scan) 		/* It was not CURLYX, but CURLY. */
3883 		    scan = next;
3884 		if ( /* ? quantifier ok, except for (?{ ... }) */
3885 		    (next_is_eval || !(mincount == 0 && maxcount == 1))
3886 		    && (minnext == 0) && (deltanext == 0)
3887 		    && data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
3888 		    && maxcount <= REG_INFTY/3) /* Complement check for big count */
3889 		{
3890 		    /* Fatal warnings may leak the regexp without this: */
3891 		    SAVEFREESV(RExC_rx_sv);
3892 		    ckWARNreg(RExC_parse,
3893 			      "Quantifier unexpected on zero-length expression");
3894 		    (void)ReREFCNT_inc(RExC_rx_sv);
3895 		}
3896 
3897 		min += minnext * mincount;
3898 		is_inf_internal |= deltanext == I32_MAX
3899 				     || (maxcount == REG_INFTY && minnext + deltanext > 0);
3900 		is_inf |= is_inf_internal;
3901 		if (is_inf)
3902 		    delta = I32_MAX;
3903 		else
3904 		    delta += (minnext + deltanext) * maxcount - minnext * mincount;
3905 
3906 		/* Try powerful optimization CURLYX => CURLYN. */
3907 		if (  OP(oscan) == CURLYX && data
3908 		      && data->flags & SF_IN_PAR
3909 		      && !(data->flags & SF_HAS_EVAL)
3910 		      && !deltanext && minnext == 1 ) {
3911 		    /* Try to optimize to CURLYN.  */
3912 		    regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
3913 		    regnode * const nxt1 = nxt;
3914 #ifdef DEBUGGING
3915 		    regnode *nxt2;
3916 #endif
3917 
3918 		    /* Skip open. */
3919 		    nxt = regnext(nxt);
3920 		    if (!REGNODE_SIMPLE(OP(nxt))
3921 			&& !(PL_regkind[OP(nxt)] == EXACT
3922 			     && STR_LEN(nxt) == 1))
3923 			goto nogo;
3924 #ifdef DEBUGGING
3925 		    nxt2 = nxt;
3926 #endif
3927 		    nxt = regnext(nxt);
3928 		    if (OP(nxt) != CLOSE)
3929 			goto nogo;
3930 		    if (RExC_open_parens) {
3931 			RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
3932 			RExC_close_parens[ARG(nxt1)-1]=nxt+2; /*close->while*/
3933 		    }
3934 		    /* Now we know that nxt2 is the only contents: */
3935 		    oscan->flags = (U8)ARG(nxt);
3936 		    OP(oscan) = CURLYN;
3937 		    OP(nxt1) = NOTHING;	/* was OPEN. */
3938 
3939 #ifdef DEBUGGING
3940 		    OP(nxt1 + 1) = OPTIMIZED; /* was count. */
3941 		    NEXT_OFF(nxt1+ 1) = 0; /* just for consistency. */
3942 		    NEXT_OFF(nxt2) = 0;	/* just for consistency with CURLY. */
3943 		    OP(nxt) = OPTIMIZED;	/* was CLOSE. */
3944 		    OP(nxt + 1) = OPTIMIZED; /* was count. */
3945 		    NEXT_OFF(nxt+ 1) = 0; /* just for consistency. */
3946 #endif
3947 		}
3948 	      nogo:
3949 
3950 		/* Try optimization CURLYX => CURLYM. */
3951 		if (  OP(oscan) == CURLYX && data
3952 		      && !(data->flags & SF_HAS_PAR)
3953 		      && !(data->flags & SF_HAS_EVAL)
3954 		      && !deltanext	/* atom is fixed width */
3955 		      && minnext != 0	/* CURLYM can't handle zero width */
3956                       && ! (RExC_seen & REG_SEEN_EXACTF_SHARP_S) /* Nor \xDF */
3957 		) {
3958 		    /* XXXX How to optimize if data == 0? */
3959 		    /* Optimize to a simpler form.  */
3960 		    regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
3961 		    regnode *nxt2;
3962 
3963 		    OP(oscan) = CURLYM;
3964 		    while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
3965 			    && (OP(nxt2) != WHILEM))
3966 			nxt = nxt2;
3967 		    OP(nxt2)  = SUCCEED; /* Whas WHILEM */
3968 		    /* Need to optimize away parenths. */
3969 		    if ((data->flags & SF_IN_PAR) && OP(nxt) == CLOSE) {
3970 			/* Set the parenth number.  */
3971 			regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/
3972 
3973 			oscan->flags = (U8)ARG(nxt);
3974 			if (RExC_open_parens) {
3975 			    RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
3976 			    RExC_close_parens[ARG(nxt1)-1]=nxt2+1; /*close->NOTHING*/
3977 			}
3978 			OP(nxt1) = OPTIMIZED;	/* was OPEN. */
3979 			OP(nxt) = OPTIMIZED;	/* was CLOSE. */
3980 
3981 #ifdef DEBUGGING
3982 			OP(nxt1 + 1) = OPTIMIZED; /* was count. */
3983 			OP(nxt + 1) = OPTIMIZED; /* was count. */
3984 			NEXT_OFF(nxt1 + 1) = 0; /* just for consistency. */
3985 			NEXT_OFF(nxt + 1) = 0; /* just for consistency. */
3986 #endif
3987 #if 0
3988 			while ( nxt1 && (OP(nxt1) != WHILEM)) {
3989 			    regnode *nnxt = regnext(nxt1);
3990 			    if (nnxt == nxt) {
3991 				if (reg_off_by_arg[OP(nxt1)])
3992 				    ARG_SET(nxt1, nxt2 - nxt1);
3993 				else if (nxt2 - nxt1 < U16_MAX)
3994 				    NEXT_OFF(nxt1) = nxt2 - nxt1;
3995 				else
3996 				    OP(nxt) = NOTHING;	/* Cannot beautify */
3997 			    }
3998 			    nxt1 = nnxt;
3999 			}
4000 #endif
4001 			/* Optimize again: */
4002 			study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
4003 				    NULL, stopparen, recursed, NULL, 0,depth+1);
4004 		    }
4005 		    else
4006 			oscan->flags = 0;
4007 		}
4008 		else if ((OP(oscan) == CURLYX)
4009 			 && (flags & SCF_WHILEM_VISITED_POS)
4010 			 /* See the comment on a similar expression above.
4011 			    However, this time it's not a subexpression
4012 			    we care about, but the expression itself. */
4013 			 && (maxcount == REG_INFTY)
4014 			 && data && ++data->whilem_c < 16) {
4015 		    /* This stays as CURLYX, we can put the count/of pair. */
4016 		    /* Find WHILEM (as in regexec.c) */
4017 		    regnode *nxt = oscan + NEXT_OFF(oscan);
4018 
4019 		    if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
4020 			nxt += ARG(nxt);
4021 		    PREVOPER(nxt)->flags = (U8)(data->whilem_c
4022 			| (RExC_whilem_seen << 4)); /* On WHILEM */
4023 		}
4024 		if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
4025 		    pars++;
4026 		if (flags & SCF_DO_SUBSTR) {
4027 		    SV *last_str = NULL;
4028 		    int counted = mincount != 0;
4029 
4030 		    if (data->last_end > 0 && mincount != 0) { /* Ends with a string. */
4031 #if defined(SPARC64_GCC_WORKAROUND)
4032 			I32 b = 0;
4033 			STRLEN l = 0;
4034 			const char *s = NULL;
4035 			I32 old = 0;
4036 
4037 			if (pos_before >= data->last_start_min)
4038 			    b = pos_before;
4039 			else
4040 			    b = data->last_start_min;
4041 
4042 			l = 0;
4043 			s = SvPV_const(data->last_found, l);
4044 			old = b - data->last_start_min;
4045 
4046 #else
4047 			I32 b = pos_before >= data->last_start_min
4048 			    ? pos_before : data->last_start_min;
4049 			STRLEN l;
4050 			const char * const s = SvPV_const(data->last_found, l);
4051 			I32 old = b - data->last_start_min;
4052 #endif
4053 
4054 			if (UTF)
4055 			    old = utf8_hop((U8*)s, old) - (U8*)s;
4056 			l -= old;
4057 			/* Get the added string: */
4058 			last_str = newSVpvn_utf8(s  + old, l, UTF);
4059 			if (deltanext == 0 && pos_before == b) {
4060 			    /* What was added is a constant string */
4061 			    if (mincount > 1) {
4062 				SvGROW(last_str, (mincount * l) + 1);
4063 				repeatcpy(SvPVX(last_str) + l,
4064 					  SvPVX_const(last_str), l, mincount - 1);
4065 				SvCUR_set(last_str, SvCUR(last_str) * mincount);
4066 				/* Add additional parts. */
4067 				SvCUR_set(data->last_found,
4068 					  SvCUR(data->last_found) - l);
4069 				sv_catsv(data->last_found, last_str);
4070 				{
4071 				    SV * sv = data->last_found;
4072 				    MAGIC *mg =
4073 					SvUTF8(sv) && SvMAGICAL(sv) ?
4074 					mg_find(sv, PERL_MAGIC_utf8) : NULL;
4075 				    if (mg && mg->mg_len >= 0)
4076 					mg->mg_len += CHR_SVLEN(last_str) - l;
4077 				}
4078 				data->last_end += l * (mincount - 1);
4079 			    }
4080 			} else {
4081 			    /* start offset must point into the last copy */
4082 			    data->last_start_min += minnext * (mincount - 1);
4083 			    data->last_start_max += is_inf ? I32_MAX
4084 				: (maxcount - 1) * (minnext + data->pos_delta);
4085 			}
4086 		    }
4087 		    /* It is counted once already... */
4088 		    data->pos_min += minnext * (mincount - counted);
4089 #if 0
4090 PerlIO_printf(Perl_debug_log, "counted=%d deltanext=%d I32_MAX=%d minnext=%d maxcount=%d mincount=%d\n",
4091     counted, deltanext, I32_MAX, minnext, maxcount, mincount);
4092 if (deltanext != I32_MAX)
4093 PerlIO_printf(Perl_debug_log, "LHS=%d RHS=%d\n", -counted * deltanext + (minnext + deltanext) * maxcount - minnext * mincount, I32_MAX - data->pos_delta);
4094 #endif
4095 		    if (deltanext == I32_MAX || -counted * deltanext + (minnext + deltanext) * maxcount - minnext * mincount >= I32_MAX - data->pos_delta)
4096 		        data->pos_delta = I32_MAX;
4097 		    else
4098 		        data->pos_delta += - counted * deltanext +
4099 			(minnext + deltanext) * maxcount - minnext * mincount;
4100 		    if (mincount != maxcount) {
4101 			 /* Cannot extend fixed substrings found inside
4102 			    the group.  */
4103 			SCAN_COMMIT(pRExC_state,data,minlenp);
4104 			if (mincount && last_str) {
4105 			    SV * const sv = data->last_found;
4106 			    MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
4107 				mg_find(sv, PERL_MAGIC_utf8) : NULL;
4108 
4109 			    if (mg)
4110 				mg->mg_len = -1;
4111 			    sv_setsv(sv, last_str);
4112 			    data->last_end = data->pos_min;
4113 			    data->last_start_min =
4114 				data->pos_min - CHR_SVLEN(last_str);
4115 			    data->last_start_max = is_inf
4116 				? I32_MAX
4117 				: data->pos_min + data->pos_delta
4118 				- CHR_SVLEN(last_str);
4119 			}
4120 			data->longest = &(data->longest_float);
4121 		    }
4122 		    SvREFCNT_dec(last_str);
4123 		}
4124 		if (data && (fl & SF_HAS_EVAL))
4125 		    data->flags |= SF_HAS_EVAL;
4126 	      optimize_curly_tail:
4127 		if (OP(oscan) != CURLYX) {
4128 		    while (PL_regkind[OP(next = regnext(oscan))] == NOTHING
4129 			   && NEXT_OFF(next))
4130 			NEXT_OFF(oscan) += NEXT_OFF(next);
4131 		}
4132 		continue;
4133 	    default:			/* REF, and CLUMP only? */
4134 		if (flags & SCF_DO_SUBSTR) {
4135 		    SCAN_COMMIT(pRExC_state,data,minlenp);	/* Cannot expect anything... */
4136 		    data->longest = &(data->longest_float);
4137 		}
4138 		is_inf = is_inf_internal = 1;
4139 		if (flags & SCF_DO_STCLASS_OR)
4140 		    cl_anything(pRExC_state, data->start_class);
4141 		flags &= ~SCF_DO_STCLASS;
4142 		break;
4143 	    }
4144 	}
4145 	else if (OP(scan) == LNBREAK) {
4146 	    if (flags & SCF_DO_STCLASS) {
4147 		int value = 0;
4148                 CLEAR_SSC_EOS(data->start_class); /* No match on empty */
4149     	        if (flags & SCF_DO_STCLASS_AND) {
4150                     for (value = 0; value < 256; value++)
4151                         if (!is_VERTWS_cp(value))
4152                             ANYOF_BITMAP_CLEAR(data->start_class, value);
4153                 }
4154                 else {
4155                     for (value = 0; value < 256; value++)
4156                         if (is_VERTWS_cp(value))
4157                             ANYOF_BITMAP_SET(data->start_class, value);
4158                 }
4159                 if (flags & SCF_DO_STCLASS_OR)
4160 		    cl_and(data->start_class, and_withp);
4161 		flags &= ~SCF_DO_STCLASS;
4162             }
4163 	    min++;
4164 	    delta++;    /* Because of the 2 char string cr-lf */
4165             if (flags & SCF_DO_SUBSTR) {
4166     	        SCAN_COMMIT(pRExC_state,data,minlenp);	/* Cannot expect anything... */
4167     	        data->pos_min += 1;
4168 	        data->pos_delta += 1;
4169 		data->longest = &(data->longest_float);
4170     	    }
4171 	}
4172 	else if (REGNODE_SIMPLE(OP(scan))) {
4173 	    int value = 0;
4174 
4175 	    if (flags & SCF_DO_SUBSTR) {
4176 		SCAN_COMMIT(pRExC_state,data,minlenp);
4177 		data->pos_min++;
4178 	    }
4179 	    min++;
4180 	    if (flags & SCF_DO_STCLASS) {
4181                 int loop_max = 256;
4182                 CLEAR_SSC_EOS(data->start_class); /* No match on empty */
4183 
4184 		/* Some of the logic below assumes that switching
4185 		   locale on will only add false positives. */
4186 		switch (PL_regkind[OP(scan)]) {
4187                     U8 classnum;
4188 
4189 		case SANY:
4190 		default:
4191 #ifdef DEBUGGING
4192                    Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d", OP(scan));
4193 #endif
4194                  do_default:
4195 		    if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
4196 			cl_anything(pRExC_state, data->start_class);
4197 		    break;
4198 		case REG_ANY:
4199 		    if (OP(scan) == SANY)
4200 			goto do_default;
4201 		    if (flags & SCF_DO_STCLASS_OR) { /* Everything but \n */
4202 			value = (ANYOF_BITMAP_TEST(data->start_class,'\n')
4203 				|| ANYOF_CLASS_TEST_ANY_SET(data->start_class));
4204 			cl_anything(pRExC_state, data->start_class);
4205 		    }
4206 		    if (flags & SCF_DO_STCLASS_AND || !value)
4207 			ANYOF_BITMAP_CLEAR(data->start_class,'\n');
4208 		    break;
4209 		case ANYOF:
4210 		    if (flags & SCF_DO_STCLASS_AND)
4211 			cl_and(data->start_class,
4212 			       (struct regnode_charclass_class*)scan);
4213 		    else
4214 			cl_or(pRExC_state, data->start_class,
4215 			      (struct regnode_charclass_class*)scan);
4216 		    break;
4217 		case POSIXA:
4218                     loop_max = 128;
4219                     /* FALL THROUGH */
4220 		case POSIXL:
4221 		case POSIXD:
4222 		case POSIXU:
4223                     classnum = FLAGS(scan);
4224 		    if (flags & SCF_DO_STCLASS_AND) {
4225 			if (!(data->start_class->flags & ANYOF_LOCALE)) {
4226 			    ANYOF_CLASS_CLEAR(data->start_class, classnum_to_namedclass(classnum) + 1);
4227                             for (value = 0; value < loop_max; value++) {
4228                                 if (! _generic_isCC(UNI_TO_NATIVE(value), classnum)) {
4229                                     ANYOF_BITMAP_CLEAR(data->start_class, UNI_TO_NATIVE(value));
4230                                 }
4231                             }
4232 			}
4233 		    }
4234 		    else {
4235 			if (data->start_class->flags & ANYOF_LOCALE) {
4236 			    ANYOF_CLASS_SET(data->start_class, classnum_to_namedclass(classnum));
4237                         }
4238                         else {
4239 
4240 			/* Even if under locale, set the bits for non-locale
4241 			 * in case it isn't a true locale-node.  This will
4242 			 * create false positives if it truly is locale */
4243                         for (value = 0; value < loop_max; value++) {
4244                             if (_generic_isCC(UNI_TO_NATIVE(value), classnum)) {
4245                                 ANYOF_BITMAP_SET(data->start_class, UNI_TO_NATIVE(value));
4246                             }
4247                         }
4248                         }
4249 		    }
4250 		    break;
4251 		case NPOSIXA:
4252                     loop_max = 128;
4253                     /* FALL THROUGH */
4254 		case NPOSIXL:
4255 		case NPOSIXU:
4256 		case NPOSIXD:
4257                     classnum = FLAGS(scan);
4258 		    if (flags & SCF_DO_STCLASS_AND) {
4259 			if (!(data->start_class->flags & ANYOF_LOCALE)) {
4260 			    ANYOF_CLASS_CLEAR(data->start_class, classnum_to_namedclass(classnum));
4261                             for (value = 0; value < loop_max; value++) {
4262                                 if (_generic_isCC(UNI_TO_NATIVE(value), classnum)) {
4263                                     ANYOF_BITMAP_CLEAR(data->start_class, UNI_TO_NATIVE(value));
4264                                 }
4265                             }
4266 			}
4267 		    }
4268 		    else {
4269 			if (data->start_class->flags & ANYOF_LOCALE) {
4270 			    ANYOF_CLASS_SET(data->start_class, classnum_to_namedclass(classnum) + 1);
4271                         }
4272                         else {
4273 
4274 			/* Even if under locale, set the bits for non-locale in
4275 			 * case it isn't a true locale-node.  This will create
4276 			 * false positives if it truly is locale */
4277                         for (value = 0; value < loop_max; value++) {
4278                             if (! _generic_isCC(UNI_TO_NATIVE(value), classnum)) {
4279                                 ANYOF_BITMAP_SET(data->start_class, UNI_TO_NATIVE(value));
4280                             }
4281                         }
4282                         if (PL_regkind[OP(scan)] == NPOSIXD) {
4283                             data->start_class->flags |= ANYOF_NON_UTF8_LATIN1_ALL;
4284                         }
4285                         }
4286 		    }
4287 		    break;
4288 		}
4289 		if (flags & SCF_DO_STCLASS_OR)
4290 		    cl_and(data->start_class, and_withp);
4291 		flags &= ~SCF_DO_STCLASS;
4292 	    }
4293 	}
4294 	else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) {
4295 	    data->flags |= (OP(scan) == MEOL
4296 			    ? SF_BEFORE_MEOL
4297 			    : SF_BEFORE_SEOL);
4298 	    SCAN_COMMIT(pRExC_state, data, minlenp);
4299 
4300 	}
4301 	else if (  PL_regkind[OP(scan)] == BRANCHJ
4302 		 /* Lookbehind, or need to calculate parens/evals/stclass: */
4303 		   && (scan->flags || data || (flags & SCF_DO_STCLASS))
4304 		   && (OP(scan) == IFMATCH || OP(scan) == UNLESSM)) {
4305             if ( OP(scan) == UNLESSM &&
4306                  scan->flags == 0 &&
4307                  OP(NEXTOPER(NEXTOPER(scan))) == NOTHING &&
4308                  OP(regnext(NEXTOPER(NEXTOPER(scan)))) == SUCCEED
4309             ) {
4310                 regnode *opt;
4311                 regnode *upto= regnext(scan);
4312                 DEBUG_PARSE_r({
4313                     SV * const mysv_val=sv_newmortal();
4314                     DEBUG_STUDYDATA("OPFAIL",data,depth);
4315 
4316                     /*DEBUG_PARSE_MSG("opfail");*/
4317                     regprop(RExC_rx, mysv_val, upto);
4318                     PerlIO_printf(Perl_debug_log, "~ replace with OPFAIL pointed at %s (%"IVdf") offset %"IVdf"\n",
4319                                   SvPV_nolen_const(mysv_val),
4320                                   (IV)REG_NODE_NUM(upto),
4321                                   (IV)(upto - scan)
4322                     );
4323                 });
4324                 OP(scan) = OPFAIL;
4325                 NEXT_OFF(scan) = upto - scan;
4326                 for (opt= scan + 1; opt < upto ; opt++)
4327                     OP(opt) = OPTIMIZED;
4328                 scan= upto;
4329                 continue;
4330             }
4331             if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY
4332                 || OP(scan) == UNLESSM )
4333             {
4334                 /* Negative Lookahead/lookbehind
4335                    In this case we can't do fixed string optimisation.
4336                 */
4337 
4338                 I32 deltanext, minnext, fake = 0;
4339                 regnode *nscan;
4340                 struct regnode_charclass_class intrnl;
4341                 int f = 0;
4342 
4343                 data_fake.flags = 0;
4344                 if (data) {
4345                     data_fake.whilem_c = data->whilem_c;
4346                     data_fake.last_closep = data->last_closep;
4347 		}
4348                 else
4349                     data_fake.last_closep = &fake;
4350 		data_fake.pos_delta = delta;
4351                 if ( flags & SCF_DO_STCLASS && !scan->flags
4352                      && OP(scan) == IFMATCH ) { /* Lookahead */
4353                     cl_init(pRExC_state, &intrnl);
4354                     data_fake.start_class = &intrnl;
4355                     f |= SCF_DO_STCLASS_AND;
4356 		}
4357                 if (flags & SCF_WHILEM_VISITED_POS)
4358                     f |= SCF_WHILEM_VISITED_POS;
4359                 next = regnext(scan);
4360                 nscan = NEXTOPER(NEXTOPER(scan));
4361                 minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext,
4362                     last, &data_fake, stopparen, recursed, NULL, f, depth+1);
4363                 if (scan->flags) {
4364                     if (deltanext) {
4365 			FAIL("Variable length lookbehind not implemented");
4366                     }
4367                     else if (minnext > (I32)U8_MAX) {
4368 			FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
4369                     }
4370                     scan->flags = (U8)minnext;
4371                 }
4372                 if (data) {
4373                     if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4374                         pars++;
4375                     if (data_fake.flags & SF_HAS_EVAL)
4376                         data->flags |= SF_HAS_EVAL;
4377                     data->whilem_c = data_fake.whilem_c;
4378                 }
4379                 if (f & SCF_DO_STCLASS_AND) {
4380 		    if (flags & SCF_DO_STCLASS_OR) {
4381 			/* OR before, AND after: ideally we would recurse with
4382 			 * data_fake to get the AND applied by study of the
4383 			 * remainder of the pattern, and then derecurse;
4384 			 * *** HACK *** for now just treat as "no information".
4385 			 * See [perl #56690].
4386 			 */
4387 			cl_init(pRExC_state, data->start_class);
4388 		    }  else {
4389 			/* AND before and after: combine and continue */
4390 			const int was = TEST_SSC_EOS(data->start_class);
4391 
4392 			cl_and(data->start_class, &intrnl);
4393 			if (was)
4394                             SET_SSC_EOS(data->start_class);
4395 		    }
4396                 }
4397 	    }
4398 #if PERL_ENABLE_POSITIVE_ASSERTION_STUDY
4399             else {
4400                 /* Positive Lookahead/lookbehind
4401                    In this case we can do fixed string optimisation,
4402                    but we must be careful about it. Note in the case of
4403                    lookbehind the positions will be offset by the minimum
4404                    length of the pattern, something we won't know about
4405                    until after the recurse.
4406                 */
4407                 I32 deltanext, fake = 0;
4408                 regnode *nscan;
4409                 struct regnode_charclass_class intrnl;
4410                 int f = 0;
4411                 /* We use SAVEFREEPV so that when the full compile
4412                     is finished perl will clean up the allocated
4413                     minlens when it's all done. This way we don't
4414                     have to worry about freeing them when we know
4415                     they wont be used, which would be a pain.
4416                  */
4417                 I32 *minnextp;
4418                 Newx( minnextp, 1, I32 );
4419                 SAVEFREEPV(minnextp);
4420 
4421                 if (data) {
4422                     StructCopy(data, &data_fake, scan_data_t);
4423                     if ((flags & SCF_DO_SUBSTR) && data->last_found) {
4424                         f |= SCF_DO_SUBSTR;
4425                         if (scan->flags)
4426                             SCAN_COMMIT(pRExC_state, &data_fake,minlenp);
4427                         data_fake.last_found=newSVsv(data->last_found);
4428                     }
4429                 }
4430                 else
4431                     data_fake.last_closep = &fake;
4432                 data_fake.flags = 0;
4433 		data_fake.pos_delta = delta;
4434                 if (is_inf)
4435 	            data_fake.flags |= SF_IS_INF;
4436                 if ( flags & SCF_DO_STCLASS && !scan->flags
4437                      && OP(scan) == IFMATCH ) { /* Lookahead */
4438                     cl_init(pRExC_state, &intrnl);
4439                     data_fake.start_class = &intrnl;
4440                     f |= SCF_DO_STCLASS_AND;
4441                 }
4442                 if (flags & SCF_WHILEM_VISITED_POS)
4443                     f |= SCF_WHILEM_VISITED_POS;
4444                 next = regnext(scan);
4445                 nscan = NEXTOPER(NEXTOPER(scan));
4446 
4447                 *minnextp = study_chunk(pRExC_state, &nscan, minnextp, &deltanext,
4448                     last, &data_fake, stopparen, recursed, NULL, f,depth+1);
4449                 if (scan->flags) {
4450                     if (deltanext) {
4451 			FAIL("Variable length lookbehind not implemented");
4452                     }
4453                     else if (*minnextp > (I32)U8_MAX) {
4454 			FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
4455                     }
4456                     scan->flags = (U8)*minnextp;
4457                 }
4458 
4459                 *minnextp += min;
4460 
4461                 if (f & SCF_DO_STCLASS_AND) {
4462                     const int was = TEST_SSC_EOS(data.start_class);
4463 
4464                     cl_and(data->start_class, &intrnl);
4465                     if (was)
4466                         SET_SSC_EOS(data->start_class);
4467                 }
4468                 if (data) {
4469                     if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4470                         pars++;
4471                     if (data_fake.flags & SF_HAS_EVAL)
4472                         data->flags |= SF_HAS_EVAL;
4473                     data->whilem_c = data_fake.whilem_c;
4474                     if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) {
4475                         if (RExC_rx->minlen<*minnextp)
4476                             RExC_rx->minlen=*minnextp;
4477                         SCAN_COMMIT(pRExC_state, &data_fake, minnextp);
4478                         SvREFCNT_dec_NN(data_fake.last_found);
4479 
4480                         if ( data_fake.minlen_fixed != minlenp )
4481                         {
4482                             data->offset_fixed= data_fake.offset_fixed;
4483                             data->minlen_fixed= data_fake.minlen_fixed;
4484                             data->lookbehind_fixed+= scan->flags;
4485                         }
4486                         if ( data_fake.minlen_float != minlenp )
4487                         {
4488                             data->minlen_float= data_fake.minlen_float;
4489                             data->offset_float_min=data_fake.offset_float_min;
4490                             data->offset_float_max=data_fake.offset_float_max;
4491                             data->lookbehind_float+= scan->flags;
4492                         }
4493                     }
4494                 }
4495 	    }
4496 #endif
4497 	}
4498 	else if (OP(scan) == OPEN) {
4499 	    if (stopparen != (I32)ARG(scan))
4500 	        pars++;
4501 	}
4502 	else if (OP(scan) == CLOSE) {
4503 	    if (stopparen == (I32)ARG(scan)) {
4504 	        break;
4505 	    }
4506 	    if ((I32)ARG(scan) == is_par) {
4507 		next = regnext(scan);
4508 
4509 		if ( next && (OP(next) != WHILEM) && next < last)
4510 		    is_par = 0;		/* Disable optimization */
4511 	    }
4512 	    if (data)
4513 		*(data->last_closep) = ARG(scan);
4514 	}
4515 	else if (OP(scan) == EVAL) {
4516 		if (data)
4517 		    data->flags |= SF_HAS_EVAL;
4518 	}
4519 	else if ( PL_regkind[OP(scan)] == ENDLIKE ) {
4520 	    if (flags & SCF_DO_SUBSTR) {
4521 		SCAN_COMMIT(pRExC_state,data,minlenp);
4522 		flags &= ~SCF_DO_SUBSTR;
4523 	    }
4524 	    if (data && OP(scan)==ACCEPT) {
4525 	        data->flags |= SCF_SEEN_ACCEPT;
4526 	        if (stopmin > min)
4527 	            stopmin = min;
4528 	    }
4529 	}
4530 	else if (OP(scan) == LOGICAL && scan->flags == 2) /* Embedded follows */
4531 	{
4532 		if (flags & SCF_DO_SUBSTR) {
4533 		    SCAN_COMMIT(pRExC_state,data,minlenp);
4534 		    data->longest = &(data->longest_float);
4535 		}
4536 		is_inf = is_inf_internal = 1;
4537 		if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
4538 		    cl_anything(pRExC_state, data->start_class);
4539 		flags &= ~SCF_DO_STCLASS;
4540 	}
4541 	else if (OP(scan) == GPOS) {
4542 	    if (!(RExC_rx->extflags & RXf_GPOS_FLOAT) &&
4543 	        !(delta || is_inf || (data && data->pos_delta)))
4544 	    {
4545 	        if (!(RExC_rx->extflags & RXf_ANCH) && (flags & SCF_DO_SUBSTR))
4546 		    RExC_rx->extflags |= RXf_ANCH_GPOS;
4547 	        if (RExC_rx->gofs < (U32)min)
4548 		    RExC_rx->gofs = min;
4549             } else {
4550                 RExC_rx->extflags |= RXf_GPOS_FLOAT;
4551                 RExC_rx->gofs = 0;
4552             }
4553 	}
4554 #ifdef TRIE_STUDY_OPT
4555 #ifdef FULL_TRIE_STUDY
4556         else if (PL_regkind[OP(scan)] == TRIE) {
4557             /* NOTE - There is similar code to this block above for handling
4558                BRANCH nodes on the initial study.  If you change stuff here
4559                check there too. */
4560             regnode *trie_node= scan;
4561             regnode *tail= regnext(scan);
4562             reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
4563             I32 max1 = 0, min1 = I32_MAX;
4564             struct regnode_charclass_class accum;
4565 
4566             if (flags & SCF_DO_SUBSTR) /* XXXX Add !SUSPEND? */
4567                 SCAN_COMMIT(pRExC_state, data,minlenp); /* Cannot merge strings after this. */
4568             if (flags & SCF_DO_STCLASS)
4569                 cl_init_zero(pRExC_state, &accum);
4570 
4571             if (!trie->jump) {
4572                 min1= trie->minlen;
4573                 max1= trie->maxlen;
4574             } else {
4575                 const regnode *nextbranch= NULL;
4576                 U32 word;
4577 
4578                 for ( word=1 ; word <= trie->wordcount ; word++)
4579                 {
4580                     I32 deltanext=0, minnext=0, f = 0, fake;
4581                     struct regnode_charclass_class this_class;
4582 
4583                     data_fake.flags = 0;
4584                     if (data) {
4585                         data_fake.whilem_c = data->whilem_c;
4586                         data_fake.last_closep = data->last_closep;
4587                     }
4588                     else
4589                         data_fake.last_closep = &fake;
4590 		    data_fake.pos_delta = delta;
4591                     if (flags & SCF_DO_STCLASS) {
4592                         cl_init(pRExC_state, &this_class);
4593                         data_fake.start_class = &this_class;
4594                         f = SCF_DO_STCLASS_AND;
4595                     }
4596                     if (flags & SCF_WHILEM_VISITED_POS)
4597                         f |= SCF_WHILEM_VISITED_POS;
4598 
4599                     if (trie->jump[word]) {
4600                         if (!nextbranch)
4601                             nextbranch = trie_node + trie->jump[0];
4602                         scan= trie_node + trie->jump[word];
4603                         /* We go from the jump point to the branch that follows
4604                            it. Note this means we need the vestigal unused branches
4605                            even though they arent otherwise used.
4606                          */
4607                         minnext = study_chunk(pRExC_state, &scan, minlenp,
4608                             &deltanext, (regnode *)nextbranch, &data_fake,
4609                             stopparen, recursed, NULL, f,depth+1);
4610                     }
4611                     if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
4612                         nextbranch= regnext((regnode*)nextbranch);
4613 
4614                     if (min1 > (I32)(minnext + trie->minlen))
4615                         min1 = minnext + trie->minlen;
4616                     if (deltanext == I32_MAX) {
4617                         is_inf = is_inf_internal = 1;
4618                         max1 = I32_MAX;
4619                     } else if (max1 < (I32)(minnext + deltanext + trie->maxlen))
4620                         max1 = minnext + deltanext + trie->maxlen;
4621 
4622                     if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4623                         pars++;
4624                     if (data_fake.flags & SCF_SEEN_ACCEPT) {
4625                         if ( stopmin > min + min1)
4626 	                    stopmin = min + min1;
4627 	                flags &= ~SCF_DO_SUBSTR;
4628 	                if (data)
4629 	                    data->flags |= SCF_SEEN_ACCEPT;
4630 	            }
4631                     if (data) {
4632                         if (data_fake.flags & SF_HAS_EVAL)
4633                             data->flags |= SF_HAS_EVAL;
4634                         data->whilem_c = data_fake.whilem_c;
4635                     }
4636                     if (flags & SCF_DO_STCLASS)
4637                         cl_or(pRExC_state, &accum, &this_class);
4638                 }
4639             }
4640             if (flags & SCF_DO_SUBSTR) {
4641                 data->pos_min += min1;
4642                 data->pos_delta += max1 - min1;
4643                 if (max1 != min1 || is_inf)
4644                     data->longest = &(data->longest_float);
4645             }
4646             min += min1;
4647             delta += max1 - min1;
4648             if (flags & SCF_DO_STCLASS_OR) {
4649                 cl_or(pRExC_state, data->start_class, &accum);
4650                 if (min1) {
4651                     cl_and(data->start_class, and_withp);
4652                     flags &= ~SCF_DO_STCLASS;
4653                 }
4654             }
4655             else if (flags & SCF_DO_STCLASS_AND) {
4656                 if (min1) {
4657                     cl_and(data->start_class, &accum);
4658                     flags &= ~SCF_DO_STCLASS;
4659                 }
4660                 else {
4661                     /* Switch to OR mode: cache the old value of
4662                      * data->start_class */
4663 		    INIT_AND_WITHP;
4664                     StructCopy(data->start_class, and_withp,
4665                                struct regnode_charclass_class);
4666                     flags &= ~SCF_DO_STCLASS_AND;
4667                     StructCopy(&accum, data->start_class,
4668                                struct regnode_charclass_class);
4669                     flags |= SCF_DO_STCLASS_OR;
4670                     SET_SSC_EOS(data->start_class);
4671                 }
4672             }
4673             scan= tail;
4674             continue;
4675         }
4676 #else
4677 	else if (PL_regkind[OP(scan)] == TRIE) {
4678 	    reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
4679 	    U8*bang=NULL;
4680 
4681 	    min += trie->minlen;
4682 	    delta += (trie->maxlen - trie->minlen);
4683 	    flags &= ~SCF_DO_STCLASS; /* xxx */
4684             if (flags & SCF_DO_SUBSTR) {
4685     	        SCAN_COMMIT(pRExC_state,data,minlenp);	/* Cannot expect anything... */
4686     	        data->pos_min += trie->minlen;
4687     	        data->pos_delta += (trie->maxlen - trie->minlen);
4688 		if (trie->maxlen != trie->minlen)
4689 		    data->longest = &(data->longest_float);
4690     	    }
4691     	    if (trie->jump) /* no more substrings -- for now /grr*/
4692     	        flags &= ~SCF_DO_SUBSTR;
4693 	}
4694 #endif /* old or new */
4695 #endif /* TRIE_STUDY_OPT */
4696 
4697 	/* Else: zero-length, ignore. */
4698 	scan = regnext(scan);
4699     }
4700     if (frame) {
4701         last = frame->last;
4702         scan = frame->next;
4703         stopparen = frame->stop;
4704         frame = frame->prev;
4705         goto fake_study_recurse;
4706     }
4707 
4708   finish:
4709     assert(!frame);
4710     DEBUG_STUDYDATA("pre-fin:",data,depth);
4711 
4712     *scanp = scan;
4713     *deltap = is_inf_internal ? I32_MAX : delta;
4714     if (flags & SCF_DO_SUBSTR && is_inf)
4715 	data->pos_delta = I32_MAX - data->pos_min;
4716     if (is_par > (I32)U8_MAX)
4717 	is_par = 0;
4718     if (is_par && pars==1 && data) {
4719 	data->flags |= SF_IN_PAR;
4720 	data->flags &= ~SF_HAS_PAR;
4721     }
4722     else if (pars && data) {
4723 	data->flags |= SF_HAS_PAR;
4724 	data->flags &= ~SF_IN_PAR;
4725     }
4726     if (flags & SCF_DO_STCLASS_OR)
4727 	cl_and(data->start_class, and_withp);
4728     if (flags & SCF_TRIE_RESTUDY)
4729         data->flags |= 	SCF_TRIE_RESTUDY;
4730 
4731     DEBUG_STUDYDATA("post-fin:",data,depth);
4732 
4733     return min < stopmin ? min : stopmin;
4734 }
4735 
4736 STATIC U32
4737 S_add_data(RExC_state_t *pRExC_state, U32 n, const char *s)
4738 {
4739     U32 count = RExC_rxi->data ? RExC_rxi->data->count : 0;
4740 
4741     PERL_ARGS_ASSERT_ADD_DATA;
4742 
4743     Renewc(RExC_rxi->data,
4744 	   sizeof(*RExC_rxi->data) + sizeof(void*) * (count + n - 1),
4745 	   char, struct reg_data);
4746     if(count)
4747 	Renew(RExC_rxi->data->what, count + n, U8);
4748     else
4749 	Newx(RExC_rxi->data->what, n, U8);
4750     RExC_rxi->data->count = count + n;
4751     Copy(s, RExC_rxi->data->what + count, n, U8);
4752     return count;
4753 }
4754 
4755 /*XXX: todo make this not included in a non debugging perl */
4756 #ifndef PERL_IN_XSUB_RE
4757 void
4758 Perl_reginitcolors(pTHX)
4759 {
4760     dVAR;
4761     const char * const s = PerlEnv_getenv("PERL_RE_COLORS");
4762     if (s) {
4763 	char *t = savepv(s);
4764 	int i = 0;
4765 	PL_colors[0] = t;
4766 	while (++i < 6) {
4767 	    t = strchr(t, '\t');
4768 	    if (t) {
4769 		*t = '\0';
4770 		PL_colors[i] = ++t;
4771 	    }
4772 	    else
4773 		PL_colors[i] = t = (char *)"";
4774 	}
4775     } else {
4776 	int i = 0;
4777 	while (i < 6)
4778 	    PL_colors[i++] = (char *)"";
4779     }
4780     PL_colorset = 1;
4781 }
4782 #endif
4783 
4784 
4785 #ifdef TRIE_STUDY_OPT
4786 #define CHECK_RESTUDY_GOTO_butfirst(dOsomething)            \
4787     STMT_START {                                            \
4788         if (                                                \
4789               (data.flags & SCF_TRIE_RESTUDY)               \
4790               && ! restudied++                              \
4791         ) {                                                 \
4792             dOsomething;                                    \
4793             goto reStudy;                                   \
4794         }                                                   \
4795     } STMT_END
4796 #else
4797 #define CHECK_RESTUDY_GOTO_butfirst
4798 #endif
4799 
4800 /*
4801  * pregcomp - compile a regular expression into internal code
4802  *
4803  * Decides which engine's compiler to call based on the hint currently in
4804  * scope
4805  */
4806 
4807 #ifndef PERL_IN_XSUB_RE
4808 
4809 /* return the currently in-scope regex engine (or the default if none)  */
4810 
4811 regexp_engine const *
4812 Perl_current_re_engine(pTHX)
4813 {
4814     dVAR;
4815 
4816     if (IN_PERL_COMPILETIME) {
4817 	HV * const table = GvHV(PL_hintgv);
4818 	SV **ptr;
4819 
4820 	if (!table)
4821 	    return &PL_core_reg_engine;
4822 	ptr = hv_fetchs(table, "regcomp", FALSE);
4823 	if ( !(ptr && SvIOK(*ptr) && SvIV(*ptr)))
4824 	    return &PL_core_reg_engine;
4825 	return INT2PTR(regexp_engine*,SvIV(*ptr));
4826     }
4827     else {
4828 	SV *ptr;
4829 	if (!PL_curcop->cop_hints_hash)
4830 	    return &PL_core_reg_engine;
4831 	ptr = cop_hints_fetch_pvs(PL_curcop, "regcomp", 0);
4832 	if ( !(ptr && SvIOK(ptr) && SvIV(ptr)))
4833 	    return &PL_core_reg_engine;
4834 	return INT2PTR(regexp_engine*,SvIV(ptr));
4835     }
4836 }
4837 
4838 
4839 REGEXP *
4840 Perl_pregcomp(pTHX_ SV * const pattern, const U32 flags)
4841 {
4842     dVAR;
4843     regexp_engine const *eng = current_re_engine();
4844     GET_RE_DEBUG_FLAGS_DECL;
4845 
4846     PERL_ARGS_ASSERT_PREGCOMP;
4847 
4848     /* Dispatch a request to compile a regexp to correct regexp engine. */
4849     DEBUG_COMPILE_r({
4850 	PerlIO_printf(Perl_debug_log, "Using engine %"UVxf"\n",
4851 			PTR2UV(eng));
4852     });
4853     return CALLREGCOMP_ENG(eng, pattern, flags);
4854 }
4855 #endif
4856 
4857 /* public(ish) entry point for the perl core's own regex compiling code.
4858  * It's actually a wrapper for Perl_re_op_compile that only takes an SV
4859  * pattern rather than a list of OPs, and uses the internal engine rather
4860  * than the current one */
4861 
4862 REGEXP *
4863 Perl_re_compile(pTHX_ SV * const pattern, U32 rx_flags)
4864 {
4865     SV *pat = pattern; /* defeat constness! */
4866     PERL_ARGS_ASSERT_RE_COMPILE;
4867     return Perl_re_op_compile(aTHX_ &pat, 1, NULL,
4868 #ifdef PERL_IN_XSUB_RE
4869                                 &my_reg_engine,
4870 #else
4871                                 &PL_core_reg_engine,
4872 #endif
4873                                 NULL, NULL, rx_flags, 0);
4874 }
4875 
4876 
4877 /* upgrade pattern pat_p of length plen_p to UTF8, and if there are code
4878  * blocks, recalculate the indices. Update pat_p and plen_p in-place to
4879  * point to the realloced string and length.
4880  *
4881  * This is essentially a copy of Perl_bytes_to_utf8() with the code index
4882  * stuff added */
4883 
4884 static void
4885 S_pat_upgrade_to_utf8(pTHX_ RExC_state_t * const pRExC_state,
4886 		    char **pat_p, STRLEN *plen_p, int num_code_blocks)
4887 {
4888     U8 *const src = (U8*)*pat_p;
4889     U8 *dst;
4890     int n=0;
4891     STRLEN s = 0, d = 0;
4892     bool do_end = 0;
4893     GET_RE_DEBUG_FLAGS_DECL;
4894 
4895     DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
4896         "UTF8 mismatch! Converting to utf8 for resizing and compile\n"));
4897 
4898     Newx(dst, *plen_p * 2 + 1, U8);
4899 
4900     while (s < *plen_p) {
4901         const UV uv = NATIVE_TO_ASCII(src[s]);
4902         if (UNI_IS_INVARIANT(uv))
4903             dst[d]   = (U8)UTF_TO_NATIVE(uv);
4904         else {
4905             dst[d++] = (U8)UTF8_EIGHT_BIT_HI(uv);
4906             dst[d]   = (U8)UTF8_EIGHT_BIT_LO(uv);
4907         }
4908         if (n < num_code_blocks) {
4909             if (!do_end && pRExC_state->code_blocks[n].start == s) {
4910                 pRExC_state->code_blocks[n].start = d;
4911                 assert(dst[d] == '(');
4912                 do_end = 1;
4913             }
4914             else if (do_end && pRExC_state->code_blocks[n].end == s) {
4915                 pRExC_state->code_blocks[n].end = d;
4916                 assert(dst[d] == ')');
4917                 do_end = 0;
4918                 n++;
4919             }
4920         }
4921         s++;
4922         d++;
4923     }
4924     dst[d] = '\0';
4925     *plen_p = d;
4926     *pat_p = (char*) dst;
4927     SAVEFREEPV(*pat_p);
4928     RExC_orig_utf8 = RExC_utf8 = 1;
4929 }
4930 
4931 
4932 
4933 /* S_concat_pat(): concatenate a list of args to the pattern string pat,
4934  * while recording any code block indices, and handling overloading,
4935  * nested qr// objects etc.  If pat is null, it will allocate a new
4936  * string, or just return the first arg, if there's only one.
4937  *
4938  * Returns the malloced/updated pat.
4939  * patternp and pat_count is the array of SVs to be concatted;
4940  * oplist is the optional list of ops that generated the SVs;
4941  * recompile_p is a pointer to a boolean that will be set if
4942  *   the regex will need to be recompiled.
4943  * delim, if non-null is an SV that will be inserted between each element
4944  */
4945 
4946 static SV*
4947 S_concat_pat(pTHX_ RExC_state_t * const pRExC_state,
4948                 SV *pat, SV ** const patternp, int pat_count,
4949                 OP *oplist, bool *recompile_p, SV *delim)
4950 {
4951     SV **svp;
4952     int n = 0;
4953     bool use_delim = FALSE;
4954     bool alloced = FALSE;
4955 
4956     /* if we know we have at least two args, create an empty string,
4957      * then concatenate args to that. For no args, return an empty string */
4958     if (!pat && pat_count != 1) {
4959         pat = newSVpvn("", 0);
4960         SAVEFREESV(pat);
4961         alloced = TRUE;
4962     }
4963 
4964     for (svp = patternp; svp < patternp + pat_count; svp++) {
4965         SV *sv;
4966         SV *rx  = NULL;
4967         STRLEN orig_patlen = 0;
4968         bool code = 0;
4969         SV *msv = use_delim ? delim : *svp;
4970 
4971         /* if we've got a delimiter, we go round the loop twice for each
4972          * svp slot (except the last), using the delimiter the second
4973          * time round */
4974         if (use_delim) {
4975             svp--;
4976             use_delim = FALSE;
4977         }
4978         else if (delim)
4979             use_delim = TRUE;
4980 
4981         if (SvTYPE(msv) == SVt_PVAV) {
4982             /* we've encountered an interpolated array within
4983              * the pattern, e.g. /...@a..../. Expand the list of elements,
4984              * then recursively append elements.
4985              * The code in this block is based on S_pushav() */
4986 
4987             AV *const av = (AV*)msv;
4988             const I32 maxarg = AvFILL(av) + 1;
4989             SV **array;
4990 
4991             if (oplist) {
4992                 assert(oplist->op_type == OP_PADAV
4993                     || oplist->op_type == OP_RV2AV);
4994                 oplist = oplist->op_sibling;;
4995             }
4996 
4997             if (SvRMAGICAL(av)) {
4998                 U32 i;
4999 
5000                 Newx(array, maxarg, SV*);
5001                 SAVEFREEPV(array);
5002                 for (i=0; i < (U32)maxarg; i++) {
5003                     SV ** const svp = av_fetch(av, i, FALSE);
5004                     array[i] = svp ? *svp : &PL_sv_undef;
5005                 }
5006             }
5007             else
5008                 array = AvARRAY(av);
5009 
5010             pat = S_concat_pat(aTHX_ pRExC_state, pat,
5011                                 array, maxarg, NULL, recompile_p,
5012                                 /* $" */
5013                                 GvSV((gv_fetchpvs("\"", GV_ADDMULTI, SVt_PV))));
5014 
5015             continue;
5016         }
5017 
5018 
5019         /* we make the assumption here that each op in the list of
5020          * op_siblings maps to one SV pushed onto the stack,
5021          * except for code blocks, with have both an OP_NULL and
5022          * and OP_CONST.
5023          * This allows us to match up the list of SVs against the
5024          * list of OPs to find the next code block.
5025          *
5026          * Note that       PUSHMARK PADSV PADSV ..
5027          * is optimised to
5028          *                 PADRANGE PADSV  PADSV  ..
5029          * so the alignment still works. */
5030 
5031         if (oplist) {
5032             if (oplist->op_type == OP_NULL
5033                 && (oplist->op_flags & OPf_SPECIAL))
5034             {
5035                 assert(n < pRExC_state->num_code_blocks);
5036                 pRExC_state->code_blocks[n].start = pat ? SvCUR(pat) : 0;
5037                 pRExC_state->code_blocks[n].block = oplist;
5038                 pRExC_state->code_blocks[n].src_regex = NULL;
5039                 n++;
5040                 code = 1;
5041                 oplist = oplist->op_sibling; /* skip CONST */
5042                 assert(oplist);
5043             }
5044             oplist = oplist->op_sibling;;
5045         }
5046 
5047 	/* apply magic and QR overloading to arg */
5048 
5049         SvGETMAGIC(msv);
5050         if (SvROK(msv) && SvAMAGIC(msv)) {
5051             SV *sv = AMG_CALLunary(msv, regexp_amg);
5052             if (sv) {
5053                 if (SvROK(sv))
5054                     sv = SvRV(sv);
5055                 if (SvTYPE(sv) != SVt_REGEXP)
5056                     Perl_croak(aTHX_ "Overloaded qr did not return a REGEXP");
5057                 msv = sv;
5058             }
5059         }
5060 
5061         /* try concatenation overload ... */
5062         if (pat && (SvAMAGIC(pat) || SvAMAGIC(msv)) &&
5063                 (sv = amagic_call(pat, msv, concat_amg, AMGf_assign)))
5064         {
5065             sv_setsv(pat, sv);
5066             /* overloading involved: all bets are off over literal
5067              * code. Pretend we haven't seen it */
5068             pRExC_state->num_code_blocks -= n;
5069             n = 0;
5070         }
5071         else  {
5072             /* ... or failing that, try "" overload */
5073             while (SvAMAGIC(msv)
5074                     && (sv = AMG_CALLunary(msv, string_amg))
5075                     && sv != msv
5076                     &&  !(   SvROK(msv)
5077                           && SvROK(sv)
5078                           && SvRV(msv) == SvRV(sv))
5079             ) {
5080                 msv = sv;
5081                 SvGETMAGIC(msv);
5082             }
5083             if (SvROK(msv) && SvTYPE(SvRV(msv)) == SVt_REGEXP)
5084                 msv = SvRV(msv);
5085 
5086             if (pat) {
5087                 /* this is a partially unrolled
5088                  *     sv_catsv_nomg(pat, msv);
5089                  * that allows us to adjust code block indices if
5090                  * needed */
5091                 STRLEN dlen;
5092                 char *dst = SvPV_force_nomg(pat, dlen);
5093                 orig_patlen = dlen;
5094                 if (SvUTF8(msv) && !SvUTF8(pat)) {
5095                     S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &dst, &dlen, n);
5096                     sv_setpvn(pat, dst, dlen);
5097                     SvUTF8_on(pat);
5098                 }
5099                 sv_catsv_nomg(pat, msv);
5100                 rx = msv;
5101             }
5102             else
5103                 pat = msv;
5104 
5105             if (code)
5106                 pRExC_state->code_blocks[n-1].end = SvCUR(pat)-1;
5107         }
5108 
5109         /* extract any code blocks within any embedded qr//'s */
5110         if (rx && SvTYPE(rx) == SVt_REGEXP
5111             && RX_ENGINE((REGEXP*)rx)->op_comp)
5112         {
5113 
5114             RXi_GET_DECL(ReANY((REGEXP *)rx), ri);
5115             if (ri->num_code_blocks) {
5116                 int i;
5117                 /* the presence of an embedded qr// with code means
5118                  * we should always recompile: the text of the
5119                  * qr// may not have changed, but it may be a
5120                  * different closure than last time */
5121                 *recompile_p = 1;
5122                 Renew(pRExC_state->code_blocks,
5123                     pRExC_state->num_code_blocks + ri->num_code_blocks,
5124                     struct reg_code_block);
5125                 pRExC_state->num_code_blocks += ri->num_code_blocks;
5126 
5127                 for (i=0; i < ri->num_code_blocks; i++) {
5128                     struct reg_code_block *src, *dst;
5129                     STRLEN offset =  orig_patlen
5130                         + ReANY((REGEXP *)rx)->pre_prefix;
5131                     assert(n < pRExC_state->num_code_blocks);
5132                     src = &ri->code_blocks[i];
5133                     dst = &pRExC_state->code_blocks[n];
5134                     dst->start	    = src->start + offset;
5135                     dst->end	    = src->end   + offset;
5136                     dst->block	    = src->block;
5137                     dst->src_regex  = (REGEXP*) SvREFCNT_inc( (SV*)
5138                                             src->src_regex
5139                                                 ? src->src_regex
5140                                                 : (REGEXP*)rx);
5141                     n++;
5142                 }
5143             }
5144         }
5145     }
5146     /* avoid calling magic multiple times on a single element e.g. =~ $qr */
5147     if (alloced)
5148         SvSETMAGIC(pat);
5149 
5150     return pat;
5151 }
5152 
5153 
5154 
5155 /* see if there are any run-time code blocks in the pattern.
5156  * False positives are allowed */
5157 
5158 static bool
5159 S_has_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
5160 		    char *pat, STRLEN plen)
5161 {
5162     int n = 0;
5163     STRLEN s;
5164 
5165     for (s = 0; s < plen; s++) {
5166 	if (n < pRExC_state->num_code_blocks
5167 	    && s == pRExC_state->code_blocks[n].start)
5168 	{
5169 	    s = pRExC_state->code_blocks[n].end;
5170 	    n++;
5171 	    continue;
5172 	}
5173 	/* TODO ideally should handle [..], (#..), /#.../x to reduce false
5174 	 * positives here */
5175 	if (pat[s] == '(' && s+2 <= plen && pat[s+1] == '?' &&
5176 	    (pat[s+2] == '{'
5177                 || (s + 2 <= plen && pat[s+2] == '?' && pat[s+3] == '{'))
5178 	)
5179 	    return 1;
5180     }
5181     return 0;
5182 }
5183 
5184 /* Handle run-time code blocks. We will already have compiled any direct
5185  * or indirect literal code blocks. Now, take the pattern 'pat' and make a
5186  * copy of it, but with any literal code blocks blanked out and
5187  * appropriate chars escaped; then feed it into
5188  *
5189  *    eval "qr'modified_pattern'"
5190  *
5191  * For example,
5192  *
5193  *       a\bc(?{"this was literal"})def'ghi\\jkl(?{"this is runtime"})mno
5194  *
5195  * becomes
5196  *
5197  *    qr'a\\bc_______________________def\'ghi\\\\jkl(?{"this is runtime"})mno'
5198  *
5199  * After eval_sv()-ing that, grab any new code blocks from the returned qr
5200  * and merge them with any code blocks of the original regexp.
5201  *
5202  * If the pat is non-UTF8, while the evalled qr is UTF8, don't merge;
5203  * instead, just save the qr and return FALSE; this tells our caller that
5204  * the original pattern needs upgrading to utf8.
5205  */
5206 
5207 static bool
5208 S_compile_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
5209     char *pat, STRLEN plen)
5210 {
5211     SV *qr;
5212 
5213     GET_RE_DEBUG_FLAGS_DECL;
5214 
5215     if (pRExC_state->runtime_code_qr) {
5216 	/* this is the second time we've been called; this should
5217 	 * only happen if the main pattern got upgraded to utf8
5218 	 * during compilation; re-use the qr we compiled first time
5219 	 * round (which should be utf8 too)
5220 	 */
5221 	qr = pRExC_state->runtime_code_qr;
5222 	pRExC_state->runtime_code_qr = NULL;
5223 	assert(RExC_utf8 && SvUTF8(qr));
5224     }
5225     else {
5226 	int n = 0;
5227 	STRLEN s;
5228 	char *p, *newpat;
5229 	int newlen = plen + 6; /* allow for "qr''x\0" extra chars */
5230 	SV *sv, *qr_ref;
5231 	dSP;
5232 
5233 	/* determine how many extra chars we need for ' and \ escaping */
5234 	for (s = 0; s < plen; s++) {
5235 	    if (pat[s] == '\'' || pat[s] == '\\')
5236 		newlen++;
5237 	}
5238 
5239 	Newx(newpat, newlen, char);
5240 	p = newpat;
5241 	*p++ = 'q'; *p++ = 'r'; *p++ = '\'';
5242 
5243 	for (s = 0; s < plen; s++) {
5244 	    if (n < pRExC_state->num_code_blocks
5245 		&& s == pRExC_state->code_blocks[n].start)
5246 	    {
5247 		/* blank out literal code block */
5248 		assert(pat[s] == '(');
5249 		while (s <= pRExC_state->code_blocks[n].end) {
5250 		    *p++ = '_';
5251 		    s++;
5252 		}
5253 		s--;
5254 		n++;
5255 		continue;
5256 	    }
5257 	    if (pat[s] == '\'' || pat[s] == '\\')
5258 		*p++ = '\\';
5259 	    *p++ = pat[s];
5260 	}
5261 	*p++ = '\'';
5262 	if (pRExC_state->pm_flags & RXf_PMf_EXTENDED)
5263 	    *p++ = 'x';
5264 	*p++ = '\0';
5265 	DEBUG_COMPILE_r({
5266 	    PerlIO_printf(Perl_debug_log,
5267 		"%sre-parsing pattern for runtime code:%s %s\n",
5268 		PL_colors[4],PL_colors[5],newpat);
5269 	});
5270 
5271 	sv = newSVpvn_flags(newpat, p-newpat-1, RExC_utf8 ? SVf_UTF8 : 0);
5272 	Safefree(newpat);
5273 
5274 	ENTER;
5275 	SAVETMPS;
5276 	save_re_context();
5277 	PUSHSTACKi(PERLSI_REQUIRE);
5278         /* G_RE_REPARSING causes the toker to collapse \\ into \ when
5279          * parsing qr''; normally only q'' does this. It also alters
5280          * hints handling */
5281 	eval_sv(sv, G_SCALAR|G_RE_REPARSING);
5282 	SvREFCNT_dec_NN(sv);
5283 	SPAGAIN;
5284 	qr_ref = POPs;
5285 	PUTBACK;
5286 	{
5287 	    SV * const errsv = ERRSV;
5288 	    if (SvTRUE_NN(errsv))
5289 	    {
5290 		Safefree(pRExC_state->code_blocks);
5291                 /* use croak_sv ? */
5292 		Perl_croak_nocontext("%s", SvPV_nolen_const(errsv));
5293 	    }
5294 	}
5295 	assert(SvROK(qr_ref));
5296 	qr = SvRV(qr_ref);
5297 	assert(SvTYPE(qr) == SVt_REGEXP && RX_ENGINE((REGEXP*)qr)->op_comp);
5298 	/* the leaving below frees the tmp qr_ref.
5299 	 * Give qr a life of its own */
5300 	SvREFCNT_inc(qr);
5301 	POPSTACK;
5302 	FREETMPS;
5303 	LEAVE;
5304 
5305     }
5306 
5307     if (!RExC_utf8 && SvUTF8(qr)) {
5308 	/* first time through; the pattern got upgraded; save the
5309 	 * qr for the next time through */
5310 	assert(!pRExC_state->runtime_code_qr);
5311 	pRExC_state->runtime_code_qr = qr;
5312 	return 0;
5313     }
5314 
5315 
5316     /* extract any code blocks within the returned qr//  */
5317 
5318 
5319     /* merge the main (r1) and run-time (r2) code blocks into one */
5320     {
5321 	RXi_GET_DECL(ReANY((REGEXP *)qr), r2);
5322 	struct reg_code_block *new_block, *dst;
5323 	RExC_state_t * const r1 = pRExC_state; /* convenient alias */
5324 	int i1 = 0, i2 = 0;
5325 
5326 	if (!r2->num_code_blocks) /* we guessed wrong */
5327 	{
5328 	    SvREFCNT_dec_NN(qr);
5329 	    return 1;
5330 	}
5331 
5332 	Newx(new_block,
5333 	    r1->num_code_blocks + r2->num_code_blocks,
5334 	    struct reg_code_block);
5335 	dst = new_block;
5336 
5337 	while (    i1 < r1->num_code_blocks
5338 		|| i2 < r2->num_code_blocks)
5339 	{
5340 	    struct reg_code_block *src;
5341 	    bool is_qr = 0;
5342 
5343 	    if (i1 == r1->num_code_blocks) {
5344 		src = &r2->code_blocks[i2++];
5345 		is_qr = 1;
5346 	    }
5347 	    else if (i2 == r2->num_code_blocks)
5348 		src = &r1->code_blocks[i1++];
5349 	    else if (  r1->code_blocks[i1].start
5350 	             < r2->code_blocks[i2].start)
5351 	    {
5352 		src = &r1->code_blocks[i1++];
5353 		assert(src->end < r2->code_blocks[i2].start);
5354 	    }
5355 	    else {
5356 		assert(  r1->code_blocks[i1].start
5357 		       > r2->code_blocks[i2].start);
5358 		src = &r2->code_blocks[i2++];
5359 		is_qr = 1;
5360 		assert(src->end < r1->code_blocks[i1].start);
5361 	    }
5362 
5363 	    assert(pat[src->start] == '(');
5364 	    assert(pat[src->end]   == ')');
5365 	    dst->start	    = src->start;
5366 	    dst->end	    = src->end;
5367 	    dst->block	    = src->block;
5368 	    dst->src_regex  = is_qr ? (REGEXP*) SvREFCNT_inc( (SV*) qr)
5369 				    : src->src_regex;
5370 	    dst++;
5371 	}
5372 	r1->num_code_blocks += r2->num_code_blocks;
5373 	Safefree(r1->code_blocks);
5374 	r1->code_blocks = new_block;
5375     }
5376 
5377     SvREFCNT_dec_NN(qr);
5378     return 1;
5379 }
5380 
5381 
5382 STATIC bool
5383 S_setup_longest(pTHX_ RExC_state_t *pRExC_state, SV* sv_longest, SV** rx_utf8, SV** rx_substr, I32* rx_end_shift, I32 lookbehind, I32 offset, I32 *minlen, STRLEN longest_length, bool eol, bool meol)
5384 {
5385     /* This is the common code for setting up the floating and fixed length
5386      * string data extracted from Perl_re_op_compile() below.  Returns a boolean
5387      * as to whether succeeded or not */
5388 
5389     I32 t,ml;
5390 
5391     if (! (longest_length
5392            || (eol /* Can't have SEOL and MULTI */
5393                && (! meol || (RExC_flags & RXf_PMf_MULTILINE)))
5394           )
5395             /* See comments for join_exact for why REG_SEEN_EXACTF_SHARP_S */
5396         || (RExC_seen & REG_SEEN_EXACTF_SHARP_S))
5397     {
5398         return FALSE;
5399     }
5400 
5401     /* copy the information about the longest from the reg_scan_data
5402         over to the program. */
5403     if (SvUTF8(sv_longest)) {
5404         *rx_utf8 = sv_longest;
5405         *rx_substr = NULL;
5406     } else {
5407         *rx_substr = sv_longest;
5408         *rx_utf8 = NULL;
5409     }
5410     /* end_shift is how many chars that must be matched that
5411         follow this item. We calculate it ahead of time as once the
5412         lookbehind offset is added in we lose the ability to correctly
5413         calculate it.*/
5414     ml = minlen ? *(minlen) : (I32)longest_length;
5415     *rx_end_shift = ml - offset
5416         - longest_length + (SvTAIL(sv_longest) != 0)
5417         + lookbehind;
5418 
5419     t = (eol/* Can't have SEOL and MULTI */
5420          && (! meol || (RExC_flags & RXf_PMf_MULTILINE)));
5421     fbm_compile(sv_longest, t ? FBMcf_TAIL : 0);
5422 
5423     return TRUE;
5424 }
5425 
5426 /*
5427  * Perl_re_op_compile - the perl internal RE engine's function to compile a
5428  * regular expression into internal code.
5429  * The pattern may be passed either as:
5430  *    a list of SVs (patternp plus pat_count)
5431  *    a list of OPs (expr)
5432  * If both are passed, the SV list is used, but the OP list indicates
5433  * which SVs are actually pre-compiled code blocks
5434  *
5435  * The SVs in the list have magic and qr overloading applied to them (and
5436  * the list may be modified in-place with replacement SVs in the latter
5437  * case).
5438  *
5439  * If the pattern hasn't changed from old_re, then old_re will be
5440  * returned.
5441  *
5442  * eng is the current engine. If that engine has an op_comp method, then
5443  * handle directly (i.e. we assume that op_comp was us); otherwise, just
5444  * do the initial concatenation of arguments and pass on to the external
5445  * engine.
5446  *
5447  * If is_bare_re is not null, set it to a boolean indicating whether the
5448  * arg list reduced (after overloading) to a single bare regex which has
5449  * been returned (i.e. /$qr/).
5450  *
5451  * orig_rx_flags contains RXf_* flags. See perlreapi.pod for more details.
5452  *
5453  * pm_flags contains the PMf_* flags, typically based on those from the
5454  * pm_flags field of the related PMOP. Currently we're only interested in
5455  * PMf_HAS_CV, PMf_IS_QR, PMf_USE_RE_EVAL.
5456  *
5457  * We can't allocate space until we know how big the compiled form will be,
5458  * but we can't compile it (and thus know how big it is) until we've got a
5459  * place to put the code.  So we cheat:  we compile it twice, once with code
5460  * generation turned off and size counting turned on, and once "for real".
5461  * This also means that we don't allocate space until we are sure that the
5462  * thing really will compile successfully, and we never have to move the
5463  * code and thus invalidate pointers into it.  (Note that it has to be in
5464  * one piece because free() must be able to free it all.) [NB: not true in perl]
5465  *
5466  * Beware that the optimization-preparation code in here knows about some
5467  * of the structure of the compiled regexp.  [I'll say.]
5468  */
5469 
5470 REGEXP *
5471 Perl_re_op_compile(pTHX_ SV ** const patternp, int pat_count,
5472 		    OP *expr, const regexp_engine* eng, REGEXP *old_re,
5473 		     bool *is_bare_re, U32 orig_rx_flags, U32 pm_flags)
5474 {
5475     dVAR;
5476     REGEXP *rx;
5477     struct regexp *r;
5478     regexp_internal *ri;
5479     STRLEN plen;
5480     char *exp;
5481     regnode *scan;
5482     I32 flags;
5483     I32 minlen = 0;
5484     U32 rx_flags;
5485     SV *pat;
5486     SV *code_blocksv = NULL;
5487     SV** new_patternp = patternp;
5488 
5489     /* these are all flags - maybe they should be turned
5490      * into a single int with different bit masks */
5491     I32 sawlookahead = 0;
5492     I32 sawplus = 0;
5493     I32 sawopen = 0;
5494     regex_charset initial_charset = get_regex_charset(orig_rx_flags);
5495     bool recompile = 0;
5496     bool runtime_code = 0;
5497     scan_data_t data;
5498     RExC_state_t RExC_state;
5499     RExC_state_t * const pRExC_state = &RExC_state;
5500 #ifdef TRIE_STUDY_OPT
5501     int restudied = 0;
5502     RExC_state_t copyRExC_state;
5503 #endif
5504     GET_RE_DEBUG_FLAGS_DECL;
5505 
5506     PERL_ARGS_ASSERT_RE_OP_COMPILE;
5507 
5508     DEBUG_r(if (!PL_colorset) reginitcolors());
5509 
5510 #ifndef PERL_IN_XSUB_RE
5511     /* Initialize these here instead of as-needed, as is quick and avoids
5512      * having to test them each time otherwise */
5513     if (! PL_AboveLatin1) {
5514 	PL_AboveLatin1 = _new_invlist_C_array(AboveLatin1_invlist);
5515 	PL_ASCII = _new_invlist_C_array(ASCII_invlist);
5516 	PL_Latin1 = _new_invlist_C_array(Latin1_invlist);
5517 
5518 	PL_L1Posix_ptrs[_CC_ALPHANUMERIC]
5519                                 = _new_invlist_C_array(L1PosixAlnum_invlist);
5520 	PL_Posix_ptrs[_CC_ALPHANUMERIC]
5521                                 = _new_invlist_C_array(PosixAlnum_invlist);
5522 
5523 	PL_L1Posix_ptrs[_CC_ALPHA]
5524                                 = _new_invlist_C_array(L1PosixAlpha_invlist);
5525 	PL_Posix_ptrs[_CC_ALPHA] = _new_invlist_C_array(PosixAlpha_invlist);
5526 
5527 	PL_Posix_ptrs[_CC_BLANK] = _new_invlist_C_array(PosixBlank_invlist);
5528 	PL_XPosix_ptrs[_CC_BLANK] = _new_invlist_C_array(XPosixBlank_invlist);
5529 
5530         /* Cased is the same as Alpha in the ASCII range */
5531 	PL_L1Posix_ptrs[_CC_CASED] =  _new_invlist_C_array(L1Cased_invlist);
5532 	PL_Posix_ptrs[_CC_CASED] =  _new_invlist_C_array(PosixAlpha_invlist);
5533 
5534 	PL_Posix_ptrs[_CC_CNTRL] = _new_invlist_C_array(PosixCntrl_invlist);
5535 	PL_XPosix_ptrs[_CC_CNTRL] = _new_invlist_C_array(XPosixCntrl_invlist);
5536 
5537 	PL_Posix_ptrs[_CC_DIGIT] = _new_invlist_C_array(PosixDigit_invlist);
5538 	PL_L1Posix_ptrs[_CC_DIGIT] = _new_invlist_C_array(PosixDigit_invlist);
5539 
5540 	PL_L1Posix_ptrs[_CC_GRAPH] = _new_invlist_C_array(L1PosixGraph_invlist);
5541 	PL_Posix_ptrs[_CC_GRAPH] = _new_invlist_C_array(PosixGraph_invlist);
5542 
5543 	PL_L1Posix_ptrs[_CC_LOWER] = _new_invlist_C_array(L1PosixLower_invlist);
5544 	PL_Posix_ptrs[_CC_LOWER] = _new_invlist_C_array(PosixLower_invlist);
5545 
5546 	PL_L1Posix_ptrs[_CC_PRINT] = _new_invlist_C_array(L1PosixPrint_invlist);
5547 	PL_Posix_ptrs[_CC_PRINT] = _new_invlist_C_array(PosixPrint_invlist);
5548 
5549 	PL_L1Posix_ptrs[_CC_PUNCT] = _new_invlist_C_array(L1PosixPunct_invlist);
5550 	PL_Posix_ptrs[_CC_PUNCT] = _new_invlist_C_array(PosixPunct_invlist);
5551 
5552 	PL_Posix_ptrs[_CC_SPACE] = _new_invlist_C_array(PerlSpace_invlist);
5553 	PL_XPosix_ptrs[_CC_SPACE] = _new_invlist_C_array(XPerlSpace_invlist);
5554 	PL_Posix_ptrs[_CC_PSXSPC] = _new_invlist_C_array(PosixSpace_invlist);
5555 	PL_XPosix_ptrs[_CC_PSXSPC] = _new_invlist_C_array(XPosixSpace_invlist);
5556 
5557 	PL_L1Posix_ptrs[_CC_UPPER] = _new_invlist_C_array(L1PosixUpper_invlist);
5558 	PL_Posix_ptrs[_CC_UPPER] = _new_invlist_C_array(PosixUpper_invlist);
5559 
5560         PL_XPosix_ptrs[_CC_VERTSPACE] = _new_invlist_C_array(VertSpace_invlist);
5561 
5562 	PL_Posix_ptrs[_CC_WORDCHAR] = _new_invlist_C_array(PosixWord_invlist);
5563 	PL_L1Posix_ptrs[_CC_WORDCHAR]
5564                                 = _new_invlist_C_array(L1PosixWord_invlist);
5565 
5566 	PL_Posix_ptrs[_CC_XDIGIT] = _new_invlist_C_array(PosixXDigit_invlist);
5567 	PL_XPosix_ptrs[_CC_XDIGIT] = _new_invlist_C_array(XPosixXDigit_invlist);
5568 
5569         PL_HasMultiCharFold = _new_invlist_C_array(_Perl_Multi_Char_Folds_invlist);
5570     }
5571 #endif
5572 
5573     pRExC_state->code_blocks = NULL;
5574     pRExC_state->num_code_blocks = 0;
5575 
5576     if (is_bare_re)
5577 	*is_bare_re = FALSE;
5578 
5579     if (expr && (expr->op_type == OP_LIST ||
5580 		(expr->op_type == OP_NULL && expr->op_targ == OP_LIST))) {
5581 	/* allocate code_blocks if needed */
5582 	OP *o;
5583 	int ncode = 0;
5584 
5585 	for (o = cLISTOPx(expr)->op_first; o; o = o->op_sibling)
5586 	    if (o->op_type == OP_NULL && (o->op_flags & OPf_SPECIAL))
5587 		ncode++; /* count of DO blocks */
5588 	if (ncode) {
5589 	    pRExC_state->num_code_blocks = ncode;
5590 	    Newx(pRExC_state->code_blocks, ncode, struct reg_code_block);
5591 	}
5592     }
5593 
5594     if (!pat_count) {
5595         /* compile-time pattern with just OP_CONSTs and DO blocks */
5596 
5597         int n;
5598         OP *o;
5599 
5600         /* find how many CONSTs there are */
5601         assert(expr);
5602         n = 0;
5603         if (expr->op_type == OP_CONST)
5604             n = 1;
5605         else
5606             for (o = cLISTOPx(expr)->op_first; o; o = o->op_sibling) {
5607                 if (o->op_type == OP_CONST)
5608                     n++;
5609             }
5610 
5611         /* fake up an SV array */
5612 
5613         assert(!new_patternp);
5614         Newx(new_patternp, n, SV*);
5615         SAVEFREEPV(new_patternp);
5616         pat_count = n;
5617 
5618         n = 0;
5619         if (expr->op_type == OP_CONST)
5620             new_patternp[n] = cSVOPx_sv(expr);
5621         else
5622             for (o = cLISTOPx(expr)->op_first; o; o = o->op_sibling) {
5623                 if (o->op_type == OP_CONST)
5624                     new_patternp[n++] = cSVOPo_sv;
5625             }
5626 
5627     }
5628 
5629     DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
5630         "Assembling pattern from %d elements%s\n", pat_count,
5631             orig_rx_flags & RXf_SPLIT ? " for split" : ""));
5632 
5633     /* set expr to the first arg op */
5634 
5635     if (pRExC_state->num_code_blocks
5636          && expr->op_type != OP_CONST)
5637     {
5638             expr = cLISTOPx(expr)->op_first;
5639             assert(   expr->op_type == OP_PUSHMARK
5640                    || (expr->op_type == OP_NULL && expr->op_targ == OP_PUSHMARK)
5641                    || expr->op_type == OP_PADRANGE);
5642             expr = expr->op_sibling;
5643     }
5644 
5645     pat = S_concat_pat(aTHX_ pRExC_state, NULL, new_patternp, pat_count,
5646                         expr, &recompile, NULL);
5647 
5648     /* handle bare (possibly after overloading) regex: foo =~ $re */
5649     {
5650         SV *re = pat;
5651         if (SvROK(re))
5652             re = SvRV(re);
5653         if (SvTYPE(re) == SVt_REGEXP) {
5654             if (is_bare_re)
5655                 *is_bare_re = TRUE;
5656             SvREFCNT_inc(re);
5657             Safefree(pRExC_state->code_blocks);
5658             DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
5659                 "Precompiled pattern%s\n",
5660                     orig_rx_flags & RXf_SPLIT ? " for split" : ""));
5661 
5662             return (REGEXP*)re;
5663         }
5664     }
5665 
5666     exp = SvPV_nomg(pat, plen);
5667 
5668     if (!eng->op_comp) {
5669 	if ((SvUTF8(pat) && IN_BYTES)
5670 		|| SvGMAGICAL(pat) || SvAMAGIC(pat))
5671 	{
5672 	    /* make a temporary copy; either to convert to bytes,
5673 	     * or to avoid repeating get-magic / overloaded stringify */
5674 	    pat = newSVpvn_flags(exp, plen, SVs_TEMP |
5675 					(IN_BYTES ? 0 : SvUTF8(pat)));
5676 	}
5677 	Safefree(pRExC_state->code_blocks);
5678 	return CALLREGCOMP_ENG(eng, pat, orig_rx_flags);
5679     }
5680 
5681     /* ignore the utf8ness if the pattern is 0 length */
5682     RExC_utf8 = RExC_orig_utf8 = (plen == 0 || IN_BYTES) ? 0 : SvUTF8(pat);
5683     RExC_uni_semantics = 0;
5684     RExC_contains_locale = 0;
5685     pRExC_state->runtime_code_qr = NULL;
5686 
5687     DEBUG_COMPILE_r({
5688             SV *dsv= sv_newmortal();
5689             RE_PV_QUOTED_DECL(s, RExC_utf8, dsv, exp, plen, 60);
5690             PerlIO_printf(Perl_debug_log, "%sCompiling REx%s %s\n",
5691                           PL_colors[4],PL_colors[5],s);
5692         });
5693 
5694   redo_first_pass:
5695     /* we jump here if we upgrade the pattern to utf8 and have to
5696      * recompile */
5697 
5698     if ((pm_flags & PMf_USE_RE_EVAL)
5699 		/* this second condition covers the non-regex literal case,
5700 		 * i.e.  $foo =~ '(?{})'. */
5701 		|| (IN_PERL_COMPILETIME && (PL_hints & HINT_RE_EVAL))
5702     )
5703 	runtime_code = S_has_runtime_code(aTHX_ pRExC_state, exp, plen);
5704 
5705     /* return old regex if pattern hasn't changed */
5706     /* XXX: note in the below we have to check the flags as well as the pattern.
5707      *
5708      * Things get a touch tricky as we have to compare the utf8 flag independently
5709      * from the compile flags.
5710      */
5711 
5712     if (   old_re
5713         && !recompile
5714         && !!RX_UTF8(old_re) == !!RExC_utf8
5715         && ( RX_COMPFLAGS(old_re) == ( orig_rx_flags & RXf_PMf_FLAGCOPYMASK ) )
5716 	&& RX_PRECOMP(old_re)
5717 	&& RX_PRELEN(old_re) == plen
5718         && memEQ(RX_PRECOMP(old_re), exp, plen)
5719 	&& !runtime_code /* with runtime code, always recompile */ )
5720     {
5721         Safefree(pRExC_state->code_blocks);
5722         return old_re;
5723     }
5724 
5725     rx_flags = orig_rx_flags;
5726 
5727     if (initial_charset == REGEX_LOCALE_CHARSET) {
5728 	RExC_contains_locale = 1;
5729     }
5730     else if (RExC_utf8 && initial_charset == REGEX_DEPENDS_CHARSET) {
5731 
5732 	/* Set to use unicode semantics if the pattern is in utf8 and has the
5733 	 * 'depends' charset specified, as it means unicode when utf8  */
5734 	set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET);
5735     }
5736 
5737     RExC_precomp = exp;
5738     RExC_flags = rx_flags;
5739     RExC_pm_flags = pm_flags;
5740 
5741     if (runtime_code) {
5742 	if (TAINTING_get && TAINT_get)
5743 	    Perl_croak(aTHX_ "Eval-group in insecure regular expression");
5744 
5745 	if (!S_compile_runtime_code(aTHX_ pRExC_state, exp, plen)) {
5746 	    /* whoops, we have a non-utf8 pattern, whilst run-time code
5747 	     * got compiled as utf8. Try again with a utf8 pattern */
5748             S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen,
5749                                     pRExC_state->num_code_blocks);
5750             goto redo_first_pass;
5751 	}
5752     }
5753     assert(!pRExC_state->runtime_code_qr);
5754 
5755     RExC_sawback = 0;
5756 
5757     RExC_seen = 0;
5758     RExC_in_lookbehind = 0;
5759     RExC_seen_zerolen = *exp == '^' ? -1 : 0;
5760     RExC_extralen = 0;
5761     RExC_override_recoding = 0;
5762     RExC_in_multi_char_class = 0;
5763 
5764     /* First pass: determine size, legality. */
5765     RExC_parse = exp;
5766     RExC_start = exp;
5767     RExC_end = exp + plen;
5768     RExC_naughty = 0;
5769     RExC_npar = 1;
5770     RExC_nestroot = 0;
5771     RExC_size = 0L;
5772     RExC_emit = &PL_regdummy;
5773     RExC_whilem_seen = 0;
5774     RExC_open_parens = NULL;
5775     RExC_close_parens = NULL;
5776     RExC_opend = NULL;
5777     RExC_paren_names = NULL;
5778 #ifdef DEBUGGING
5779     RExC_paren_name_list = NULL;
5780 #endif
5781     RExC_recurse = NULL;
5782     RExC_recurse_count = 0;
5783     pRExC_state->code_index = 0;
5784 
5785 #if 0 /* REGC() is (currently) a NOP at the first pass.
5786        * Clever compilers notice this and complain. --jhi */
5787     REGC((U8)REG_MAGIC, (char*)RExC_emit);
5788 #endif
5789     DEBUG_PARSE_r(
5790 	PerlIO_printf(Perl_debug_log, "Starting first pass (sizing)\n");
5791         RExC_lastnum=0;
5792         RExC_lastparse=NULL;
5793     );
5794     /* reg may croak on us, not giving us a chance to free
5795        pRExC_state->code_blocks.  We cannot SAVEFREEPV it now, as we may
5796        need it to survive as long as the regexp (qr/(?{})/).
5797        We must check that code_blocksv is not already set, because we may
5798        have jumped back to restart the sizing pass. */
5799     if (pRExC_state->code_blocks && !code_blocksv) {
5800 	code_blocksv = newSV_type(SVt_PV);
5801 	SAVEFREESV(code_blocksv);
5802 	SvPV_set(code_blocksv, (char *)pRExC_state->code_blocks);
5803 	SvLEN_set(code_blocksv, 1); /*sufficient to make sv_clear free it*/
5804     }
5805     if (reg(pRExC_state, 0, &flags,1) == NULL) {
5806         /* It's possible to write a regexp in ascii that represents Unicode
5807         codepoints outside of the byte range, such as via \x{100}. If we
5808         detect such a sequence we have to convert the entire pattern to utf8
5809         and then recompile, as our sizing calculation will have been based
5810         on 1 byte == 1 character, but we will need to use utf8 to encode
5811         at least some part of the pattern, and therefore must convert the whole
5812         thing.
5813         -- dmq */
5814         if (flags & RESTART_UTF8) {
5815             S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen,
5816                                     pRExC_state->num_code_blocks);
5817             goto redo_first_pass;
5818         }
5819         Perl_croak(aTHX_ "panic: reg returned NULL to re_op_compile for sizing pass, flags=%#X", flags);
5820     }
5821     if (code_blocksv)
5822 	SvLEN_set(code_blocksv,0); /* no you can't have it, sv_clear */
5823 
5824     DEBUG_PARSE_r({
5825         PerlIO_printf(Perl_debug_log,
5826             "Required size %"IVdf" nodes\n"
5827             "Starting second pass (creation)\n",
5828             (IV)RExC_size);
5829         RExC_lastnum=0;
5830         RExC_lastparse=NULL;
5831     });
5832 
5833     /* The first pass could have found things that force Unicode semantics */
5834     if ((RExC_utf8 || RExC_uni_semantics)
5835 	 && get_regex_charset(rx_flags) == REGEX_DEPENDS_CHARSET)
5836     {
5837 	set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET);
5838     }
5839 
5840     /* Small enough for pointer-storage convention?
5841        If extralen==0, this means that we will not need long jumps. */
5842     if (RExC_size >= 0x10000L && RExC_extralen)
5843         RExC_size += RExC_extralen;
5844     else
5845 	RExC_extralen = 0;
5846     if (RExC_whilem_seen > 15)
5847 	RExC_whilem_seen = 15;
5848 
5849     /* Allocate space and zero-initialize. Note, the two step process
5850        of zeroing when in debug mode, thus anything assigned has to
5851        happen after that */
5852     rx = (REGEXP*) newSV_type(SVt_REGEXP);
5853     r = ReANY(rx);
5854     Newxc(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
5855 	 char, regexp_internal);
5856     if ( r == NULL || ri == NULL )
5857 	FAIL("Regexp out of space");
5858 #ifdef DEBUGGING
5859     /* avoid reading uninitialized memory in DEBUGGING code in study_chunk() */
5860     Zero(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode), char);
5861 #else
5862     /* bulk initialize base fields with 0. */
5863     Zero(ri, sizeof(regexp_internal), char);
5864 #endif
5865 
5866     /* non-zero initialization begins here */
5867     RXi_SET( r, ri );
5868     r->engine= eng;
5869     r->extflags = rx_flags;
5870     RXp_COMPFLAGS(r) = orig_rx_flags & RXf_PMf_FLAGCOPYMASK;
5871 
5872     if (pm_flags & PMf_IS_QR) {
5873 	ri->code_blocks = pRExC_state->code_blocks;
5874 	ri->num_code_blocks = pRExC_state->num_code_blocks;
5875     }
5876     else
5877     {
5878 	int n;
5879 	for (n = 0; n < pRExC_state->num_code_blocks; n++)
5880 	    if (pRExC_state->code_blocks[n].src_regex)
5881 		SAVEFREESV(pRExC_state->code_blocks[n].src_regex);
5882 	SAVEFREEPV(pRExC_state->code_blocks);
5883     }
5884 
5885     {
5886         bool has_p     = ((r->extflags & RXf_PMf_KEEPCOPY) == RXf_PMf_KEEPCOPY);
5887         bool has_charset = (get_regex_charset(r->extflags) != REGEX_DEPENDS_CHARSET);
5888 
5889         /* The caret is output if there are any defaults: if not all the STD
5890          * flags are set, or if no character set specifier is needed */
5891         bool has_default =
5892                     (((r->extflags & RXf_PMf_STD_PMMOD) != RXf_PMf_STD_PMMOD)
5893                     || ! has_charset);
5894 	bool has_runon = ((RExC_seen & REG_SEEN_RUN_ON_COMMENT)==REG_SEEN_RUN_ON_COMMENT);
5895 	U16 reganch = (U16)((r->extflags & RXf_PMf_STD_PMMOD)
5896 			    >> RXf_PMf_STD_PMMOD_SHIFT);
5897 	const char *fptr = STD_PAT_MODS;        /*"msix"*/
5898 	char *p;
5899         /* Allocate for the worst case, which is all the std flags are turned
5900          * on.  If more precision is desired, we could do a population count of
5901          * the flags set.  This could be done with a small lookup table, or by
5902          * shifting, masking and adding, or even, when available, assembly
5903          * language for a machine-language population count.
5904          * We never output a minus, as all those are defaults, so are
5905          * covered by the caret */
5906 	const STRLEN wraplen = plen + has_p + has_runon
5907             + has_default       /* If needs a caret */
5908 
5909 		/* If needs a character set specifier */
5910 	    + ((has_charset) ? MAX_CHARSET_NAME_LENGTH : 0)
5911             + (sizeof(STD_PAT_MODS) - 1)
5912             + (sizeof("(?:)") - 1);
5913 
5914         Newx(p, wraplen + 1, char); /* +1 for the ending NUL */
5915 	r->xpv_len_u.xpvlenu_pv = p;
5916 	if (RExC_utf8)
5917 	    SvFLAGS(rx) |= SVf_UTF8;
5918         *p++='('; *p++='?';
5919 
5920         /* If a default, cover it using the caret */
5921         if (has_default) {
5922             *p++= DEFAULT_PAT_MOD;
5923         }
5924         if (has_charset) {
5925 	    STRLEN len;
5926 	    const char* const name = get_regex_charset_name(r->extflags, &len);
5927 	    Copy(name, p, len, char);
5928 	    p += len;
5929         }
5930         if (has_p)
5931             *p++ = KEEPCOPY_PAT_MOD; /*'p'*/
5932         {
5933             char ch;
5934             while((ch = *fptr++)) {
5935                 if(reganch & 1)
5936                     *p++ = ch;
5937                 reganch >>= 1;
5938             }
5939         }
5940 
5941         *p++ = ':';
5942         Copy(RExC_precomp, p, plen, char);
5943 	assert ((RX_WRAPPED(rx) - p) < 16);
5944 	r->pre_prefix = p - RX_WRAPPED(rx);
5945         p += plen;
5946         if (has_runon)
5947             *p++ = '\n';
5948         *p++ = ')';
5949         *p = 0;
5950 	SvCUR_set(rx, p - RX_WRAPPED(rx));
5951     }
5952 
5953     r->intflags = 0;
5954     r->nparens = RExC_npar - 1;	/* set early to validate backrefs */
5955 
5956     if (RExC_seen & REG_SEEN_RECURSE) {
5957         Newxz(RExC_open_parens, RExC_npar,regnode *);
5958         SAVEFREEPV(RExC_open_parens);
5959         Newxz(RExC_close_parens,RExC_npar,regnode *);
5960         SAVEFREEPV(RExC_close_parens);
5961     }
5962 
5963     /* Useful during FAIL. */
5964 #ifdef RE_TRACK_PATTERN_OFFSETS
5965     Newxz(ri->u.offsets, 2*RExC_size+1, U32); /* MJD 20001228 */
5966     DEBUG_OFFSETS_r(PerlIO_printf(Perl_debug_log,
5967                           "%s %"UVuf" bytes for offset annotations.\n",
5968                           ri->u.offsets ? "Got" : "Couldn't get",
5969                           (UV)((2*RExC_size+1) * sizeof(U32))));
5970 #endif
5971     SetProgLen(ri,RExC_size);
5972     RExC_rx_sv = rx;
5973     RExC_rx = r;
5974     RExC_rxi = ri;
5975 
5976     /* Second pass: emit code. */
5977     RExC_flags = rx_flags;	/* don't let top level (?i) bleed */
5978     RExC_pm_flags = pm_flags;
5979     RExC_parse = exp;
5980     RExC_end = exp + plen;
5981     RExC_naughty = 0;
5982     RExC_npar = 1;
5983     RExC_emit_start = ri->program;
5984     RExC_emit = ri->program;
5985     RExC_emit_bound = ri->program + RExC_size + 1;
5986     pRExC_state->code_index = 0;
5987 
5988     REGC((U8)REG_MAGIC, (char*) RExC_emit++);
5989     if (reg(pRExC_state, 0, &flags,1) == NULL) {
5990 	ReREFCNT_dec(rx);
5991         Perl_croak(aTHX_ "panic: reg returned NULL to re_op_compile for generation pass, flags=%#X", flags);
5992     }
5993     /* XXXX To minimize changes to RE engine we always allocate
5994        3-units-long substrs field. */
5995     Newx(r->substrs, 1, struct reg_substr_data);
5996     if (RExC_recurse_count) {
5997         Newxz(RExC_recurse,RExC_recurse_count,regnode *);
5998         SAVEFREEPV(RExC_recurse);
5999     }
6000 
6001 reStudy:
6002     r->minlen = minlen = sawlookahead = sawplus = sawopen = 0;
6003     Zero(r->substrs, 1, struct reg_substr_data);
6004 
6005 #ifdef TRIE_STUDY_OPT
6006     if (!restudied) {
6007         StructCopy(&zero_scan_data, &data, scan_data_t);
6008         copyRExC_state = RExC_state;
6009     } else {
6010         U32 seen=RExC_seen;
6011         DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log,"Restudying\n"));
6012 
6013         RExC_state = copyRExC_state;
6014         if (seen & REG_TOP_LEVEL_BRANCHES)
6015             RExC_seen |= REG_TOP_LEVEL_BRANCHES;
6016         else
6017             RExC_seen &= ~REG_TOP_LEVEL_BRANCHES;
6018 	StructCopy(&zero_scan_data, &data, scan_data_t);
6019     }
6020 #else
6021     StructCopy(&zero_scan_data, &data, scan_data_t);
6022 #endif
6023 
6024     /* Dig out information for optimizations. */
6025     r->extflags = RExC_flags; /* was pm_op */
6026     /*dmq: removed as part of de-PMOP: pm->op_pmflags = RExC_flags; */
6027 
6028     if (UTF)
6029 	SvUTF8_on(rx);	/* Unicode in it? */
6030     ri->regstclass = NULL;
6031     if (RExC_naughty >= 10)	/* Probably an expensive pattern. */
6032 	r->intflags |= PREGf_NAUGHTY;
6033     scan = ri->program + 1;		/* First BRANCH. */
6034 
6035     /* testing for BRANCH here tells us whether there is "must appear"
6036        data in the pattern. If there is then we can use it for optimisations */
6037     if (!(RExC_seen & REG_TOP_LEVEL_BRANCHES)) { /*  Only one top-level choice. */
6038 	I32 fake;
6039 	STRLEN longest_float_length, longest_fixed_length;
6040 	struct regnode_charclass_class ch_class; /* pointed to by data */
6041 	int stclass_flag;
6042 	I32 last_close = 0; /* pointed to by data */
6043         regnode *first= scan;
6044         regnode *first_next= regnext(first);
6045 	/*
6046 	 * Skip introductions and multiplicators >= 1
6047 	 * so that we can extract the 'meat' of the pattern that must
6048 	 * match in the large if() sequence following.
6049 	 * NOTE that EXACT is NOT covered here, as it is normally
6050 	 * picked up by the optimiser separately.
6051 	 *
6052 	 * This is unfortunate as the optimiser isnt handling lookahead
6053 	 * properly currently.
6054 	 *
6055 	 */
6056 	while ((OP(first) == OPEN && (sawopen = 1)) ||
6057 	       /* An OR of *one* alternative - should not happen now. */
6058 	    (OP(first) == BRANCH && OP(first_next) != BRANCH) ||
6059 	    /* for now we can't handle lookbehind IFMATCH*/
6060 	    (OP(first) == IFMATCH && !first->flags && (sawlookahead = 1)) ||
6061 	    (OP(first) == PLUS) ||
6062 	    (OP(first) == MINMOD) ||
6063 	       /* An {n,m} with n>0 */
6064 	    (PL_regkind[OP(first)] == CURLY && ARG1(first) > 0) ||
6065 	    (OP(first) == NOTHING && PL_regkind[OP(first_next)] != END ))
6066 	{
6067 		/*
6068 		 * the only op that could be a regnode is PLUS, all the rest
6069 		 * will be regnode_1 or regnode_2.
6070 		 *
6071 		 */
6072 		if (OP(first) == PLUS)
6073 		    sawplus = 1;
6074 		else
6075 		    first += regarglen[OP(first)];
6076 
6077 		first = NEXTOPER(first);
6078 		first_next= regnext(first);
6079 	}
6080 
6081 	/* Starting-point info. */
6082       again:
6083         DEBUG_PEEP("first:",first,0);
6084         /* Ignore EXACT as we deal with it later. */
6085 	if (PL_regkind[OP(first)] == EXACT) {
6086 	    if (OP(first) == EXACT)
6087 		NOOP;	/* Empty, get anchored substr later. */
6088 	    else
6089 		ri->regstclass = first;
6090 	}
6091 #ifdef TRIE_STCLASS
6092 	else if (PL_regkind[OP(first)] == TRIE &&
6093 	        ((reg_trie_data *)ri->data->data[ ARG(first) ])->minlen>0)
6094 	{
6095 	    regnode *trie_op;
6096 	    /* this can happen only on restudy */
6097 	    if ( OP(first) == TRIE ) {
6098                 struct regnode_1 *trieop = (struct regnode_1 *)
6099 		    PerlMemShared_calloc(1, sizeof(struct regnode_1));
6100                 StructCopy(first,trieop,struct regnode_1);
6101                 trie_op=(regnode *)trieop;
6102             } else {
6103                 struct regnode_charclass *trieop = (struct regnode_charclass *)
6104 		    PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
6105                 StructCopy(first,trieop,struct regnode_charclass);
6106                 trie_op=(regnode *)trieop;
6107             }
6108             OP(trie_op)+=2;
6109             make_trie_failtable(pRExC_state, (regnode *)first, trie_op, 0);
6110 	    ri->regstclass = trie_op;
6111 	}
6112 #endif
6113 	else if (REGNODE_SIMPLE(OP(first)))
6114 	    ri->regstclass = first;
6115 	else if (PL_regkind[OP(first)] == BOUND ||
6116 		 PL_regkind[OP(first)] == NBOUND)
6117 	    ri->regstclass = first;
6118 	else if (PL_regkind[OP(first)] == BOL) {
6119 	    r->extflags |= (OP(first) == MBOL
6120 			   ? RXf_ANCH_MBOL
6121 			   : (OP(first) == SBOL
6122 			      ? RXf_ANCH_SBOL
6123 			      : RXf_ANCH_BOL));
6124 	    first = NEXTOPER(first);
6125 	    goto again;
6126 	}
6127 	else if (OP(first) == GPOS) {
6128 	    r->extflags |= RXf_ANCH_GPOS;
6129 	    first = NEXTOPER(first);
6130 	    goto again;
6131 	}
6132 	else if ((!sawopen || !RExC_sawback) &&
6133 	    (OP(first) == STAR &&
6134 	    PL_regkind[OP(NEXTOPER(first))] == REG_ANY) &&
6135 	    !(r->extflags & RXf_ANCH) && !pRExC_state->num_code_blocks)
6136 	{
6137 	    /* turn .* into ^.* with an implied $*=1 */
6138 	    const int type =
6139 		(OP(NEXTOPER(first)) == REG_ANY)
6140 		    ? RXf_ANCH_MBOL
6141 		    : RXf_ANCH_SBOL;
6142 	    r->extflags |= type;
6143 	    r->intflags |= PREGf_IMPLICIT;
6144 	    first = NEXTOPER(first);
6145 	    goto again;
6146 	}
6147 	if (sawplus && !sawlookahead && (!sawopen || !RExC_sawback)
6148 	    && !pRExC_state->num_code_blocks) /* May examine pos and $& */
6149 	    /* x+ must match at the 1st pos of run of x's */
6150 	    r->intflags |= PREGf_SKIP;
6151 
6152 	/* Scan is after the zeroth branch, first is atomic matcher. */
6153 #ifdef TRIE_STUDY_OPT
6154 	DEBUG_PARSE_r(
6155 	    if (!restudied)
6156 	        PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
6157 			      (IV)(first - scan + 1))
6158         );
6159 #else
6160 	DEBUG_PARSE_r(
6161 	    PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
6162 	        (IV)(first - scan + 1))
6163         );
6164 #endif
6165 
6166 
6167 	/*
6168 	* If there's something expensive in the r.e., find the
6169 	* longest literal string that must appear and make it the
6170 	* regmust.  Resolve ties in favor of later strings, since
6171 	* the regstart check works with the beginning of the r.e.
6172 	* and avoiding duplication strengthens checking.  Not a
6173 	* strong reason, but sufficient in the absence of others.
6174 	* [Now we resolve ties in favor of the earlier string if
6175 	* it happens that c_offset_min has been invalidated, since the
6176 	* earlier string may buy us something the later one won't.]
6177 	*/
6178 
6179 	data.longest_fixed = newSVpvs("");
6180 	data.longest_float = newSVpvs("");
6181 	data.last_found = newSVpvs("");
6182 	data.longest = &(data.longest_fixed);
6183 	ENTER_with_name("study_chunk");
6184 	SAVEFREESV(data.longest_fixed);
6185 	SAVEFREESV(data.longest_float);
6186 	SAVEFREESV(data.last_found);
6187 	first = scan;
6188 	if (!ri->regstclass) {
6189 	    cl_init(pRExC_state, &ch_class);
6190 	    data.start_class = &ch_class;
6191 	    stclass_flag = SCF_DO_STCLASS_AND;
6192 	} else				/* XXXX Check for BOUND? */
6193 	    stclass_flag = 0;
6194 	data.last_closep = &last_close;
6195 
6196 	minlen = study_chunk(pRExC_state, &first, &minlen, &fake, scan + RExC_size, /* Up to end */
6197             &data, -1, NULL, NULL,
6198             SCF_DO_SUBSTR | SCF_WHILEM_VISITED_POS | stclass_flag,0);
6199 
6200 
6201         CHECK_RESTUDY_GOTO_butfirst(LEAVE_with_name("study_chunk"));
6202 
6203 
6204 	if ( RExC_npar == 1 && data.longest == &(data.longest_fixed)
6205 	     && data.last_start_min == 0 && data.last_end > 0
6206 	     && !RExC_seen_zerolen
6207 	     && !(RExC_seen & REG_SEEN_VERBARG)
6208 	     && (!(RExC_seen & REG_SEEN_GPOS) || (r->extflags & RXf_ANCH_GPOS)))
6209 	    r->extflags |= RXf_CHECK_ALL;
6210 	scan_commit(pRExC_state, &data,&minlen,0);
6211 
6212 	longest_float_length = CHR_SVLEN(data.longest_float);
6213 
6214         if (! ((SvCUR(data.longest_fixed)  /* ok to leave SvCUR */
6215                    && data.offset_fixed == data.offset_float_min
6216                    && SvCUR(data.longest_fixed) == SvCUR(data.longest_float)))
6217             && S_setup_longest (aTHX_ pRExC_state,
6218                                     data.longest_float,
6219                                     &(r->float_utf8),
6220                                     &(r->float_substr),
6221                                     &(r->float_end_shift),
6222                                     data.lookbehind_float,
6223                                     data.offset_float_min,
6224                                     data.minlen_float,
6225                                     longest_float_length,
6226                                     cBOOL(data.flags & SF_FL_BEFORE_EOL),
6227                                     cBOOL(data.flags & SF_FL_BEFORE_MEOL)))
6228         {
6229 	    r->float_min_offset = data.offset_float_min - data.lookbehind_float;
6230 	    r->float_max_offset = data.offset_float_max;
6231 	    if (data.offset_float_max < I32_MAX) /* Don't offset infinity */
6232 	        r->float_max_offset -= data.lookbehind_float;
6233 	    SvREFCNT_inc_simple_void_NN(data.longest_float);
6234 	}
6235 	else {
6236 	    r->float_substr = r->float_utf8 = NULL;
6237 	    longest_float_length = 0;
6238 	}
6239 
6240 	longest_fixed_length = CHR_SVLEN(data.longest_fixed);
6241 
6242         if (S_setup_longest (aTHX_ pRExC_state,
6243                                 data.longest_fixed,
6244                                 &(r->anchored_utf8),
6245                                 &(r->anchored_substr),
6246                                 &(r->anchored_end_shift),
6247                                 data.lookbehind_fixed,
6248                                 data.offset_fixed,
6249                                 data.minlen_fixed,
6250                                 longest_fixed_length,
6251                                 cBOOL(data.flags & SF_FIX_BEFORE_EOL),
6252                                 cBOOL(data.flags & SF_FIX_BEFORE_MEOL)))
6253         {
6254 	    r->anchored_offset = data.offset_fixed - data.lookbehind_fixed;
6255 	    SvREFCNT_inc_simple_void_NN(data.longest_fixed);
6256 	}
6257 	else {
6258 	    r->anchored_substr = r->anchored_utf8 = NULL;
6259 	    longest_fixed_length = 0;
6260 	}
6261 	LEAVE_with_name("study_chunk");
6262 
6263 	if (ri->regstclass
6264 	    && (OP(ri->regstclass) == REG_ANY || OP(ri->regstclass) == SANY))
6265 	    ri->regstclass = NULL;
6266 
6267 	if ((!(r->anchored_substr || r->anchored_utf8) || r->anchored_offset)
6268 	    && stclass_flag
6269 	    && ! TEST_SSC_EOS(data.start_class)
6270 	    && !cl_is_anything(data.start_class))
6271 	{
6272 	    const U32 n = add_data(pRExC_state, 1, "f");
6273 	    OP(data.start_class) = ANYOF_SYNTHETIC;
6274 
6275 	    Newx(RExC_rxi->data->data[n], 1,
6276 		struct regnode_charclass_class);
6277 	    StructCopy(data.start_class,
6278 		       (struct regnode_charclass_class*)RExC_rxi->data->data[n],
6279 		       struct regnode_charclass_class);
6280 	    ri->regstclass = (regnode*)RExC_rxi->data->data[n];
6281 	    r->intflags &= ~PREGf_SKIP;	/* Used in find_byclass(). */
6282 	    DEBUG_COMPILE_r({ SV *sv = sv_newmortal();
6283 	              regprop(r, sv, (regnode*)data.start_class);
6284 		      PerlIO_printf(Perl_debug_log,
6285 				    "synthetic stclass \"%s\".\n",
6286 				    SvPVX_const(sv));});
6287 	}
6288 
6289 	/* A temporary algorithm prefers floated substr to fixed one to dig more info. */
6290 	if (longest_fixed_length > longest_float_length) {
6291 	    r->check_end_shift = r->anchored_end_shift;
6292 	    r->check_substr = r->anchored_substr;
6293 	    r->check_utf8 = r->anchored_utf8;
6294 	    r->check_offset_min = r->check_offset_max = r->anchored_offset;
6295 	    if (r->extflags & RXf_ANCH_SINGLE)
6296 		r->extflags |= RXf_NOSCAN;
6297 	}
6298 	else {
6299 	    r->check_end_shift = r->float_end_shift;
6300 	    r->check_substr = r->float_substr;
6301 	    r->check_utf8 = r->float_utf8;
6302 	    r->check_offset_min = r->float_min_offset;
6303 	    r->check_offset_max = r->float_max_offset;
6304 	}
6305 	/* XXXX Currently intuiting is not compatible with ANCH_GPOS.
6306 	   This should be changed ASAP!  */
6307 	if ((r->check_substr || r->check_utf8) && !(r->extflags & RXf_ANCH_GPOS)) {
6308 	    r->extflags |= RXf_USE_INTUIT;
6309 	    if (SvTAIL(r->check_substr ? r->check_substr : r->check_utf8))
6310 		r->extflags |= RXf_INTUIT_TAIL;
6311 	}
6312 	/* XXX Unneeded? dmq (shouldn't as this is handled elsewhere)
6313 	if ( (STRLEN)minlen < longest_float_length )
6314             minlen= longest_float_length;
6315         if ( (STRLEN)minlen < longest_fixed_length )
6316             minlen= longest_fixed_length;
6317         */
6318     }
6319     else {
6320 	/* Several toplevels. Best we can is to set minlen. */
6321 	I32 fake;
6322 	struct regnode_charclass_class ch_class;
6323 	I32 last_close = 0;
6324 
6325 	DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "\nMulti Top Level\n"));
6326 
6327 	scan = ri->program + 1;
6328 	cl_init(pRExC_state, &ch_class);
6329 	data.start_class = &ch_class;
6330 	data.last_closep = &last_close;
6331 
6332 
6333 	minlen = study_chunk(pRExC_state, &scan, &minlen, &fake, scan + RExC_size,
6334 	    &data, -1, NULL, NULL, SCF_DO_STCLASS_AND|SCF_WHILEM_VISITED_POS,0);
6335 
6336         CHECK_RESTUDY_GOTO_butfirst(NOOP);
6337 
6338 	r->check_substr = r->check_utf8 = r->anchored_substr = r->anchored_utf8
6339 		= r->float_substr = r->float_utf8 = NULL;
6340 
6341 	if (! TEST_SSC_EOS(data.start_class)
6342 	    && !cl_is_anything(data.start_class))
6343 	{
6344 	    const U32 n = add_data(pRExC_state, 1, "f");
6345 	    OP(data.start_class) = ANYOF_SYNTHETIC;
6346 
6347 	    Newx(RExC_rxi->data->data[n], 1,
6348 		struct regnode_charclass_class);
6349 	    StructCopy(data.start_class,
6350 		       (struct regnode_charclass_class*)RExC_rxi->data->data[n],
6351 		       struct regnode_charclass_class);
6352 	    ri->regstclass = (regnode*)RExC_rxi->data->data[n];
6353 	    r->intflags &= ~PREGf_SKIP;	/* Used in find_byclass(). */
6354 	    DEBUG_COMPILE_r({ SV* sv = sv_newmortal();
6355 	              regprop(r, sv, (regnode*)data.start_class);
6356 		      PerlIO_printf(Perl_debug_log,
6357 				    "synthetic stclass \"%s\".\n",
6358 				    SvPVX_const(sv));});
6359 	}
6360     }
6361 
6362     /* Guard against an embedded (?=) or (?<=) with a longer minlen than
6363        the "real" pattern. */
6364     DEBUG_OPTIMISE_r({
6365 	PerlIO_printf(Perl_debug_log,"minlen: %"IVdf" r->minlen:%"IVdf"\n",
6366 		      (IV)minlen, (IV)r->minlen);
6367     });
6368     r->minlenret = minlen;
6369     if (r->minlen < minlen)
6370         r->minlen = minlen;
6371 
6372     if (RExC_seen & REG_SEEN_GPOS)
6373 	r->extflags |= RXf_GPOS_SEEN;
6374     if (RExC_seen & REG_SEEN_LOOKBEHIND)
6375         r->extflags |= RXf_NO_INPLACE_SUBST; /* inplace might break the lookbehind */
6376     if (pRExC_state->num_code_blocks)
6377 	r->extflags |= RXf_EVAL_SEEN;
6378     if (RExC_seen & REG_SEEN_CANY)
6379 	r->extflags |= RXf_CANY_SEEN;
6380     if (RExC_seen & REG_SEEN_VERBARG)
6381     {
6382 	r->intflags |= PREGf_VERBARG_SEEN;
6383         r->extflags |= RXf_NO_INPLACE_SUBST; /* don't understand this! Yves */
6384     }
6385     if (RExC_seen & REG_SEEN_CUTGROUP)
6386 	r->intflags |= PREGf_CUTGROUP_SEEN;
6387     if (pm_flags & PMf_USE_RE_EVAL)
6388 	r->intflags |= PREGf_USE_RE_EVAL;
6389     if (RExC_paren_names)
6390         RXp_PAREN_NAMES(r) = MUTABLE_HV(SvREFCNT_inc(RExC_paren_names));
6391     else
6392         RXp_PAREN_NAMES(r) = NULL;
6393 
6394     {
6395         regnode *first = ri->program + 1;
6396         U8 fop = OP(first);
6397         regnode *next = NEXTOPER(first);
6398         U8 nop = OP(next);
6399 
6400         if (PL_regkind[fop] == NOTHING && nop == END)
6401             r->extflags |= RXf_NULL;
6402         else if (PL_regkind[fop] == BOL && nop == END)
6403             r->extflags |= RXf_START_ONLY;
6404         else if (fop == PLUS && PL_regkind[nop] == POSIXD && FLAGS(next) == _CC_SPACE && OP(regnext(first)) == END)
6405             r->extflags |= RXf_WHITE;
6406         else if ( r->extflags & RXf_SPLIT && fop == EXACT && STR_LEN(first) == 1 && *(STRING(first)) == ' ' && OP(regnext(first)) == END )
6407             r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
6408 
6409     }
6410 #ifdef DEBUGGING
6411     if (RExC_paren_names) {
6412         ri->name_list_idx = add_data( pRExC_state, 1, "a" );
6413         ri->data->data[ri->name_list_idx] = (void*)SvREFCNT_inc(RExC_paren_name_list);
6414     } else
6415 #endif
6416         ri->name_list_idx = 0;
6417 
6418     if (RExC_recurse_count) {
6419         for ( ; RExC_recurse_count ; RExC_recurse_count-- ) {
6420             const regnode *scan = RExC_recurse[RExC_recurse_count-1];
6421             ARG2L_SET( scan, RExC_open_parens[ARG(scan)-1] - scan );
6422         }
6423     }
6424     Newxz(r->offs, RExC_npar, regexp_paren_pair);
6425     /* assume we don't need to swap parens around before we match */
6426 
6427     DEBUG_DUMP_r({
6428         PerlIO_printf(Perl_debug_log,"Final program:\n");
6429         regdump(r);
6430     });
6431 #ifdef RE_TRACK_PATTERN_OFFSETS
6432     DEBUG_OFFSETS_r(if (ri->u.offsets) {
6433         const U32 len = ri->u.offsets[0];
6434         U32 i;
6435         GET_RE_DEBUG_FLAGS_DECL;
6436         PerlIO_printf(Perl_debug_log, "Offsets: [%"UVuf"]\n\t", (UV)ri->u.offsets[0]);
6437         for (i = 1; i <= len; i++) {
6438             if (ri->u.offsets[i*2-1] || ri->u.offsets[i*2])
6439                 PerlIO_printf(Perl_debug_log, "%"UVuf":%"UVuf"[%"UVuf"] ",
6440                 (UV)i, (UV)ri->u.offsets[i*2-1], (UV)ri->u.offsets[i*2]);
6441             }
6442         PerlIO_printf(Perl_debug_log, "\n");
6443     });
6444 #endif
6445 
6446 #ifdef USE_ITHREADS
6447     /* under ithreads the ?pat? PMf_USED flag on the pmop is simulated
6448      * by setting the regexp SV to readonly-only instead. If the
6449      * pattern's been recompiled, the USEDness should remain. */
6450     if (old_re && SvREADONLY(old_re))
6451         SvREADONLY_on(rx);
6452 #endif
6453     return rx;
6454 }
6455 
6456 
6457 SV*
6458 Perl_reg_named_buff(pTHX_ REGEXP * const rx, SV * const key, SV * const value,
6459                     const U32 flags)
6460 {
6461     PERL_ARGS_ASSERT_REG_NAMED_BUFF;
6462 
6463     PERL_UNUSED_ARG(value);
6464 
6465     if (flags & RXapif_FETCH) {
6466         return reg_named_buff_fetch(rx, key, flags);
6467     } else if (flags & (RXapif_STORE | RXapif_DELETE | RXapif_CLEAR)) {
6468         Perl_croak_no_modify();
6469         return NULL;
6470     } else if (flags & RXapif_EXISTS) {
6471         return reg_named_buff_exists(rx, key, flags)
6472             ? &PL_sv_yes
6473             : &PL_sv_no;
6474     } else if (flags & RXapif_REGNAMES) {
6475         return reg_named_buff_all(rx, flags);
6476     } else if (flags & (RXapif_SCALAR | RXapif_REGNAMES_COUNT)) {
6477         return reg_named_buff_scalar(rx, flags);
6478     } else {
6479         Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff", (int)flags);
6480         return NULL;
6481     }
6482 }
6483 
6484 SV*
6485 Perl_reg_named_buff_iter(pTHX_ REGEXP * const rx, const SV * const lastkey,
6486                          const U32 flags)
6487 {
6488     PERL_ARGS_ASSERT_REG_NAMED_BUFF_ITER;
6489     PERL_UNUSED_ARG(lastkey);
6490 
6491     if (flags & RXapif_FIRSTKEY)
6492         return reg_named_buff_firstkey(rx, flags);
6493     else if (flags & RXapif_NEXTKEY)
6494         return reg_named_buff_nextkey(rx, flags);
6495     else {
6496         Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_iter", (int)flags);
6497         return NULL;
6498     }
6499 }
6500 
6501 SV*
6502 Perl_reg_named_buff_fetch(pTHX_ REGEXP * const r, SV * const namesv,
6503 			  const U32 flags)
6504 {
6505     AV *retarray = NULL;
6506     SV *ret;
6507     struct regexp *const rx = ReANY(r);
6508 
6509     PERL_ARGS_ASSERT_REG_NAMED_BUFF_FETCH;
6510 
6511     if (flags & RXapif_ALL)
6512         retarray=newAV();
6513 
6514     if (rx && RXp_PAREN_NAMES(rx)) {
6515         HE *he_str = hv_fetch_ent( RXp_PAREN_NAMES(rx), namesv, 0, 0 );
6516         if (he_str) {
6517             IV i;
6518             SV* sv_dat=HeVAL(he_str);
6519             I32 *nums=(I32*)SvPVX(sv_dat);
6520             for ( i=0; i<SvIVX(sv_dat); i++ ) {
6521                 if ((I32)(rx->nparens) >= nums[i]
6522                     && rx->offs[nums[i]].start != -1
6523                     && rx->offs[nums[i]].end != -1)
6524                 {
6525                     ret = newSVpvs("");
6526                     CALLREG_NUMBUF_FETCH(r,nums[i],ret);
6527                     if (!retarray)
6528                         return ret;
6529                 } else {
6530                     if (retarray)
6531                         ret = newSVsv(&PL_sv_undef);
6532                 }
6533                 if (retarray)
6534                     av_push(retarray, ret);
6535             }
6536             if (retarray)
6537                 return newRV_noinc(MUTABLE_SV(retarray));
6538         }
6539     }
6540     return NULL;
6541 }
6542 
6543 bool
6544 Perl_reg_named_buff_exists(pTHX_ REGEXP * const r, SV * const key,
6545                            const U32 flags)
6546 {
6547     struct regexp *const rx = ReANY(r);
6548 
6549     PERL_ARGS_ASSERT_REG_NAMED_BUFF_EXISTS;
6550 
6551     if (rx && RXp_PAREN_NAMES(rx)) {
6552         if (flags & RXapif_ALL) {
6553             return hv_exists_ent(RXp_PAREN_NAMES(rx), key, 0);
6554         } else {
6555 	    SV *sv = CALLREG_NAMED_BUFF_FETCH(r, key, flags);
6556             if (sv) {
6557 		SvREFCNT_dec_NN(sv);
6558                 return TRUE;
6559             } else {
6560                 return FALSE;
6561             }
6562         }
6563     } else {
6564         return FALSE;
6565     }
6566 }
6567 
6568 SV*
6569 Perl_reg_named_buff_firstkey(pTHX_ REGEXP * const r, const U32 flags)
6570 {
6571     struct regexp *const rx = ReANY(r);
6572 
6573     PERL_ARGS_ASSERT_REG_NAMED_BUFF_FIRSTKEY;
6574 
6575     if ( rx && RXp_PAREN_NAMES(rx) ) {
6576 	(void)hv_iterinit(RXp_PAREN_NAMES(rx));
6577 
6578 	return CALLREG_NAMED_BUFF_NEXTKEY(r, NULL, flags & ~RXapif_FIRSTKEY);
6579     } else {
6580 	return FALSE;
6581     }
6582 }
6583 
6584 SV*
6585 Perl_reg_named_buff_nextkey(pTHX_ REGEXP * const r, const U32 flags)
6586 {
6587     struct regexp *const rx = ReANY(r);
6588     GET_RE_DEBUG_FLAGS_DECL;
6589 
6590     PERL_ARGS_ASSERT_REG_NAMED_BUFF_NEXTKEY;
6591 
6592     if (rx && RXp_PAREN_NAMES(rx)) {
6593         HV *hv = RXp_PAREN_NAMES(rx);
6594         HE *temphe;
6595         while ( (temphe = hv_iternext_flags(hv,0)) ) {
6596             IV i;
6597             IV parno = 0;
6598             SV* sv_dat = HeVAL(temphe);
6599             I32 *nums = (I32*)SvPVX(sv_dat);
6600             for ( i = 0; i < SvIVX(sv_dat); i++ ) {
6601                 if ((I32)(rx->lastparen) >= nums[i] &&
6602                     rx->offs[nums[i]].start != -1 &&
6603                     rx->offs[nums[i]].end != -1)
6604                 {
6605                     parno = nums[i];
6606                     break;
6607                 }
6608             }
6609             if (parno || flags & RXapif_ALL) {
6610 		return newSVhek(HeKEY_hek(temphe));
6611             }
6612         }
6613     }
6614     return NULL;
6615 }
6616 
6617 SV*
6618 Perl_reg_named_buff_scalar(pTHX_ REGEXP * const r, const U32 flags)
6619 {
6620     SV *ret;
6621     AV *av;
6622     I32 length;
6623     struct regexp *const rx = ReANY(r);
6624 
6625     PERL_ARGS_ASSERT_REG_NAMED_BUFF_SCALAR;
6626 
6627     if (rx && RXp_PAREN_NAMES(rx)) {
6628         if (flags & (RXapif_ALL | RXapif_REGNAMES_COUNT)) {
6629             return newSViv(HvTOTALKEYS(RXp_PAREN_NAMES(rx)));
6630         } else if (flags & RXapif_ONE) {
6631             ret = CALLREG_NAMED_BUFF_ALL(r, (flags | RXapif_REGNAMES));
6632             av = MUTABLE_AV(SvRV(ret));
6633             length = av_len(av);
6634 	    SvREFCNT_dec_NN(ret);
6635             return newSViv(length + 1);
6636         } else {
6637             Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_scalar", (int)flags);
6638             return NULL;
6639         }
6640     }
6641     return &PL_sv_undef;
6642 }
6643 
6644 SV*
6645 Perl_reg_named_buff_all(pTHX_ REGEXP * const r, const U32 flags)
6646 {
6647     struct regexp *const rx = ReANY(r);
6648     AV *av = newAV();
6649 
6650     PERL_ARGS_ASSERT_REG_NAMED_BUFF_ALL;
6651 
6652     if (rx && RXp_PAREN_NAMES(rx)) {
6653         HV *hv= RXp_PAREN_NAMES(rx);
6654         HE *temphe;
6655         (void)hv_iterinit(hv);
6656         while ( (temphe = hv_iternext_flags(hv,0)) ) {
6657             IV i;
6658             IV parno = 0;
6659             SV* sv_dat = HeVAL(temphe);
6660             I32 *nums = (I32*)SvPVX(sv_dat);
6661             for ( i = 0; i < SvIVX(sv_dat); i++ ) {
6662                 if ((I32)(rx->lastparen) >= nums[i] &&
6663                     rx->offs[nums[i]].start != -1 &&
6664                     rx->offs[nums[i]].end != -1)
6665                 {
6666                     parno = nums[i];
6667                     break;
6668                 }
6669             }
6670             if (parno || flags & RXapif_ALL) {
6671                 av_push(av, newSVhek(HeKEY_hek(temphe)));
6672             }
6673         }
6674     }
6675 
6676     return newRV_noinc(MUTABLE_SV(av));
6677 }
6678 
6679 void
6680 Perl_reg_numbered_buff_fetch(pTHX_ REGEXP * const r, const I32 paren,
6681 			     SV * const sv)
6682 {
6683     struct regexp *const rx = ReANY(r);
6684     char *s = NULL;
6685     I32 i = 0;
6686     I32 s1, t1;
6687     I32 n = paren;
6688 
6689     PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_FETCH;
6690 
6691     if (      n == RX_BUFF_IDX_CARET_PREMATCH
6692            || n == RX_BUFF_IDX_CARET_FULLMATCH
6693            || n == RX_BUFF_IDX_CARET_POSTMATCH
6694        )
6695     {
6696         bool keepcopy = cBOOL(rx->extflags & RXf_PMf_KEEPCOPY);
6697         if (!keepcopy) {
6698             /* on something like
6699              *    $r = qr/.../;
6700              *    /$qr/p;
6701              * the KEEPCOPY is set on the PMOP rather than the regex */
6702             if (PL_curpm && r == PM_GETRE(PL_curpm))
6703                  keepcopy = cBOOL(PL_curpm->op_pmflags & PMf_KEEPCOPY);
6704         }
6705         if (!keepcopy)
6706             goto ret_undef;
6707     }
6708 
6709     if (!rx->subbeg)
6710         goto ret_undef;
6711 
6712     if (n == RX_BUFF_IDX_CARET_FULLMATCH)
6713         /* no need to distinguish between them any more */
6714         n = RX_BUFF_IDX_FULLMATCH;
6715 
6716     if ((n == RX_BUFF_IDX_PREMATCH || n == RX_BUFF_IDX_CARET_PREMATCH)
6717         && rx->offs[0].start != -1)
6718     {
6719         /* $`, ${^PREMATCH} */
6720 	i = rx->offs[0].start;
6721 	s = rx->subbeg;
6722     }
6723     else
6724     if ((n == RX_BUFF_IDX_POSTMATCH || n == RX_BUFF_IDX_CARET_POSTMATCH)
6725         && rx->offs[0].end != -1)
6726     {
6727         /* $', ${^POSTMATCH} */
6728 	s = rx->subbeg - rx->suboffset + rx->offs[0].end;
6729 	i = rx->sublen + rx->suboffset - rx->offs[0].end;
6730     }
6731     else
6732     if ( 0 <= n && n <= (I32)rx->nparens &&
6733         (s1 = rx->offs[n].start) != -1 &&
6734         (t1 = rx->offs[n].end) != -1)
6735     {
6736         /* $&, ${^MATCH},  $1 ... */
6737         i = t1 - s1;
6738         s = rx->subbeg + s1 - rx->suboffset;
6739     } else {
6740         goto ret_undef;
6741     }
6742 
6743     assert(s >= rx->subbeg);
6744     assert(rx->sublen >= (s - rx->subbeg) + i );
6745     if (i >= 0) {
6746 #if NO_TAINT_SUPPORT
6747         sv_setpvn(sv, s, i);
6748 #else
6749         const int oldtainted = TAINT_get;
6750         TAINT_NOT;
6751         sv_setpvn(sv, s, i);
6752         TAINT_set(oldtainted);
6753 #endif
6754         if ( (rx->extflags & RXf_CANY_SEEN)
6755             ? (RXp_MATCH_UTF8(rx)
6756                         && (!i || is_utf8_string((U8*)s, i)))
6757             : (RXp_MATCH_UTF8(rx)) )
6758         {
6759             SvUTF8_on(sv);
6760         }
6761         else
6762             SvUTF8_off(sv);
6763         if (TAINTING_get) {
6764             if (RXp_MATCH_TAINTED(rx)) {
6765                 if (SvTYPE(sv) >= SVt_PVMG) {
6766                     MAGIC* const mg = SvMAGIC(sv);
6767                     MAGIC* mgt;
6768                     TAINT;
6769                     SvMAGIC_set(sv, mg->mg_moremagic);
6770                     SvTAINT(sv);
6771                     if ((mgt = SvMAGIC(sv))) {
6772                         mg->mg_moremagic = mgt;
6773                         SvMAGIC_set(sv, mg);
6774                     }
6775                 } else {
6776                     TAINT;
6777                     SvTAINT(sv);
6778                 }
6779             } else
6780                 SvTAINTED_off(sv);
6781         }
6782     } else {
6783       ret_undef:
6784         sv_setsv(sv,&PL_sv_undef);
6785         return;
6786     }
6787 }
6788 
6789 void
6790 Perl_reg_numbered_buff_store(pTHX_ REGEXP * const rx, const I32 paren,
6791 							 SV const * const value)
6792 {
6793     PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_STORE;
6794 
6795     PERL_UNUSED_ARG(rx);
6796     PERL_UNUSED_ARG(paren);
6797     PERL_UNUSED_ARG(value);
6798 
6799     if (!PL_localizing)
6800         Perl_croak_no_modify();
6801 }
6802 
6803 I32
6804 Perl_reg_numbered_buff_length(pTHX_ REGEXP * const r, const SV * const sv,
6805                               const I32 paren)
6806 {
6807     struct regexp *const rx = ReANY(r);
6808     I32 i;
6809     I32 s1, t1;
6810 
6811     PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_LENGTH;
6812 
6813     if (   paren == RX_BUFF_IDX_CARET_PREMATCH
6814         || paren == RX_BUFF_IDX_CARET_FULLMATCH
6815         || paren == RX_BUFF_IDX_CARET_POSTMATCH
6816     )
6817     {
6818         bool keepcopy = cBOOL(rx->extflags & RXf_PMf_KEEPCOPY);
6819         if (!keepcopy) {
6820             /* on something like
6821              *    $r = qr/.../;
6822              *    /$qr/p;
6823              * the KEEPCOPY is set on the PMOP rather than the regex */
6824             if (PL_curpm && r == PM_GETRE(PL_curpm))
6825                  keepcopy = cBOOL(PL_curpm->op_pmflags & PMf_KEEPCOPY);
6826         }
6827         if (!keepcopy)
6828             goto warn_undef;
6829     }
6830 
6831     /* Some of this code was originally in C<Perl_magic_len> in F<mg.c> */
6832     switch (paren) {
6833       case RX_BUFF_IDX_CARET_PREMATCH: /* ${^PREMATCH} */
6834       case RX_BUFF_IDX_PREMATCH:       /* $` */
6835         if (rx->offs[0].start != -1) {
6836 			i = rx->offs[0].start;
6837 			if (i > 0) {
6838 				s1 = 0;
6839 				t1 = i;
6840 				goto getlen;
6841 			}
6842 	    }
6843         return 0;
6844 
6845       case RX_BUFF_IDX_CARET_POSTMATCH: /* ${^POSTMATCH} */
6846       case RX_BUFF_IDX_POSTMATCH:       /* $' */
6847 	    if (rx->offs[0].end != -1) {
6848 			i = rx->sublen - rx->offs[0].end;
6849 			if (i > 0) {
6850 				s1 = rx->offs[0].end;
6851 				t1 = rx->sublen;
6852 				goto getlen;
6853 			}
6854 	    }
6855         return 0;
6856 
6857       default: /* $& / ${^MATCH}, $1, $2, ... */
6858 	    if (paren <= (I32)rx->nparens &&
6859             (s1 = rx->offs[paren].start) != -1 &&
6860             (t1 = rx->offs[paren].end) != -1)
6861 	    {
6862             i = t1 - s1;
6863             goto getlen;
6864         } else {
6865           warn_undef:
6866             if (ckWARN(WARN_UNINITIALIZED))
6867                 report_uninit((const SV *)sv);
6868             return 0;
6869         }
6870     }
6871   getlen:
6872     if (i > 0 && RXp_MATCH_UTF8(rx)) {
6873         const char * const s = rx->subbeg - rx->suboffset + s1;
6874         const U8 *ep;
6875         STRLEN el;
6876 
6877         i = t1 - s1;
6878         if (is_utf8_string_loclen((U8*)s, i, &ep, &el))
6879 			i = el;
6880     }
6881     return i;
6882 }
6883 
6884 SV*
6885 Perl_reg_qr_package(pTHX_ REGEXP * const rx)
6886 {
6887     PERL_ARGS_ASSERT_REG_QR_PACKAGE;
6888 	PERL_UNUSED_ARG(rx);
6889 	if (0)
6890 	    return NULL;
6891 	else
6892 	    return newSVpvs("Regexp");
6893 }
6894 
6895 /* Scans the name of a named buffer from the pattern.
6896  * If flags is REG_RSN_RETURN_NULL returns null.
6897  * If flags is REG_RSN_RETURN_NAME returns an SV* containing the name
6898  * If flags is REG_RSN_RETURN_DATA returns the data SV* corresponding
6899  * to the parsed name as looked up in the RExC_paren_names hash.
6900  * If there is an error throws a vFAIL().. type exception.
6901  */
6902 
6903 #define REG_RSN_RETURN_NULL    0
6904 #define REG_RSN_RETURN_NAME    1
6905 #define REG_RSN_RETURN_DATA    2
6906 
6907 STATIC SV*
6908 S_reg_scan_name(pTHX_ RExC_state_t *pRExC_state, U32 flags)
6909 {
6910     char *name_start = RExC_parse;
6911 
6912     PERL_ARGS_ASSERT_REG_SCAN_NAME;
6913 
6914     if (isIDFIRST_lazy_if(RExC_parse, UTF)) {
6915 	 /* skip IDFIRST by using do...while */
6916 	if (UTF)
6917 	    do {
6918 		RExC_parse += UTF8SKIP(RExC_parse);
6919 	    } while (isWORDCHAR_utf8((U8*)RExC_parse));
6920 	else
6921 	    do {
6922 		RExC_parse++;
6923 	    } while (isWORDCHAR(*RExC_parse));
6924     } else {
6925 	RExC_parse++; /* so the <- from the vFAIL is after the offending character */
6926         vFAIL("Group name must start with a non-digit word character");
6927     }
6928     if ( flags ) {
6929         SV* sv_name
6930 	    = newSVpvn_flags(name_start, (int)(RExC_parse - name_start),
6931 			     SVs_TEMP | (UTF ? SVf_UTF8 : 0));
6932         if ( flags == REG_RSN_RETURN_NAME)
6933             return sv_name;
6934         else if (flags==REG_RSN_RETURN_DATA) {
6935             HE *he_str = NULL;
6936             SV *sv_dat = NULL;
6937             if ( ! sv_name )      /* should not happen*/
6938                 Perl_croak(aTHX_ "panic: no svname in reg_scan_name");
6939             if (RExC_paren_names)
6940                 he_str = hv_fetch_ent( RExC_paren_names, sv_name, 0, 0 );
6941             if ( he_str )
6942                 sv_dat = HeVAL(he_str);
6943             if ( ! sv_dat )
6944                 vFAIL("Reference to nonexistent named group");
6945             return sv_dat;
6946         }
6947         else {
6948             Perl_croak(aTHX_ "panic: bad flag %lx in reg_scan_name",
6949 		       (unsigned long) flags);
6950         }
6951         assert(0); /* NOT REACHED */
6952     }
6953     return NULL;
6954 }
6955 
6956 #define DEBUG_PARSE_MSG(funcname)     DEBUG_PARSE_r({           \
6957     int rem=(int)(RExC_end - RExC_parse);                       \
6958     int cut;                                                    \
6959     int num;                                                    \
6960     int iscut=0;                                                \
6961     if (rem>10) {                                               \
6962         rem=10;                                                 \
6963         iscut=1;                                                \
6964     }                                                           \
6965     cut=10-rem;                                                 \
6966     if (RExC_lastparse!=RExC_parse)                             \
6967         PerlIO_printf(Perl_debug_log," >%.*s%-*s",              \
6968             rem, RExC_parse,                                    \
6969             cut + 4,                                            \
6970             iscut ? "..." : "<"                                 \
6971         );                                                      \
6972     else                                                        \
6973         PerlIO_printf(Perl_debug_log,"%16s","");                \
6974                                                                 \
6975     if (SIZE_ONLY)                                              \
6976        num = RExC_size + 1;                                     \
6977     else                                                        \
6978        num=REG_NODE_NUM(RExC_emit);                             \
6979     if (RExC_lastnum!=num)                                      \
6980        PerlIO_printf(Perl_debug_log,"|%4d",num);                \
6981     else                                                        \
6982        PerlIO_printf(Perl_debug_log,"|%4s","");                 \
6983     PerlIO_printf(Perl_debug_log,"|%*s%-4s",                    \
6984         (int)((depth*2)), "",                                   \
6985         (funcname)                                              \
6986     );                                                          \
6987     RExC_lastnum=num;                                           \
6988     RExC_lastparse=RExC_parse;                                  \
6989 })
6990 
6991 
6992 
6993 #define DEBUG_PARSE(funcname)     DEBUG_PARSE_r({           \
6994     DEBUG_PARSE_MSG((funcname));                            \
6995     PerlIO_printf(Perl_debug_log,"%4s","\n");               \
6996 })
6997 #define DEBUG_PARSE_FMT(funcname,fmt,args)     DEBUG_PARSE_r({           \
6998     DEBUG_PARSE_MSG((funcname));                            \
6999     PerlIO_printf(Perl_debug_log,fmt "\n",args);               \
7000 })
7001 
7002 /* This section of code defines the inversion list object and its methods.  The
7003  * interfaces are highly subject to change, so as much as possible is static to
7004  * this file.  An inversion list is here implemented as a malloc'd C UV array
7005  * with some added info that is placed as UVs at the beginning in a header
7006  * portion.  An inversion list for Unicode is an array of code points, sorted
7007  * by ordinal number.  The zeroth element is the first code point in the list.
7008  * The 1th element is the first element beyond that not in the list.  In other
7009  * words, the first range is
7010  *  invlist[0]..(invlist[1]-1)
7011  * The other ranges follow.  Thus every element whose index is divisible by two
7012  * marks the beginning of a range that is in the list, and every element not
7013  * divisible by two marks the beginning of a range not in the list.  A single
7014  * element inversion list that contains the single code point N generally
7015  * consists of two elements
7016  *  invlist[0] == N
7017  *  invlist[1] == N+1
7018  * (The exception is when N is the highest representable value on the
7019  * machine, in which case the list containing just it would be a single
7020  * element, itself.  By extension, if the last range in the list extends to
7021  * infinity, then the first element of that range will be in the inversion list
7022  * at a position that is divisible by two, and is the final element in the
7023  * list.)
7024  * Taking the complement (inverting) an inversion list is quite simple, if the
7025  * first element is 0, remove it; otherwise add a 0 element at the beginning.
7026  * This implementation reserves an element at the beginning of each inversion
7027  * list to contain 0 when the list contains 0, and contains 1 otherwise.  The
7028  * actual beginning of the list is either that element if 0, or the next one if
7029  * 1.
7030  *
7031  * More about inversion lists can be found in "Unicode Demystified"
7032  * Chapter 13 by Richard Gillam, published by Addison-Wesley.
7033  * More will be coming when functionality is added later.
7034  *
7035  * The inversion list data structure is currently implemented as an SV pointing
7036  * to an array of UVs that the SV thinks are bytes.  This allows us to have an
7037  * array of UV whose memory management is automatically handled by the existing
7038  * facilities for SV's.
7039  *
7040  * Some of the methods should always be private to the implementation, and some
7041  * should eventually be made public */
7042 
7043 /* The header definitions are in F<inline_invlist.c> */
7044 #define TO_INTERNAL_SIZE(x) (((x) + HEADER_LENGTH) * sizeof(UV))
7045 #define FROM_INTERNAL_SIZE(x) (((x)/ sizeof(UV)) - HEADER_LENGTH)
7046 
7047 #define INVLIST_INITIAL_LEN 10
7048 
7049 PERL_STATIC_INLINE UV*
7050 S__invlist_array_init(pTHX_ SV* const invlist, const bool will_have_0)
7051 {
7052     /* Returns a pointer to the first element in the inversion list's array.
7053      * This is called upon initialization of an inversion list.  Where the
7054      * array begins depends on whether the list has the code point U+0000
7055      * in it or not.  The other parameter tells it whether the code that
7056      * follows this call is about to put a 0 in the inversion list or not.
7057      * The first element is either the element with 0, if 0, or the next one,
7058      * if 1 */
7059 
7060     UV* zero = get_invlist_zero_addr(invlist);
7061 
7062     PERL_ARGS_ASSERT__INVLIST_ARRAY_INIT;
7063 
7064     /* Must be empty */
7065     assert(! *_get_invlist_len_addr(invlist));
7066 
7067     /* 1^1 = 0; 1^0 = 1 */
7068     *zero = 1 ^ will_have_0;
7069     return zero + *zero;
7070 }
7071 
7072 PERL_STATIC_INLINE UV*
7073 S_invlist_array(pTHX_ SV* const invlist)
7074 {
7075     /* Returns the pointer to the inversion list's array.  Every time the
7076      * length changes, this needs to be called in case malloc or realloc moved
7077      * it */
7078 
7079     PERL_ARGS_ASSERT_INVLIST_ARRAY;
7080 
7081     /* Must not be empty.  If these fail, you probably didn't check for <len>
7082      * being non-zero before trying to get the array */
7083     assert(*_get_invlist_len_addr(invlist));
7084     assert(*get_invlist_zero_addr(invlist) == 0
7085 	   || *get_invlist_zero_addr(invlist) == 1);
7086 
7087     /* The array begins either at the element reserved for zero if the
7088      * list contains 0 (that element will be set to 0), or otherwise the next
7089      * element (in which case the reserved element will be set to 1). */
7090     return (UV *) (get_invlist_zero_addr(invlist)
7091 		   + *get_invlist_zero_addr(invlist));
7092 }
7093 
7094 PERL_STATIC_INLINE void
7095 S_invlist_set_len(pTHX_ SV* const invlist, const UV len)
7096 {
7097     /* Sets the current number of elements stored in the inversion list */
7098 
7099     PERL_ARGS_ASSERT_INVLIST_SET_LEN;
7100 
7101     *_get_invlist_len_addr(invlist) = len;
7102 
7103     assert(len <= SvLEN(invlist));
7104 
7105     SvCUR_set(invlist, TO_INTERNAL_SIZE(len));
7106     /* If the list contains U+0000, that element is part of the header,
7107      * and should not be counted as part of the array.  It will contain
7108      * 0 in that case, and 1 otherwise.  So we could flop 0=>1, 1=>0 and
7109      * subtract:
7110      *	SvCUR_set(invlist,
7111      *		  TO_INTERNAL_SIZE(len
7112      *				   - (*get_invlist_zero_addr(inv_list) ^ 1)));
7113      * But, this is only valid if len is not 0.  The consequences of not doing
7114      * this is that the memory allocation code may think that 1 more UV is
7115      * being used than actually is, and so might do an unnecessary grow.  That
7116      * seems worth not bothering to make this the precise amount.
7117      *
7118      * Note that when inverting, SvCUR shouldn't change */
7119 }
7120 
7121 PERL_STATIC_INLINE IV*
7122 S_get_invlist_previous_index_addr(pTHX_ SV* invlist)
7123 {
7124     /* Return the address of the UV that is reserved to hold the cached index
7125      * */
7126 
7127     PERL_ARGS_ASSERT_GET_INVLIST_PREVIOUS_INDEX_ADDR;
7128 
7129     return (IV *) (SvPVX(invlist) + (INVLIST_PREVIOUS_INDEX_OFFSET * sizeof (UV)));
7130 }
7131 
7132 PERL_STATIC_INLINE IV
7133 S_invlist_previous_index(pTHX_ SV* const invlist)
7134 {
7135     /* Returns cached index of previous search */
7136 
7137     PERL_ARGS_ASSERT_INVLIST_PREVIOUS_INDEX;
7138 
7139     return *get_invlist_previous_index_addr(invlist);
7140 }
7141 
7142 PERL_STATIC_INLINE void
7143 S_invlist_set_previous_index(pTHX_ SV* const invlist, const IV index)
7144 {
7145     /* Caches <index> for later retrieval */
7146 
7147     PERL_ARGS_ASSERT_INVLIST_SET_PREVIOUS_INDEX;
7148 
7149     assert(index == 0 || index < (int) _invlist_len(invlist));
7150 
7151     *get_invlist_previous_index_addr(invlist) = index;
7152 }
7153 
7154 PERL_STATIC_INLINE UV
7155 S_invlist_max(pTHX_ SV* const invlist)
7156 {
7157     /* Returns the maximum number of elements storable in the inversion list's
7158      * array, without having to realloc() */
7159 
7160     PERL_ARGS_ASSERT_INVLIST_MAX;
7161 
7162     return SvLEN(invlist) == 0  /* This happens under _new_invlist_C_array */
7163            ? _invlist_len(invlist)
7164            : FROM_INTERNAL_SIZE(SvLEN(invlist));
7165 }
7166 
7167 PERL_STATIC_INLINE UV*
7168 S_get_invlist_zero_addr(pTHX_ SV* invlist)
7169 {
7170     /* Return the address of the UV that is reserved to hold 0 if the inversion
7171      * list contains 0.  This has to be the last element of the heading, as the
7172      * list proper starts with either it if 0, or the next element if not.
7173      * (But we force it to contain either 0 or 1) */
7174 
7175     PERL_ARGS_ASSERT_GET_INVLIST_ZERO_ADDR;
7176 
7177     return (UV *) (SvPVX(invlist) + (INVLIST_ZERO_OFFSET * sizeof (UV)));
7178 }
7179 
7180 #ifndef PERL_IN_XSUB_RE
7181 SV*
7182 Perl__new_invlist(pTHX_ IV initial_size)
7183 {
7184 
7185     /* Return a pointer to a newly constructed inversion list, with enough
7186      * space to store 'initial_size' elements.  If that number is negative, a
7187      * system default is used instead */
7188 
7189     SV* new_list;
7190 
7191     if (initial_size < 0) {
7192 	initial_size = INVLIST_INITIAL_LEN;
7193     }
7194 
7195     /* Allocate the initial space */
7196     new_list = newSV(TO_INTERNAL_SIZE(initial_size));
7197     invlist_set_len(new_list, 0);
7198 
7199     /* Force iterinit() to be used to get iteration to work */
7200     *get_invlist_iter_addr(new_list) = UV_MAX;
7201 
7202     /* This should force a segfault if a method doesn't initialize this
7203      * properly */
7204     *get_invlist_zero_addr(new_list) = UV_MAX;
7205 
7206     *get_invlist_previous_index_addr(new_list) = 0;
7207     *get_invlist_version_id_addr(new_list) = INVLIST_VERSION_ID;
7208 #if HEADER_LENGTH != 5
7209 #   error Need to regenerate INVLIST_VERSION_ID by running perl -E 'say int(rand 2**31-1)', and then changing the #if to the new length
7210 #endif
7211 
7212     return new_list;
7213 }
7214 #endif
7215 
7216 STATIC SV*
7217 S__new_invlist_C_array(pTHX_ UV* list)
7218 {
7219     /* Return a pointer to a newly constructed inversion list, initialized to
7220      * point to <list>, which has to be in the exact correct inversion list
7221      * form, including internal fields.  Thus this is a dangerous routine that
7222      * should not be used in the wrong hands */
7223 
7224     SV* invlist = newSV_type(SVt_PV);
7225 
7226     PERL_ARGS_ASSERT__NEW_INVLIST_C_ARRAY;
7227 
7228     SvPV_set(invlist, (char *) list);
7229     SvLEN_set(invlist, 0);  /* Means we own the contents, and the system
7230 			       shouldn't touch it */
7231     SvCUR_set(invlist, TO_INTERNAL_SIZE(_invlist_len(invlist)));
7232 
7233     if (*get_invlist_version_id_addr(invlist) != INVLIST_VERSION_ID) {
7234         Perl_croak(aTHX_ "panic: Incorrect version for previously generated inversion list");
7235     }
7236 
7237     /* Initialize the iteration pointer.
7238      * XXX This could be done at compile time in charclass_invlists.h, but I
7239      * (khw) am not confident that the suffixes for specifying the C constant
7240      * UV_MAX are portable, e.g.  'ull' on a 32 bit machine that is configured
7241      * to use 64 bits; might need a Configure probe */
7242     invlist_iterfinish(invlist);
7243 
7244     return invlist;
7245 }
7246 
7247 STATIC void
7248 S_invlist_extend(pTHX_ SV* const invlist, const UV new_max)
7249 {
7250     /* Grow the maximum size of an inversion list */
7251 
7252     PERL_ARGS_ASSERT_INVLIST_EXTEND;
7253 
7254     SvGROW((SV *)invlist, TO_INTERNAL_SIZE(new_max));
7255 }
7256 
7257 PERL_STATIC_INLINE void
7258 S_invlist_trim(pTHX_ SV* const invlist)
7259 {
7260     PERL_ARGS_ASSERT_INVLIST_TRIM;
7261 
7262     /* Change the length of the inversion list to how many entries it currently
7263      * has */
7264 
7265     SvPV_shrink_to_cur((SV *) invlist);
7266 }
7267 
7268 #define _invlist_union_complement_2nd(a, b, output) _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
7269 
7270 STATIC void
7271 S__append_range_to_invlist(pTHX_ SV* const invlist, const UV start, const UV end)
7272 {
7273    /* Subject to change or removal.  Append the range from 'start' to 'end' at
7274     * the end of the inversion list.  The range must be above any existing
7275     * ones. */
7276 
7277     UV* array;
7278     UV max = invlist_max(invlist);
7279     UV len = _invlist_len(invlist);
7280 
7281     PERL_ARGS_ASSERT__APPEND_RANGE_TO_INVLIST;
7282 
7283     if (len == 0) { /* Empty lists must be initialized */
7284         array = _invlist_array_init(invlist, start == 0);
7285     }
7286     else {
7287 	/* Here, the existing list is non-empty. The current max entry in the
7288 	 * list is generally the first value not in the set, except when the
7289 	 * set extends to the end of permissible values, in which case it is
7290 	 * the first entry in that final set, and so this call is an attempt to
7291 	 * append out-of-order */
7292 
7293 	UV final_element = len - 1;
7294 	array = invlist_array(invlist);
7295 	if (array[final_element] > start
7296 	    || ELEMENT_RANGE_MATCHES_INVLIST(final_element))
7297 	{
7298 	    Perl_croak(aTHX_ "panic: attempting to append to an inversion list, but wasn't at the end of the list, final=%"UVuf", start=%"UVuf", match=%c",
7299 		       array[final_element], start,
7300 		       ELEMENT_RANGE_MATCHES_INVLIST(final_element) ? 't' : 'f');
7301 	}
7302 
7303 	/* Here, it is a legal append.  If the new range begins with the first
7304 	 * value not in the set, it is extending the set, so the new first
7305 	 * value not in the set is one greater than the newly extended range.
7306 	 * */
7307 	if (array[final_element] == start) {
7308 	    if (end != UV_MAX) {
7309 		array[final_element] = end + 1;
7310 	    }
7311 	    else {
7312 		/* But if the end is the maximum representable on the machine,
7313 		 * just let the range that this would extend to have no end */
7314 		invlist_set_len(invlist, len - 1);
7315 	    }
7316 	    return;
7317 	}
7318     }
7319 
7320     /* Here the new range doesn't extend any existing set.  Add it */
7321 
7322     len += 2;	/* Includes an element each for the start and end of range */
7323 
7324     /* If overflows the existing space, extend, which may cause the array to be
7325      * moved */
7326     if (max < len) {
7327 	invlist_extend(invlist, len);
7328 	invlist_set_len(invlist, len);	/* Have to set len here to avoid assert
7329 					   failure in invlist_array() */
7330 	array = invlist_array(invlist);
7331     }
7332     else {
7333 	invlist_set_len(invlist, len);
7334     }
7335 
7336     /* The next item on the list starts the range, the one after that is
7337      * one past the new range.  */
7338     array[len - 2] = start;
7339     if (end != UV_MAX) {
7340 	array[len - 1] = end + 1;
7341     }
7342     else {
7343 	/* But if the end is the maximum representable on the machine, just let
7344 	 * the range have no end */
7345 	invlist_set_len(invlist, len - 1);
7346     }
7347 }
7348 
7349 #ifndef PERL_IN_XSUB_RE
7350 
7351 IV
7352 Perl__invlist_search(pTHX_ SV* const invlist, const UV cp)
7353 {
7354     /* Searches the inversion list for the entry that contains the input code
7355      * point <cp>.  If <cp> is not in the list, -1 is returned.  Otherwise, the
7356      * return value is the index into the list's array of the range that
7357      * contains <cp> */
7358 
7359     IV low = 0;
7360     IV mid;
7361     IV high = _invlist_len(invlist);
7362     const IV highest_element = high - 1;
7363     const UV* array;
7364 
7365     PERL_ARGS_ASSERT__INVLIST_SEARCH;
7366 
7367     /* If list is empty, return failure. */
7368     if (high == 0) {
7369 	return -1;
7370     }
7371 
7372     /* (We can't get the array unless we know the list is non-empty) */
7373     array = invlist_array(invlist);
7374 
7375     mid = invlist_previous_index(invlist);
7376     assert(mid >=0 && mid <= highest_element);
7377 
7378     /* <mid> contains the cache of the result of the previous call to this
7379      * function (0 the first time).  See if this call is for the same result,
7380      * or if it is for mid-1.  This is under the theory that calls to this
7381      * function will often be for related code points that are near each other.
7382      * And benchmarks show that caching gives better results.  We also test
7383      * here if the code point is within the bounds of the list.  These tests
7384      * replace others that would have had to be made anyway to make sure that
7385      * the array bounds were not exceeded, and these give us extra information
7386      * at the same time */
7387     if (cp >= array[mid]) {
7388         if (cp >= array[highest_element]) {
7389             return highest_element;
7390         }
7391 
7392         /* Here, array[mid] <= cp < array[highest_element].  This means that
7393          * the final element is not the answer, so can exclude it; it also
7394          * means that <mid> is not the final element, so can refer to 'mid + 1'
7395          * safely */
7396         if (cp < array[mid + 1]) {
7397             return mid;
7398         }
7399         high--;
7400         low = mid + 1;
7401     }
7402     else { /* cp < aray[mid] */
7403         if (cp < array[0]) { /* Fail if outside the array */
7404             return -1;
7405         }
7406         high = mid;
7407         if (cp >= array[mid - 1]) {
7408             goto found_entry;
7409         }
7410     }
7411 
7412     /* Binary search.  What we are looking for is <i> such that
7413      *	array[i] <= cp < array[i+1]
7414      * The loop below converges on the i+1.  Note that there may not be an
7415      * (i+1)th element in the array, and things work nonetheless */
7416     while (low < high) {
7417 	mid = (low + high) / 2;
7418         assert(mid <= highest_element);
7419 	if (array[mid] <= cp) { /* cp >= array[mid] */
7420 	    low = mid + 1;
7421 
7422 	    /* We could do this extra test to exit the loop early.
7423 	    if (cp < array[low]) {
7424 		return mid;
7425 	    }
7426 	    */
7427 	}
7428 	else { /* cp < array[mid] */
7429 	    high = mid;
7430 	}
7431     }
7432 
7433   found_entry:
7434     high--;
7435     invlist_set_previous_index(invlist, high);
7436     return high;
7437 }
7438 
7439 void
7440 Perl__invlist_populate_swatch(pTHX_ SV* const invlist, const UV start, const UV end, U8* swatch)
7441 {
7442     /* populates a swatch of a swash the same way swatch_get() does in utf8.c,
7443      * but is used when the swash has an inversion list.  This makes this much
7444      * faster, as it uses a binary search instead of a linear one.  This is
7445      * intimately tied to that function, and perhaps should be in utf8.c,
7446      * except it is intimately tied to inversion lists as well.  It assumes
7447      * that <swatch> is all 0's on input */
7448 
7449     UV current = start;
7450     const IV len = _invlist_len(invlist);
7451     IV i;
7452     const UV * array;
7453 
7454     PERL_ARGS_ASSERT__INVLIST_POPULATE_SWATCH;
7455 
7456     if (len == 0) { /* Empty inversion list */
7457         return;
7458     }
7459 
7460     array = invlist_array(invlist);
7461 
7462     /* Find which element it is */
7463     i = _invlist_search(invlist, start);
7464 
7465     /* We populate from <start> to <end> */
7466     while (current < end) {
7467         UV upper;
7468 
7469 	/* The inversion list gives the results for every possible code point
7470 	 * after the first one in the list.  Only those ranges whose index is
7471 	 * even are ones that the inversion list matches.  For the odd ones,
7472 	 * and if the initial code point is not in the list, we have to skip
7473 	 * forward to the next element */
7474         if (i == -1 || ! ELEMENT_RANGE_MATCHES_INVLIST(i)) {
7475             i++;
7476             if (i >= len) { /* Finished if beyond the end of the array */
7477                 return;
7478             }
7479             current = array[i];
7480 	    if (current >= end) {   /* Finished if beyond the end of what we
7481 				       are populating */
7482                 if (LIKELY(end < UV_MAX)) {
7483                     return;
7484                 }
7485 
7486                 /* We get here when the upper bound is the maximum
7487                  * representable on the machine, and we are looking for just
7488                  * that code point.  Have to special case it */
7489                 i = len;
7490                 goto join_end_of_list;
7491             }
7492         }
7493         assert(current >= start);
7494 
7495 	/* The current range ends one below the next one, except don't go past
7496 	 * <end> */
7497         i++;
7498         upper = (i < len && array[i] < end) ? array[i] : end;
7499 
7500 	/* Here we are in a range that matches.  Populate a bit in the 3-bit U8
7501 	 * for each code point in it */
7502         for (; current < upper; current++) {
7503             const STRLEN offset = (STRLEN)(current - start);
7504             swatch[offset >> 3] |= 1 << (offset & 7);
7505         }
7506 
7507     join_end_of_list:
7508 
7509 	/* Quit if at the end of the list */
7510         if (i >= len) {
7511 
7512 	    /* But first, have to deal with the highest possible code point on
7513 	     * the platform.  The previous code assumes that <end> is one
7514 	     * beyond where we want to populate, but that is impossible at the
7515 	     * platform's infinity, so have to handle it specially */
7516             if (UNLIKELY(end == UV_MAX && ELEMENT_RANGE_MATCHES_INVLIST(len-1)))
7517 	    {
7518                 const STRLEN offset = (STRLEN)(end - start);
7519                 swatch[offset >> 3] |= 1 << (offset & 7);
7520             }
7521             return;
7522         }
7523 
7524 	/* Advance to the next range, which will be for code points not in the
7525 	 * inversion list */
7526         current = array[i];
7527     }
7528 
7529     return;
7530 }
7531 
7532 void
7533 Perl__invlist_union_maybe_complement_2nd(pTHX_ SV* const a, SV* const b, bool complement_b, SV** output)
7534 {
7535     /* Take the union of two inversion lists and point <output> to it.  *output
7536      * SHOULD BE DEFINED upon input, and if it points to one of the two lists,
7537      * the reference count to that list will be decremented.  The first list,
7538      * <a>, may be NULL, in which case a copy of the second list is returned.
7539      * If <complement_b> is TRUE, the union is taken of the complement
7540      * (inversion) of <b> instead of b itself.
7541      *
7542      * The basis for this comes from "Unicode Demystified" Chapter 13 by
7543      * Richard Gillam, published by Addison-Wesley, and explained at some
7544      * length there.  The preface says to incorporate its examples into your
7545      * code at your own risk.
7546      *
7547      * The algorithm is like a merge sort.
7548      *
7549      * XXX A potential performance improvement is to keep track as we go along
7550      * if only one of the inputs contributes to the result, meaning the other
7551      * is a subset of that one.  In that case, we can skip the final copy and
7552      * return the larger of the input lists, but then outside code might need
7553      * to keep track of whether to free the input list or not */
7554 
7555     UV* array_a;    /* a's array */
7556     UV* array_b;
7557     UV len_a;	    /* length of a's array */
7558     UV len_b;
7559 
7560     SV* u;			/* the resulting union */
7561     UV* array_u;
7562     UV len_u;
7563 
7564     UV i_a = 0;		    /* current index into a's array */
7565     UV i_b = 0;
7566     UV i_u = 0;
7567 
7568     /* running count, as explained in the algorithm source book; items are
7569      * stopped accumulating and are output when the count changes to/from 0.
7570      * The count is incremented when we start a range that's in the set, and
7571      * decremented when we start a range that's not in the set.  So its range
7572      * is 0 to 2.  Only when the count is zero is something not in the set.
7573      */
7574     UV count = 0;
7575 
7576     PERL_ARGS_ASSERT__INVLIST_UNION_MAYBE_COMPLEMENT_2ND;
7577     assert(a != b);
7578 
7579     /* If either one is empty, the union is the other one */
7580     if (a == NULL || ((len_a = _invlist_len(a)) == 0)) {
7581 	if (*output == a) {
7582             if (a != NULL) {
7583                 SvREFCNT_dec_NN(a);
7584             }
7585 	}
7586 	if (*output != b) {
7587 	    *output = invlist_clone(b);
7588             if (complement_b) {
7589                 _invlist_invert(*output);
7590             }
7591 	} /* else *output already = b; */
7592 	return;
7593     }
7594     else if ((len_b = _invlist_len(b)) == 0) {
7595 	if (*output == b) {
7596 	    SvREFCNT_dec_NN(b);
7597 	}
7598 
7599         /* The complement of an empty list is a list that has everything in it,
7600          * so the union with <a> includes everything too */
7601         if (complement_b) {
7602             if (a == *output) {
7603                 SvREFCNT_dec_NN(a);
7604             }
7605             *output = _new_invlist(1);
7606             _append_range_to_invlist(*output, 0, UV_MAX);
7607         }
7608         else if (*output != a) {
7609             *output = invlist_clone(a);
7610         }
7611         /* else *output already = a; */
7612 	return;
7613     }
7614 
7615     /* Here both lists exist and are non-empty */
7616     array_a = invlist_array(a);
7617     array_b = invlist_array(b);
7618 
7619     /* If are to take the union of 'a' with the complement of b, set it
7620      * up so are looking at b's complement. */
7621     if (complement_b) {
7622 
7623 	/* To complement, we invert: if the first element is 0, remove it.  To
7624 	 * do this, we just pretend the array starts one later, and clear the
7625 	 * flag as we don't have to do anything else later */
7626         if (array_b[0] == 0) {
7627             array_b++;
7628             len_b--;
7629             complement_b = FALSE;
7630         }
7631         else {
7632 
7633             /* But if the first element is not zero, we unshift a 0 before the
7634              * array.  The data structure reserves a space for that 0 (which
7635              * should be a '1' right now), so physical shifting is unneeded,
7636              * but temporarily change that element to 0.  Before exiting the
7637              * routine, we must restore the element to '1' */
7638             array_b--;
7639             len_b++;
7640             array_b[0] = 0;
7641         }
7642     }
7643 
7644     /* Size the union for the worst case: that the sets are completely
7645      * disjoint */
7646     u = _new_invlist(len_a + len_b);
7647 
7648     /* Will contain U+0000 if either component does */
7649     array_u = _invlist_array_init(u, (len_a > 0 && array_a[0] == 0)
7650 				      || (len_b > 0 && array_b[0] == 0));
7651 
7652     /* Go through each list item by item, stopping when exhausted one of
7653      * them */
7654     while (i_a < len_a && i_b < len_b) {
7655 	UV cp;	    /* The element to potentially add to the union's array */
7656 	bool cp_in_set;   /* is it in the the input list's set or not */
7657 
7658 	/* We need to take one or the other of the two inputs for the union.
7659 	 * Since we are merging two sorted lists, we take the smaller of the
7660 	 * next items.  In case of a tie, we take the one that is in its set
7661 	 * first.  If we took one not in the set first, it would decrement the
7662 	 * count, possibly to 0 which would cause it to be output as ending the
7663 	 * range, and the next time through we would take the same number, and
7664 	 * output it again as beginning the next range.  By doing it the
7665 	 * opposite way, there is no possibility that the count will be
7666 	 * momentarily decremented to 0, and thus the two adjoining ranges will
7667 	 * be seamlessly merged.  (In a tie and both are in the set or both not
7668 	 * in the set, it doesn't matter which we take first.) */
7669 	if (array_a[i_a] < array_b[i_b]
7670 	    || (array_a[i_a] == array_b[i_b]
7671 		&& ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
7672 	{
7673 	    cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
7674 	    cp= array_a[i_a++];
7675 	}
7676 	else {
7677 	    cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
7678 	    cp = array_b[i_b++];
7679 	}
7680 
7681 	/* Here, have chosen which of the two inputs to look at.  Only output
7682 	 * if the running count changes to/from 0, which marks the
7683 	 * beginning/end of a range in that's in the set */
7684 	if (cp_in_set) {
7685 	    if (count == 0) {
7686 		array_u[i_u++] = cp;
7687 	    }
7688 	    count++;
7689 	}
7690 	else {
7691 	    count--;
7692 	    if (count == 0) {
7693 		array_u[i_u++] = cp;
7694 	    }
7695 	}
7696     }
7697 
7698     /* Here, we are finished going through at least one of the lists, which
7699      * means there is something remaining in at most one.  We check if the list
7700      * that hasn't been exhausted is positioned such that we are in the middle
7701      * of a range in its set or not.  (i_a and i_b point to the element beyond
7702      * the one we care about.) If in the set, we decrement 'count'; if 0, there
7703      * is potentially more to output.
7704      * There are four cases:
7705      *	1) Both weren't in their sets, count is 0, and remains 0.  What's left
7706      *	   in the union is entirely from the non-exhausted set.
7707      *	2) Both were in their sets, count is 2.  Nothing further should
7708      *	   be output, as everything that remains will be in the exhausted
7709      *	   list's set, hence in the union; decrementing to 1 but not 0 insures
7710      *	   that
7711      *	3) the exhausted was in its set, non-exhausted isn't, count is 1.
7712      *	   Nothing further should be output because the union includes
7713      *	   everything from the exhausted set.  Not decrementing ensures that.
7714      *	4) the exhausted wasn't in its set, non-exhausted is, count is 1;
7715      *	   decrementing to 0 insures that we look at the remainder of the
7716      *	   non-exhausted set */
7717     if ((i_a != len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
7718 	|| (i_b != len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
7719     {
7720 	count--;
7721     }
7722 
7723     /* The final length is what we've output so far, plus what else is about to
7724      * be output.  (If 'count' is non-zero, then the input list we exhausted
7725      * has everything remaining up to the machine's limit in its set, and hence
7726      * in the union, so there will be no further output. */
7727     len_u = i_u;
7728     if (count == 0) {
7729 	/* At most one of the subexpressions will be non-zero */
7730 	len_u += (len_a - i_a) + (len_b - i_b);
7731     }
7732 
7733     /* Set result to final length, which can change the pointer to array_u, so
7734      * re-find it */
7735     if (len_u != _invlist_len(u)) {
7736 	invlist_set_len(u, len_u);
7737 	invlist_trim(u);
7738 	array_u = invlist_array(u);
7739     }
7740 
7741     /* When 'count' is 0, the list that was exhausted (if one was shorter than
7742      * the other) ended with everything above it not in its set.  That means
7743      * that the remaining part of the union is precisely the same as the
7744      * non-exhausted list, so can just copy it unchanged.  (If both list were
7745      * exhausted at the same time, then the operations below will be both 0.)
7746      */
7747     if (count == 0) {
7748 	IV copy_count; /* At most one will have a non-zero copy count */
7749 	if ((copy_count = len_a - i_a) > 0) {
7750 	    Copy(array_a + i_a, array_u + i_u, copy_count, UV);
7751 	}
7752 	else if ((copy_count = len_b - i_b) > 0) {
7753 	    Copy(array_b + i_b, array_u + i_u, copy_count, UV);
7754 	}
7755     }
7756 
7757     /* If we've changed b, restore it */
7758     if (complement_b) {
7759         array_b[0] = 1;
7760     }
7761 
7762     /*  We may be removing a reference to one of the inputs */
7763     if (a == *output || b == *output) {
7764         assert(! invlist_is_iterating(*output));
7765 	SvREFCNT_dec_NN(*output);
7766     }
7767 
7768     *output = u;
7769     return;
7770 }
7771 
7772 void
7773 Perl__invlist_intersection_maybe_complement_2nd(pTHX_ SV* const a, SV* const b, bool complement_b, SV** i)
7774 {
7775     /* Take the intersection of two inversion lists and point <i> to it.  *i
7776      * SHOULD BE DEFINED upon input, and if it points to one of the two lists,
7777      * the reference count to that list will be decremented.
7778      * If <complement_b> is TRUE, the result will be the intersection of <a>
7779      * and the complement (or inversion) of <b> instead of <b> directly.
7780      *
7781      * The basis for this comes from "Unicode Demystified" Chapter 13 by
7782      * Richard Gillam, published by Addison-Wesley, and explained at some
7783      * length there.  The preface says to incorporate its examples into your
7784      * code at your own risk.  In fact, it had bugs
7785      *
7786      * The algorithm is like a merge sort, and is essentially the same as the
7787      * union above
7788      */
7789 
7790     UV* array_a;		/* a's array */
7791     UV* array_b;
7792     UV len_a;	/* length of a's array */
7793     UV len_b;
7794 
7795     SV* r;		     /* the resulting intersection */
7796     UV* array_r;
7797     UV len_r;
7798 
7799     UV i_a = 0;		    /* current index into a's array */
7800     UV i_b = 0;
7801     UV i_r = 0;
7802 
7803     /* running count, as explained in the algorithm source book; items are
7804      * stopped accumulating and are output when the count changes to/from 2.
7805      * The count is incremented when we start a range that's in the set, and
7806      * decremented when we start a range that's not in the set.  So its range
7807      * is 0 to 2.  Only when the count is 2 is something in the intersection.
7808      */
7809     UV count = 0;
7810 
7811     PERL_ARGS_ASSERT__INVLIST_INTERSECTION_MAYBE_COMPLEMENT_2ND;
7812     assert(a != b);
7813 
7814     /* Special case if either one is empty */
7815     len_a = _invlist_len(a);
7816     if ((len_a == 0) || ((len_b = _invlist_len(b)) == 0)) {
7817 
7818         if (len_a != 0 && complement_b) {
7819 
7820             /* Here, 'a' is not empty, therefore from the above 'if', 'b' must
7821              * be empty.  Here, also we are using 'b's complement, which hence
7822              * must be every possible code point.  Thus the intersection is
7823              * simply 'a'. */
7824             if (*i != a) {
7825                 *i = invlist_clone(a);
7826 
7827                 if (*i == b) {
7828                     SvREFCNT_dec_NN(b);
7829                 }
7830             }
7831             /* else *i is already 'a' */
7832             return;
7833         }
7834 
7835         /* Here, 'a' or 'b' is empty and not using the complement of 'b'.  The
7836          * intersection must be empty */
7837 	if (*i == a) {
7838 	    SvREFCNT_dec_NN(a);
7839 	}
7840 	else if (*i == b) {
7841 	    SvREFCNT_dec_NN(b);
7842 	}
7843 	*i = _new_invlist(0);
7844 	return;
7845     }
7846 
7847     /* Here both lists exist and are non-empty */
7848     array_a = invlist_array(a);
7849     array_b = invlist_array(b);
7850 
7851     /* If are to take the intersection of 'a' with the complement of b, set it
7852      * up so are looking at b's complement. */
7853     if (complement_b) {
7854 
7855 	/* To complement, we invert: if the first element is 0, remove it.  To
7856 	 * do this, we just pretend the array starts one later, and clear the
7857 	 * flag as we don't have to do anything else later */
7858         if (array_b[0] == 0) {
7859             array_b++;
7860             len_b--;
7861             complement_b = FALSE;
7862         }
7863         else {
7864 
7865             /* But if the first element is not zero, we unshift a 0 before the
7866              * array.  The data structure reserves a space for that 0 (which
7867              * should be a '1' right now), so physical shifting is unneeded,
7868              * but temporarily change that element to 0.  Before exiting the
7869              * routine, we must restore the element to '1' */
7870             array_b--;
7871             len_b++;
7872             array_b[0] = 0;
7873         }
7874     }
7875 
7876     /* Size the intersection for the worst case: that the intersection ends up
7877      * fragmenting everything to be completely disjoint */
7878     r= _new_invlist(len_a + len_b);
7879 
7880     /* Will contain U+0000 iff both components do */
7881     array_r = _invlist_array_init(r, len_a > 0 && array_a[0] == 0
7882 				     && len_b > 0 && array_b[0] == 0);
7883 
7884     /* Go through each list item by item, stopping when exhausted one of
7885      * them */
7886     while (i_a < len_a && i_b < len_b) {
7887 	UV cp;	    /* The element to potentially add to the intersection's
7888 		       array */
7889 	bool cp_in_set;	/* Is it in the input list's set or not */
7890 
7891 	/* We need to take one or the other of the two inputs for the
7892 	 * intersection.  Since we are merging two sorted lists, we take the
7893 	 * smaller of the next items.  In case of a tie, we take the one that
7894 	 * is not in its set first (a difference from the union algorithm).  If
7895 	 * we took one in the set first, it would increment the count, possibly
7896 	 * to 2 which would cause it to be output as starting a range in the
7897 	 * intersection, and the next time through we would take that same
7898 	 * number, and output it again as ending the set.  By doing it the
7899 	 * opposite of this, there is no possibility that the count will be
7900 	 * momentarily incremented to 2.  (In a tie and both are in the set or
7901 	 * both not in the set, it doesn't matter which we take first.) */
7902 	if (array_a[i_a] < array_b[i_b]
7903 	    || (array_a[i_a] == array_b[i_b]
7904 		&& ! ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
7905 	{
7906 	    cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
7907 	    cp= array_a[i_a++];
7908 	}
7909 	else {
7910 	    cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
7911 	    cp= array_b[i_b++];
7912 	}
7913 
7914 	/* Here, have chosen which of the two inputs to look at.  Only output
7915 	 * if the running count changes to/from 2, which marks the
7916 	 * beginning/end of a range that's in the intersection */
7917 	if (cp_in_set) {
7918 	    count++;
7919 	    if (count == 2) {
7920 		array_r[i_r++] = cp;
7921 	    }
7922 	}
7923 	else {
7924 	    if (count == 2) {
7925 		array_r[i_r++] = cp;
7926 	    }
7927 	    count--;
7928 	}
7929     }
7930 
7931     /* Here, we are finished going through at least one of the lists, which
7932      * means there is something remaining in at most one.  We check if the list
7933      * that has been exhausted is positioned such that we are in the middle
7934      * of a range in its set or not.  (i_a and i_b point to elements 1 beyond
7935      * the ones we care about.)  There are four cases:
7936      *	1) Both weren't in their sets, count is 0, and remains 0.  There's
7937      *	   nothing left in the intersection.
7938      *	2) Both were in their sets, count is 2 and perhaps is incremented to
7939      *	   above 2.  What should be output is exactly that which is in the
7940      *	   non-exhausted set, as everything it has is also in the intersection
7941      *	   set, and everything it doesn't have can't be in the intersection
7942      *	3) The exhausted was in its set, non-exhausted isn't, count is 1, and
7943      *	   gets incremented to 2.  Like the previous case, the intersection is
7944      *	   everything that remains in the non-exhausted set.
7945      *	4) the exhausted wasn't in its set, non-exhausted is, count is 1, and
7946      *	   remains 1.  And the intersection has nothing more. */
7947     if ((i_a == len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
7948 	|| (i_b == len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
7949     {
7950 	count++;
7951     }
7952 
7953     /* The final length is what we've output so far plus what else is in the
7954      * intersection.  At most one of the subexpressions below will be non-zero */
7955     len_r = i_r;
7956     if (count >= 2) {
7957 	len_r += (len_a - i_a) + (len_b - i_b);
7958     }
7959 
7960     /* Set result to final length, which can change the pointer to array_r, so
7961      * re-find it */
7962     if (len_r != _invlist_len(r)) {
7963 	invlist_set_len(r, len_r);
7964 	invlist_trim(r);
7965 	array_r = invlist_array(r);
7966     }
7967 
7968     /* Finish outputting any remaining */
7969     if (count >= 2) { /* At most one will have a non-zero copy count */
7970 	IV copy_count;
7971 	if ((copy_count = len_a - i_a) > 0) {
7972 	    Copy(array_a + i_a, array_r + i_r, copy_count, UV);
7973 	}
7974 	else if ((copy_count = len_b - i_b) > 0) {
7975 	    Copy(array_b + i_b, array_r + i_r, copy_count, UV);
7976 	}
7977     }
7978 
7979     /* If we've changed b, restore it */
7980     if (complement_b) {
7981         array_b[0] = 1;
7982     }
7983 
7984     /*  We may be removing a reference to one of the inputs */
7985     if (a == *i || b == *i) {
7986         assert(! invlist_is_iterating(*i));
7987 	SvREFCNT_dec_NN(*i);
7988     }
7989 
7990     *i = r;
7991     return;
7992 }
7993 
7994 SV*
7995 Perl__add_range_to_invlist(pTHX_ SV* invlist, const UV start, const UV end)
7996 {
7997     /* Add the range from 'start' to 'end' inclusive to the inversion list's
7998      * set.  A pointer to the inversion list is returned.  This may actually be
7999      * a new list, in which case the passed in one has been destroyed.  The
8000      * passed in inversion list can be NULL, in which case a new one is created
8001      * with just the one range in it */
8002 
8003     SV* range_invlist;
8004     UV len;
8005 
8006     if (invlist == NULL) {
8007 	invlist = _new_invlist(2);
8008 	len = 0;
8009     }
8010     else {
8011 	len = _invlist_len(invlist);
8012     }
8013 
8014     /* If comes after the final entry actually in the list, can just append it
8015      * to the end, */
8016     if (len == 0
8017 	|| (! ELEMENT_RANGE_MATCHES_INVLIST(len - 1)
8018             && start >= invlist_array(invlist)[len - 1]))
8019     {
8020 	_append_range_to_invlist(invlist, start, end);
8021 	return invlist;
8022     }
8023 
8024     /* Here, can't just append things, create and return a new inversion list
8025      * which is the union of this range and the existing inversion list */
8026     range_invlist = _new_invlist(2);
8027     _append_range_to_invlist(range_invlist, start, end);
8028 
8029     _invlist_union(invlist, range_invlist, &invlist);
8030 
8031     /* The temporary can be freed */
8032     SvREFCNT_dec_NN(range_invlist);
8033 
8034     return invlist;
8035 }
8036 
8037 #endif
8038 
8039 PERL_STATIC_INLINE SV*
8040 S_add_cp_to_invlist(pTHX_ SV* invlist, const UV cp) {
8041     return _add_range_to_invlist(invlist, cp, cp);
8042 }
8043 
8044 #ifndef PERL_IN_XSUB_RE
8045 void
8046 Perl__invlist_invert(pTHX_ SV* const invlist)
8047 {
8048     /* Complement the input inversion list.  This adds a 0 if the list didn't
8049      * have a zero; removes it otherwise.  As described above, the data
8050      * structure is set up so that this is very efficient */
8051 
8052     UV* len_pos = _get_invlist_len_addr(invlist);
8053 
8054     PERL_ARGS_ASSERT__INVLIST_INVERT;
8055 
8056     assert(! invlist_is_iterating(invlist));
8057 
8058     /* The inverse of matching nothing is matching everything */
8059     if (*len_pos == 0) {
8060 	_append_range_to_invlist(invlist, 0, UV_MAX);
8061 	return;
8062     }
8063 
8064     /* The exclusive or complents 0 to 1; and 1 to 0.  If the result is 1, the
8065      * zero element was a 0, so it is being removed, so the length decrements
8066      * by 1; and vice-versa.  SvCUR is unaffected */
8067     if (*get_invlist_zero_addr(invlist) ^= 1) {
8068 	(*len_pos)--;
8069     }
8070     else {
8071 	(*len_pos)++;
8072     }
8073 }
8074 
8075 void
8076 Perl__invlist_invert_prop(pTHX_ SV* const invlist)
8077 {
8078     /* Complement the input inversion list (which must be a Unicode property,
8079      * all of which don't match above the Unicode maximum code point.)  And
8080      * Perl has chosen to not have the inversion match above that either.  This
8081      * adds a 0x110000 if the list didn't end with it, and removes it if it did
8082      */
8083 
8084     UV len;
8085     UV* array;
8086 
8087     PERL_ARGS_ASSERT__INVLIST_INVERT_PROP;
8088 
8089     _invlist_invert(invlist);
8090 
8091     len = _invlist_len(invlist);
8092 
8093     if (len != 0) { /* If empty do nothing */
8094 	array = invlist_array(invlist);
8095 	if (array[len - 1] != PERL_UNICODE_MAX + 1) {
8096 	    /* Add 0x110000.  First, grow if necessary */
8097 	    len++;
8098 	    if (invlist_max(invlist) < len) {
8099 		invlist_extend(invlist, len);
8100 		array = invlist_array(invlist);
8101 	    }
8102 	    invlist_set_len(invlist, len);
8103 	    array[len - 1] = PERL_UNICODE_MAX + 1;
8104 	}
8105 	else {  /* Remove the 0x110000 */
8106 	    invlist_set_len(invlist, len - 1);
8107 	}
8108     }
8109 
8110     return;
8111 }
8112 #endif
8113 
8114 PERL_STATIC_INLINE SV*
8115 S_invlist_clone(pTHX_ SV* const invlist)
8116 {
8117 
8118     /* Return a new inversion list that is a copy of the input one, which is
8119      * unchanged */
8120 
8121     /* Need to allocate extra space to accommodate Perl's addition of a
8122      * trailing NUL to SvPV's, since it thinks they are always strings */
8123     SV* new_invlist = _new_invlist(_invlist_len(invlist) + 1);
8124     STRLEN length = SvCUR(invlist);
8125 
8126     PERL_ARGS_ASSERT_INVLIST_CLONE;
8127 
8128     SvCUR_set(new_invlist, length); /* This isn't done automatically */
8129     Copy(SvPVX(invlist), SvPVX(new_invlist), length, char);
8130 
8131     return new_invlist;
8132 }
8133 
8134 PERL_STATIC_INLINE UV*
8135 S_get_invlist_iter_addr(pTHX_ SV* invlist)
8136 {
8137     /* Return the address of the UV that contains the current iteration
8138      * position */
8139 
8140     PERL_ARGS_ASSERT_GET_INVLIST_ITER_ADDR;
8141 
8142     return (UV *) (SvPVX(invlist) + (INVLIST_ITER_OFFSET * sizeof (UV)));
8143 }
8144 
8145 PERL_STATIC_INLINE UV*
8146 S_get_invlist_version_id_addr(pTHX_ SV* invlist)
8147 {
8148     /* Return the address of the UV that contains the version id. */
8149 
8150     PERL_ARGS_ASSERT_GET_INVLIST_VERSION_ID_ADDR;
8151 
8152     return (UV *) (SvPVX(invlist) + (INVLIST_VERSION_ID_OFFSET * sizeof (UV)));
8153 }
8154 
8155 PERL_STATIC_INLINE void
8156 S_invlist_iterinit(pTHX_ SV* invlist)	/* Initialize iterator for invlist */
8157 {
8158     PERL_ARGS_ASSERT_INVLIST_ITERINIT;
8159 
8160     *get_invlist_iter_addr(invlist) = 0;
8161 }
8162 
8163 PERL_STATIC_INLINE void
8164 S_invlist_iterfinish(pTHX_ SV* invlist)
8165 {
8166     /* Terminate iterator for invlist.  This is to catch development errors.
8167      * Any iteration that is interrupted before completed should call this
8168      * function.  Functions that add code points anywhere else but to the end
8169      * of an inversion list assert that they are not in the middle of an
8170      * iteration.  If they were, the addition would make the iteration
8171      * problematical: if the iteration hadn't reached the place where things
8172      * were being added, it would be ok */
8173 
8174     PERL_ARGS_ASSERT_INVLIST_ITERFINISH;
8175 
8176     *get_invlist_iter_addr(invlist) = UV_MAX;
8177 }
8178 
8179 STATIC bool
8180 S_invlist_iternext(pTHX_ SV* invlist, UV* start, UV* end)
8181 {
8182     /* An C<invlist_iterinit> call on <invlist> must be used to set this up.
8183      * This call sets in <*start> and <*end>, the next range in <invlist>.
8184      * Returns <TRUE> if successful and the next call will return the next
8185      * range; <FALSE> if was already at the end of the list.  If the latter,
8186      * <*start> and <*end> are unchanged, and the next call to this function
8187      * will start over at the beginning of the list */
8188 
8189     UV* pos = get_invlist_iter_addr(invlist);
8190     UV len = _invlist_len(invlist);
8191     UV *array;
8192 
8193     PERL_ARGS_ASSERT_INVLIST_ITERNEXT;
8194 
8195     if (*pos >= len) {
8196 	*pos = UV_MAX;	/* Force iterinit() to be required next time */
8197 	return FALSE;
8198     }
8199 
8200     array = invlist_array(invlist);
8201 
8202     *start = array[(*pos)++];
8203 
8204     if (*pos >= len) {
8205 	*end = UV_MAX;
8206     }
8207     else {
8208 	*end = array[(*pos)++] - 1;
8209     }
8210 
8211     return TRUE;
8212 }
8213 
8214 PERL_STATIC_INLINE bool
8215 S_invlist_is_iterating(pTHX_ SV* const invlist)
8216 {
8217     PERL_ARGS_ASSERT_INVLIST_IS_ITERATING;
8218 
8219     return *(get_invlist_iter_addr(invlist)) < UV_MAX;
8220 }
8221 
8222 PERL_STATIC_INLINE UV
8223 S_invlist_highest(pTHX_ SV* const invlist)
8224 {
8225     /* Returns the highest code point that matches an inversion list.  This API
8226      * has an ambiguity, as it returns 0 under either the highest is actually
8227      * 0, or if the list is empty.  If this distinction matters to you, check
8228      * for emptiness before calling this function */
8229 
8230     UV len = _invlist_len(invlist);
8231     UV *array;
8232 
8233     PERL_ARGS_ASSERT_INVLIST_HIGHEST;
8234 
8235     if (len == 0) {
8236 	return 0;
8237     }
8238 
8239     array = invlist_array(invlist);
8240 
8241     /* The last element in the array in the inversion list always starts a
8242      * range that goes to infinity.  That range may be for code points that are
8243      * matched in the inversion list, or it may be for ones that aren't
8244      * matched.  In the latter case, the highest code point in the set is one
8245      * less than the beginning of this range; otherwise it is the final element
8246      * of this range: infinity */
8247     return (ELEMENT_RANGE_MATCHES_INVLIST(len - 1))
8248            ? UV_MAX
8249            : array[len - 1] - 1;
8250 }
8251 
8252 #ifndef PERL_IN_XSUB_RE
8253 SV *
8254 Perl__invlist_contents(pTHX_ SV* const invlist)
8255 {
8256     /* Get the contents of an inversion list into a string SV so that they can
8257      * be printed out.  It uses the format traditionally done for debug tracing
8258      */
8259 
8260     UV start, end;
8261     SV* output = newSVpvs("\n");
8262 
8263     PERL_ARGS_ASSERT__INVLIST_CONTENTS;
8264 
8265     assert(! invlist_is_iterating(invlist));
8266 
8267     invlist_iterinit(invlist);
8268     while (invlist_iternext(invlist, &start, &end)) {
8269 	if (end == UV_MAX) {
8270 	    Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\tINFINITY\n", start);
8271 	}
8272 	else if (end != start) {
8273 	    Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\t%04"UVXf"\n",
8274 		    start,       end);
8275 	}
8276 	else {
8277 	    Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\n", start);
8278 	}
8279     }
8280 
8281     return output;
8282 }
8283 #endif
8284 
8285 #ifdef PERL_ARGS_ASSERT__INVLIST_DUMP
8286 void
8287 Perl__invlist_dump(pTHX_ SV* const invlist, const char * const header)
8288 {
8289     /* Dumps out the ranges in an inversion list.  The string 'header'
8290      * if present is output on a line before the first range */
8291 
8292     UV start, end;
8293 
8294     PERL_ARGS_ASSERT__INVLIST_DUMP;
8295 
8296     if (header && strlen(header)) {
8297 	PerlIO_printf(Perl_debug_log, "%s\n", header);
8298     }
8299     if (invlist_is_iterating(invlist)) {
8300         PerlIO_printf(Perl_debug_log, "Can't dump because is in middle of iterating\n");
8301         return;
8302     }
8303 
8304     invlist_iterinit(invlist);
8305     while (invlist_iternext(invlist, &start, &end)) {
8306 	if (end == UV_MAX) {
8307 	    PerlIO_printf(Perl_debug_log, "0x%04"UVXf" .. INFINITY\n", start);
8308 	}
8309 	else if (end != start) {
8310 	    PerlIO_printf(Perl_debug_log, "0x%04"UVXf" .. 0x%04"UVXf"\n",
8311 		                                 start,         end);
8312 	}
8313 	else {
8314 	    PerlIO_printf(Perl_debug_log, "0x%04"UVXf"\n", start);
8315 	}
8316     }
8317 }
8318 #endif
8319 
8320 #if 0
8321 bool
8322 S__invlistEQ(pTHX_ SV* const a, SV* const b, bool complement_b)
8323 {
8324     /* Return a boolean as to if the two passed in inversion lists are
8325      * identical.  The final argument, if TRUE, says to take the complement of
8326      * the second inversion list before doing the comparison */
8327 
8328     UV* array_a = invlist_array(a);
8329     UV* array_b = invlist_array(b);
8330     UV len_a = _invlist_len(a);
8331     UV len_b = _invlist_len(b);
8332 
8333     UV i = 0;		    /* current index into the arrays */
8334     bool retval = TRUE;     /* Assume are identical until proven otherwise */
8335 
8336     PERL_ARGS_ASSERT__INVLISTEQ;
8337 
8338     /* If are to compare 'a' with the complement of b, set it
8339      * up so are looking at b's complement. */
8340     if (complement_b) {
8341 
8342         /* The complement of nothing is everything, so <a> would have to have
8343          * just one element, starting at zero (ending at infinity) */
8344         if (len_b == 0) {
8345             return (len_a == 1 && array_a[0] == 0);
8346         }
8347         else if (array_b[0] == 0) {
8348 
8349             /* Otherwise, to complement, we invert.  Here, the first element is
8350              * 0, just remove it.  To do this, we just pretend the array starts
8351              * one later, and clear the flag as we don't have to do anything
8352              * else later */
8353 
8354             array_b++;
8355             len_b--;
8356             complement_b = FALSE;
8357         }
8358         else {
8359 
8360             /* But if the first element is not zero, we unshift a 0 before the
8361              * array.  The data structure reserves a space for that 0 (which
8362              * should be a '1' right now), so physical shifting is unneeded,
8363              * but temporarily change that element to 0.  Before exiting the
8364              * routine, we must restore the element to '1' */
8365             array_b--;
8366             len_b++;
8367             array_b[0] = 0;
8368         }
8369     }
8370 
8371     /* Make sure that the lengths are the same, as well as the final element
8372      * before looping through the remainder.  (Thus we test the length, final,
8373      * and first elements right off the bat) */
8374     if (len_a != len_b || array_a[len_a-1] != array_b[len_a-1]) {
8375         retval = FALSE;
8376     }
8377     else for (i = 0; i < len_a - 1; i++) {
8378         if (array_a[i] != array_b[i]) {
8379             retval = FALSE;
8380             break;
8381         }
8382     }
8383 
8384     if (complement_b) {
8385         array_b[0] = 1;
8386     }
8387     return retval;
8388 }
8389 #endif
8390 
8391 #undef HEADER_LENGTH
8392 #undef INVLIST_INITIAL_LENGTH
8393 #undef TO_INTERNAL_SIZE
8394 #undef FROM_INTERNAL_SIZE
8395 #undef INVLIST_LEN_OFFSET
8396 #undef INVLIST_ZERO_OFFSET
8397 #undef INVLIST_ITER_OFFSET
8398 #undef INVLIST_VERSION_ID
8399 #undef INVLIST_PREVIOUS_INDEX_OFFSET
8400 
8401 /* End of inversion list object */
8402 
8403 STATIC void
8404 S_parse_lparen_question_flags(pTHX_ struct RExC_state_t *pRExC_state)
8405 {
8406     /* This parses the flags that are in either the '(?foo)' or '(?foo:bar)'
8407      * constructs, and updates RExC_flags with them.  On input, RExC_parse
8408      * should point to the first flag; it is updated on output to point to the
8409      * final ')' or ':'.  There needs to be at least one flag, or this will
8410      * abort */
8411 
8412     /* for (?g), (?gc), and (?o) warnings; warning
8413        about (?c) will warn about (?g) -- japhy    */
8414 
8415 #define WASTED_O  0x01
8416 #define WASTED_G  0x02
8417 #define WASTED_C  0x04
8418 #define WASTED_GC (0x02|0x04)
8419     I32 wastedflags = 0x00;
8420     U32 posflags = 0, negflags = 0;
8421     U32 *flagsp = &posflags;
8422     char has_charset_modifier = '\0';
8423     regex_charset cs;
8424     bool has_use_defaults = FALSE;
8425     const char* const seqstart = RExC_parse - 1; /* Point to the '?' */
8426 
8427     PERL_ARGS_ASSERT_PARSE_LPAREN_QUESTION_FLAGS;
8428 
8429     /* '^' as an initial flag sets certain defaults */
8430     if (UCHARAT(RExC_parse) == '^') {
8431         RExC_parse++;
8432         has_use_defaults = TRUE;
8433         STD_PMMOD_FLAGS_CLEAR(&RExC_flags);
8434         set_regex_charset(&RExC_flags, (RExC_utf8 || RExC_uni_semantics)
8435                                         ? REGEX_UNICODE_CHARSET
8436                                         : REGEX_DEPENDS_CHARSET);
8437     }
8438 
8439     cs = get_regex_charset(RExC_flags);
8440     if (cs == REGEX_DEPENDS_CHARSET
8441         && (RExC_utf8 || RExC_uni_semantics))
8442     {
8443         cs = REGEX_UNICODE_CHARSET;
8444     }
8445 
8446     while (*RExC_parse) {
8447         /* && strchr("iogcmsx", *RExC_parse) */
8448         /* (?g), (?gc) and (?o) are useless here
8449            and must be globally applied -- japhy */
8450         switch (*RExC_parse) {
8451 
8452             /* Code for the imsx flags */
8453             CASE_STD_PMMOD_FLAGS_PARSE_SET(flagsp);
8454 
8455             case LOCALE_PAT_MOD:
8456                 if (has_charset_modifier) {
8457                     goto excess_modifier;
8458                 }
8459                 else if (flagsp == &negflags) {
8460                     goto neg_modifier;
8461                 }
8462                 cs = REGEX_LOCALE_CHARSET;
8463                 has_charset_modifier = LOCALE_PAT_MOD;
8464                 RExC_contains_locale = 1;
8465                 break;
8466             case UNICODE_PAT_MOD:
8467                 if (has_charset_modifier) {
8468                     goto excess_modifier;
8469                 }
8470                 else if (flagsp == &negflags) {
8471                     goto neg_modifier;
8472                 }
8473                 cs = REGEX_UNICODE_CHARSET;
8474                 has_charset_modifier = UNICODE_PAT_MOD;
8475                 break;
8476             case ASCII_RESTRICT_PAT_MOD:
8477                 if (flagsp == &negflags) {
8478                     goto neg_modifier;
8479                 }
8480                 if (has_charset_modifier) {
8481                     if (cs != REGEX_ASCII_RESTRICTED_CHARSET) {
8482                         goto excess_modifier;
8483                     }
8484                     /* Doubled modifier implies more restricted */
8485                     cs = REGEX_ASCII_MORE_RESTRICTED_CHARSET;
8486                 }
8487                 else {
8488                     cs = REGEX_ASCII_RESTRICTED_CHARSET;
8489                 }
8490                 has_charset_modifier = ASCII_RESTRICT_PAT_MOD;
8491                 break;
8492             case DEPENDS_PAT_MOD:
8493                 if (has_use_defaults) {
8494                     goto fail_modifiers;
8495                 }
8496                 else if (flagsp == &negflags) {
8497                     goto neg_modifier;
8498                 }
8499                 else if (has_charset_modifier) {
8500                     goto excess_modifier;
8501                 }
8502 
8503                 /* The dual charset means unicode semantics if the
8504                  * pattern (or target, not known until runtime) are
8505                  * utf8, or something in the pattern indicates unicode
8506                  * semantics */
8507                 cs = (RExC_utf8 || RExC_uni_semantics)
8508                      ? REGEX_UNICODE_CHARSET
8509                      : REGEX_DEPENDS_CHARSET;
8510                 has_charset_modifier = DEPENDS_PAT_MOD;
8511                 break;
8512             excess_modifier:
8513                 RExC_parse++;
8514                 if (has_charset_modifier == ASCII_RESTRICT_PAT_MOD) {
8515                     vFAIL2("Regexp modifier \"%c\" may appear a maximum of twice", ASCII_RESTRICT_PAT_MOD);
8516                 }
8517                 else if (has_charset_modifier == *(RExC_parse - 1)) {
8518                     vFAIL2("Regexp modifier \"%c\" may not appear twice", *(RExC_parse - 1));
8519                 }
8520                 else {
8521                     vFAIL3("Regexp modifiers \"%c\" and \"%c\" are mutually exclusive", has_charset_modifier, *(RExC_parse - 1));
8522                 }
8523                 /*NOTREACHED*/
8524             neg_modifier:
8525                 RExC_parse++;
8526                 vFAIL2("Regexp modifier \"%c\" may not appear after the \"-\"", *(RExC_parse - 1));
8527                 /*NOTREACHED*/
8528             case ONCE_PAT_MOD: /* 'o' */
8529             case GLOBAL_PAT_MOD: /* 'g' */
8530                 if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
8531                     const I32 wflagbit = *RExC_parse == 'o' ? WASTED_O : WASTED_G;
8532                     if (! (wastedflags & wflagbit) ) {
8533                         wastedflags |= wflagbit;
8534                         vWARN5(
8535                             RExC_parse + 1,
8536                             "Useless (%s%c) - %suse /%c modifier",
8537                             flagsp == &negflags ? "?-" : "?",
8538                             *RExC_parse,
8539                             flagsp == &negflags ? "don't " : "",
8540                             *RExC_parse
8541                         );
8542                     }
8543                 }
8544                 break;
8545 
8546             case CONTINUE_PAT_MOD: /* 'c' */
8547                 if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
8548                     if (! (wastedflags & WASTED_C) ) {
8549                         wastedflags |= WASTED_GC;
8550                         vWARN3(
8551                             RExC_parse + 1,
8552                             "Useless (%sc) - %suse /gc modifier",
8553                             flagsp == &negflags ? "?-" : "?",
8554                             flagsp == &negflags ? "don't " : ""
8555                         );
8556                     }
8557                 }
8558                 break;
8559             case KEEPCOPY_PAT_MOD: /* 'p' */
8560                 if (flagsp == &negflags) {
8561                     if (SIZE_ONLY)
8562                         ckWARNreg(RExC_parse + 1,"Useless use of (?-p)");
8563                 } else {
8564                     *flagsp |= RXf_PMf_KEEPCOPY;
8565                 }
8566                 break;
8567             case '-':
8568                 /* A flag is a default iff it is following a minus, so
8569                  * if there is a minus, it means will be trying to
8570                  * re-specify a default which is an error */
8571                 if (has_use_defaults || flagsp == &negflags) {
8572                     goto fail_modifiers;
8573                 }
8574                 flagsp = &negflags;
8575                 wastedflags = 0;  /* reset so (?g-c) warns twice */
8576                 break;
8577             case ':':
8578             case ')':
8579                 RExC_flags |= posflags;
8580                 RExC_flags &= ~negflags;
8581                 set_regex_charset(&RExC_flags, cs);
8582                 return;
8583                 /*NOTREACHED*/
8584             default:
8585             fail_modifiers:
8586                 RExC_parse++;
8587                 vFAIL3("Sequence (%.*s...) not recognized",
8588                        RExC_parse-seqstart, seqstart);
8589                 /*NOTREACHED*/
8590         }
8591 
8592         ++RExC_parse;
8593     }
8594 }
8595 
8596 /*
8597  - reg - regular expression, i.e. main body or parenthesized thing
8598  *
8599  * Caller must absorb opening parenthesis.
8600  *
8601  * Combining parenthesis handling with the base level of regular expression
8602  * is a trifle forced, but the need to tie the tails of the branches to what
8603  * follows makes it hard to avoid.
8604  */
8605 #define REGTAIL(x,y,z) regtail((x),(y),(z),depth+1)
8606 #ifdef DEBUGGING
8607 #define REGTAIL_STUDY(x,y,z) regtail_study((x),(y),(z),depth+1)
8608 #else
8609 #define REGTAIL_STUDY(x,y,z) regtail((x),(y),(z),depth+1)
8610 #endif
8611 
8612 /* Returns NULL, setting *flagp to TRYAGAIN at the end of (?) that only sets
8613    flags. Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan
8614    needs to be restarted.
8615    Otherwise would only return NULL if regbranch() returns NULL, which
8616    cannot happen.  */
8617 STATIC regnode *
8618 S_reg(pTHX_ RExC_state_t *pRExC_state, I32 paren, I32 *flagp,U32 depth)
8619     /* paren: Parenthesized? 0=top; 1,2=inside '(': changed to letter.
8620      * 2 is like 1, but indicates that nextchar() has been called to advance
8621      * RExC_parse beyond the '('.  Things like '(?' are indivisible tokens, and
8622      * this flag alerts us to the need to check for that */
8623 {
8624     dVAR;
8625     regnode *ret;		/* Will be the head of the group. */
8626     regnode *br;
8627     regnode *lastbr;
8628     regnode *ender = NULL;
8629     I32 parno = 0;
8630     I32 flags;
8631     U32 oregflags = RExC_flags;
8632     bool have_branch = 0;
8633     bool is_open = 0;
8634     I32 freeze_paren = 0;
8635     I32 after_freeze = 0;
8636 
8637     char * parse_start = RExC_parse; /* MJD */
8638     char * const oregcomp_parse = RExC_parse;
8639 
8640     GET_RE_DEBUG_FLAGS_DECL;
8641 
8642     PERL_ARGS_ASSERT_REG;
8643     DEBUG_PARSE("reg ");
8644 
8645     *flagp = 0;				/* Tentatively. */
8646 
8647 
8648     /* Make an OPEN node, if parenthesized. */
8649     if (paren) {
8650 
8651         /* Under /x, space and comments can be gobbled up between the '(' and
8652          * here (if paren ==2).  The forms '(*VERB' and '(?...' disallow such
8653          * intervening space, as the sequence is a token, and a token should be
8654          * indivisible */
8655         bool has_intervening_patws = paren == 2 && *(RExC_parse - 1) != '(';
8656 
8657         if ( *RExC_parse == '*') { /* (*VERB:ARG) */
8658 	    char *start_verb = RExC_parse;
8659 	    STRLEN verb_len = 0;
8660 	    char *start_arg = NULL;
8661 	    unsigned char op = 0;
8662 	    int argok = 1;
8663 	    int internal_argval = 0; /* internal_argval is only useful if !argok */
8664 
8665             if (has_intervening_patws && SIZE_ONLY) {
8666                 ckWARNregdep(RExC_parse + 1, "In '(*VERB...)', splitting the initial '(*' is deprecated");
8667             }
8668 	    while ( *RExC_parse && *RExC_parse != ')' ) {
8669 	        if ( *RExC_parse == ':' ) {
8670 	            start_arg = RExC_parse + 1;
8671 	            break;
8672 	        }
8673 	        RExC_parse++;
8674 	    }
8675 	    ++start_verb;
8676 	    verb_len = RExC_parse - start_verb;
8677 	    if ( start_arg ) {
8678 	        RExC_parse++;
8679 	        while ( *RExC_parse && *RExC_parse != ')' )
8680 	            RExC_parse++;
8681 	        if ( *RExC_parse != ')' )
8682 	            vFAIL("Unterminated verb pattern argument");
8683 	        if ( RExC_parse == start_arg )
8684 	            start_arg = NULL;
8685 	    } else {
8686 	        if ( *RExC_parse != ')' )
8687 	            vFAIL("Unterminated verb pattern");
8688 	    }
8689 
8690 	    switch ( *start_verb ) {
8691             case 'A':  /* (*ACCEPT) */
8692                 if ( memEQs(start_verb,verb_len,"ACCEPT") ) {
8693 		    op = ACCEPT;
8694 		    internal_argval = RExC_nestroot;
8695 		}
8696 		break;
8697             case 'C':  /* (*COMMIT) */
8698                 if ( memEQs(start_verb,verb_len,"COMMIT") )
8699                     op = COMMIT;
8700                 break;
8701             case 'F':  /* (*FAIL) */
8702                 if ( verb_len==1 || memEQs(start_verb,verb_len,"FAIL") ) {
8703 		    op = OPFAIL;
8704 		    argok = 0;
8705 		}
8706 		break;
8707             case ':':  /* (*:NAME) */
8708 	    case 'M':  /* (*MARK:NAME) */
8709 	        if ( verb_len==0 || memEQs(start_verb,verb_len,"MARK") ) {
8710                     op = MARKPOINT;
8711                     argok = -1;
8712                 }
8713                 break;
8714             case 'P':  /* (*PRUNE) */
8715                 if ( memEQs(start_verb,verb_len,"PRUNE") )
8716                     op = PRUNE;
8717                 break;
8718             case 'S':   /* (*SKIP) */
8719                 if ( memEQs(start_verb,verb_len,"SKIP") )
8720                     op = SKIP;
8721                 break;
8722             case 'T':  /* (*THEN) */
8723                 /* [19:06] <TimToady> :: is then */
8724                 if ( memEQs(start_verb,verb_len,"THEN") ) {
8725                     op = CUTGROUP;
8726                     RExC_seen |= REG_SEEN_CUTGROUP;
8727                 }
8728                 break;
8729 	    }
8730 	    if ( ! op ) {
8731 	        RExC_parse++;
8732 	        vFAIL3("Unknown verb pattern '%.*s'",
8733 	            verb_len, start_verb);
8734 	    }
8735 	    if ( argok ) {
8736                 if ( start_arg && internal_argval ) {
8737 	            vFAIL3("Verb pattern '%.*s' may not have an argument",
8738 	                verb_len, start_verb);
8739 	        } else if ( argok < 0 && !start_arg ) {
8740                     vFAIL3("Verb pattern '%.*s' has a mandatory argument",
8741 	                verb_len, start_verb);
8742 	        } else {
8743 	            ret = reganode(pRExC_state, op, internal_argval);
8744 	            if ( ! internal_argval && ! SIZE_ONLY ) {
8745                         if (start_arg) {
8746                             SV *sv = newSVpvn( start_arg, RExC_parse - start_arg);
8747                             ARG(ret) = add_data( pRExC_state, 1, "S" );
8748                             RExC_rxi->data->data[ARG(ret)]=(void*)sv;
8749                             ret->flags = 0;
8750                         } else {
8751                             ret->flags = 1;
8752                         }
8753                     }
8754 	        }
8755 	        if (!internal_argval)
8756 	            RExC_seen |= REG_SEEN_VERBARG;
8757 	    } else if ( start_arg ) {
8758 	        vFAIL3("Verb pattern '%.*s' may not have an argument",
8759 	                verb_len, start_verb);
8760 	    } else {
8761 	        ret = reg_node(pRExC_state, op);
8762 	    }
8763 	    nextchar(pRExC_state);
8764 	    return ret;
8765         } else
8766 	if (*RExC_parse == '?') { /* (?...) */
8767 	    bool is_logical = 0;
8768 	    const char * const seqstart = RExC_parse;
8769             if (has_intervening_patws && SIZE_ONLY) {
8770                 ckWARNregdep(RExC_parse + 1, "In '(?...)', splitting the initial '(?' is deprecated");
8771             }
8772 
8773 	    RExC_parse++;
8774 	    paren = *RExC_parse++;
8775 	    ret = NULL;			/* For look-ahead/behind. */
8776 	    switch (paren) {
8777 
8778 	    case 'P':	/* (?P...) variants for those used to PCRE/Python */
8779 	        paren = *RExC_parse++;
8780 		if ( paren == '<')         /* (?P<...>) named capture */
8781 		    goto named_capture;
8782                 else if (paren == '>') {   /* (?P>name) named recursion */
8783                     goto named_recursion;
8784                 }
8785                 else if (paren == '=') {   /* (?P=...)  named backref */
8786                     /* this pretty much dupes the code for \k<NAME> in regatom(), if
8787                        you change this make sure you change that */
8788                     char* name_start = RExC_parse;
8789 		    U32 num = 0;
8790                     SV *sv_dat = reg_scan_name(pRExC_state,
8791                         SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
8792                     if (RExC_parse == name_start || *RExC_parse != ')')
8793                         vFAIL2("Sequence %.3s... not terminated",parse_start);
8794 
8795                     if (!SIZE_ONLY) {
8796                         num = add_data( pRExC_state, 1, "S" );
8797                         RExC_rxi->data->data[num]=(void*)sv_dat;
8798                         SvREFCNT_inc_simple_void(sv_dat);
8799                     }
8800                     RExC_sawback = 1;
8801 		    ret = reganode(pRExC_state,
8802 				   ((! FOLD)
8803 				     ? NREF
8804 				     : (ASCII_FOLD_RESTRICTED)
8805 				       ? NREFFA
8806                                        : (AT_LEAST_UNI_SEMANTICS)
8807                                          ? NREFFU
8808                                          : (LOC)
8809                                            ? NREFFL
8810                                            : NREFF),
8811 				    num);
8812                     *flagp |= HASWIDTH;
8813 
8814                     Set_Node_Offset(ret, parse_start+1);
8815                     Set_Node_Cur_Length(ret); /* MJD */
8816 
8817                     nextchar(pRExC_state);
8818                     return ret;
8819                 }
8820                 RExC_parse++;
8821 		vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
8822 		/*NOTREACHED*/
8823             case '<':           /* (?<...) */
8824 		if (*RExC_parse == '!')
8825 		    paren = ',';
8826 		else if (*RExC_parse != '=')
8827               named_capture:
8828 		{               /* (?<...>) */
8829 		    char *name_start;
8830 		    SV *svname;
8831 		    paren= '>';
8832             case '\'':          /* (?'...') */
8833     		    name_start= RExC_parse;
8834     		    svname = reg_scan_name(pRExC_state,
8835     		        SIZE_ONLY ?  /* reverse test from the others */
8836     		        REG_RSN_RETURN_NAME :
8837     		        REG_RSN_RETURN_NULL);
8838 		    if (RExC_parse == name_start) {
8839 		        RExC_parse++;
8840 		        vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
8841 		        /*NOTREACHED*/
8842                     }
8843 		    if (*RExC_parse != paren)
8844 		        vFAIL2("Sequence (?%c... not terminated",
8845 		            paren=='>' ? '<' : paren);
8846 		    if (SIZE_ONLY) {
8847 			HE *he_str;
8848 			SV *sv_dat = NULL;
8849                         if (!svname) /* shouldn't happen */
8850                             Perl_croak(aTHX_
8851                                 "panic: reg_scan_name returned NULL");
8852                         if (!RExC_paren_names) {
8853                             RExC_paren_names= newHV();
8854                             sv_2mortal(MUTABLE_SV(RExC_paren_names));
8855 #ifdef DEBUGGING
8856                             RExC_paren_name_list= newAV();
8857                             sv_2mortal(MUTABLE_SV(RExC_paren_name_list));
8858 #endif
8859                         }
8860                         he_str = hv_fetch_ent( RExC_paren_names, svname, 1, 0 );
8861                         if ( he_str )
8862                             sv_dat = HeVAL(he_str);
8863                         if ( ! sv_dat ) {
8864                             /* croak baby croak */
8865                             Perl_croak(aTHX_
8866                                 "panic: paren_name hash element allocation failed");
8867                         } else if ( SvPOK(sv_dat) ) {
8868                             /* (?|...) can mean we have dupes so scan to check
8869                                its already been stored. Maybe a flag indicating
8870                                we are inside such a construct would be useful,
8871                                but the arrays are likely to be quite small, so
8872                                for now we punt -- dmq */
8873                             IV count = SvIV(sv_dat);
8874                             I32 *pv = (I32*)SvPVX(sv_dat);
8875                             IV i;
8876                             for ( i = 0 ; i < count ; i++ ) {
8877                                 if ( pv[i] == RExC_npar ) {
8878                                     count = 0;
8879                                     break;
8880                                 }
8881                             }
8882                             if ( count ) {
8883                                 pv = (I32*)SvGROW(sv_dat, SvCUR(sv_dat) + sizeof(I32)+1);
8884                                 SvCUR_set(sv_dat, SvCUR(sv_dat) + sizeof(I32));
8885                                 pv[count] = RExC_npar;
8886                                 SvIV_set(sv_dat, SvIVX(sv_dat) + 1);
8887                             }
8888                         } else {
8889                             (void)SvUPGRADE(sv_dat,SVt_PVNV);
8890                             sv_setpvn(sv_dat, (char *)&(RExC_npar), sizeof(I32));
8891                             SvIOK_on(sv_dat);
8892                             SvIV_set(sv_dat, 1);
8893                         }
8894 #ifdef DEBUGGING
8895 			/* Yes this does cause a memory leak in debugging Perls */
8896                         if (!av_store(RExC_paren_name_list, RExC_npar, SvREFCNT_inc(svname)))
8897                             SvREFCNT_dec_NN(svname);
8898 #endif
8899 
8900                         /*sv_dump(sv_dat);*/
8901                     }
8902                     nextchar(pRExC_state);
8903 		    paren = 1;
8904 		    goto capturing_parens;
8905 		}
8906                 RExC_seen |= REG_SEEN_LOOKBEHIND;
8907 		RExC_in_lookbehind++;
8908 		RExC_parse++;
8909 	    case '=':           /* (?=...) */
8910 		RExC_seen_zerolen++;
8911                 break;
8912 	    case '!':           /* (?!...) */
8913 		RExC_seen_zerolen++;
8914 	        if (*RExC_parse == ')') {
8915 	            ret=reg_node(pRExC_state, OPFAIL);
8916 	            nextchar(pRExC_state);
8917 	            return ret;
8918 	        }
8919 	        break;
8920 	    case '|':           /* (?|...) */
8921 	        /* branch reset, behave like a (?:...) except that
8922 	           buffers in alternations share the same numbers */
8923 	        paren = ':';
8924 	        after_freeze = freeze_paren = RExC_npar;
8925 	        break;
8926 	    case ':':           /* (?:...) */
8927 	    case '>':           /* (?>...) */
8928 		break;
8929 	    case '$':           /* (?$...) */
8930 	    case '@':           /* (?@...) */
8931 		vFAIL2("Sequence (?%c...) not implemented", (int)paren);
8932 		break;
8933             case '#':           /* (?#...) */
8934                 /* XXX As soon as we disallow separating the '?' and '*' (by
8935                  * spaces or (?#...) comment), it is believed that this case
8936                  * will be unreachable and can be removed.  See
8937                  * [perl #117327] */
8938                 while (*RExC_parse && *RExC_parse != ')')
8939 		    RExC_parse++;
8940 		if (*RExC_parse != ')')
8941 		    FAIL("Sequence (?#... not terminated");
8942 		nextchar(pRExC_state);
8943 		*flagp = TRYAGAIN;
8944 		return NULL;
8945 	    case '0' :           /* (?0) */
8946 	    case 'R' :           /* (?R) */
8947 		if (*RExC_parse != ')')
8948 		    FAIL("Sequence (?R) not terminated");
8949 		ret = reg_node(pRExC_state, GOSTART);
8950 		*flagp |= POSTPONED;
8951 		nextchar(pRExC_state);
8952 		return ret;
8953 		/*notreached*/
8954             { /* named and numeric backreferences */
8955                 I32 num;
8956             case '&':            /* (?&NAME) */
8957                 parse_start = RExC_parse - 1;
8958               named_recursion:
8959                 {
8960     		    SV *sv_dat = reg_scan_name(pRExC_state,
8961     		        SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
8962     		     num = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
8963                 }
8964                 goto gen_recurse_regop;
8965                 assert(0); /* NOT REACHED */
8966             case '+':
8967                 if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
8968                     RExC_parse++;
8969                     vFAIL("Illegal pattern");
8970                 }
8971                 goto parse_recursion;
8972                 /* NOT REACHED*/
8973             case '-': /* (?-1) */
8974                 if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
8975                     RExC_parse--; /* rewind to let it be handled later */
8976                     goto parse_flags;
8977                 }
8978                 /*FALLTHROUGH */
8979             case '1': case '2': case '3': case '4': /* (?1) */
8980 	    case '5': case '6': case '7': case '8': case '9':
8981 	        RExC_parse--;
8982               parse_recursion:
8983 		num = atoi(RExC_parse);
8984   	        parse_start = RExC_parse - 1; /* MJD */
8985 	        if (*RExC_parse == '-')
8986 	            RExC_parse++;
8987 		while (isDIGIT(*RExC_parse))
8988 			RExC_parse++;
8989 	        if (*RExC_parse!=')')
8990 	            vFAIL("Expecting close bracket");
8991 
8992               gen_recurse_regop:
8993                 if ( paren == '-' ) {
8994                     /*
8995                     Diagram of capture buffer numbering.
8996                     Top line is the normal capture buffer numbers
8997                     Bottom line is the negative indexing as from
8998                     the X (the (?-2))
8999 
9000                     +   1 2    3 4 5 X          6 7
9001                        /(a(x)y)(a(b(c(?-2)d)e)f)(g(h))/
9002                     -   5 4    3 2 1 X          x x
9003 
9004                     */
9005                     num = RExC_npar + num;
9006                     if (num < 1)  {
9007                         RExC_parse++;
9008                         vFAIL("Reference to nonexistent group");
9009                     }
9010                 } else if ( paren == '+' ) {
9011                     num = RExC_npar + num - 1;
9012                 }
9013 
9014                 ret = reganode(pRExC_state, GOSUB, num);
9015                 if (!SIZE_ONLY) {
9016 		    if (num > (I32)RExC_rx->nparens) {
9017 			RExC_parse++;
9018 			vFAIL("Reference to nonexistent group");
9019 	            }
9020 	            ARG2L_SET( ret, RExC_recurse_count++);
9021                     RExC_emit++;
9022 		    DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
9023 			"Recurse #%"UVuf" to %"IVdf"\n", (UV)ARG(ret), (IV)ARG2L(ret)));
9024 		} else {
9025 		    RExC_size++;
9026     		}
9027     		RExC_seen |= REG_SEEN_RECURSE;
9028                 Set_Node_Length(ret, 1 + regarglen[OP(ret)]); /* MJD */
9029 		Set_Node_Offset(ret, parse_start); /* MJD */
9030 
9031                 *flagp |= POSTPONED;
9032                 nextchar(pRExC_state);
9033                 return ret;
9034             } /* named and numeric backreferences */
9035             assert(0); /* NOT REACHED */
9036 
9037 	    case '?':           /* (??...) */
9038 		is_logical = 1;
9039 		if (*RExC_parse != '{') {
9040 		    RExC_parse++;
9041 		    vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
9042 		    /*NOTREACHED*/
9043 		}
9044 		*flagp |= POSTPONED;
9045 		paren = *RExC_parse++;
9046 		/* FALL THROUGH */
9047 	    case '{':           /* (?{...}) */
9048 	    {
9049 		U32 n = 0;
9050 		struct reg_code_block *cb;
9051 
9052 		RExC_seen_zerolen++;
9053 
9054 		if (   !pRExC_state->num_code_blocks
9055 		    || pRExC_state->code_index >= pRExC_state->num_code_blocks
9056 		    || pRExC_state->code_blocks[pRExC_state->code_index].start
9057 			!= (STRLEN)((RExC_parse -3 - (is_logical ? 1 : 0))
9058 			    - RExC_start)
9059 		) {
9060 		    if (RExC_pm_flags & PMf_USE_RE_EVAL)
9061 			FAIL("panic: Sequence (?{...}): no code block found\n");
9062 		    FAIL("Eval-group not allowed at runtime, use re 'eval'");
9063 		}
9064 		/* this is a pre-compiled code block (?{...}) */
9065 		cb = &pRExC_state->code_blocks[pRExC_state->code_index];
9066 		RExC_parse = RExC_start + cb->end;
9067 		if (!SIZE_ONLY) {
9068 		    OP *o = cb->block;
9069 		    if (cb->src_regex) {
9070 			n = add_data(pRExC_state, 2, "rl");
9071 			RExC_rxi->data->data[n] =
9072 			    (void*)SvREFCNT_inc((SV*)cb->src_regex);
9073 			RExC_rxi->data->data[n+1] = (void*)o;
9074 		    }
9075 		    else {
9076 			n = add_data(pRExC_state, 1,
9077 			       (RExC_pm_flags & PMf_HAS_CV) ? "L" : "l");
9078 			RExC_rxi->data->data[n] = (void*)o;
9079 		    }
9080 		}
9081 		pRExC_state->code_index++;
9082 		nextchar(pRExC_state);
9083 
9084 		if (is_logical) {
9085                     regnode *eval;
9086 		    ret = reg_node(pRExC_state, LOGICAL);
9087                     eval = reganode(pRExC_state, EVAL, n);
9088 		    if (!SIZE_ONLY) {
9089 			ret->flags = 2;
9090                         /* for later propagation into (??{}) return value */
9091                         eval->flags = (U8) (RExC_flags & RXf_PMf_COMPILETIME);
9092                     }
9093                     REGTAIL(pRExC_state, ret, eval);
9094                     /* deal with the length of this later - MJD */
9095 		    return ret;
9096 		}
9097 		ret = reganode(pRExC_state, EVAL, n);
9098 		Set_Node_Length(ret, RExC_parse - parse_start + 1);
9099 		Set_Node_Offset(ret, parse_start);
9100 		return ret;
9101 	    }
9102 	    case '(':           /* (?(?{...})...) and (?(?=...)...) */
9103 	    {
9104 	        int is_define= 0;
9105 		if (RExC_parse[0] == '?') {        /* (?(?...)) */
9106 		    if (RExC_parse[1] == '=' || RExC_parse[1] == '!'
9107 			|| RExC_parse[1] == '<'
9108 			|| RExC_parse[1] == '{') { /* Lookahead or eval. */
9109 			I32 flag;
9110                         regnode *tail;
9111 
9112 			ret = reg_node(pRExC_state, LOGICAL);
9113 			if (!SIZE_ONLY)
9114 			    ret->flags = 1;
9115 
9116                         tail = reg(pRExC_state, 1, &flag, depth+1);
9117                         if (flag & RESTART_UTF8) {
9118                             *flagp = RESTART_UTF8;
9119                             return NULL;
9120                         }
9121                         REGTAIL(pRExC_state, ret, tail);
9122 			goto insert_if;
9123 		    }
9124 		}
9125 		else if ( RExC_parse[0] == '<'     /* (?(<NAME>)...) */
9126 		         || RExC_parse[0] == '\'' ) /* (?('NAME')...) */
9127 	        {
9128 	            char ch = RExC_parse[0] == '<' ? '>' : '\'';
9129 	            char *name_start= RExC_parse++;
9130 	            U32 num = 0;
9131 	            SV *sv_dat=reg_scan_name(pRExC_state,
9132 	                SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
9133 	            if (RExC_parse == name_start || *RExC_parse != ch)
9134                         vFAIL2("Sequence (?(%c... not terminated",
9135                             (ch == '>' ? '<' : ch));
9136                     RExC_parse++;
9137 	            if (!SIZE_ONLY) {
9138                         num = add_data( pRExC_state, 1, "S" );
9139                         RExC_rxi->data->data[num]=(void*)sv_dat;
9140                         SvREFCNT_inc_simple_void(sv_dat);
9141                     }
9142                     ret = reganode(pRExC_state,NGROUPP,num);
9143                     goto insert_if_check_paren;
9144 		}
9145 		else if (RExC_parse[0] == 'D' &&
9146 		         RExC_parse[1] == 'E' &&
9147 		         RExC_parse[2] == 'F' &&
9148 		         RExC_parse[3] == 'I' &&
9149 		         RExC_parse[4] == 'N' &&
9150 		         RExC_parse[5] == 'E')
9151 		{
9152 		    ret = reganode(pRExC_state,DEFINEP,0);
9153 		    RExC_parse +=6 ;
9154 		    is_define = 1;
9155 		    goto insert_if_check_paren;
9156 		}
9157 		else if (RExC_parse[0] == 'R') {
9158 		    RExC_parse++;
9159 		    parno = 0;
9160 		    if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
9161 		        parno = atoi(RExC_parse++);
9162 		        while (isDIGIT(*RExC_parse))
9163 			    RExC_parse++;
9164 		    } else if (RExC_parse[0] == '&') {
9165 		        SV *sv_dat;
9166 		        RExC_parse++;
9167 		        sv_dat = reg_scan_name(pRExC_state,
9168     		            SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
9169     		        parno = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
9170 		    }
9171 		    ret = reganode(pRExC_state,INSUBP,parno);
9172 		    goto insert_if_check_paren;
9173 		}
9174 		else if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
9175                     /* (?(1)...) */
9176 		    char c;
9177 		    parno = atoi(RExC_parse++);
9178 
9179 		    while (isDIGIT(*RExC_parse))
9180 			RExC_parse++;
9181                     ret = reganode(pRExC_state, GROUPP, parno);
9182 
9183                  insert_if_check_paren:
9184 		    if ((c = *nextchar(pRExC_state)) != ')')
9185 			vFAIL("Switch condition not recognized");
9186 		  insert_if:
9187                     REGTAIL(pRExC_state, ret, reganode(pRExC_state, IFTHEN, 0));
9188                     br = regbranch(pRExC_state, &flags, 1,depth+1);
9189 		    if (br == NULL) {
9190                         if (flags & RESTART_UTF8) {
9191                             *flagp = RESTART_UTF8;
9192                             return NULL;
9193                         }
9194                         FAIL2("panic: regbranch returned NULL, flags=%#X",
9195                               flags);
9196                     } else
9197                         REGTAIL(pRExC_state, br, reganode(pRExC_state, LONGJMP, 0));
9198 		    c = *nextchar(pRExC_state);
9199 		    if (flags&HASWIDTH)
9200 			*flagp |= HASWIDTH;
9201 		    if (c == '|') {
9202 		        if (is_define)
9203 		            vFAIL("(?(DEFINE)....) does not allow branches");
9204 			lastbr = reganode(pRExC_state, IFTHEN, 0); /* Fake one for optimizer. */
9205                         if (!regbranch(pRExC_state, &flags, 1,depth+1)) {
9206                             if (flags & RESTART_UTF8) {
9207                                 *flagp = RESTART_UTF8;
9208                                 return NULL;
9209                             }
9210                             FAIL2("panic: regbranch returned NULL, flags=%#X",
9211                                   flags);
9212                         }
9213                         REGTAIL(pRExC_state, ret, lastbr);
9214 		 	if (flags&HASWIDTH)
9215 			    *flagp |= HASWIDTH;
9216 			c = *nextchar(pRExC_state);
9217 		    }
9218 		    else
9219 			lastbr = NULL;
9220 		    if (c != ')')
9221 			vFAIL("Switch (?(condition)... contains too many branches");
9222 		    ender = reg_node(pRExC_state, TAIL);
9223                     REGTAIL(pRExC_state, br, ender);
9224 		    if (lastbr) {
9225                         REGTAIL(pRExC_state, lastbr, ender);
9226                         REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
9227 		    }
9228 		    else
9229                         REGTAIL(pRExC_state, ret, ender);
9230                     RExC_size++; /* XXX WHY do we need this?!!
9231                                     For large programs it seems to be required
9232                                     but I can't figure out why. -- dmq*/
9233 		    return ret;
9234 		}
9235 		else {
9236 		    vFAIL2("Unknown switch condition (?(%.2s", RExC_parse);
9237 		}
9238 	    }
9239 	    case '[':           /* (?[ ... ]) */
9240                 return handle_regex_sets(pRExC_state, NULL, flagp, depth,
9241                                          oregcomp_parse);
9242             case 0:
9243 		RExC_parse--; /* for vFAIL to print correctly */
9244                 vFAIL("Sequence (? incomplete");
9245                 break;
9246 	    default: /* e.g., (?i) */
9247 	        --RExC_parse;
9248               parse_flags:
9249 		parse_lparen_question_flags(pRExC_state);
9250                 if (UCHARAT(RExC_parse) != ':') {
9251                     nextchar(pRExC_state);
9252                     *flagp = TRYAGAIN;
9253                     return NULL;
9254                 }
9255                 paren = ':';
9256                 nextchar(pRExC_state);
9257                 ret = NULL;
9258                 goto parse_rest;
9259             } /* end switch */
9260 	}
9261 	else {                  /* (...) */
9262 	  capturing_parens:
9263 	    parno = RExC_npar;
9264 	    RExC_npar++;
9265 
9266 	    ret = reganode(pRExC_state, OPEN, parno);
9267 	    if (!SIZE_ONLY ){
9268 	        if (!RExC_nestroot)
9269 	            RExC_nestroot = parno;
9270 	        if (RExC_seen & REG_SEEN_RECURSE
9271 	            && !RExC_open_parens[parno-1])
9272 	        {
9273 		    DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
9274 			"Setting open paren #%"IVdf" to %d\n",
9275 			(IV)parno, REG_NODE_NUM(ret)));
9276 	            RExC_open_parens[parno-1]= ret;
9277 	        }
9278 	    }
9279             Set_Node_Length(ret, 1); /* MJD */
9280             Set_Node_Offset(ret, RExC_parse); /* MJD */
9281 	    is_open = 1;
9282 	}
9283     }
9284     else                        /* ! paren */
9285 	ret = NULL;
9286 
9287    parse_rest:
9288     /* Pick up the branches, linking them together. */
9289     parse_start = RExC_parse;   /* MJD */
9290     br = regbranch(pRExC_state, &flags, 1,depth+1);
9291 
9292     /*     branch_len = (paren != 0); */
9293 
9294     if (br == NULL) {
9295         if (flags & RESTART_UTF8) {
9296             *flagp = RESTART_UTF8;
9297             return NULL;
9298         }
9299         FAIL2("panic: regbranch returned NULL, flags=%#X", flags);
9300     }
9301     if (*RExC_parse == '|') {
9302 	if (!SIZE_ONLY && RExC_extralen) {
9303 	    reginsert(pRExC_state, BRANCHJ, br, depth+1);
9304 	}
9305 	else {                  /* MJD */
9306 	    reginsert(pRExC_state, BRANCH, br, depth+1);
9307             Set_Node_Length(br, paren != 0);
9308             Set_Node_Offset_To_R(br-RExC_emit_start, parse_start-RExC_start);
9309         }
9310 	have_branch = 1;
9311 	if (SIZE_ONLY)
9312 	    RExC_extralen += 1;		/* For BRANCHJ-BRANCH. */
9313     }
9314     else if (paren == ':') {
9315 	*flagp |= flags&SIMPLE;
9316     }
9317     if (is_open) {				/* Starts with OPEN. */
9318         REGTAIL(pRExC_state, ret, br);          /* OPEN -> first. */
9319     }
9320     else if (paren != '?')		/* Not Conditional */
9321 	ret = br;
9322     *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
9323     lastbr = br;
9324     while (*RExC_parse == '|') {
9325 	if (!SIZE_ONLY && RExC_extralen) {
9326 	    ender = reganode(pRExC_state, LONGJMP,0);
9327             REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender); /* Append to the previous. */
9328 	}
9329 	if (SIZE_ONLY)
9330 	    RExC_extralen += 2;		/* Account for LONGJMP. */
9331 	nextchar(pRExC_state);
9332 	if (freeze_paren) {
9333 	    if (RExC_npar > after_freeze)
9334 	        after_freeze = RExC_npar;
9335             RExC_npar = freeze_paren;
9336         }
9337         br = regbranch(pRExC_state, &flags, 0, depth+1);
9338 
9339 	if (br == NULL) {
9340             if (flags & RESTART_UTF8) {
9341                 *flagp = RESTART_UTF8;
9342                 return NULL;
9343             }
9344             FAIL2("panic: regbranch returned NULL, flags=%#X", flags);
9345         }
9346         REGTAIL(pRExC_state, lastbr, br);               /* BRANCH -> BRANCH. */
9347 	lastbr = br;
9348 	*flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
9349     }
9350 
9351     if (have_branch || paren != ':') {
9352 	/* Make a closing node, and hook it on the end. */
9353 	switch (paren) {
9354 	case ':':
9355 	    ender = reg_node(pRExC_state, TAIL);
9356 	    break;
9357 	case 1: case 2:
9358 	    ender = reganode(pRExC_state, CLOSE, parno);
9359 	    if (!SIZE_ONLY && RExC_seen & REG_SEEN_RECURSE) {
9360 		DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
9361 			"Setting close paren #%"IVdf" to %d\n",
9362 			(IV)parno, REG_NODE_NUM(ender)));
9363 	        RExC_close_parens[parno-1]= ender;
9364 	        if (RExC_nestroot == parno)
9365 	            RExC_nestroot = 0;
9366 	    }
9367             Set_Node_Offset(ender,RExC_parse+1); /* MJD */
9368             Set_Node_Length(ender,1); /* MJD */
9369 	    break;
9370 	case '<':
9371 	case ',':
9372 	case '=':
9373 	case '!':
9374 	    *flagp &= ~HASWIDTH;
9375 	    /* FALL THROUGH */
9376 	case '>':
9377 	    ender = reg_node(pRExC_state, SUCCEED);
9378 	    break;
9379 	case 0:
9380 	    ender = reg_node(pRExC_state, END);
9381 	    if (!SIZE_ONLY) {
9382                 assert(!RExC_opend); /* there can only be one! */
9383                 RExC_opend = ender;
9384             }
9385 	    break;
9386 	}
9387         DEBUG_PARSE_r(if (!SIZE_ONLY) {
9388             SV * const mysv_val1=sv_newmortal();
9389             SV * const mysv_val2=sv_newmortal();
9390             DEBUG_PARSE_MSG("lsbr");
9391             regprop(RExC_rx, mysv_val1, lastbr);
9392             regprop(RExC_rx, mysv_val2, ender);
9393             PerlIO_printf(Perl_debug_log, "~ tying lastbr %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n",
9394                           SvPV_nolen_const(mysv_val1),
9395                           (IV)REG_NODE_NUM(lastbr),
9396                           SvPV_nolen_const(mysv_val2),
9397                           (IV)REG_NODE_NUM(ender),
9398                           (IV)(ender - lastbr)
9399             );
9400         });
9401         REGTAIL(pRExC_state, lastbr, ender);
9402 
9403 	if (have_branch && !SIZE_ONLY) {
9404             char is_nothing= 1;
9405 	    if (depth==1)
9406 	        RExC_seen |= REG_TOP_LEVEL_BRANCHES;
9407 
9408 	    /* Hook the tails of the branches to the closing node. */
9409 	    for (br = ret; br; br = regnext(br)) {
9410 		const U8 op = PL_regkind[OP(br)];
9411 		if (op == BRANCH) {
9412                     REGTAIL_STUDY(pRExC_state, NEXTOPER(br), ender);
9413                     if (OP(NEXTOPER(br)) != NOTHING || regnext(NEXTOPER(br)) != ender)
9414                         is_nothing= 0;
9415 		}
9416 		else if (op == BRANCHJ) {
9417                     REGTAIL_STUDY(pRExC_state, NEXTOPER(NEXTOPER(br)), ender);
9418                     /* for now we always disable this optimisation * /
9419                     if (OP(NEXTOPER(NEXTOPER(br))) != NOTHING || regnext(NEXTOPER(NEXTOPER(br))) != ender)
9420                     */
9421                         is_nothing= 0;
9422 		}
9423 	    }
9424             if (is_nothing) {
9425                 br= PL_regkind[OP(ret)] != BRANCH ? regnext(ret) : ret;
9426                 DEBUG_PARSE_r(if (!SIZE_ONLY) {
9427                     SV * const mysv_val1=sv_newmortal();
9428                     SV * const mysv_val2=sv_newmortal();
9429                     DEBUG_PARSE_MSG("NADA");
9430                     regprop(RExC_rx, mysv_val1, ret);
9431                     regprop(RExC_rx, mysv_val2, ender);
9432                     PerlIO_printf(Perl_debug_log, "~ converting ret %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n",
9433                                   SvPV_nolen_const(mysv_val1),
9434                                   (IV)REG_NODE_NUM(ret),
9435                                   SvPV_nolen_const(mysv_val2),
9436                                   (IV)REG_NODE_NUM(ender),
9437                                   (IV)(ender - ret)
9438                     );
9439                 });
9440                 OP(br)= NOTHING;
9441                 if (OP(ender) == TAIL) {
9442                     NEXT_OFF(br)= 0;
9443                     RExC_emit= br + 1;
9444                 } else {
9445                     regnode *opt;
9446                     for ( opt= br + 1; opt < ender ; opt++ )
9447                         OP(opt)= OPTIMIZED;
9448                     NEXT_OFF(br)= ender - br;
9449                 }
9450             }
9451 	}
9452     }
9453 
9454     {
9455         const char *p;
9456         static const char parens[] = "=!<,>";
9457 
9458 	if (paren && (p = strchr(parens, paren))) {
9459 	    U8 node = ((p - parens) % 2) ? UNLESSM : IFMATCH;
9460 	    int flag = (p - parens) > 1;
9461 
9462 	    if (paren == '>')
9463 		node = SUSPEND, flag = 0;
9464 	    reginsert(pRExC_state, node,ret, depth+1);
9465 	    Set_Node_Cur_Length(ret);
9466 	    Set_Node_Offset(ret, parse_start + 1);
9467 	    ret->flags = flag;
9468             REGTAIL_STUDY(pRExC_state, ret, reg_node(pRExC_state, TAIL));
9469 	}
9470     }
9471 
9472     /* Check for proper termination. */
9473     if (paren) {
9474         /* restore original flags, but keep (?p) */
9475 	RExC_flags = oregflags | (RExC_flags & RXf_PMf_KEEPCOPY);
9476 	if (RExC_parse >= RExC_end || *nextchar(pRExC_state) != ')') {
9477 	    RExC_parse = oregcomp_parse;
9478 	    vFAIL("Unmatched (");
9479 	}
9480     }
9481     else if (!paren && RExC_parse < RExC_end) {
9482 	if (*RExC_parse == ')') {
9483 	    RExC_parse++;
9484 	    vFAIL("Unmatched )");
9485 	}
9486 	else
9487 	    FAIL("Junk on end of regexp");	/* "Can't happen". */
9488 	assert(0); /* NOTREACHED */
9489     }
9490 
9491     if (RExC_in_lookbehind) {
9492 	RExC_in_lookbehind--;
9493     }
9494     if (after_freeze > RExC_npar)
9495         RExC_npar = after_freeze;
9496     return(ret);
9497 }
9498 
9499 /*
9500  - regbranch - one alternative of an | operator
9501  *
9502  * Implements the concatenation operator.
9503  *
9504  * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
9505  * restarted.
9506  */
9507 STATIC regnode *
9508 S_regbranch(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, I32 first, U32 depth)
9509 {
9510     dVAR;
9511     regnode *ret;
9512     regnode *chain = NULL;
9513     regnode *latest;
9514     I32 flags = 0, c = 0;
9515     GET_RE_DEBUG_FLAGS_DECL;
9516 
9517     PERL_ARGS_ASSERT_REGBRANCH;
9518 
9519     DEBUG_PARSE("brnc");
9520 
9521     if (first)
9522 	ret = NULL;
9523     else {
9524 	if (!SIZE_ONLY && RExC_extralen)
9525 	    ret = reganode(pRExC_state, BRANCHJ,0);
9526 	else {
9527 	    ret = reg_node(pRExC_state, BRANCH);
9528             Set_Node_Length(ret, 1);
9529         }
9530     }
9531 
9532     if (!first && SIZE_ONLY)
9533 	RExC_extralen += 1;			/* BRANCHJ */
9534 
9535     *flagp = WORST;			/* Tentatively. */
9536 
9537     RExC_parse--;
9538     nextchar(pRExC_state);
9539     while (RExC_parse < RExC_end && *RExC_parse != '|' && *RExC_parse != ')') {
9540 	flags &= ~TRYAGAIN;
9541         latest = regpiece(pRExC_state, &flags,depth+1);
9542 	if (latest == NULL) {
9543 	    if (flags & TRYAGAIN)
9544 		continue;
9545             if (flags & RESTART_UTF8) {
9546                 *flagp = RESTART_UTF8;
9547                 return NULL;
9548             }
9549             FAIL2("panic: regpiece returned NULL, flags=%#X", flags);
9550 	}
9551 	else if (ret == NULL)
9552 	    ret = latest;
9553 	*flagp |= flags&(HASWIDTH|POSTPONED);
9554 	if (chain == NULL) 	/* First piece. */
9555 	    *flagp |= flags&SPSTART;
9556 	else {
9557 	    RExC_naughty++;
9558             REGTAIL(pRExC_state, chain, latest);
9559 	}
9560 	chain = latest;
9561 	c++;
9562     }
9563     if (chain == NULL) {	/* Loop ran zero times. */
9564 	chain = reg_node(pRExC_state, NOTHING);
9565 	if (ret == NULL)
9566 	    ret = chain;
9567     }
9568     if (c == 1) {
9569 	*flagp |= flags&SIMPLE;
9570     }
9571 
9572     return ret;
9573 }
9574 
9575 /*
9576  - regpiece - something followed by possible [*+?]
9577  *
9578  * Note that the branching code sequences used for ? and the general cases
9579  * of * and + are somewhat optimized:  they use the same NOTHING node as
9580  * both the endmarker for their branch list and the body of the last branch.
9581  * It might seem that this node could be dispensed with entirely, but the
9582  * endmarker role is not redundant.
9583  *
9584  * Returns NULL, setting *flagp to TRYAGAIN if regatom() returns NULL with
9585  * TRYAGAIN.
9586  * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
9587  * restarted.
9588  */
9589 STATIC regnode *
9590 S_regpiece(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
9591 {
9592     dVAR;
9593     regnode *ret;
9594     char op;
9595     char *next;
9596     I32 flags;
9597     const char * const origparse = RExC_parse;
9598     I32 min;
9599     I32 max = REG_INFTY;
9600 #ifdef RE_TRACK_PATTERN_OFFSETS
9601     char *parse_start;
9602 #endif
9603     const char *maxpos = NULL;
9604 
9605     /* Save the original in case we change the emitted regop to a FAIL. */
9606     regnode * const orig_emit = RExC_emit;
9607 
9608     GET_RE_DEBUG_FLAGS_DECL;
9609 
9610     PERL_ARGS_ASSERT_REGPIECE;
9611 
9612     DEBUG_PARSE("piec");
9613 
9614     ret = regatom(pRExC_state, &flags,depth+1);
9615     if (ret == NULL) {
9616 	if (flags & (TRYAGAIN|RESTART_UTF8))
9617 	    *flagp |= flags & (TRYAGAIN|RESTART_UTF8);
9618         else
9619             FAIL2("panic: regatom returned NULL, flags=%#X", flags);
9620 	return(NULL);
9621     }
9622 
9623     op = *RExC_parse;
9624 
9625     if (op == '{' && regcurly(RExC_parse, FALSE)) {
9626 	maxpos = NULL;
9627 #ifdef RE_TRACK_PATTERN_OFFSETS
9628         parse_start = RExC_parse; /* MJD */
9629 #endif
9630 	next = RExC_parse + 1;
9631 	while (isDIGIT(*next) || *next == ',') {
9632 	    if (*next == ',') {
9633 		if (maxpos)
9634 		    break;
9635 		else
9636 		    maxpos = next;
9637 	    }
9638 	    next++;
9639 	}
9640 	if (*next == '}') {		/* got one */
9641 	    if (!maxpos)
9642 		maxpos = next;
9643 	    RExC_parse++;
9644 	    min = atoi(RExC_parse);
9645 	    if (*maxpos == ',')
9646 		maxpos++;
9647 	    else
9648 		maxpos = RExC_parse;
9649 	    max = atoi(maxpos);
9650 	    if (!max && *maxpos != '0')
9651 		max = REG_INFTY;		/* meaning "infinity" */
9652 	    else if (max >= REG_INFTY)
9653 		vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
9654 	    RExC_parse = next;
9655 	    nextchar(pRExC_state);
9656             if (max < min) {    /* If can't match, warn and optimize to fail
9657                                    unconditionally */
9658                 if (SIZE_ONLY) {
9659                     ckWARNreg(RExC_parse, "Quantifier {n,m} with n > m can't match");
9660 
9661                     /* We can't back off the size because we have to reserve
9662                      * enough space for all the things we are about to throw
9663                      * away, but we can shrink it by the ammount we are about
9664                      * to re-use here */
9665                     RExC_size = PREVOPER(RExC_size) - regarglen[(U8)OPFAIL];
9666                 }
9667                 else {
9668                     RExC_emit = orig_emit;
9669                 }
9670                 ret = reg_node(pRExC_state, OPFAIL);
9671                 return ret;
9672             }
9673 
9674 	do_curly:
9675 	    if ((flags&SIMPLE)) {
9676 		RExC_naughty += 2 + RExC_naughty / 2;
9677 		reginsert(pRExC_state, CURLY, ret, depth+1);
9678                 Set_Node_Offset(ret, parse_start+1); /* MJD */
9679                 Set_Node_Cur_Length(ret);
9680 	    }
9681 	    else {
9682 		regnode * const w = reg_node(pRExC_state, WHILEM);
9683 
9684 		w->flags = 0;
9685                 REGTAIL(pRExC_state, ret, w);
9686 		if (!SIZE_ONLY && RExC_extralen) {
9687 		    reginsert(pRExC_state, LONGJMP,ret, depth+1);
9688 		    reginsert(pRExC_state, NOTHING,ret, depth+1);
9689 		    NEXT_OFF(ret) = 3;	/* Go over LONGJMP. */
9690 		}
9691 		reginsert(pRExC_state, CURLYX,ret, depth+1);
9692                                 /* MJD hk */
9693                 Set_Node_Offset(ret, parse_start+1);
9694                 Set_Node_Length(ret,
9695                                 op == '{' ? (RExC_parse - parse_start) : 1);
9696 
9697 		if (!SIZE_ONLY && RExC_extralen)
9698 		    NEXT_OFF(ret) = 3;	/* Go over NOTHING to LONGJMP. */
9699                 REGTAIL(pRExC_state, ret, reg_node(pRExC_state, NOTHING));
9700 		if (SIZE_ONLY)
9701 		    RExC_whilem_seen++, RExC_extralen += 3;
9702 		RExC_naughty += 4 + RExC_naughty;	/* compound interest */
9703 	    }
9704 	    ret->flags = 0;
9705 
9706 	    if (min > 0)
9707 		*flagp = WORST;
9708 	    if (max > 0)
9709 		*flagp |= HASWIDTH;
9710 	    if (!SIZE_ONLY) {
9711 		ARG1_SET(ret, (U16)min);
9712 		ARG2_SET(ret, (U16)max);
9713 	    }
9714 
9715 	    goto nest_check;
9716 	}
9717     }
9718 
9719     if (!ISMULT1(op)) {
9720 	*flagp = flags;
9721 	return(ret);
9722     }
9723 
9724 #if 0				/* Now runtime fix should be reliable. */
9725 
9726     /* if this is reinstated, don't forget to put this back into perldiag:
9727 
9728 	    =item Regexp *+ operand could be empty at {#} in regex m/%s/
9729 
9730 	   (F) The part of the regexp subject to either the * or + quantifier
9731            could match an empty string. The {#} shows in the regular
9732            expression about where the problem was discovered.
9733 
9734     */
9735 
9736     if (!(flags&HASWIDTH) && op != '?')
9737       vFAIL("Regexp *+ operand could be empty");
9738 #endif
9739 
9740 #ifdef RE_TRACK_PATTERN_OFFSETS
9741     parse_start = RExC_parse;
9742 #endif
9743     nextchar(pRExC_state);
9744 
9745     *flagp = (op != '+') ? (WORST|SPSTART|HASWIDTH) : (WORST|HASWIDTH);
9746 
9747     if (op == '*' && (flags&SIMPLE)) {
9748 	reginsert(pRExC_state, STAR, ret, depth+1);
9749 	ret->flags = 0;
9750 	RExC_naughty += 4;
9751     }
9752     else if (op == '*') {
9753 	min = 0;
9754 	goto do_curly;
9755     }
9756     else if (op == '+' && (flags&SIMPLE)) {
9757 	reginsert(pRExC_state, PLUS, ret, depth+1);
9758 	ret->flags = 0;
9759 	RExC_naughty += 3;
9760     }
9761     else if (op == '+') {
9762 	min = 1;
9763 	goto do_curly;
9764     }
9765     else if (op == '?') {
9766 	min = 0; max = 1;
9767 	goto do_curly;
9768     }
9769   nest_check:
9770     if (!SIZE_ONLY && !(flags&(HASWIDTH|POSTPONED)) && max > REG_INFTY/3) {
9771 	SAVEFREESV(RExC_rx_sv); /* in case of fatal warnings */
9772 	ckWARN3reg(RExC_parse,
9773 		   "%.*s matches null string many times",
9774 		   (int)(RExC_parse >= origparse ? RExC_parse - origparse : 0),
9775 		   origparse);
9776 	(void)ReREFCNT_inc(RExC_rx_sv);
9777     }
9778 
9779     if (RExC_parse < RExC_end && *RExC_parse == '?') {
9780 	nextchar(pRExC_state);
9781 	reginsert(pRExC_state, MINMOD, ret, depth+1);
9782         REGTAIL(pRExC_state, ret, ret + NODE_STEP_REGNODE);
9783     }
9784 #ifndef REG_ALLOW_MINMOD_SUSPEND
9785     else
9786 #endif
9787     if (RExC_parse < RExC_end && *RExC_parse == '+') {
9788         regnode *ender;
9789         nextchar(pRExC_state);
9790         ender = reg_node(pRExC_state, SUCCEED);
9791         REGTAIL(pRExC_state, ret, ender);
9792         reginsert(pRExC_state, SUSPEND, ret, depth+1);
9793         ret->flags = 0;
9794         ender = reg_node(pRExC_state, TAIL);
9795         REGTAIL(pRExC_state, ret, ender);
9796         /*ret= ender;*/
9797     }
9798 
9799     if (RExC_parse < RExC_end && ISMULT2(RExC_parse)) {
9800 	RExC_parse++;
9801 	vFAIL("Nested quantifiers");
9802     }
9803 
9804     return(ret);
9805 }
9806 
9807 STATIC bool
9808 S_grok_bslash_N(pTHX_ RExC_state_t *pRExC_state, regnode** node_p, UV *valuep, I32 *flagp, U32 depth, bool in_char_class,
9809         const bool strict   /* Apply stricter parsing rules? */
9810     )
9811 {
9812 
9813  /* This is expected to be called by a parser routine that has recognized '\N'
9814    and needs to handle the rest. RExC_parse is expected to point at the first
9815    char following the N at the time of the call.  On successful return,
9816    RExC_parse has been updated to point to just after the sequence identified
9817    by this routine, and <*flagp> has been updated.
9818 
9819    The \N may be inside (indicated by the boolean <in_char_class>) or outside a
9820    character class.
9821 
9822    \N may begin either a named sequence, or if outside a character class, mean
9823    to match a non-newline.  For non single-quoted regexes, the tokenizer has
9824    attempted to decide which, and in the case of a named sequence, converted it
9825    into one of the forms: \N{} (if the sequence is null), or \N{U+c1.c2...},
9826    where c1... are the characters in the sequence.  For single-quoted regexes,
9827    the tokenizer passes the \N sequence through unchanged; this code will not
9828    attempt to determine this nor expand those, instead raising a syntax error.
9829    The net effect is that if the beginning of the passed-in pattern isn't '{U+'
9830    or there is no '}', it signals that this \N occurrence means to match a
9831    non-newline.
9832 
9833    Only the \N{U+...} form should occur in a character class, for the same
9834    reason that '.' inside a character class means to just match a period: it
9835    just doesn't make sense.
9836 
9837    The function raises an error (via vFAIL), and doesn't return for various
9838    syntax errors.  Otherwise it returns TRUE and sets <node_p> or <valuep> on
9839    success; it returns FALSE otherwise. Returns FALSE, setting *flagp to
9840    RESTART_UTF8 if the sizing scan needs to be restarted. Such a restart is
9841    only possible if node_p is non-NULL.
9842 
9843 
9844    If <valuep> is non-null, it means the caller can accept an input sequence
9845    consisting of a just a single code point; <*valuep> is set to that value
9846    if the input is such.
9847 
9848    If <node_p> is non-null it signifies that the caller can accept any other
9849    legal sequence (i.e., one that isn't just a single code point).  <*node_p>
9850    is set as follows:
9851     1) \N means not-a-NL: points to a newly created REG_ANY node;
9852     2) \N{}:              points to a new NOTHING node;
9853     3) otherwise:         points to a new EXACT node containing the resolved
9854                           string.
9855    Note that FALSE is returned for single code point sequences if <valuep> is
9856    null.
9857  */
9858 
9859     char * endbrace;    /* '}' following the name */
9860     char* p;
9861     char *endchar;	/* Points to '.' or '}' ending cur char in the input
9862                            stream */
9863     bool has_multiple_chars; /* true if the input stream contains a sequence of
9864                                 more than one character */
9865 
9866     GET_RE_DEBUG_FLAGS_DECL;
9867 
9868     PERL_ARGS_ASSERT_GROK_BSLASH_N;
9869 
9870     GET_RE_DEBUG_FLAGS;
9871 
9872     assert(cBOOL(node_p) ^ cBOOL(valuep));  /* Exactly one should be set */
9873 
9874     /* The [^\n] meaning of \N ignores spaces and comments under the /x
9875      * modifier.  The other meaning does not */
9876     p = (RExC_flags & RXf_PMf_EXTENDED)
9877 	? regwhite( pRExC_state, RExC_parse )
9878 	: RExC_parse;
9879 
9880     /* Disambiguate between \N meaning a named character versus \N meaning
9881      * [^\n].  The former is assumed when it can't be the latter. */
9882     if (*p != '{' || regcurly(p, FALSE)) {
9883 	RExC_parse = p;
9884 	if (! node_p) {
9885 	    /* no bare \N in a charclass */
9886             if (in_char_class) {
9887                 vFAIL("\\N in a character class must be a named character: \\N{...}");
9888             }
9889             return FALSE;
9890         }
9891 	nextchar(pRExC_state);
9892 	*node_p = reg_node(pRExC_state, REG_ANY);
9893 	*flagp |= HASWIDTH|SIMPLE;
9894 	RExC_naughty++;
9895 	RExC_parse--;
9896         Set_Node_Length(*node_p, 1); /* MJD */
9897 	return TRUE;
9898     }
9899 
9900     /* Here, we have decided it should be a named character or sequence */
9901 
9902     /* The test above made sure that the next real character is a '{', but
9903      * under the /x modifier, it could be separated by space (or a comment and
9904      * \n) and this is not allowed (for consistency with \x{...} and the
9905      * tokenizer handling of \N{NAME}). */
9906     if (*RExC_parse != '{') {
9907 	vFAIL("Missing braces on \\N{}");
9908     }
9909 
9910     RExC_parse++;	/* Skip past the '{' */
9911 
9912     if (! (endbrace = strchr(RExC_parse, '}')) /* no trailing brace */
9913 	|| ! (endbrace == RExC_parse		/* nothing between the {} */
9914 	      || (endbrace - RExC_parse >= 2	/* U+ (bad hex is checked below */
9915 		  && strnEQ(RExC_parse, "U+", 2)))) /* for a better error msg) */
9916     {
9917 	if (endbrace) RExC_parse = endbrace;	/* position msg's '<--HERE' */
9918 	vFAIL("\\N{NAME} must be resolved by the lexer");
9919     }
9920 
9921     if (endbrace == RExC_parse) {   /* empty: \N{} */
9922         bool ret = TRUE;
9923 	if (node_p) {
9924 	    *node_p = reg_node(pRExC_state,NOTHING);
9925 	}
9926         else if (in_char_class) {
9927             if (SIZE_ONLY && in_char_class) {
9928                 if (strict) {
9929                     RExC_parse++;   /* Position after the "}" */
9930                     vFAIL("Zero length \\N{}");
9931                 }
9932                 else {
9933                     ckWARNreg(RExC_parse,
9934                               "Ignoring zero length \\N{} in character class");
9935                 }
9936             }
9937             ret = FALSE;
9938 	}
9939         else {
9940             return FALSE;
9941         }
9942         nextchar(pRExC_state);
9943         return ret;
9944     }
9945 
9946     RExC_uni_semantics = 1; /* Unicode named chars imply Unicode semantics */
9947     RExC_parse += 2;	/* Skip past the 'U+' */
9948 
9949     endchar = RExC_parse + strcspn(RExC_parse, ".}");
9950 
9951     /* Code points are separated by dots.  If none, there is only one code
9952      * point, and is terminated by the brace */
9953     has_multiple_chars = (endchar < endbrace);
9954 
9955     if (valuep && (! has_multiple_chars || in_char_class)) {
9956 	/* We only pay attention to the first char of
9957         multichar strings being returned in char classes. I kinda wonder
9958 	if this makes sense as it does change the behaviour
9959 	from earlier versions, OTOH that behaviour was broken
9960 	as well. XXX Solution is to recharacterize as
9961 	[rest-of-class]|multi1|multi2... */
9962 
9963 	STRLEN length_of_hex = (STRLEN)(endchar - RExC_parse);
9964 	I32 grok_hex_flags = PERL_SCAN_ALLOW_UNDERSCORES
9965 	    | PERL_SCAN_DISALLOW_PREFIX
9966 	    | (SIZE_ONLY ? PERL_SCAN_SILENT_ILLDIGIT : 0);
9967 
9968 	*valuep = grok_hex(RExC_parse, &length_of_hex, &grok_hex_flags, NULL);
9969 
9970 	/* The tokenizer should have guaranteed validity, but it's possible to
9971 	 * bypass it by using single quoting, so check */
9972 	if (length_of_hex == 0
9973 	    || length_of_hex != (STRLEN)(endchar - RExC_parse) )
9974 	{
9975 	    RExC_parse += length_of_hex;	/* Includes all the valid */
9976 	    RExC_parse += (RExC_orig_utf8)	/* point to after 1st invalid */
9977 			    ? UTF8SKIP(RExC_parse)
9978 			    : 1;
9979 	    /* Guard against malformed utf8 */
9980 	    if (RExC_parse >= endchar) {
9981                 RExC_parse = endchar;
9982             }
9983 	    vFAIL("Invalid hexadecimal number in \\N{U+...}");
9984 	}
9985 
9986         if (in_char_class && has_multiple_chars) {
9987             if (strict) {
9988                 RExC_parse = endbrace;
9989                 vFAIL("\\N{} in character class restricted to one character");
9990             }
9991             else {
9992                 ckWARNreg(endchar, "Using just the first character returned by \\N{} in character class");
9993             }
9994         }
9995 
9996         RExC_parse = endbrace + 1;
9997     }
9998     else if (! node_p || ! has_multiple_chars) {
9999 
10000         /* Here, the input is legal, but not according to the caller's
10001          * options.  We fail without advancing the parse, so that the
10002          * caller can try again */
10003         RExC_parse = p;
10004         return FALSE;
10005     }
10006     else {
10007 
10008 	/* What is done here is to convert this to a sub-pattern of the form
10009 	 * (?:\x{char1}\x{char2}...)
10010 	 * and then call reg recursively.  That way, it retains its atomicness,
10011 	 * while not having to worry about special handling that some code
10012 	 * points may have.  toke.c has converted the original Unicode values
10013 	 * to native, so that we can just pass on the hex values unchanged.  We
10014 	 * do have to set a flag to keep recoding from happening in the
10015 	 * recursion */
10016 
10017 	SV * substitute_parse = newSVpvn_flags("?:", 2, SVf_UTF8|SVs_TEMP);
10018 	STRLEN len;
10019 	char *orig_end = RExC_end;
10020         I32 flags;
10021 
10022 	while (RExC_parse < endbrace) {
10023 
10024 	    /* Convert to notation the rest of the code understands */
10025 	    sv_catpv(substitute_parse, "\\x{");
10026 	    sv_catpvn(substitute_parse, RExC_parse, endchar - RExC_parse);
10027 	    sv_catpv(substitute_parse, "}");
10028 
10029 	    /* Point to the beginning of the next character in the sequence. */
10030 	    RExC_parse = endchar + 1;
10031 	    endchar = RExC_parse + strcspn(RExC_parse, ".}");
10032 	}
10033 	sv_catpv(substitute_parse, ")");
10034 
10035 	RExC_parse = SvPV(substitute_parse, len);
10036 
10037 	/* Don't allow empty number */
10038 	if (len < 8) {
10039 	    vFAIL("Invalid hexadecimal number in \\N{U+...}");
10040 	}
10041 	RExC_end = RExC_parse + len;
10042 
10043 	/* The values are Unicode, and therefore not subject to recoding */
10044 	RExC_override_recoding = 1;
10045 
10046 	if (!(*node_p = reg(pRExC_state, 1, &flags, depth+1))) {
10047             if (flags & RESTART_UTF8) {
10048                 *flagp = RESTART_UTF8;
10049                 return FALSE;
10050             }
10051             FAIL2("panic: reg returned NULL to grok_bslash_N, flags=%#X",
10052                   flags);
10053         }
10054 	*flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
10055 
10056 	RExC_parse = endbrace;
10057 	RExC_end = orig_end;
10058 	RExC_override_recoding = 0;
10059 
10060         nextchar(pRExC_state);
10061     }
10062 
10063     return TRUE;
10064 }
10065 
10066 
10067 /*
10068  * reg_recode
10069  *
10070  * It returns the code point in utf8 for the value in *encp.
10071  *    value: a code value in the source encoding
10072  *    encp:  a pointer to an Encode object
10073  *
10074  * If the result from Encode is not a single character,
10075  * it returns U+FFFD (Replacement character) and sets *encp to NULL.
10076  */
10077 STATIC UV
10078 S_reg_recode(pTHX_ const char value, SV **encp)
10079 {
10080     STRLEN numlen = 1;
10081     SV * const sv = newSVpvn_flags(&value, numlen, SVs_TEMP);
10082     const char * const s = *encp ? sv_recode_to_utf8(sv, *encp) : SvPVX(sv);
10083     const STRLEN newlen = SvCUR(sv);
10084     UV uv = UNICODE_REPLACEMENT;
10085 
10086     PERL_ARGS_ASSERT_REG_RECODE;
10087 
10088     if (newlen)
10089 	uv = SvUTF8(sv)
10090 	     ? utf8n_to_uvchr((U8*)s, newlen, &numlen, UTF8_ALLOW_DEFAULT)
10091 	     : *(U8*)s;
10092 
10093     if (!newlen || numlen != newlen) {
10094 	uv = UNICODE_REPLACEMENT;
10095 	*encp = NULL;
10096     }
10097     return uv;
10098 }
10099 
10100 PERL_STATIC_INLINE U8
10101 S_compute_EXACTish(pTHX_ RExC_state_t *pRExC_state)
10102 {
10103     U8 op;
10104 
10105     PERL_ARGS_ASSERT_COMPUTE_EXACTISH;
10106 
10107     if (! FOLD) {
10108         return EXACT;
10109     }
10110 
10111     op = get_regex_charset(RExC_flags);
10112     if (op >= REGEX_ASCII_RESTRICTED_CHARSET) {
10113         op--; /* /a is same as /u, and map /aa's offset to what /a's would have
10114                  been, so there is no hole */
10115     }
10116 
10117     return op + EXACTF;
10118 }
10119 
10120 PERL_STATIC_INLINE void
10121 S_alloc_maybe_populate_EXACT(pTHX_ RExC_state_t *pRExC_state, regnode *node, I32* flagp, STRLEN len, UV code_point)
10122 {
10123     /* This knows the details about sizing an EXACTish node, setting flags for
10124      * it (by setting <*flagp>, and potentially populating it with a single
10125      * character.
10126      *
10127      * If <len> (the length in bytes) is non-zero, this function assumes that
10128      * the node has already been populated, and just does the sizing.  In this
10129      * case <code_point> should be the final code point that has already been
10130      * placed into the node.  This value will be ignored except that under some
10131      * circumstances <*flagp> is set based on it.
10132      *
10133      * If <len> is zero, the function assumes that the node is to contain only
10134      * the single character given by <code_point> and calculates what <len>
10135      * should be.  In pass 1, it sizes the node appropriately.  In pass 2, it
10136      * additionally will populate the node's STRING with <code_point>, if <len>
10137      * is 0.  In both cases <*flagp> is appropriately set
10138      *
10139      * It knows that under FOLD, the Latin Sharp S and UTF characters above
10140      * 255, must be folded (the former only when the rules indicate it can
10141      * match 'ss') */
10142 
10143     bool len_passed_in = cBOOL(len != 0);
10144     U8 character[UTF8_MAXBYTES_CASE+1];
10145 
10146     PERL_ARGS_ASSERT_ALLOC_MAYBE_POPULATE_EXACT;
10147 
10148     if (! len_passed_in) {
10149         if (UTF) {
10150             if (FOLD && (! LOC || code_point > 255)) {
10151                 _to_uni_fold_flags(NATIVE_TO_UNI(code_point),
10152                                    character,
10153                                    &len,
10154                                    FOLD_FLAGS_FULL | ((LOC)
10155                                                      ? FOLD_FLAGS_LOCALE
10156                                                      : (ASCII_FOLD_RESTRICTED)
10157                                                        ? FOLD_FLAGS_NOMIX_ASCII
10158                                                        : 0));
10159             }
10160             else {
10161                 uvchr_to_utf8( character, code_point);
10162                 len = UTF8SKIP(character);
10163             }
10164         }
10165         else if (! FOLD
10166                  || code_point != LATIN_SMALL_LETTER_SHARP_S
10167                  || ASCII_FOLD_RESTRICTED
10168                  || ! AT_LEAST_UNI_SEMANTICS)
10169         {
10170             *character = (U8) code_point;
10171             len = 1;
10172         }
10173         else {
10174             *character = 's';
10175             *(character + 1) = 's';
10176             len = 2;
10177         }
10178     }
10179 
10180     if (SIZE_ONLY) {
10181         RExC_size += STR_SZ(len);
10182     }
10183     else {
10184         RExC_emit += STR_SZ(len);
10185         STR_LEN(node) = len;
10186         if (! len_passed_in) {
10187             Copy((char *) character, STRING(node), len, char);
10188         }
10189     }
10190 
10191     *flagp |= HASWIDTH;
10192 
10193     /* A single character node is SIMPLE, except for the special-cased SHARP S
10194      * under /di. */
10195     if ((len == 1 || (UTF && len == UNISKIP(code_point)))
10196         && (code_point != LATIN_SMALL_LETTER_SHARP_S
10197             || ! FOLD || ! DEPENDS_SEMANTICS))
10198     {
10199         *flagp |= SIMPLE;
10200     }
10201 }
10202 
10203 /*
10204  - regatom - the lowest level
10205 
10206    Try to identify anything special at the start of the pattern. If there
10207    is, then handle it as required. This may involve generating a single regop,
10208    such as for an assertion; or it may involve recursing, such as to
10209    handle a () structure.
10210 
10211    If the string doesn't start with something special then we gobble up
10212    as much literal text as we can.
10213 
10214    Once we have been able to handle whatever type of thing started the
10215    sequence, we return.
10216 
10217    Note: we have to be careful with escapes, as they can be both literal
10218    and special, and in the case of \10 and friends, context determines which.
10219 
10220    A summary of the code structure is:
10221 
10222    switch (first_byte) {
10223 	cases for each special:
10224 	    handle this special;
10225 	    break;
10226 	case '\\':
10227 	    switch (2nd byte) {
10228 		cases for each unambiguous special:
10229 		    handle this special;
10230 		    break;
10231 		cases for each ambigous special/literal:
10232 		    disambiguate;
10233 		    if (special)  handle here
10234 		    else goto defchar;
10235 		default: // unambiguously literal:
10236 		    goto defchar;
10237 	    }
10238 	default:  // is a literal char
10239 	    // FALL THROUGH
10240 	defchar:
10241 	    create EXACTish node for literal;
10242 	    while (more input and node isn't full) {
10243 		switch (input_byte) {
10244 		   cases for each special;
10245                        make sure parse pointer is set so that the next call to
10246                            regatom will see this special first
10247                        goto loopdone; // EXACTish node terminated by prev. char
10248 		   default:
10249 		       append char to EXACTISH node;
10250 		}
10251 	        get next input byte;
10252 	    }
10253         loopdone:
10254    }
10255    return the generated node;
10256 
10257    Specifically there are two separate switches for handling
10258    escape sequences, with the one for handling literal escapes requiring
10259    a dummy entry for all of the special escapes that are actually handled
10260    by the other.
10261 
10262    Returns NULL, setting *flagp to TRYAGAIN if reg() returns NULL with
10263    TRYAGAIN.
10264    Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
10265    restarted.
10266    Otherwise does not return NULL.
10267 */
10268 
10269 STATIC regnode *
10270 S_regatom(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
10271 {
10272     dVAR;
10273     regnode *ret = NULL;
10274     I32 flags = 0;
10275     char *parse_start = RExC_parse;
10276     U8 op;
10277     int invert = 0;
10278 
10279     GET_RE_DEBUG_FLAGS_DECL;
10280 
10281     *flagp = WORST;		/* Tentatively. */
10282 
10283     DEBUG_PARSE("atom");
10284 
10285     PERL_ARGS_ASSERT_REGATOM;
10286 
10287 tryagain:
10288     switch ((U8)*RExC_parse) {
10289     case '^':
10290 	RExC_seen_zerolen++;
10291 	nextchar(pRExC_state);
10292 	if (RExC_flags & RXf_PMf_MULTILINE)
10293 	    ret = reg_node(pRExC_state, MBOL);
10294 	else if (RExC_flags & RXf_PMf_SINGLELINE)
10295 	    ret = reg_node(pRExC_state, SBOL);
10296 	else
10297 	    ret = reg_node(pRExC_state, BOL);
10298         Set_Node_Length(ret, 1); /* MJD */
10299 	break;
10300     case '$':
10301 	nextchar(pRExC_state);
10302 	if (*RExC_parse)
10303 	    RExC_seen_zerolen++;
10304 	if (RExC_flags & RXf_PMf_MULTILINE)
10305 	    ret = reg_node(pRExC_state, MEOL);
10306 	else if (RExC_flags & RXf_PMf_SINGLELINE)
10307 	    ret = reg_node(pRExC_state, SEOL);
10308 	else
10309 	    ret = reg_node(pRExC_state, EOL);
10310         Set_Node_Length(ret, 1); /* MJD */
10311 	break;
10312     case '.':
10313 	nextchar(pRExC_state);
10314 	if (RExC_flags & RXf_PMf_SINGLELINE)
10315 	    ret = reg_node(pRExC_state, SANY);
10316 	else
10317 	    ret = reg_node(pRExC_state, REG_ANY);
10318 	*flagp |= HASWIDTH|SIMPLE;
10319 	RExC_naughty++;
10320         Set_Node_Length(ret, 1); /* MJD */
10321 	break;
10322     case '[':
10323     {
10324 	char * const oregcomp_parse = ++RExC_parse;
10325         ret = regclass(pRExC_state, flagp,depth+1,
10326                        FALSE, /* means parse the whole char class */
10327                        TRUE, /* allow multi-char folds */
10328                        FALSE, /* don't silence non-portable warnings. */
10329                        NULL);
10330 	if (*RExC_parse != ']') {
10331 	    RExC_parse = oregcomp_parse;
10332 	    vFAIL("Unmatched [");
10333 	}
10334         if (ret == NULL) {
10335             if (*flagp & RESTART_UTF8)
10336                 return NULL;
10337             FAIL2("panic: regclass returned NULL to regatom, flags=%#X",
10338                   *flagp);
10339         }
10340 	nextchar(pRExC_state);
10341         Set_Node_Length(ret, RExC_parse - oregcomp_parse + 1); /* MJD */
10342 	break;
10343     }
10344     case '(':
10345 	nextchar(pRExC_state);
10346         ret = reg(pRExC_state, 2, &flags,depth+1);
10347 	if (ret == NULL) {
10348 		if (flags & TRYAGAIN) {
10349 		    if (RExC_parse == RExC_end) {
10350 			 /* Make parent create an empty node if needed. */
10351 			*flagp |= TRYAGAIN;
10352 			return(NULL);
10353 		    }
10354 		    goto tryagain;
10355 		}
10356                 if (flags & RESTART_UTF8) {
10357                     *flagp = RESTART_UTF8;
10358                     return NULL;
10359                 }
10360                 FAIL2("panic: reg returned NULL to regatom, flags=%#X", flags);
10361 	}
10362 	*flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
10363 	break;
10364     case '|':
10365     case ')':
10366 	if (flags & TRYAGAIN) {
10367 	    *flagp |= TRYAGAIN;
10368 	    return NULL;
10369 	}
10370 	vFAIL("Internal urp");
10371 				/* Supposed to be caught earlier. */
10372 	break;
10373     case '{':
10374 	if (!regcurly(RExC_parse, FALSE)) {
10375 	    RExC_parse++;
10376 	    goto defchar;
10377 	}
10378 	/* FALL THROUGH */
10379     case '?':
10380     case '+':
10381     case '*':
10382 	RExC_parse++;
10383 	vFAIL("Quantifier follows nothing");
10384 	break;
10385     case '\\':
10386 	/* Special Escapes
10387 
10388 	   This switch handles escape sequences that resolve to some kind
10389 	   of special regop and not to literal text. Escape sequnces that
10390 	   resolve to literal text are handled below in the switch marked
10391 	   "Literal Escapes".
10392 
10393 	   Every entry in this switch *must* have a corresponding entry
10394 	   in the literal escape switch. However, the opposite is not
10395 	   required, as the default for this switch is to jump to the
10396 	   literal text handling code.
10397 	*/
10398 	switch ((U8)*++RExC_parse) {
10399             U8 arg;
10400 	/* Special Escapes */
10401 	case 'A':
10402 	    RExC_seen_zerolen++;
10403 	    ret = reg_node(pRExC_state, SBOL);
10404 	    *flagp |= SIMPLE;
10405 	    goto finish_meta_pat;
10406 	case 'G':
10407 	    ret = reg_node(pRExC_state, GPOS);
10408 	    RExC_seen |= REG_SEEN_GPOS;
10409 	    *flagp |= SIMPLE;
10410 	    goto finish_meta_pat;
10411 	case 'K':
10412 	    RExC_seen_zerolen++;
10413 	    ret = reg_node(pRExC_state, KEEPS);
10414 	    *flagp |= SIMPLE;
10415 	    /* XXX:dmq : disabling in-place substitution seems to
10416 	     * be necessary here to avoid cases of memory corruption, as
10417 	     * with: C<$_="x" x 80; s/x\K/y/> -- rgs
10418 	     */
10419 	    RExC_seen |= REG_SEEN_LOOKBEHIND;
10420 	    goto finish_meta_pat;
10421 	case 'Z':
10422 	    ret = reg_node(pRExC_state, SEOL);
10423 	    *flagp |= SIMPLE;
10424 	    RExC_seen_zerolen++;		/* Do not optimize RE away */
10425 	    goto finish_meta_pat;
10426 	case 'z':
10427 	    ret = reg_node(pRExC_state, EOS);
10428 	    *flagp |= SIMPLE;
10429 	    RExC_seen_zerolen++;		/* Do not optimize RE away */
10430 	    goto finish_meta_pat;
10431 	case 'C':
10432 	    ret = reg_node(pRExC_state, CANY);
10433 	    RExC_seen |= REG_SEEN_CANY;
10434 	    *flagp |= HASWIDTH|SIMPLE;
10435 	    goto finish_meta_pat;
10436 	case 'X':
10437 	    ret = reg_node(pRExC_state, CLUMP);
10438 	    *flagp |= HASWIDTH;
10439 	    goto finish_meta_pat;
10440 
10441 	case 'W':
10442             invert = 1;
10443             /* FALLTHROUGH */
10444 	case 'w':
10445             arg = ANYOF_WORDCHAR;
10446             goto join_posix;
10447 
10448 	case 'b':
10449 	    RExC_seen_zerolen++;
10450 	    RExC_seen |= REG_SEEN_LOOKBEHIND;
10451 	    op = BOUND + get_regex_charset(RExC_flags);
10452             if (op > BOUNDA) {  /* /aa is same as /a */
10453                 op = BOUNDA;
10454             }
10455 	    ret = reg_node(pRExC_state, op);
10456 	    FLAGS(ret) = get_regex_charset(RExC_flags);
10457 	    *flagp |= SIMPLE;
10458 	    if (! SIZE_ONLY && (U8) *(RExC_parse + 1) == '{') {
10459 		ckWARNdep(RExC_parse, "\"\\b{\" is deprecated; use \"\\b\\{\" or \"\\b[{]\" instead");
10460 	    }
10461 	    goto finish_meta_pat;
10462 	case 'B':
10463 	    RExC_seen_zerolen++;
10464 	    RExC_seen |= REG_SEEN_LOOKBEHIND;
10465 	    op = NBOUND + get_regex_charset(RExC_flags);
10466             if (op > NBOUNDA) { /* /aa is same as /a */
10467                 op = NBOUNDA;
10468             }
10469 	    ret = reg_node(pRExC_state, op);
10470 	    FLAGS(ret) = get_regex_charset(RExC_flags);
10471 	    *flagp |= SIMPLE;
10472 	    if (! SIZE_ONLY && (U8) *(RExC_parse + 1) == '{') {
10473 		ckWARNdep(RExC_parse, "\"\\B{\" is deprecated; use \"\\B\\{\" or \"\\B[{]\" instead");
10474 	    }
10475 	    goto finish_meta_pat;
10476 
10477 	case 'D':
10478             invert = 1;
10479             /* FALLTHROUGH */
10480 	case 'd':
10481             arg = ANYOF_DIGIT;
10482             goto join_posix;
10483 
10484 	case 'R':
10485 	    ret = reg_node(pRExC_state, LNBREAK);
10486 	    *flagp |= HASWIDTH|SIMPLE;
10487 	    goto finish_meta_pat;
10488 
10489 	case 'H':
10490             invert = 1;
10491             /* FALLTHROUGH */
10492 	case 'h':
10493 	    arg = ANYOF_BLANK;
10494             op = POSIXU;
10495             goto join_posix_op_known;
10496 
10497 	case 'V':
10498             invert = 1;
10499             /* FALLTHROUGH */
10500 	case 'v':
10501 	    arg = ANYOF_VERTWS;
10502             op = POSIXU;
10503             goto join_posix_op_known;
10504 
10505 	case 'S':
10506             invert = 1;
10507             /* FALLTHROUGH */
10508 	case 's':
10509             arg = ANYOF_SPACE;
10510 
10511         join_posix:
10512 
10513 	    op = POSIXD + get_regex_charset(RExC_flags);
10514             if (op > POSIXA) {  /* /aa is same as /a */
10515                 op = POSIXA;
10516             }
10517 
10518         join_posix_op_known:
10519 
10520             if (invert) {
10521                 op += NPOSIXD - POSIXD;
10522             }
10523 
10524 	    ret = reg_node(pRExC_state, op);
10525             if (! SIZE_ONLY) {
10526                 FLAGS(ret) = namedclass_to_classnum(arg);
10527             }
10528 
10529 	    *flagp |= HASWIDTH|SIMPLE;
10530             /* FALL THROUGH */
10531 
10532          finish_meta_pat:
10533 	    nextchar(pRExC_state);
10534             Set_Node_Length(ret, 2); /* MJD */
10535 	    break;
10536 	case 'p':
10537 	case 'P':
10538 	    {
10539 #ifdef DEBUGGING
10540 		char* parse_start = RExC_parse - 2;
10541 #endif
10542 
10543 		RExC_parse--;
10544 
10545                 ret = regclass(pRExC_state, flagp,depth+1,
10546                                TRUE, /* means just parse this element */
10547                                FALSE, /* don't allow multi-char folds */
10548                                FALSE, /* don't silence non-portable warnings.
10549                                          It would be a bug if these returned
10550                                          non-portables */
10551                                NULL);
10552                 /* regclass() can only return RESTART_UTF8 if multi-char folds
10553                    are allowed.  */
10554                 if (!ret)
10555                     FAIL2("panic: regclass returned NULL to regatom, flags=%#X",
10556                           *flagp);
10557 
10558 		RExC_parse--;
10559 
10560 		Set_Node_Offset(ret, parse_start + 2);
10561 		Set_Node_Cur_Length(ret);
10562 		nextchar(pRExC_state);
10563 	    }
10564 	    break;
10565         case 'N':
10566             /* Handle \N and \N{NAME} with multiple code points here and not
10567              * below because it can be multicharacter. join_exact() will join
10568              * them up later on.  Also this makes sure that things like
10569              * /\N{BLAH}+/ and \N{BLAH} being multi char Just Happen. dmq.
10570              * The options to the grok function call causes it to fail if the
10571              * sequence is just a single code point.  We then go treat it as
10572              * just another character in the current EXACT node, and hence it
10573              * gets uniform treatment with all the other characters.  The
10574              * special treatment for quantifiers is not needed for such single
10575              * character sequences */
10576             ++RExC_parse;
10577             if (! grok_bslash_N(pRExC_state, &ret, NULL, flagp, depth, FALSE,
10578                                 FALSE /* not strict */ )) {
10579                 if (*flagp & RESTART_UTF8)
10580                     return NULL;
10581                 RExC_parse--;
10582                 goto defchar;
10583             }
10584             break;
10585 	case 'k':    /* Handle \k<NAME> and \k'NAME' */
10586 	parse_named_seq:
10587         {
10588             char ch= RExC_parse[1];
10589 	    if (ch != '<' && ch != '\'' && ch != '{') {
10590 	        RExC_parse++;
10591 	        vFAIL2("Sequence %.2s... not terminated",parse_start);
10592 	    } else {
10593 	        /* this pretty much dupes the code for (?P=...) in reg(), if
10594                    you change this make sure you change that */
10595 		char* name_start = (RExC_parse += 2);
10596 		U32 num = 0;
10597                 SV *sv_dat = reg_scan_name(pRExC_state,
10598                     SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
10599                 ch= (ch == '<') ? '>' : (ch == '{') ? '}' : '\'';
10600                 if (RExC_parse == name_start || *RExC_parse != ch)
10601                     vFAIL2("Sequence %.3s... not terminated",parse_start);
10602 
10603                 if (!SIZE_ONLY) {
10604                     num = add_data( pRExC_state, 1, "S" );
10605                     RExC_rxi->data->data[num]=(void*)sv_dat;
10606                     SvREFCNT_inc_simple_void(sv_dat);
10607                 }
10608 
10609                 RExC_sawback = 1;
10610                 ret = reganode(pRExC_state,
10611                                ((! FOLD)
10612                                  ? NREF
10613 				 : (ASCII_FOLD_RESTRICTED)
10614 				   ? NREFFA
10615                                    : (AT_LEAST_UNI_SEMANTICS)
10616                                      ? NREFFU
10617                                      : (LOC)
10618                                        ? NREFFL
10619                                        : NREFF),
10620                                 num);
10621                 *flagp |= HASWIDTH;
10622 
10623                 /* override incorrect value set in reganode MJD */
10624                 Set_Node_Offset(ret, parse_start+1);
10625                 Set_Node_Cur_Length(ret); /* MJD */
10626                 nextchar(pRExC_state);
10627 
10628             }
10629             break;
10630 	}
10631 	case 'g':
10632 	case '1': case '2': case '3': case '4':
10633 	case '5': case '6': case '7': case '8': case '9':
10634 	    {
10635 		I32 num;
10636 		bool isg = *RExC_parse == 'g';
10637 		bool isrel = 0;
10638 		bool hasbrace = 0;
10639 		if (isg) {
10640 		    RExC_parse++;
10641 		    if (*RExC_parse == '{') {
10642 		        RExC_parse++;
10643 		        hasbrace = 1;
10644 		    }
10645 		    if (*RExC_parse == '-') {
10646 		        RExC_parse++;
10647 		        isrel = 1;
10648 		    }
10649 		    if (hasbrace && !isDIGIT(*RExC_parse)) {
10650 		        if (isrel) RExC_parse--;
10651                         RExC_parse -= 2;
10652 		        goto parse_named_seq;
10653 		}   }
10654 		num = atoi(RExC_parse);
10655 		if (isg && num == 0)
10656 		    vFAIL("Reference to invalid group 0");
10657                 if (isrel) {
10658                     num = RExC_npar - num;
10659                     if (num < 1)
10660                         vFAIL("Reference to nonexistent or unclosed group");
10661                 }
10662 		if (!isg && num > 9 && num >= RExC_npar)
10663                     /* Probably a character specified in octal, e.g. \35 */
10664 		    goto defchar;
10665 		else {
10666 		    char * const parse_start = RExC_parse - 1; /* MJD */
10667 		    while (isDIGIT(*RExC_parse))
10668 			RExC_parse++;
10669 	            if (parse_start == RExC_parse - 1)
10670 	                vFAIL("Unterminated \\g... pattern");
10671                     if (hasbrace) {
10672                         if (*RExC_parse != '}')
10673                             vFAIL("Unterminated \\g{...} pattern");
10674                         RExC_parse++;
10675                     }
10676 		    if (!SIZE_ONLY) {
10677 		        if (num > (I32)RExC_rx->nparens)
10678 			    vFAIL("Reference to nonexistent group");
10679 		    }
10680 		    RExC_sawback = 1;
10681 		    ret = reganode(pRExC_state,
10682 				   ((! FOLD)
10683 				     ? REF
10684 				     : (ASCII_FOLD_RESTRICTED)
10685 				       ? REFFA
10686                                        : (AT_LEAST_UNI_SEMANTICS)
10687                                          ? REFFU
10688                                          : (LOC)
10689                                            ? REFFL
10690                                            : REFF),
10691 				    num);
10692 		    *flagp |= HASWIDTH;
10693 
10694                     /* override incorrect value set in reganode MJD */
10695                     Set_Node_Offset(ret, parse_start+1);
10696                     Set_Node_Cur_Length(ret); /* MJD */
10697 		    RExC_parse--;
10698 		    nextchar(pRExC_state);
10699 		}
10700 	    }
10701 	    break;
10702 	case '\0':
10703 	    if (RExC_parse >= RExC_end)
10704 		FAIL("Trailing \\");
10705 	    /* FALL THROUGH */
10706 	default:
10707 	    /* Do not generate "unrecognized" warnings here, we fall
10708 	       back into the quick-grab loop below */
10709 	    parse_start--;
10710 	    goto defchar;
10711 	}
10712 	break;
10713 
10714     case '#':
10715 	if (RExC_flags & RXf_PMf_EXTENDED) {
10716 	    if ( reg_skipcomment( pRExC_state ) )
10717 		goto tryagain;
10718 	}
10719 	/* FALL THROUGH */
10720 
10721     default:
10722 
10723             parse_start = RExC_parse - 1;
10724 
10725 	    RExC_parse++;
10726 
10727 	defchar: {
10728 	    STRLEN len = 0;
10729 	    UV ender;
10730 	    char *p;
10731 	    char *s;
10732 #define MAX_NODE_STRING_SIZE 127
10733 	    char foldbuf[MAX_NODE_STRING_SIZE+UTF8_MAXBYTES_CASE];
10734 	    char *s0;
10735 	    U8 upper_parse = MAX_NODE_STRING_SIZE;
10736 	    STRLEN foldlen;
10737             U8 node_type;
10738             bool next_is_quantifier;
10739             char * oldp = NULL;
10740 
10741             /* If a folding node contains only code points that don't
10742              * participate in folds, it can be changed into an EXACT node,
10743              * which allows the optimizer more things to look for */
10744             bool maybe_exact;
10745 
10746 	    ender = 0;
10747             node_type = compute_EXACTish(pRExC_state);
10748 	    ret = reg_node(pRExC_state, node_type);
10749 
10750             /* In pass1, folded, we use a temporary buffer instead of the
10751              * actual node, as the node doesn't exist yet */
10752 	    s = (SIZE_ONLY && FOLD) ? foldbuf : STRING(ret);
10753 
10754             s0 = s;
10755 
10756 	reparse:
10757 
10758             /* We do the EXACTFish to EXACT node only if folding, and not if in
10759              * locale, as whether a character folds or not isn't known until
10760              * runtime */
10761             maybe_exact = FOLD && ! LOC;
10762 
10763 	    /* XXX The node can hold up to 255 bytes, yet this only goes to
10764              * 127.  I (khw) do not know why.  Keeping it somewhat less than
10765              * 255 allows us to not have to worry about overflow due to
10766              * converting to utf8 and fold expansion, but that value is
10767              * 255-UTF8_MAXBYTES_CASE.  join_exact() may join adjacent nodes
10768              * split up by this limit into a single one using the real max of
10769              * 255.  Even at 127, this breaks under rare circumstances.  If
10770              * folding, we do not want to split a node at a character that is a
10771              * non-final in a multi-char fold, as an input string could just
10772              * happen to want to match across the node boundary.  The join
10773              * would solve that problem if the join actually happens.  But a
10774              * series of more than two nodes in a row each of 127 would cause
10775              * the first join to succeed to get to 254, but then there wouldn't
10776              * be room for the next one, which could at be one of those split
10777              * multi-char folds.  I don't know of any fool-proof solution.  One
10778              * could back off to end with only a code point that isn't such a
10779              * non-final, but it is possible for there not to be any in the
10780              * entire node. */
10781 	    for (p = RExC_parse - 1;
10782 	         len < upper_parse && p < RExC_end;
10783 	         len++)
10784 	    {
10785 		oldp = p;
10786 
10787 		if (RExC_flags & RXf_PMf_EXTENDED)
10788 		    p = regwhite( pRExC_state, p );
10789 		switch ((U8)*p) {
10790 		case '^':
10791 		case '$':
10792 		case '.':
10793 		case '[':
10794 		case '(':
10795 		case ')':
10796 		case '|':
10797 		    goto loopdone;
10798 		case '\\':
10799 		    /* Literal Escapes Switch
10800 
10801 		       This switch is meant to handle escape sequences that
10802 		       resolve to a literal character.
10803 
10804 		       Every escape sequence that represents something
10805 		       else, like an assertion or a char class, is handled
10806 		       in the switch marked 'Special Escapes' above in this
10807 		       routine, but also has an entry here as anything that
10808 		       isn't explicitly mentioned here will be treated as
10809 		       an unescaped equivalent literal.
10810 		    */
10811 
10812 		    switch ((U8)*++p) {
10813 		    /* These are all the special escapes. */
10814 		    case 'A':             /* Start assertion */
10815 		    case 'b': case 'B':   /* Word-boundary assertion*/
10816 		    case 'C':             /* Single char !DANGEROUS! */
10817 		    case 'd': case 'D':   /* digit class */
10818 		    case 'g': case 'G':   /* generic-backref, pos assertion */
10819 		    case 'h': case 'H':   /* HORIZWS */
10820 		    case 'k': case 'K':   /* named backref, keep marker */
10821 		    case 'p': case 'P':   /* Unicode property */
10822 		              case 'R':   /* LNBREAK */
10823 		    case 's': case 'S':   /* space class */
10824 		    case 'v': case 'V':   /* VERTWS */
10825 		    case 'w': case 'W':   /* word class */
10826 		    case 'X':             /* eXtended Unicode "combining character sequence" */
10827 		    case 'z': case 'Z':   /* End of line/string assertion */
10828 			--p;
10829 			goto loopdone;
10830 
10831 	            /* Anything after here is an escape that resolves to a
10832 	               literal. (Except digits, which may or may not)
10833 	             */
10834 		    case 'n':
10835 			ender = '\n';
10836 			p++;
10837 			break;
10838 		    case 'N': /* Handle a single-code point named character. */
10839                         /* The options cause it to fail if a multiple code
10840                          * point sequence.  Handle those in the switch() above
10841                          * */
10842                         RExC_parse = p + 1;
10843                         if (! grok_bslash_N(pRExC_state, NULL, &ender,
10844                                             flagp, depth, FALSE,
10845                                             FALSE /* not strict */ ))
10846                         {
10847                             if (*flagp & RESTART_UTF8)
10848                                 FAIL("panic: grok_bslash_N set RESTART_UTF8");
10849                             RExC_parse = p = oldp;
10850                             goto loopdone;
10851                         }
10852                         p = RExC_parse;
10853                         if (ender > 0xff) {
10854                             REQUIRE_UTF8;
10855                         }
10856                         break;
10857 		    case 'r':
10858 			ender = '\r';
10859 			p++;
10860 			break;
10861 		    case 't':
10862 			ender = '\t';
10863 			p++;
10864 			break;
10865 		    case 'f':
10866 			ender = '\f';
10867 			p++;
10868 			break;
10869 		    case 'e':
10870 			  ender = ASCII_TO_NATIVE('\033');
10871 			p++;
10872 			break;
10873 		    case 'a':
10874 			  ender = ASCII_TO_NATIVE('\007');
10875 			p++;
10876 			break;
10877 		    case 'o':
10878 			{
10879 			    UV result;
10880 			    const char* error_msg;
10881 
10882 			    bool valid = grok_bslash_o(&p,
10883 						       &result,
10884 						       &error_msg,
10885 						       TRUE, /* out warnings */
10886                                                        FALSE, /* not strict */
10887                                                        TRUE, /* Output warnings
10888                                                                 for non-
10889                                                                 portables */
10890                                                        UTF);
10891 			    if (! valid) {
10892 				RExC_parse = p;	/* going to die anyway; point
10893 						   to exact spot of failure */
10894 				vFAIL(error_msg);
10895 			    }
10896                             ender = result;
10897 			    if (PL_encoding && ender < 0x100) {
10898 				goto recode_encoding;
10899 			    }
10900 			    if (ender > 0xff) {
10901 				REQUIRE_UTF8;
10902 			    }
10903 			    break;
10904 			}
10905 		    case 'x':
10906 			{
10907                             UV result = UV_MAX; /* initialize to erroneous
10908                                                    value */
10909 			    const char* error_msg;
10910 
10911 			    bool valid = grok_bslash_x(&p,
10912 						       &result,
10913 						       &error_msg,
10914 						       TRUE, /* out warnings */
10915                                                        FALSE, /* not strict */
10916                                                        TRUE, /* Output warnings
10917                                                                 for non-
10918                                                                 portables */
10919                                                        UTF);
10920 			    if (! valid) {
10921 				RExC_parse = p;	/* going to die anyway; point
10922 						   to exact spot of failure */
10923 				vFAIL(error_msg);
10924 			    }
10925                             ender = result;
10926 
10927 			    if (PL_encoding && ender < 0x100) {
10928 				goto recode_encoding;
10929 			    }
10930 			    if (ender > 0xff) {
10931 				REQUIRE_UTF8;
10932 			    }
10933 			    break;
10934 			}
10935 		    case 'c':
10936 			p++;
10937 			ender = grok_bslash_c(*p++, UTF, SIZE_ONLY);
10938 			break;
10939 		    case '0': case '1': case '2': case '3':case '4':
10940 		    case '5': case '6': case '7':
10941 			if (*p == '0' ||
10942 			    (isDIGIT(p[1]) && atoi(p) >= RExC_npar))
10943 			{
10944 			    I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
10945 			    STRLEN numlen = 3;
10946 			    ender = grok_oct(p, &numlen, &flags, NULL);
10947 			    if (ender > 0xff) {
10948 				REQUIRE_UTF8;
10949 			    }
10950 			    p += numlen;
10951                             if (SIZE_ONLY   /* like \08, \178 */
10952                                 && numlen < 3
10953                                 && p < RExC_end
10954                                 && isDIGIT(*p) && ckWARN(WARN_REGEXP))
10955                             {
10956 				reg_warn_non_literal_string(
10957                                          p + 1,
10958                                          form_short_octal_warning(p, numlen));
10959                             }
10960 			}
10961                         else {  /* Not to be treated as an octal constant, go
10962                                    find backref */
10963 			    --p;
10964 			    goto loopdone;
10965 			}
10966 			if (PL_encoding && ender < 0x100)
10967 			    goto recode_encoding;
10968 			break;
10969                     case '8': case '9': /* These are illegal unless backrefs */
10970                         if (atoi(p) <= RExC_npar) {
10971                             --p;   /* backup to backslash; handle as backref */
10972                             goto loopdone;
10973                         }
10974                         goto unrecognized;
10975 		    recode_encoding:
10976 			if (! RExC_override_recoding) {
10977 			    SV* enc = PL_encoding;
10978 			    ender = reg_recode((const char)(U8)ender, &enc);
10979 			    if (!enc && SIZE_ONLY)
10980 				ckWARNreg(p, "Invalid escape in the specified encoding");
10981 			    REQUIRE_UTF8;
10982 			}
10983 			break;
10984 		    case '\0':
10985 			if (p >= RExC_end)
10986 			    FAIL("Trailing \\");
10987 			/* FALL THROUGH */
10988 		    default:
10989                     unrecognized:
10990 			if (!SIZE_ONLY&& isALPHANUMERIC(*p)) {
10991 			    /* Include any { following the alpha to emphasize
10992 			     * that it could be part of an escape at some point
10993 			     * in the future */
10994 			    int len = (isALPHA(*p) && *(p + 1) == '{') ? 2 : 1;
10995 			    ckWARN3reg(p + len, "Unrecognized escape \\%.*s passed through", len, p);
10996 			}
10997 			goto normal_default;
10998 		    } /* End of switch on '\' */
10999 		    break;
11000 		default:    /* A literal character */
11001 
11002                     if (! SIZE_ONLY
11003                         && RExC_flags & RXf_PMf_EXTENDED
11004                         && ckWARN(WARN_DEPRECATED)
11005                         && is_PATWS_non_low(p, UTF))
11006                     {
11007                         vWARN_dep(p + ((UTF) ? UTF8SKIP(p) : 1),
11008                                 "Escape literal pattern white space under /x");
11009                     }
11010 
11011 		  normal_default:
11012 		    if (UTF8_IS_START(*p) && UTF) {
11013 			STRLEN numlen;
11014 			ender = utf8n_to_uvchr((U8*)p, RExC_end - p,
11015 					       &numlen, UTF8_ALLOW_DEFAULT);
11016 			p += numlen;
11017 		    }
11018 		    else
11019 			ender = (U8) *p++;
11020 		    break;
11021 		} /* End of switch on the literal */
11022 
11023 		/* Here, have looked at the literal character and <ender>
11024 		 * contains its ordinal, <p> points to the character after it
11025 		 */
11026 
11027 		if ( RExC_flags & RXf_PMf_EXTENDED)
11028 		    p = regwhite( pRExC_state, p );
11029 
11030                 /* If the next thing is a quantifier, it applies to this
11031                  * character only, which means that this character has to be in
11032                  * its own node and can't just be appended to the string in an
11033                  * existing node, so if there are already other characters in
11034                  * the node, close the node with just them, and set up to do
11035                  * this character again next time through, when it will be the
11036                  * only thing in its new node */
11037                 if ((next_is_quantifier = (p < RExC_end && ISMULT2(p))) && len)
11038 		{
11039                     p = oldp;
11040                     goto loopdone;
11041                 }
11042 
11043 		if (FOLD) {
11044                     if (UTF
11045                             /* See comments for join_exact() as to why we fold
11046                              * this non-UTF at compile time */
11047                         || (node_type == EXACTFU
11048                             && ender == LATIN_SMALL_LETTER_SHARP_S))
11049                     {
11050 
11051 
11052                         /* Prime the casefolded buffer.  Locale rules, which
11053                          * apply only to code points < 256, aren't known until
11054                          * execution, so for them, just output the original
11055                          * character using utf8.  If we start to fold non-UTF
11056                          * patterns, be sure to update join_exact() */
11057                         if (LOC && ender < 256) {
11058                             if (UNI_IS_INVARIANT(ender)) {
11059                                 *s = (U8) ender;
11060                                 foldlen = 1;
11061                             } else {
11062                                 *s = UTF8_TWO_BYTE_HI(ender);
11063                                 *(s + 1) = UTF8_TWO_BYTE_LO(ender);
11064                                 foldlen = 2;
11065                             }
11066                         }
11067                         else {
11068                             UV folded = _to_uni_fold_flags(
11069                                            ender,
11070                                            (U8 *) s,
11071                                            &foldlen,
11072                                            FOLD_FLAGS_FULL
11073                                            | ((LOC) ?  FOLD_FLAGS_LOCALE
11074                                                     : (ASCII_FOLD_RESTRICTED)
11075                                                       ? FOLD_FLAGS_NOMIX_ASCII
11076                                                       : 0)
11077                                             );
11078 
11079                             /* If this node only contains non-folding code
11080                              * points so far, see if this new one is also
11081                              * non-folding */
11082                             if (maybe_exact) {
11083                                 if (folded != ender) {
11084                                     maybe_exact = FALSE;
11085                                 }
11086                                 else {
11087                                     /* Here the fold is the original; we have
11088                                      * to check further to see if anything
11089                                      * folds to it */
11090                                     if (! PL_utf8_foldable) {
11091                                         SV* swash = swash_init("utf8",
11092                                                            "_Perl_Any_Folds",
11093                                                            &PL_sv_undef, 1, 0);
11094                                         PL_utf8_foldable =
11095                                                     _get_swash_invlist(swash);
11096                                         SvREFCNT_dec_NN(swash);
11097                                     }
11098                                     if (_invlist_contains_cp(PL_utf8_foldable,
11099                                                              ender))
11100                                     {
11101                                         maybe_exact = FALSE;
11102                                     }
11103                                 }
11104                             }
11105                             ender = folded;
11106                         }
11107 			s += foldlen;
11108 
11109 			/* The loop increments <len> each time, as all but this
11110 			 * path (and the one just below for UTF) through it add
11111 			 * a single byte to the EXACTish node.  But this one
11112 			 * has changed len to be the correct final value, so
11113 			 * subtract one to cancel out the increment that
11114 			 * follows */
11115 			len += foldlen - 1;
11116                     }
11117                     else {
11118                         *(s++) = (char) ender;
11119                         maybe_exact &= ! IS_IN_SOME_FOLD_L1(ender);
11120                     }
11121 		}
11122 		else if (UTF) {
11123                     const STRLEN unilen = reguni(pRExC_state, ender, s);
11124                     if (unilen > 0) {
11125                        s   += unilen;
11126                        len += unilen;
11127                     }
11128 
11129 		    /* See comment just above for - 1 */
11130 		    len--;
11131 		}
11132 		else {
11133 		    REGC((char)ender, s++);
11134                 }
11135 
11136 		if (next_is_quantifier) {
11137 
11138                     /* Here, the next input is a quantifier, and to get here,
11139                      * the current character is the only one in the node.
11140                      * Also, here <len> doesn't include the final byte for this
11141                      * character */
11142                     len++;
11143                     goto loopdone;
11144 		}
11145 
11146 	    } /* End of loop through literal characters */
11147 
11148             /* Here we have either exhausted the input or ran out of room in
11149              * the node.  (If we encountered a character that can't be in the
11150              * node, transfer is made directly to <loopdone>, and so we
11151              * wouldn't have fallen off the end of the loop.)  In the latter
11152              * case, we artificially have to split the node into two, because
11153              * we just don't have enough space to hold everything.  This
11154              * creates a problem if the final character participates in a
11155              * multi-character fold in the non-final position, as a match that
11156              * should have occurred won't, due to the way nodes are matched,
11157              * and our artificial boundary.  So back off until we find a non-
11158              * problematic character -- one that isn't at the beginning or
11159              * middle of such a fold.  (Either it doesn't participate in any
11160              * folds, or appears only in the final position of all the folds it
11161              * does participate in.)  A better solution with far fewer false
11162              * positives, and that would fill the nodes more completely, would
11163              * be to actually have available all the multi-character folds to
11164              * test against, and to back-off only far enough to be sure that
11165              * this node isn't ending with a partial one.  <upper_parse> is set
11166              * further below (if we need to reparse the node) to include just
11167              * up through that final non-problematic character that this code
11168              * identifies, so when it is set to less than the full node, we can
11169              * skip the rest of this */
11170             if (FOLD && p < RExC_end && upper_parse == MAX_NODE_STRING_SIZE) {
11171 
11172                 const STRLEN full_len = len;
11173 
11174 		assert(len >= MAX_NODE_STRING_SIZE);
11175 
11176                 /* Here, <s> points to the final byte of the final character.
11177                  * Look backwards through the string until find a non-
11178                  * problematic character */
11179 
11180 		if (! UTF) {
11181 
11182                     /* These two have no multi-char folds to non-UTF characters
11183                      */
11184                     if (ASCII_FOLD_RESTRICTED || LOC) {
11185                         goto loopdone;
11186                     }
11187 
11188                     while (--s >= s0 && IS_NON_FINAL_FOLD(*s)) { }
11189                     len = s - s0 + 1;
11190 		}
11191                 else {
11192                     if (!  PL_NonL1NonFinalFold) {
11193                         PL_NonL1NonFinalFold = _new_invlist_C_array(
11194                                         NonL1_Perl_Non_Final_Folds_invlist);
11195                     }
11196 
11197                     /* Point to the first byte of the final character */
11198                     s = (char *) utf8_hop((U8 *) s, -1);
11199 
11200                     while (s >= s0) {   /* Search backwards until find
11201                                            non-problematic char */
11202                         if (UTF8_IS_INVARIANT(*s)) {
11203 
11204                             /* There are no ascii characters that participate
11205                              * in multi-char folds under /aa.  In EBCDIC, the
11206                              * non-ascii invariants are all control characters,
11207                              * so don't ever participate in any folds. */
11208                             if (ASCII_FOLD_RESTRICTED
11209                                 || ! IS_NON_FINAL_FOLD(*s))
11210                             {
11211                                 break;
11212                             }
11213                         }
11214                         else if (UTF8_IS_DOWNGRADEABLE_START(*s)) {
11215 
11216                             /* No Latin1 characters participate in multi-char
11217                              * folds under /l */
11218                             if (LOC
11219                                 || ! IS_NON_FINAL_FOLD(TWO_BYTE_UTF8_TO_UNI(
11220                                                                 *s, *(s+1))))
11221                             {
11222                                 break;
11223                             }
11224                         }
11225                         else if (! _invlist_contains_cp(
11226                                         PL_NonL1NonFinalFold,
11227                                         valid_utf8_to_uvchr((U8 *) s, NULL)))
11228                         {
11229                             break;
11230                         }
11231 
11232                         /* Here, the current character is problematic in that
11233                          * it does occur in the non-final position of some
11234                          * fold, so try the character before it, but have to
11235                          * special case the very first byte in the string, so
11236                          * we don't read outside the string */
11237                         s = (s == s0) ? s -1 : (char *) utf8_hop((U8 *) s, -1);
11238                     } /* End of loop backwards through the string */
11239 
11240                     /* If there were only problematic characters in the string,
11241                      * <s> will point to before s0, in which case the length
11242                      * should be 0, otherwise include the length of the
11243                      * non-problematic character just found */
11244                     len = (s < s0) ? 0 : s - s0 + UTF8SKIP(s);
11245 		}
11246 
11247                 /* Here, have found the final character, if any, that is
11248                  * non-problematic as far as ending the node without splitting
11249                  * it across a potential multi-char fold.  <len> contains the
11250                  * number of bytes in the node up-to and including that
11251                  * character, or is 0 if there is no such character, meaning
11252                  * the whole node contains only problematic characters.  In
11253                  * this case, give up and just take the node as-is.  We can't
11254                  * do any better */
11255                 if (len == 0) {
11256                     len = full_len;
11257                 } else {
11258 
11259                     /* Here, the node does contain some characters that aren't
11260                      * problematic.  If one such is the final character in the
11261                      * node, we are done */
11262                     if (len == full_len) {
11263                         goto loopdone;
11264                     }
11265                     else if (len + ((UTF) ? UTF8SKIP(s) : 1) == full_len) {
11266 
11267                         /* If the final character is problematic, but the
11268                          * penultimate is not, back-off that last character to
11269                          * later start a new node with it */
11270                         p = oldp;
11271                         goto loopdone;
11272                     }
11273 
11274                     /* Here, the final non-problematic character is earlier
11275                      * in the input than the penultimate character.  What we do
11276                      * is reparse from the beginning, going up only as far as
11277                      * this final ok one, thus guaranteeing that the node ends
11278                      * in an acceptable character.  The reason we reparse is
11279                      * that we know how far in the character is, but we don't
11280                      * know how to correlate its position with the input parse.
11281                      * An alternate implementation would be to build that
11282                      * correlation as we go along during the original parse,
11283                      * but that would entail extra work for every node, whereas
11284                      * this code gets executed only when the string is too
11285                      * large for the node, and the final two characters are
11286                      * problematic, an infrequent occurrence.  Yet another
11287                      * possible strategy would be to save the tail of the
11288                      * string, and the next time regatom is called, initialize
11289                      * with that.  The problem with this is that unless you
11290                      * back off one more character, you won't be guaranteed
11291                      * regatom will get called again, unless regbranch,
11292                      * regpiece ... are also changed.  If you do back off that
11293                      * extra character, so that there is input guaranteed to
11294                      * force calling regatom, you can't handle the case where
11295                      * just the first character in the node is acceptable.  I
11296                      * (khw) decided to try this method which doesn't have that
11297                      * pitfall; if performance issues are found, we can do a
11298                      * combination of the current approach plus that one */
11299                     upper_parse = len;
11300                     len = 0;
11301                     s = s0;
11302                     goto reparse;
11303                 }
11304 	    }   /* End of verifying node ends with an appropriate char */
11305 
11306 	loopdone:   /* Jumped to when encounters something that shouldn't be in
11307 		       the node */
11308 
11309             /* If 'maybe_exact' is still set here, means there are no
11310              * code points in the node that participate in folds */
11311             if (FOLD && maybe_exact) {
11312                 OP(ret) = EXACT;
11313             }
11314 
11315             /* I (khw) don't know if you can get here with zero length, but the
11316              * old code handled this situation by creating a zero-length EXACT
11317              * node.  Might as well be NOTHING instead */
11318             if (len == 0) {
11319                 OP(ret) = NOTHING;
11320             }
11321             else{
11322                 alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, len, ender);
11323             }
11324 
11325 	    RExC_parse = p - 1;
11326             Set_Node_Cur_Length(ret); /* MJD */
11327 	    nextchar(pRExC_state);
11328 	    {
11329 		/* len is STRLEN which is unsigned, need to copy to signed */
11330 		IV iv = len;
11331 		if (iv < 0)
11332 		    vFAIL("Internal disaster");
11333 	    }
11334 
11335 	} /* End of label 'defchar:' */
11336 	break;
11337     } /* End of giant switch on input character */
11338 
11339     return(ret);
11340 }
11341 
11342 STATIC char *
11343 S_regwhite( RExC_state_t *pRExC_state, char *p )
11344 {
11345     const char *e = RExC_end;
11346 
11347     PERL_ARGS_ASSERT_REGWHITE;
11348 
11349     while (p < e) {
11350 	if (isSPACE(*p))
11351 	    ++p;
11352 	else if (*p == '#') {
11353             bool ended = 0;
11354 	    do {
11355 		if (*p++ == '\n') {
11356 		    ended = 1;
11357 		    break;
11358 		}
11359 	    } while (p < e);
11360 	    if (!ended)
11361 	        RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
11362 	}
11363 	else
11364 	    break;
11365     }
11366     return p;
11367 }
11368 
11369 STATIC char *
11370 S_regpatws( RExC_state_t *pRExC_state, char *p , const bool recognize_comment )
11371 {
11372     /* Returns the next non-pattern-white space, non-comment character (the
11373      * latter only if 'recognize_comment is true) in the string p, which is
11374      * ended by RExC_end.  If there is no line break ending a comment,
11375      * RExC_seen has added the REG_SEEN_RUN_ON_COMMENT flag; */
11376     const char *e = RExC_end;
11377 
11378     PERL_ARGS_ASSERT_REGPATWS;
11379 
11380     while (p < e) {
11381         STRLEN len;
11382 	if ((len = is_PATWS_safe(p, e, UTF))) {
11383 	    p += len;
11384         }
11385 	else if (recognize_comment && *p == '#') {
11386             bool ended = 0;
11387 	    do {
11388                 p++;
11389                 if (is_LNBREAK_safe(p, e, UTF)) {
11390 		    ended = 1;
11391 		    break;
11392 		}
11393 	    } while (p < e);
11394 	    if (!ended)
11395 	        RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
11396 	}
11397 	else
11398 	    break;
11399     }
11400     return p;
11401 }
11402 
11403 /* Parse POSIX character classes: [[:foo:]], [[=foo=]], [[.foo.]].
11404    Character classes ([:foo:]) can also be negated ([:^foo:]).
11405    Returns a named class id (ANYOF_XXX) if successful, -1 otherwise.
11406    Equivalence classes ([=foo=]) and composites ([.foo.]) are parsed,
11407    but trigger failures because they are currently unimplemented. */
11408 
11409 #define POSIXCC_DONE(c)   ((c) == ':')
11410 #define POSIXCC_NOTYET(c) ((c) == '=' || (c) == '.')
11411 #define POSIXCC(c) (POSIXCC_DONE(c) || POSIXCC_NOTYET(c))
11412 
11413 PERL_STATIC_INLINE I32
11414 S_regpposixcc(pTHX_ RExC_state_t *pRExC_state, I32 value, const bool strict)
11415 {
11416     dVAR;
11417     I32 namedclass = OOB_NAMEDCLASS;
11418 
11419     PERL_ARGS_ASSERT_REGPPOSIXCC;
11420 
11421     if (value == '[' && RExC_parse + 1 < RExC_end &&
11422 	/* I smell either [: or [= or [. -- POSIX has been here, right? */
11423 	POSIXCC(UCHARAT(RExC_parse)))
11424     {
11425 	const char c = UCHARAT(RExC_parse);
11426 	char* const s = RExC_parse++;
11427 
11428 	while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != c)
11429 	    RExC_parse++;
11430 	if (RExC_parse == RExC_end) {
11431             if (strict) {
11432 
11433                 /* Try to give a better location for the error (than the end of
11434                  * the string) by looking for the matching ']' */
11435                 RExC_parse = s;
11436                 while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != ']') {
11437                     RExC_parse++;
11438                 }
11439                 vFAIL2("Unmatched '%c' in POSIX class", c);
11440             }
11441 	    /* Grandfather lone [:, [=, [. */
11442 	    RExC_parse = s;
11443         }
11444 	else {
11445 	    const char* const t = RExC_parse++; /* skip over the c */
11446 	    assert(*t == c);
11447 
11448   	    if (UCHARAT(RExC_parse) == ']') {
11449 		const char *posixcc = s + 1;
11450   		RExC_parse++; /* skip over the ending ] */
11451 
11452 		if (*s == ':') {
11453 		    const I32 complement = *posixcc == '^' ? *posixcc++ : 0;
11454 		    const I32 skip = t - posixcc;
11455 
11456 		    /* Initially switch on the length of the name.  */
11457 		    switch (skip) {
11458 		    case 4:
11459                         if (memEQ(posixcc, "word", 4)) /* this is not POSIX,
11460                                                           this is the Perl \w
11461                                                         */
11462 			    namedclass = ANYOF_WORDCHAR;
11463 			break;
11464 		    case 5:
11465 			/* Names all of length 5.  */
11466 			/* alnum alpha ascii blank cntrl digit graph lower
11467 			   print punct space upper  */
11468 			/* Offset 4 gives the best switch position.  */
11469 			switch (posixcc[4]) {
11470 			case 'a':
11471 			    if (memEQ(posixcc, "alph", 4)) /* alpha */
11472 				namedclass = ANYOF_ALPHA;
11473 			    break;
11474 			case 'e':
11475 			    if (memEQ(posixcc, "spac", 4)) /* space */
11476 				namedclass = ANYOF_PSXSPC;
11477 			    break;
11478 			case 'h':
11479 			    if (memEQ(posixcc, "grap", 4)) /* graph */
11480 				namedclass = ANYOF_GRAPH;
11481 			    break;
11482 			case 'i':
11483 			    if (memEQ(posixcc, "asci", 4)) /* ascii */
11484 				namedclass = ANYOF_ASCII;
11485 			    break;
11486 			case 'k':
11487 			    if (memEQ(posixcc, "blan", 4)) /* blank */
11488 				namedclass = ANYOF_BLANK;
11489 			    break;
11490 			case 'l':
11491 			    if (memEQ(posixcc, "cntr", 4)) /* cntrl */
11492 				namedclass = ANYOF_CNTRL;
11493 			    break;
11494 			case 'm':
11495 			    if (memEQ(posixcc, "alnu", 4)) /* alnum */
11496 				namedclass = ANYOF_ALPHANUMERIC;
11497 			    break;
11498 			case 'r':
11499 			    if (memEQ(posixcc, "lowe", 4)) /* lower */
11500 				namedclass = (FOLD) ? ANYOF_CASED : ANYOF_LOWER;
11501 			    else if (memEQ(posixcc, "uppe", 4)) /* upper */
11502 				namedclass = (FOLD) ? ANYOF_CASED : ANYOF_UPPER;
11503 			    break;
11504 			case 't':
11505 			    if (memEQ(posixcc, "digi", 4)) /* digit */
11506 				namedclass = ANYOF_DIGIT;
11507 			    else if (memEQ(posixcc, "prin", 4)) /* print */
11508 				namedclass = ANYOF_PRINT;
11509 			    else if (memEQ(posixcc, "punc", 4)) /* punct */
11510 				namedclass = ANYOF_PUNCT;
11511 			    break;
11512 			}
11513 			break;
11514 		    case 6:
11515 			if (memEQ(posixcc, "xdigit", 6))
11516 			    namedclass = ANYOF_XDIGIT;
11517 			break;
11518 		    }
11519 
11520 		    if (namedclass == OOB_NAMEDCLASS)
11521 			Simple_vFAIL3("POSIX class [:%.*s:] unknown",
11522 				      t - s - 1, s + 1);
11523 
11524                     /* The #defines are structured so each complement is +1 to
11525                      * the normal one */
11526                     if (complement) {
11527                         namedclass++;
11528                     }
11529 		    assert (posixcc[skip] == ':');
11530 		    assert (posixcc[skip+1] == ']');
11531 		} else if (!SIZE_ONLY) {
11532 		    /* [[=foo=]] and [[.foo.]] are still future. */
11533 
11534 		    /* adjust RExC_parse so the warning shows after
11535 		       the class closes */
11536 		    while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse) != ']')
11537 			RExC_parse++;
11538 		    vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
11539 		}
11540 	    } else {
11541 		/* Maternal grandfather:
11542 		 * "[:" ending in ":" but not in ":]" */
11543                 if (strict) {
11544                     vFAIL("Unmatched '[' in POSIX class");
11545                 }
11546 
11547                 /* Grandfather lone [:, [=, [. */
11548 		RExC_parse = s;
11549 	    }
11550 	}
11551     }
11552 
11553     return namedclass;
11554 }
11555 
11556 STATIC bool
11557 S_could_it_be_a_POSIX_class(pTHX_ RExC_state_t *pRExC_state)
11558 {
11559     /* This applies some heuristics at the current parse position (which should
11560      * be at a '[') to see if what follows might be intended to be a [:posix:]
11561      * class.  It returns true if it really is a posix class, of course, but it
11562      * also can return true if it thinks that what was intended was a posix
11563      * class that didn't quite make it.
11564      *
11565      * It will return true for
11566      *      [:alphanumerics:
11567      *      [:alphanumerics]  (as long as the ] isn't followed immediately by a
11568      *                         ')' indicating the end of the (?[
11569      *      [:any garbage including %^&$ punctuation:]
11570      *
11571      * This is designed to be called only from S_handle_regex_sets; it could be
11572      * easily adapted to be called from the spot at the beginning of regclass()
11573      * that checks to see in a normal bracketed class if the surrounding []
11574      * have been omitted ([:word:] instead of [[:word:]]).  But doing so would
11575      * change long-standing behavior, so I (khw) didn't do that */
11576     char* p = RExC_parse + 1;
11577     char first_char = *p;
11578 
11579     PERL_ARGS_ASSERT_COULD_IT_BE_A_POSIX_CLASS;
11580 
11581     assert(*(p - 1) == '[');
11582 
11583     if (! POSIXCC(first_char)) {
11584         return FALSE;
11585     }
11586 
11587     p++;
11588     while (p < RExC_end && isWORDCHAR(*p)) p++;
11589 
11590     if (p >= RExC_end) {
11591         return FALSE;
11592     }
11593 
11594     if (p - RExC_parse > 2    /* Got at least 1 word character */
11595         && (*p == first_char
11596             || (*p == ']' && p + 1 < RExC_end && *(p + 1) != ')')))
11597     {
11598         return TRUE;
11599     }
11600 
11601     p = (char *) memchr(RExC_parse, ']', RExC_end - RExC_parse);
11602 
11603     return (p
11604             && p - RExC_parse > 2 /* [:] evaluates to colon;
11605                                       [::] is a bad posix class. */
11606             && first_char == *(p - 1));
11607 }
11608 
11609 STATIC regnode *
11610 S_handle_regex_sets(pTHX_ RExC_state_t *pRExC_state, SV** return_invlist, I32 *flagp, U32 depth,
11611                    char * const oregcomp_parse)
11612 {
11613     /* Handle the (?[...]) construct to do set operations */
11614 
11615     U8 curchar;
11616     UV start, end;	/* End points of code point ranges */
11617     SV* result_string;
11618     char *save_end, *save_parse;
11619     SV* final;
11620     STRLEN len;
11621     regnode* node;
11622     AV* stack;
11623     const bool save_fold = FOLD;
11624 
11625     GET_RE_DEBUG_FLAGS_DECL;
11626 
11627     PERL_ARGS_ASSERT_HANDLE_REGEX_SETS;
11628 
11629     if (LOC) {
11630         vFAIL("(?[...]) not valid in locale");
11631     }
11632     RExC_uni_semantics = 1;
11633 
11634     /* This will return only an ANYOF regnode, or (unlikely) something smaller
11635      * (such as EXACT).  Thus we can skip most everything if just sizing.  We
11636      * call regclass to handle '[]' so as to not have to reinvent its parsing
11637      * rules here (throwing away the size it computes each time).  And, we exit
11638      * upon an unescaped ']' that isn't one ending a regclass.  To do both
11639      * these things, we need to realize that something preceded by a backslash
11640      * is escaped, so we have to keep track of backslashes */
11641     if (SIZE_ONLY) {
11642 
11643         Perl_ck_warner_d(aTHX_
11644             packWARN(WARN_EXPERIMENTAL__REGEX_SETS),
11645             "The regex_sets feature is experimental" REPORT_LOCATION,
11646             (int) (RExC_parse - RExC_precomp) , RExC_precomp, RExC_parse);
11647 
11648         while (RExC_parse < RExC_end) {
11649             SV* current = NULL;
11650             RExC_parse = regpatws(pRExC_state, RExC_parse,
11651                                 TRUE); /* means recognize comments */
11652             switch (*RExC_parse) {
11653                 default:
11654                     break;
11655                 case '\\':
11656                     /* Skip the next byte (which could cause us to end up in
11657                      * the middle of a UTF-8 character, but since none of those
11658                      * are confusable with anything we currently handle in this
11659                      * switch (invariants all), it's safe.  We'll just hit the
11660                      * default: case next time and keep on incrementing until
11661                      * we find one of the invariants we do handle. */
11662                     RExC_parse++;
11663                     break;
11664                 case '[':
11665                 {
11666                     /* If this looks like it is a [:posix:] class, leave the
11667                      * parse pointer at the '[' to fool regclass() into
11668                      * thinking it is part of a '[[:posix:]]'.  That function
11669                      * will use strict checking to force a syntax error if it
11670                      * doesn't work out to a legitimate class */
11671                     bool is_posix_class
11672                                     = could_it_be_a_POSIX_class(pRExC_state);
11673                     if (! is_posix_class) {
11674                         RExC_parse++;
11675                     }
11676 
11677                     /* regclass() can only return RESTART_UTF8 if multi-char
11678                        folds are allowed.  */
11679                     if (!regclass(pRExC_state, flagp,depth+1,
11680                                   is_posix_class, /* parse the whole char
11681                                                      class only if not a
11682                                                      posix class */
11683                                   FALSE, /* don't allow multi-char folds */
11684                                   TRUE, /* silence non-portable warnings. */
11685                                   &current))
11686                         FAIL2("panic: regclass returned NULL to handle_sets, flags=%#X",
11687                               *flagp);
11688 
11689                     /* function call leaves parse pointing to the ']', except
11690                      * if we faked it */
11691                     if (is_posix_class) {
11692                         RExC_parse--;
11693                     }
11694 
11695                     SvREFCNT_dec(current);   /* In case it returned something */
11696                     break;
11697                 }
11698 
11699                 case ']':
11700                     RExC_parse++;
11701                     if (RExC_parse < RExC_end
11702                         && *RExC_parse == ')')
11703                     {
11704                         node = reganode(pRExC_state, ANYOF, 0);
11705                         RExC_size += ANYOF_SKIP;
11706                         nextchar(pRExC_state);
11707                         Set_Node_Length(node,
11708                                 RExC_parse - oregcomp_parse + 1); /* MJD */
11709                         return node;
11710                     }
11711                     goto no_close;
11712             }
11713             RExC_parse++;
11714         }
11715 
11716         no_close:
11717         FAIL("Syntax error in (?[...])");
11718     }
11719 
11720     /* Pass 2 only after this.  Everything in this construct is a
11721      * metacharacter.  Operands begin with either a '\' (for an escape
11722      * sequence), or a '[' for a bracketed character class.  Any other
11723      * character should be an operator, or parenthesis for grouping.  Both
11724      * types of operands are handled by calling regclass() to parse them.  It
11725      * is called with a parameter to indicate to return the computed inversion
11726      * list.  The parsing here is implemented via a stack.  Each entry on the
11727      * stack is a single character representing one of the operators, or the
11728      * '('; or else a pointer to an operand inversion list. */
11729 
11730 #define IS_OPERAND(a)  (! SvIOK(a))
11731 
11732     /* The stack starts empty.  It is a syntax error if the first thing parsed
11733      * is a binary operator; everything else is pushed on the stack.  When an
11734      * operand is parsed, the top of the stack is examined.  If it is a binary
11735      * operator, the item before it should be an operand, and both are replaced
11736      * by the result of doing that operation on the new operand and the one on
11737      * the stack.   Thus a sequence of binary operands is reduced to a single
11738      * one before the next one is parsed.
11739      *
11740      * A unary operator may immediately follow a binary in the input, for
11741      * example
11742      *      [a] + ! [b]
11743      * When an operand is parsed and the top of the stack is a unary operator,
11744      * the operation is performed, and then the stack is rechecked to see if
11745      * this new operand is part of a binary operation; if so, it is handled as
11746      * above.
11747      *
11748      * A '(' is simply pushed on the stack; it is valid only if the stack is
11749      * empty, or the top element of the stack is an operator or another '('
11750      * (for which the parenthesized expression will become an operand).  By the
11751      * time the corresponding ')' is parsed everything in between should have
11752      * been parsed and evaluated to a single operand (or else is a syntax
11753      * error), and is handled as a regular operand */
11754 
11755     sv_2mortal((SV *)(stack = newAV()));
11756 
11757     while (RExC_parse < RExC_end) {
11758         I32 top_index = av_tindex(stack);
11759         SV** top_ptr;
11760         SV* current = NULL;
11761 
11762         /* Skip white space */
11763         RExC_parse = regpatws(pRExC_state, RExC_parse,
11764                                 TRUE); /* means recognize comments */
11765         if (RExC_parse >= RExC_end) {
11766             Perl_croak(aTHX_ "panic: Read past end of '(?[ ])'");
11767         }
11768         if ((curchar = UCHARAT(RExC_parse)) == ']') {
11769             break;
11770         }
11771 
11772         switch (curchar) {
11773 
11774             case '?':
11775                 if (av_tindex(stack) >= 0   /* This makes sure that we can
11776                                                safely subtract 1 from
11777                                                RExC_parse in the next clause.
11778                                                If we have something on the
11779                                                stack, we have parsed something
11780                                              */
11781                     && UCHARAT(RExC_parse - 1) == '('
11782                     && RExC_parse < RExC_end)
11783                 {
11784                     /* If is a '(?', could be an embedded '(?flags:(?[...])'.
11785                      * This happens when we have some thing like
11786                      *
11787                      *   my $thai_or_lao = qr/(?[ \p{Thai} + \p{Lao} ])/;
11788                      *   ...
11789                      *   qr/(?[ \p{Digit} & $thai_or_lao ])/;
11790                      *
11791                      * Here we would be handling the interpolated
11792                      * '$thai_or_lao'.  We handle this by a recursive call to
11793                      * ourselves which returns the inversion list the
11794                      * interpolated expression evaluates to.  We use the flags
11795                      * from the interpolated pattern. */
11796                     U32 save_flags = RExC_flags;
11797                     const char * const save_parse = ++RExC_parse;
11798 
11799                     parse_lparen_question_flags(pRExC_state);
11800 
11801                     if (RExC_parse == save_parse  /* Makes sure there was at
11802                                                      least one flag (or this
11803                                                      embedding wasn't compiled)
11804                                                    */
11805                         || RExC_parse >= RExC_end - 4
11806                         || UCHARAT(RExC_parse) != ':'
11807                         || UCHARAT(++RExC_parse) != '('
11808                         || UCHARAT(++RExC_parse) != '?'
11809                         || UCHARAT(++RExC_parse) != '[')
11810                     {
11811 
11812                         /* In combination with the above, this moves the
11813                          * pointer to the point just after the first erroneous
11814                          * character (or if there are no flags, to where they
11815                          * should have been) */
11816                         if (RExC_parse >= RExC_end - 4) {
11817                             RExC_parse = RExC_end;
11818                         }
11819                         else if (RExC_parse != save_parse) {
11820                             RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
11821                         }
11822                         vFAIL("Expecting '(?flags:(?[...'");
11823                     }
11824                     RExC_parse++;
11825                     (void) handle_regex_sets(pRExC_state, &current, flagp,
11826                                                     depth+1, oregcomp_parse);
11827 
11828                     /* Here, 'current' contains the embedded expression's
11829                      * inversion list, and RExC_parse points to the trailing
11830                      * ']'; the next character should be the ')' which will be
11831                      * paired with the '(' that has been put on the stack, so
11832                      * the whole embedded expression reduces to '(operand)' */
11833                     RExC_parse++;
11834 
11835                     RExC_flags = save_flags;
11836                     goto handle_operand;
11837                 }
11838                 /* FALL THROUGH */
11839 
11840             default:
11841                 RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
11842                 vFAIL("Unexpected character");
11843 
11844             case '\\':
11845                 /* regclass() can only return RESTART_UTF8 if multi-char
11846                    folds are allowed.  */
11847                 if (!regclass(pRExC_state, flagp,depth+1,
11848                               TRUE, /* means parse just the next thing */
11849                               FALSE, /* don't allow multi-char folds */
11850                               FALSE, /* don't silence non-portable warnings.  */
11851                               &current))
11852                     FAIL2("panic: regclass returned NULL to handle_sets, flags=%#X",
11853                           *flagp);
11854                 /* regclass() will return with parsing just the \ sequence,
11855                  * leaving the parse pointer at the next thing to parse */
11856                 RExC_parse--;
11857                 goto handle_operand;
11858 
11859             case '[':   /* Is a bracketed character class */
11860             {
11861                 bool is_posix_class = could_it_be_a_POSIX_class(pRExC_state);
11862 
11863                 if (! is_posix_class) {
11864                     RExC_parse++;
11865                 }
11866 
11867                 /* regclass() can only return RESTART_UTF8 if multi-char
11868                    folds are allowed.  */
11869                 if(!regclass(pRExC_state, flagp,depth+1,
11870                              is_posix_class, /* parse the whole char class
11871                                                 only if not a posix class */
11872                              FALSE, /* don't allow multi-char folds */
11873                              FALSE, /* don't silence non-portable warnings.  */
11874                              &current))
11875                     FAIL2("panic: regclass returned NULL to handle_sets, flags=%#X",
11876                           *flagp);
11877                 /* function call leaves parse pointing to the ']', except if we
11878                  * faked it */
11879                 if (is_posix_class) {
11880                     RExC_parse--;
11881                 }
11882 
11883                 goto handle_operand;
11884             }
11885 
11886             case '&':
11887             case '|':
11888             case '+':
11889             case '-':
11890             case '^':
11891                 if (top_index < 0
11892                     || ( ! (top_ptr = av_fetch(stack, top_index, FALSE)))
11893                     || ! IS_OPERAND(*top_ptr))
11894                 {
11895                     RExC_parse++;
11896                     vFAIL2("Unexpected binary operator '%c' with no preceding operand", curchar);
11897                 }
11898                 av_push(stack, newSVuv(curchar));
11899                 break;
11900 
11901             case '!':
11902                 av_push(stack, newSVuv(curchar));
11903                 break;
11904 
11905             case '(':
11906                 if (top_index >= 0) {
11907                     top_ptr = av_fetch(stack, top_index, FALSE);
11908                     assert(top_ptr);
11909                     if (IS_OPERAND(*top_ptr)) {
11910                         RExC_parse++;
11911                         vFAIL("Unexpected '(' with no preceding operator");
11912                     }
11913                 }
11914                 av_push(stack, newSVuv(curchar));
11915                 break;
11916 
11917             case ')':
11918             {
11919                 SV* lparen;
11920                 if (top_index < 1
11921                     || ! (current = av_pop(stack))
11922                     || ! IS_OPERAND(current)
11923                     || ! (lparen = av_pop(stack))
11924                     || IS_OPERAND(lparen)
11925                     || SvUV(lparen) != '(')
11926                 {
11927                     SvREFCNT_dec(current);
11928                     RExC_parse++;
11929                     vFAIL("Unexpected ')'");
11930                 }
11931                 top_index -= 2;
11932                 SvREFCNT_dec_NN(lparen);
11933 
11934                 /* FALL THROUGH */
11935             }
11936 
11937               handle_operand:
11938 
11939                 /* Here, we have an operand to process, in 'current' */
11940 
11941                 if (top_index < 0) {    /* Just push if stack is empty */
11942                     av_push(stack, current);
11943                 }
11944                 else {
11945                     SV* top = av_pop(stack);
11946                     SV *prev = NULL;
11947                     char current_operator;
11948 
11949                     if (IS_OPERAND(top)) {
11950                         SvREFCNT_dec_NN(top);
11951                         SvREFCNT_dec_NN(current);
11952                         vFAIL("Operand with no preceding operator");
11953                     }
11954                     current_operator = (char) SvUV(top);
11955                     switch (current_operator) {
11956                         case '(':   /* Push the '(' back on followed by the new
11957                                        operand */
11958                             av_push(stack, top);
11959                             av_push(stack, current);
11960                             SvREFCNT_inc(top);  /* Counters the '_dec' done
11961                                                    just after the 'break', so
11962                                                    it doesn't get wrongly freed
11963                                                  */
11964                             break;
11965 
11966                         case '!':
11967                             _invlist_invert(current);
11968 
11969                             /* Unlike binary operators, the top of the stack,
11970                              * now that this unary one has been popped off, may
11971                              * legally be an operator, and we now have operand
11972                              * for it. */
11973                             top_index--;
11974                             SvREFCNT_dec_NN(top);
11975                             goto handle_operand;
11976 
11977                         case '&':
11978                             prev = av_pop(stack);
11979                             _invlist_intersection(prev,
11980                                                    current,
11981                                                    &current);
11982                             av_push(stack, current);
11983                             break;
11984 
11985                         case '|':
11986                         case '+':
11987                             prev = av_pop(stack);
11988                             _invlist_union(prev, current, &current);
11989                             av_push(stack, current);
11990                             break;
11991 
11992                         case '-':
11993                             prev = av_pop(stack);;
11994                             _invlist_subtract(prev, current, &current);
11995                             av_push(stack, current);
11996                             break;
11997 
11998                         case '^':   /* The union minus the intersection */
11999                         {
12000                             SV* i = NULL;
12001                             SV* u = NULL;
12002                             SV* element;
12003 
12004                             prev = av_pop(stack);
12005                             _invlist_union(prev, current, &u);
12006                             _invlist_intersection(prev, current, &i);
12007                             /* _invlist_subtract will overwrite current
12008                                 without freeing what it already contains */
12009                             element = current;
12010                             _invlist_subtract(u, i, &current);
12011                             av_push(stack, current);
12012                             SvREFCNT_dec_NN(i);
12013                             SvREFCNT_dec_NN(u);
12014                             SvREFCNT_dec_NN(element);
12015                             break;
12016                         }
12017 
12018                         default:
12019                             Perl_croak(aTHX_ "panic: Unexpected item on '(?[ ])' stack");
12020                 }
12021                 SvREFCNT_dec_NN(top);
12022                 SvREFCNT_dec(prev);
12023             }
12024         }
12025 
12026         RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
12027     }
12028 
12029     if (av_tindex(stack) < 0   /* Was empty */
12030         || ((final = av_pop(stack)) == NULL)
12031         || ! IS_OPERAND(final)
12032         || av_tindex(stack) >= 0)  /* More left on stack */
12033     {
12034         vFAIL("Incomplete expression within '(?[ ])'");
12035     }
12036 
12037     /* Here, 'final' is the resultant inversion list from evaluating the
12038      * expression.  Return it if so requested */
12039     if (return_invlist) {
12040         *return_invlist = final;
12041         return END;
12042     }
12043 
12044     /* Otherwise generate a resultant node, based on 'final'.  regclass() is
12045      * expecting a string of ranges and individual code points */
12046     invlist_iterinit(final);
12047     result_string = newSVpvs("");
12048     while (invlist_iternext(final, &start, &end)) {
12049         if (start == end) {
12050             Perl_sv_catpvf(aTHX_ result_string, "\\x{%"UVXf"}", start);
12051         }
12052         else {
12053             Perl_sv_catpvf(aTHX_ result_string, "\\x{%"UVXf"}-\\x{%"UVXf"}",
12054                                                      start,          end);
12055         }
12056     }
12057 
12058     save_parse = RExC_parse;
12059     RExC_parse = SvPV(result_string, len);
12060     save_end = RExC_end;
12061     RExC_end = RExC_parse + len;
12062 
12063     /* We turn off folding around the call, as the class we have constructed
12064      * already has all folding taken into consideration, and we don't want
12065      * regclass() to add to that */
12066     RExC_flags &= ~RXf_PMf_FOLD;
12067     /* regclass() can only return RESTART_UTF8 if multi-char folds are allowed.
12068      */
12069     node = regclass(pRExC_state, flagp,depth+1,
12070                     FALSE, /* means parse the whole char class */
12071                     FALSE, /* don't allow multi-char folds */
12072                     TRUE, /* silence non-portable warnings.  The above may very
12073                              well have generated non-portable code points, but
12074                              they're valid on this machine */
12075                     NULL);
12076     if (!node)
12077         FAIL2("panic: regclass returned NULL to handle_sets, flags=%#"UVxf,
12078                     PTR2UV(flagp));
12079     if (save_fold) {
12080         RExC_flags |= RXf_PMf_FOLD;
12081     }
12082     RExC_parse = save_parse + 1;
12083     RExC_end = save_end;
12084     SvREFCNT_dec_NN(final);
12085     SvREFCNT_dec_NN(result_string);
12086 
12087     nextchar(pRExC_state);
12088     Set_Node_Length(node, RExC_parse - oregcomp_parse + 1); /* MJD */
12089     return node;
12090 }
12091 #undef IS_OPERAND
12092 
12093 /* The names of properties whose definitions are not known at compile time are
12094  * stored in this SV, after a constant heading.  So if the length has been
12095  * changed since initialization, then there is a run-time definition. */
12096 #define HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION (SvCUR(listsv) != initial_listsv_len)
12097 
12098 STATIC regnode *
12099 S_regclass(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth,
12100                  const bool stop_at_1,  /* Just parse the next thing, don't
12101                                            look for a full character class */
12102                  bool allow_multi_folds,
12103                  const bool silence_non_portable,   /* Don't output warnings
12104                                                        about too large
12105                                                        characters */
12106                  SV** ret_invlist)  /* Return an inversion list, not a node */
12107 {
12108     /* parse a bracketed class specification.  Most of these will produce an
12109      * ANYOF node; but something like [a] will produce an EXACT node; [aA], an
12110      * EXACTFish node; [[:ascii:]], a POSIXA node; etc.  It is more complex
12111      * under /i with multi-character folds: it will be rewritten following the
12112      * paradigm of this example, where the <multi-fold>s are characters which
12113      * fold to multiple character sequences:
12114      *      /[abc\x{multi-fold1}def\x{multi-fold2}ghi]/i
12115      * gets effectively rewritten as:
12116      *      /(?:\x{multi-fold1}|\x{multi-fold2}|[abcdefghi]/i
12117      * reg() gets called (recursively) on the rewritten version, and this
12118      * function will return what it constructs.  (Actually the <multi-fold>s
12119      * aren't physically removed from the [abcdefghi], it's just that they are
12120      * ignored in the recursion by means of a flag:
12121      * <RExC_in_multi_char_class>.)
12122      *
12123      * ANYOF nodes contain a bit map for the first 256 characters, with the
12124      * corresponding bit set if that character is in the list.  For characters
12125      * above 255, a range list or swash is used.  There are extra bits for \w,
12126      * etc. in locale ANYOFs, as what these match is not determinable at
12127      * compile time
12128      *
12129      * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs
12130      * to be restarted.  This can only happen if ret_invlist is non-NULL.
12131      */
12132 
12133     dVAR;
12134     UV prevvalue = OOB_UNICODE, save_prevvalue = OOB_UNICODE;
12135     IV range = 0;
12136     UV value = OOB_UNICODE, save_value = OOB_UNICODE;
12137     regnode *ret;
12138     STRLEN numlen;
12139     IV namedclass = OOB_NAMEDCLASS;
12140     char *rangebegin = NULL;
12141     bool need_class = 0;
12142     SV *listsv = NULL;
12143     STRLEN initial_listsv_len = 0; /* Kind of a kludge to see if it is more
12144 				      than just initialized.  */
12145     SV* properties = NULL;    /* Code points that match \p{} \P{} */
12146     SV* posixes = NULL;     /* Code points that match classes like, [:word:],
12147                                extended beyond the Latin1 range */
12148     UV element_count = 0;   /* Number of distinct elements in the class.
12149 			       Optimizations may be possible if this is tiny */
12150     AV * multi_char_matches = NULL; /* Code points that fold to more than one
12151                                        character; used under /i */
12152     UV n;
12153     char * stop_ptr = RExC_end;    /* where to stop parsing */
12154     const bool skip_white = cBOOL(ret_invlist); /* ignore unescaped white
12155                                                    space? */
12156     const bool strict = cBOOL(ret_invlist); /* Apply strict parsing rules? */
12157 
12158     /* Unicode properties are stored in a swash; this holds the current one
12159      * being parsed.  If this swash is the only above-latin1 component of the
12160      * character class, an optimization is to pass it directly on to the
12161      * execution engine.  Otherwise, it is set to NULL to indicate that there
12162      * are other things in the class that have to be dealt with at execution
12163      * time */
12164     SV* swash = NULL;		/* Code points that match \p{} \P{} */
12165 
12166     /* Set if a component of this character class is user-defined; just passed
12167      * on to the engine */
12168     bool has_user_defined_property = FALSE;
12169 
12170     /* inversion list of code points this node matches only when the target
12171      * string is in UTF-8.  (Because is under /d) */
12172     SV* depends_list = NULL;
12173 
12174     /* inversion list of code points this node matches.  For much of the
12175      * function, it includes only those that match regardless of the utf8ness
12176      * of the target string */
12177     SV* cp_list = NULL;
12178 
12179 #ifdef EBCDIC
12180     /* In a range, counts how many 0-2 of the ends of it came from literals,
12181      * not escapes.  Thus we can tell if 'A' was input vs \x{C1} */
12182     UV literal_endpoint = 0;
12183 #endif
12184     bool invert = FALSE;    /* Is this class to be complemented */
12185 
12186     /* Is there any thing like \W or [:^digit:] that matches above the legal
12187      * Unicode range? */
12188     bool runtime_posix_matches_above_Unicode = FALSE;
12189 
12190     regnode * const orig_emit = RExC_emit; /* Save the original RExC_emit in
12191         case we need to change the emitted regop to an EXACT. */
12192     const char * orig_parse = RExC_parse;
12193     const I32 orig_size = RExC_size;
12194     GET_RE_DEBUG_FLAGS_DECL;
12195 
12196     PERL_ARGS_ASSERT_REGCLASS;
12197 #ifndef DEBUGGING
12198     PERL_UNUSED_ARG(depth);
12199 #endif
12200 
12201     DEBUG_PARSE("clas");
12202 
12203     /* Assume we are going to generate an ANYOF node. */
12204     ret = reganode(pRExC_state, ANYOF, 0);
12205 
12206     if (SIZE_ONLY) {
12207 	RExC_size += ANYOF_SKIP;
12208 	listsv = &PL_sv_undef; /* For code scanners: listsv always non-NULL. */
12209     }
12210     else {
12211         ANYOF_FLAGS(ret) = 0;
12212 
12213  	RExC_emit += ANYOF_SKIP;
12214 	if (LOC) {
12215 	    ANYOF_FLAGS(ret) |= ANYOF_LOCALE;
12216 	}
12217 	listsv = newSVpvs_flags("# comment\n", SVs_TEMP);
12218 	initial_listsv_len = SvCUR(listsv);
12219         SvTEMP_off(listsv); /* Grr, TEMPs and mortals are conflated.  */
12220     }
12221 
12222     if (skip_white) {
12223         RExC_parse = regpatws(pRExC_state, RExC_parse,
12224                               FALSE /* means don't recognize comments */);
12225     }
12226 
12227     if (UCHARAT(RExC_parse) == '^') {	/* Complement of range. */
12228 	RExC_parse++;
12229         invert = TRUE;
12230         allow_multi_folds = FALSE;
12231         RExC_naughty++;
12232         if (skip_white) {
12233             RExC_parse = regpatws(pRExC_state, RExC_parse,
12234                                   FALSE /* means don't recognize comments */);
12235         }
12236     }
12237 
12238     /* Check that they didn't say [:posix:] instead of [[:posix:]] */
12239     if (!SIZE_ONLY && RExC_parse < RExC_end && POSIXCC(UCHARAT(RExC_parse))) {
12240 	const char *s = RExC_parse;
12241 	const char  c = *s++;
12242 
12243 	while (isWORDCHAR(*s))
12244 	    s++;
12245 	if (*s && c == *s && s[1] == ']') {
12246 	    SAVEFREESV(RExC_rx_sv);
12247 	    ckWARN3reg(s+2,
12248 		       "POSIX syntax [%c %c] belongs inside character classes",
12249 		       c, c);
12250 	    (void)ReREFCNT_inc(RExC_rx_sv);
12251 	}
12252     }
12253 
12254     /* If the caller wants us to just parse a single element, accomplish this
12255      * by faking the loop ending condition */
12256     if (stop_at_1 && RExC_end > RExC_parse) {
12257         stop_ptr = RExC_parse + 1;
12258     }
12259 
12260     /* allow 1st char to be ']' (allowing it to be '-' is dealt with later) */
12261     if (UCHARAT(RExC_parse) == ']')
12262 	goto charclassloop;
12263 
12264 parseit:
12265     while (1) {
12266         if  (RExC_parse >= stop_ptr) {
12267             break;
12268         }
12269 
12270         if (skip_white) {
12271             RExC_parse = regpatws(pRExC_state, RExC_parse,
12272                                   FALSE /* means don't recognize comments */);
12273         }
12274 
12275         if  (UCHARAT(RExC_parse) == ']') {
12276             break;
12277         }
12278 
12279     charclassloop:
12280 
12281 	namedclass = OOB_NAMEDCLASS; /* initialize as illegal */
12282         save_value = value;
12283         save_prevvalue = prevvalue;
12284 
12285 	if (!range) {
12286 	    rangebegin = RExC_parse;
12287 	    element_count++;
12288 	}
12289 	if (UTF) {
12290 	    value = utf8n_to_uvchr((U8*)RExC_parse,
12291 				   RExC_end - RExC_parse,
12292 				   &numlen, UTF8_ALLOW_DEFAULT);
12293 	    RExC_parse += numlen;
12294 	}
12295 	else
12296 	    value = UCHARAT(RExC_parse++);
12297 
12298         if (value == '['
12299             && RExC_parse < RExC_end
12300             && POSIXCC(UCHARAT(RExC_parse)))
12301         {
12302             namedclass = regpposixcc(pRExC_state, value, strict);
12303         }
12304         else if (value == '\\') {
12305 	    if (UTF) {
12306 		value = utf8n_to_uvchr((U8*)RExC_parse,
12307 				   RExC_end - RExC_parse,
12308 				   &numlen, UTF8_ALLOW_DEFAULT);
12309 		RExC_parse += numlen;
12310 	    }
12311 	    else
12312 		value = UCHARAT(RExC_parse++);
12313 
12314 	    /* Some compilers cannot handle switching on 64-bit integer
12315 	     * values, therefore value cannot be an UV.  Yes, this will
12316 	     * be a problem later if we want switch on Unicode.
12317 	     * A similar issue a little bit later when switching on
12318 	     * namedclass. --jhi */
12319 
12320             /* If the \ is escaping white space when white space is being
12321              * skipped, it means that that white space is wanted literally, and
12322              * is already in 'value'.  Otherwise, need to translate the escape
12323              * into what it signifies. */
12324             if (! skip_white || ! is_PATWS_cp(value)) switch ((I32)value) {
12325 
12326 	    case 'w':	namedclass = ANYOF_WORDCHAR;	break;
12327 	    case 'W':	namedclass = ANYOF_NWORDCHAR;	break;
12328 	    case 's':	namedclass = ANYOF_SPACE;	break;
12329 	    case 'S':	namedclass = ANYOF_NSPACE;	break;
12330 	    case 'd':	namedclass = ANYOF_DIGIT;	break;
12331 	    case 'D':	namedclass = ANYOF_NDIGIT;	break;
12332 	    case 'v':	namedclass = ANYOF_VERTWS;	break;
12333 	    case 'V':	namedclass = ANYOF_NVERTWS;	break;
12334 	    case 'h':	namedclass = ANYOF_HORIZWS;	break;
12335 	    case 'H':	namedclass = ANYOF_NHORIZWS;	break;
12336             case 'N':  /* Handle \N{NAME} in class */
12337                 {
12338                     /* We only pay attention to the first char of
12339                     multichar strings being returned. I kinda wonder
12340                     if this makes sense as it does change the behaviour
12341                     from earlier versions, OTOH that behaviour was broken
12342                     as well. */
12343                     if (! grok_bslash_N(pRExC_state, NULL, &value, flagp, depth,
12344                                       TRUE, /* => charclass */
12345                                       strict))
12346                     {
12347                         if (*flagp & RESTART_UTF8)
12348                             FAIL("panic: grok_bslash_N set RESTART_UTF8");
12349                         goto parseit;
12350                     }
12351                 }
12352                 break;
12353 	    case 'p':
12354 	    case 'P':
12355 		{
12356 		char *e;
12357 
12358                 /* We will handle any undefined properties ourselves */
12359                 U8 swash_init_flags = _CORE_SWASH_INIT_RETURN_IF_UNDEF;
12360 
12361 		if (RExC_parse >= RExC_end)
12362 		    vFAIL2("Empty \\%c{}", (U8)value);
12363 		if (*RExC_parse == '{') {
12364 		    const U8 c = (U8)value;
12365 		    e = strchr(RExC_parse++, '}');
12366                     if (!e)
12367                         vFAIL2("Missing right brace on \\%c{}", c);
12368 		    while (isSPACE(UCHARAT(RExC_parse)))
12369 		        RExC_parse++;
12370                     if (e == RExC_parse)
12371                         vFAIL2("Empty \\%c{}", c);
12372 		    n = e - RExC_parse;
12373 		    while (isSPACE(UCHARAT(RExC_parse + n - 1)))
12374 		        n--;
12375 		}
12376 		else {
12377 		    e = RExC_parse;
12378 		    n = 1;
12379 		}
12380 		if (!SIZE_ONLY) {
12381                     SV* invlist;
12382                     char* name;
12383 
12384 		    if (UCHARAT(RExC_parse) == '^') {
12385 			 RExC_parse++;
12386 			 n--;
12387                          /* toggle.  (The rhs xor gets the single bit that
12388                           * differs between P and p; the other xor inverts just
12389                           * that bit) */
12390                          value ^= 'P' ^ 'p';
12391 
12392 			 while (isSPACE(UCHARAT(RExC_parse))) {
12393 			      RExC_parse++;
12394 			      n--;
12395 			 }
12396 		    }
12397                     /* Try to get the definition of the property into
12398                      * <invlist>.  If /i is in effect, the effective property
12399                      * will have its name be <__NAME_i>.  The design is
12400                      * discussed in commit
12401                      * 2f833f5208e26b208886e51e09e2c072b5eabb46 */
12402                     Newx(name, n + sizeof("_i__\n"), char);
12403 
12404                     sprintf(name, "%s%.*s%s\n",
12405                                     (FOLD) ? "__" : "",
12406                                     (int)n,
12407                                     RExC_parse,
12408                                     (FOLD) ? "_i" : ""
12409                     );
12410 
12411                     /* Look up the property name, and get its swash and
12412                      * inversion list, if the property is found  */
12413                     if (swash) {
12414                         SvREFCNT_dec_NN(swash);
12415                     }
12416                     swash = _core_swash_init("utf8", name, &PL_sv_undef,
12417                                              1, /* binary */
12418                                              0, /* not tr/// */
12419                                              NULL, /* No inversion list */
12420                                              &swash_init_flags
12421                                             );
12422                     if (! swash || ! (invlist = _get_swash_invlist(swash))) {
12423                         if (swash) {
12424                             SvREFCNT_dec_NN(swash);
12425                             swash = NULL;
12426                         }
12427 
12428                         /* Here didn't find it.  It could be a user-defined
12429                          * property that will be available at run-time.  If we
12430                          * accept only compile-time properties, is an error;
12431                          * otherwise add it to the list for run-time look up */
12432                         if (ret_invlist) {
12433                             RExC_parse = e + 1;
12434                             vFAIL3("Property '%.*s' is unknown", (int) n, name);
12435                         }
12436                         Perl_sv_catpvf(aTHX_ listsv, "%cutf8::%s\n",
12437                                         (value == 'p' ? '+' : '!'),
12438                                         name);
12439                         has_user_defined_property = TRUE;
12440 
12441                         /* We don't know yet, so have to assume that the
12442                          * property could match something in the Latin1 range,
12443                          * hence something that isn't utf8.  Note that this
12444                          * would cause things in <depends_list> to match
12445                          * inappropriately, except that any \p{}, including
12446                          * this one forces Unicode semantics, which means there
12447                          * is <no depends_list> */
12448                         ANYOF_FLAGS(ret) |= ANYOF_NONBITMAP_NON_UTF8;
12449                     }
12450                     else {
12451 
12452                         /* Here, did get the swash and its inversion list.  If
12453                          * the swash is from a user-defined property, then this
12454                          * whole character class should be regarded as such */
12455                         has_user_defined_property =
12456                                     (swash_init_flags
12457                                      & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY);
12458 
12459                         /* Invert if asking for the complement */
12460                         if (value == 'P') {
12461 			    _invlist_union_complement_2nd(properties,
12462                                                           invlist,
12463                                                           &properties);
12464 
12465                             /* The swash can't be used as-is, because we've
12466 			     * inverted things; delay removing it to here after
12467 			     * have copied its invlist above */
12468                             SvREFCNT_dec_NN(swash);
12469                             swash = NULL;
12470                         }
12471                         else {
12472                             _invlist_union(properties, invlist, &properties);
12473 			}
12474 		    }
12475 		    Safefree(name);
12476 		}
12477 		RExC_parse = e + 1;
12478                 namedclass = ANYOF_UNIPROP;  /* no official name, but it's
12479                                                 named */
12480 
12481 		/* \p means they want Unicode semantics */
12482 		RExC_uni_semantics = 1;
12483 		}
12484 		break;
12485 	    case 'n':	value = '\n';			break;
12486 	    case 'r':	value = '\r';			break;
12487 	    case 't':	value = '\t';			break;
12488 	    case 'f':	value = '\f';			break;
12489 	    case 'b':	value = '\b';			break;
12490 	    case 'e':	value = ASCII_TO_NATIVE('\033');break;
12491 	    case 'a':	value = ASCII_TO_NATIVE('\007');break;
12492 	    case 'o':
12493 		RExC_parse--;	/* function expects to be pointed at the 'o' */
12494 		{
12495 		    const char* error_msg;
12496 		    bool valid = grok_bslash_o(&RExC_parse,
12497 					       &value,
12498 					       &error_msg,
12499                                                SIZE_ONLY,   /* warnings in pass
12500                                                                1 only */
12501                                                strict,
12502                                                silence_non_portable,
12503                                                UTF);
12504 		    if (! valid) {
12505 			vFAIL(error_msg);
12506 		    }
12507 		}
12508 		if (PL_encoding && value < 0x100) {
12509 		    goto recode_encoding;
12510 		}
12511 		break;
12512 	    case 'x':
12513 		RExC_parse--;	/* function expects to be pointed at the 'x' */
12514 		{
12515 		    const char* error_msg;
12516 		    bool valid = grok_bslash_x(&RExC_parse,
12517 					       &value,
12518 					       &error_msg,
12519 					       TRUE, /* Output warnings */
12520                                                strict,
12521                                                silence_non_portable,
12522                                                UTF);
12523                     if (! valid) {
12524 			vFAIL(error_msg);
12525 		    }
12526 		}
12527 		if (PL_encoding && value < 0x100)
12528 		    goto recode_encoding;
12529 		break;
12530 	    case 'c':
12531 		value = grok_bslash_c(*RExC_parse++, UTF, SIZE_ONLY);
12532 		break;
12533 	    case '0': case '1': case '2': case '3': case '4':
12534 	    case '5': case '6': case '7':
12535 		{
12536 		    /* Take 1-3 octal digits */
12537 		    I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
12538                     numlen = (strict) ? 4 : 3;
12539                     value = grok_oct(--RExC_parse, &numlen, &flags, NULL);
12540 		    RExC_parse += numlen;
12541                     if (numlen != 3) {
12542                         if (strict) {
12543                             RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
12544                             vFAIL("Need exactly 3 octal digits");
12545                         }
12546                         else if (! SIZE_ONLY /* like \08, \178 */
12547                                  && numlen < 3
12548                                  && RExC_parse < RExC_end
12549                                  && isDIGIT(*RExC_parse)
12550                                  && ckWARN(WARN_REGEXP))
12551                         {
12552                             SAVEFREESV(RExC_rx_sv);
12553                             reg_warn_non_literal_string(
12554                                  RExC_parse + 1,
12555                                  form_short_octal_warning(RExC_parse, numlen));
12556                             (void)ReREFCNT_inc(RExC_rx_sv);
12557                         }
12558                     }
12559 		    if (PL_encoding && value < 0x100)
12560 			goto recode_encoding;
12561 		    break;
12562 		}
12563 	    recode_encoding:
12564 		if (! RExC_override_recoding) {
12565 		    SV* enc = PL_encoding;
12566 		    value = reg_recode((const char)(U8)value, &enc);
12567 		    if (!enc) {
12568                         if (strict) {
12569                             vFAIL("Invalid escape in the specified encoding");
12570                         }
12571                         else if (SIZE_ONLY) {
12572                             ckWARNreg(RExC_parse,
12573 				  "Invalid escape in the specified encoding");
12574                         }
12575                     }
12576 		    break;
12577 		}
12578 	    default:
12579 		/* Allow \_ to not give an error */
12580 		if (!SIZE_ONLY && isWORDCHAR(value) && value != '_') {
12581                     if (strict) {
12582                         vFAIL2("Unrecognized escape \\%c in character class",
12583                                (int)value);
12584                     }
12585                     else {
12586                         SAVEFREESV(RExC_rx_sv);
12587                         ckWARN2reg(RExC_parse,
12588                             "Unrecognized escape \\%c in character class passed through",
12589                             (int)value);
12590                         (void)ReREFCNT_inc(RExC_rx_sv);
12591                     }
12592 		}
12593 		break;
12594 	    }   /* End of switch on char following backslash */
12595 	} /* end of handling backslash escape sequences */
12596 #ifdef EBCDIC
12597         else
12598             literal_endpoint++;
12599 #endif
12600 
12601         /* Here, we have the current token in 'value' */
12602 
12603         /* What matches in a locale is not known until runtime.  This includes
12604          * what the Posix classes (like \w, [:space:]) match.  Room must be
12605          * reserved (one time per class) to store such classes, either if Perl
12606          * is compiled so that locale nodes always should have this space, or
12607          * if there is such class info to be stored.  The space will contain a
12608          * bit for each named class that is to be matched against.  This isn't
12609          * needed for \p{} and pseudo-classes, as they are not affected by
12610          * locale, and hence are dealt with separately */
12611         if (LOC
12612             && ! need_class
12613             && (ANYOF_LOCALE == ANYOF_CLASS
12614                 || (namedclass > OOB_NAMEDCLASS && namedclass < ANYOF_MAX)))
12615         {
12616             need_class = 1;
12617             if (SIZE_ONLY) {
12618                 RExC_size += ANYOF_CLASS_SKIP - ANYOF_SKIP;
12619             }
12620             else {
12621                 RExC_emit += ANYOF_CLASS_SKIP - ANYOF_SKIP;
12622                 ANYOF_CLASS_ZERO(ret);
12623             }
12624             ANYOF_FLAGS(ret) |= ANYOF_CLASS;
12625         }
12626 
12627 	if (namedclass > OOB_NAMEDCLASS) { /* this is a named class \blah */
12628 
12629 	    /* a bad range like a-\d, a-[:digit:].  The '-' is taken as a
12630 	     * literal, as is the character that began the false range, i.e.
12631 	     * the 'a' in the examples */
12632 	    if (range) {
12633 		if (!SIZE_ONLY) {
12634 		    const int w = (RExC_parse >= rangebegin)
12635                                   ? RExC_parse - rangebegin
12636                                   : 0;
12637                     if (strict) {
12638                         vFAIL4("False [] range \"%*.*s\"", w, w, rangebegin);
12639                     }
12640                     else {
12641                         SAVEFREESV(RExC_rx_sv); /* in case of fatal warnings */
12642                         ckWARN4reg(RExC_parse,
12643                                 "False [] range \"%*.*s\"",
12644                                 w, w, rangebegin);
12645                         (void)ReREFCNT_inc(RExC_rx_sv);
12646                         cp_list = add_cp_to_invlist(cp_list, '-');
12647                         cp_list = add_cp_to_invlist(cp_list, prevvalue);
12648                     }
12649 		}
12650 
12651 		range = 0; /* this was not a true range */
12652                 element_count += 2; /* So counts for three values */
12653 	    }
12654 
12655 	    if (! SIZE_ONLY) {
12656                 U8 classnum = namedclass_to_classnum(namedclass);
12657                 if (namedclass >= ANYOF_MAX) {  /* If a special class */
12658                     if (namedclass != ANYOF_UNIPROP) { /* UNIPROP = \p and \P */
12659 
12660                         /* Here, should be \h, \H, \v, or \V.  Neither /d nor
12661                          * /l make a difference in what these match.  There
12662                          * would be problems if these characters had folds
12663                          * other than themselves, as cp_list is subject to
12664                          * folding. */
12665                         if (classnum != _CC_VERTSPACE) {
12666                             assert(   namedclass == ANYOF_HORIZWS
12667                                    || namedclass == ANYOF_NHORIZWS);
12668 
12669                             /* It turns out that \h is just a synonym for
12670                              * XPosixBlank */
12671                             classnum = _CC_BLANK;
12672                         }
12673 
12674                         _invlist_union_maybe_complement_2nd(
12675                                 cp_list,
12676                                 PL_XPosix_ptrs[classnum],
12677                                 cBOOL(namedclass % 2), /* Complement if odd
12678                                                           (NHORIZWS, NVERTWS)
12679                                                         */
12680                                 &cp_list);
12681                     }
12682                 }
12683                 else if (classnum == _CC_ASCII) {
12684 #ifdef HAS_ISASCII
12685                     if (LOC) {
12686                         ANYOF_CLASS_SET(ret, namedclass);
12687                     }
12688                     else
12689 #endif  /* Not isascii(); just use the hard-coded definition for it */
12690                     {
12691                         _invlist_union_maybe_complement_2nd(
12692                                 posixes,
12693                                 PL_ASCII,
12694                                 cBOOL(namedclass % 2), /* Complement if odd
12695                                                           (NASCII) */
12696                                 &posixes);
12697 
12698                         /* The code points 128-255 added above will be
12699                          * subtracted out below under /d, so the flag needs to
12700                          * be set */
12701                         if (namedclass == ANYOF_NASCII && DEPENDS_SEMANTICS) {
12702                             ANYOF_FLAGS(ret) |= ANYOF_NON_UTF8_LATIN1_ALL;
12703                         }
12704                     }
12705                 }
12706                 else {  /* Garden variety class */
12707 
12708                     /* The ascii range inversion list */
12709                     SV* ascii_source = PL_Posix_ptrs[classnum];
12710 
12711                     /* The full Latin1 range inversion list */
12712                     SV* l1_source = PL_L1Posix_ptrs[classnum];
12713 
12714                     /* This code is structured into two major clauses.  The
12715                      * first is for classes whose complete definitions may not
12716                      * already be known.  It not, the Latin1 definition
12717                      * (guaranteed to already known) is used plus code is
12718                      * generated to load the rest at run-time (only if needed).
12719                      * If the complete definition is known, it drops down to
12720                      * the second clause, where the complete definition is
12721                      * known */
12722 
12723                     if (classnum < _FIRST_NON_SWASH_CC) {
12724 
12725                         /* Here, the class has a swash, which may or not
12726                          * already be loaded */
12727 
12728                         /* The name of the property to use to match the full
12729                          * eXtended Unicode range swash for this character
12730                          * class */
12731                         const char *Xname = swash_property_names[classnum];
12732 
12733                         /* If returning the inversion list, we can't defer
12734                          * getting this until runtime */
12735                         if (ret_invlist && !  PL_utf8_swash_ptrs[classnum]) {
12736                             PL_utf8_swash_ptrs[classnum] =
12737                                 _core_swash_init("utf8", Xname, &PL_sv_undef,
12738                                              1, /* binary */
12739                                              0, /* not tr/// */
12740                                              NULL, /* No inversion list */
12741                                              NULL  /* No flags */
12742                                             );
12743                             assert(PL_utf8_swash_ptrs[classnum]);
12744                         }
12745                         if ( !  PL_utf8_swash_ptrs[classnum]) {
12746                             if (namedclass % 2 == 0) { /* A non-complemented
12747                                                           class */
12748                                 /* If not /a matching, there are code points we
12749                                  * don't know at compile time.  Arrange for the
12750                                  * unknown matches to be loaded at run-time, if
12751                                  * needed */
12752                                 if (! AT_LEAST_ASCII_RESTRICTED) {
12753                                     Perl_sv_catpvf(aTHX_ listsv, "+utf8::%s\n",
12754                                                                  Xname);
12755                                 }
12756                                 if (LOC) {  /* Under locale, set run-time
12757                                                lookup */
12758                                     ANYOF_CLASS_SET(ret, namedclass);
12759                                 }
12760                                 else {
12761                                     /* Add the current class's code points to
12762                                      * the running total */
12763                                     _invlist_union(posixes,
12764                                                    (AT_LEAST_ASCII_RESTRICTED)
12765                                                         ? ascii_source
12766                                                         : l1_source,
12767                                                    &posixes);
12768                                 }
12769                             }
12770                             else {  /* A complemented class */
12771                                 if (AT_LEAST_ASCII_RESTRICTED) {
12772                                     /* Under /a should match everything above
12773                                      * ASCII, plus the complement of the set's
12774                                      * ASCII matches */
12775                                     _invlist_union_complement_2nd(posixes,
12776                                                                   ascii_source,
12777                                                                   &posixes);
12778                                 }
12779                                 else {
12780                                     /* Arrange for the unknown matches to be
12781                                      * loaded at run-time, if needed */
12782                                     Perl_sv_catpvf(aTHX_ listsv, "!utf8::%s\n",
12783                                                                  Xname);
12784                                     runtime_posix_matches_above_Unicode = TRUE;
12785                                     if (LOC) {
12786                                         ANYOF_CLASS_SET(ret, namedclass);
12787                                     }
12788                                     else {
12789 
12790                                         /* We want to match everything in
12791                                          * Latin1, except those things that
12792                                          * l1_source matches */
12793                                         SV* scratch_list = NULL;
12794                                         _invlist_subtract(PL_Latin1, l1_source,
12795                                                           &scratch_list);
12796 
12797                                         /* Add the list from this class to the
12798                                          * running total */
12799                                         if (! posixes) {
12800                                             posixes = scratch_list;
12801                                         }
12802                                         else {
12803                                             _invlist_union(posixes,
12804                                                            scratch_list,
12805                                                            &posixes);
12806                                             SvREFCNT_dec_NN(scratch_list);
12807                                         }
12808                                         if (DEPENDS_SEMANTICS) {
12809                                             ANYOF_FLAGS(ret)
12810                                                   |= ANYOF_NON_UTF8_LATIN1_ALL;
12811                                         }
12812                                     }
12813                                 }
12814                             }
12815                             goto namedclass_done;
12816                         }
12817 
12818                         /* Here, there is a swash loaded for the class.  If no
12819                          * inversion list for it yet, get it */
12820                         if (! PL_XPosix_ptrs[classnum]) {
12821                             PL_XPosix_ptrs[classnum]
12822                              = _swash_to_invlist(PL_utf8_swash_ptrs[classnum]);
12823                         }
12824                     }
12825 
12826                     /* Here there is an inversion list already loaded for the
12827                      * entire class */
12828 
12829                     if (namedclass % 2 == 0) {  /* A non-complemented class,
12830                                                    like ANYOF_PUNCT */
12831                         if (! LOC) {
12832                             /* For non-locale, just add it to any existing list
12833                              * */
12834                             _invlist_union(posixes,
12835                                            (AT_LEAST_ASCII_RESTRICTED)
12836                                                ? ascii_source
12837                                                : PL_XPosix_ptrs[classnum],
12838                                            &posixes);
12839                         }
12840                         else {  /* Locale */
12841                             SV* scratch_list = NULL;
12842 
12843                             /* For above Latin1 code points, we use the full
12844                              * Unicode range */
12845                             _invlist_intersection(PL_AboveLatin1,
12846                                                   PL_XPosix_ptrs[classnum],
12847                                                   &scratch_list);
12848                             /* And set the output to it, adding instead if
12849                              * there already is an output.  Checking if
12850                              * 'posixes' is NULL first saves an extra clone.
12851                              * Its reference count will be decremented at the
12852                              * next union, etc, or if this is the only
12853                              * instance, at the end of the routine */
12854                             if (! posixes) {
12855                                 posixes = scratch_list;
12856                             }
12857                             else {
12858                                 _invlist_union(posixes, scratch_list, &posixes);
12859                                 SvREFCNT_dec_NN(scratch_list);
12860                             }
12861 
12862 #ifndef HAS_ISBLANK
12863                             if (namedclass != ANYOF_BLANK) {
12864 #endif
12865                                 /* Set this class in the node for runtime
12866                                  * matching */
12867                                 ANYOF_CLASS_SET(ret, namedclass);
12868 #ifndef HAS_ISBLANK
12869                             }
12870                             else {
12871                                 /* No isblank(), use the hard-coded ASCII-range
12872                                  * blanks, adding them to the running total. */
12873 
12874                                 _invlist_union(posixes, ascii_source, &posixes);
12875                             }
12876 #endif
12877                         }
12878                     }
12879                     else {  /* A complemented class, like ANYOF_NPUNCT */
12880                         if (! LOC) {
12881                             _invlist_union_complement_2nd(
12882                                                 posixes,
12883                                                 (AT_LEAST_ASCII_RESTRICTED)
12884                                                     ? ascii_source
12885                                                     : PL_XPosix_ptrs[classnum],
12886                                                 &posixes);
12887                             /* Under /d, everything in the upper half of the
12888                              * Latin1 range matches this complement */
12889                             if (DEPENDS_SEMANTICS) {
12890                                 ANYOF_FLAGS(ret) |= ANYOF_NON_UTF8_LATIN1_ALL;
12891                             }
12892                         }
12893                         else {  /* Locale */
12894                             SV* scratch_list = NULL;
12895                             _invlist_subtract(PL_AboveLatin1,
12896                                               PL_XPosix_ptrs[classnum],
12897                                               &scratch_list);
12898                             if (! posixes) {
12899                                 posixes = scratch_list;
12900                             }
12901                             else {
12902                                 _invlist_union(posixes, scratch_list, &posixes);
12903                                 SvREFCNT_dec_NN(scratch_list);
12904                             }
12905 #ifndef HAS_ISBLANK
12906                             if (namedclass != ANYOF_NBLANK) {
12907 #endif
12908                                 ANYOF_CLASS_SET(ret, namedclass);
12909 #ifndef HAS_ISBLANK
12910                             }
12911                             else {
12912                                 /* Get the list of all code points in Latin1
12913                                  * that are not ASCII blanks, and add them to
12914                                  * the running total */
12915                                 _invlist_subtract(PL_Latin1, ascii_source,
12916                                                   &scratch_list);
12917                                 _invlist_union(posixes, scratch_list, &posixes);
12918                                 SvREFCNT_dec_NN(scratch_list);
12919                             }
12920 #endif
12921                         }
12922                     }
12923                 }
12924               namedclass_done:
12925 		continue;   /* Go get next character */
12926 	    }
12927 	} /* end of namedclass \blah */
12928 
12929         /* Here, we have a single value.  If 'range' is set, it is the ending
12930          * of a range--check its validity.  Later, we will handle each
12931          * individual code point in the range.  If 'range' isn't set, this
12932          * could be the beginning of a range, so check for that by looking
12933          * ahead to see if the next real character to be processed is the range
12934          * indicator--the minus sign */
12935 
12936         if (skip_white) {
12937             RExC_parse = regpatws(pRExC_state, RExC_parse,
12938                                 FALSE /* means don't recognize comments */);
12939         }
12940 
12941 	if (range) {
12942 	    if (prevvalue > value) /* b-a */ {
12943 		const int w = RExC_parse - rangebegin;
12944 		Simple_vFAIL4("Invalid [] range \"%*.*s\"", w, w, rangebegin);
12945 		range = 0; /* not a valid range */
12946 	    }
12947 	}
12948 	else {
12949             prevvalue = value; /* save the beginning of the potential range */
12950             if (! stop_at_1     /* Can't be a range if parsing just one thing */
12951                 && *RExC_parse == '-')
12952             {
12953                 char* next_char_ptr = RExC_parse + 1;
12954                 if (skip_white) {   /* Get the next real char after the '-' */
12955                     next_char_ptr = regpatws(pRExC_state,
12956                                              RExC_parse + 1,
12957                                              FALSE); /* means don't recognize
12958                                                         comments */
12959                 }
12960 
12961                 /* If the '-' is at the end of the class (just before the ']',
12962                  * it is a literal minus; otherwise it is a range */
12963                 if (next_char_ptr < RExC_end && *next_char_ptr != ']') {
12964                     RExC_parse = next_char_ptr;
12965 
12966                     /* a bad range like \w-, [:word:]- ? */
12967                     if (namedclass > OOB_NAMEDCLASS) {
12968                         if (strict || ckWARN(WARN_REGEXP)) {
12969                             const int w =
12970                                 RExC_parse >= rangebegin ?
12971                                 RExC_parse - rangebegin : 0;
12972                             if (strict) {
12973                                 vFAIL4("False [] range \"%*.*s\"",
12974                                     w, w, rangebegin);
12975                             }
12976                             else {
12977                                 vWARN4(RExC_parse,
12978                                     "False [] range \"%*.*s\"",
12979                                     w, w, rangebegin);
12980                             }
12981                         }
12982                         if (!SIZE_ONLY) {
12983                             cp_list = add_cp_to_invlist(cp_list, '-');
12984                         }
12985                         element_count++;
12986                     } else
12987                         range = 1;	/* yeah, it's a range! */
12988                     continue;	/* but do it the next time */
12989                 }
12990 	    }
12991 	}
12992 
12993         /* Here, <prevvalue> is the beginning of the range, if any; or <value>
12994          * if not */
12995 
12996 	/* non-Latin1 code point implies unicode semantics.  Must be set in
12997 	 * pass1 so is there for the whole of pass 2 */
12998 	if (value > 255) {
12999 	    RExC_uni_semantics = 1;
13000 	}
13001 
13002         /* Ready to process either the single value, or the completed range.
13003          * For single-valued non-inverted ranges, we consider the possibility
13004          * of multi-char folds.  (We made a conscious decision to not do this
13005          * for the other cases because it can often lead to non-intuitive
13006          * results.  For example, you have the peculiar case that:
13007          *  "s s" =~ /^[^\xDF]+$/i => Y
13008          *  "ss"  =~ /^[^\xDF]+$/i => N
13009          *
13010          * See [perl #89750] */
13011         if (FOLD && allow_multi_folds && value == prevvalue) {
13012             if (value == LATIN_SMALL_LETTER_SHARP_S
13013                 || (value > 255 && _invlist_contains_cp(PL_HasMultiCharFold,
13014                                                         value)))
13015             {
13016                 /* Here <value> is indeed a multi-char fold.  Get what it is */
13017 
13018                 U8 foldbuf[UTF8_MAXBYTES_CASE];
13019                 STRLEN foldlen;
13020 
13021                 UV folded = _to_uni_fold_flags(
13022                                 value,
13023                                 foldbuf,
13024                                 &foldlen,
13025                                 FOLD_FLAGS_FULL
13026                                 | ((LOC) ?  FOLD_FLAGS_LOCALE
13027                                             : (ASCII_FOLD_RESTRICTED)
13028                                               ? FOLD_FLAGS_NOMIX_ASCII
13029                                               : 0)
13030                                 );
13031 
13032                 /* Here, <folded> should be the first character of the
13033                  * multi-char fold of <value>, with <foldbuf> containing the
13034                  * whole thing.  But, if this fold is not allowed (because of
13035                  * the flags), <fold> will be the same as <value>, and should
13036                  * be processed like any other character, so skip the special
13037                  * handling */
13038                 if (folded != value) {
13039 
13040                     /* Skip if we are recursed, currently parsing the class
13041                      * again.  Otherwise add this character to the list of
13042                      * multi-char folds. */
13043                     if (! RExC_in_multi_char_class) {
13044                         AV** this_array_ptr;
13045                         AV* this_array;
13046                         STRLEN cp_count = utf8_length(foldbuf,
13047                                                       foldbuf + foldlen);
13048                         SV* multi_fold = sv_2mortal(newSVpvn("", 0));
13049 
13050                         Perl_sv_catpvf(aTHX_ multi_fold, "\\x{%"UVXf"}", value);
13051 
13052 
13053                         if (! multi_char_matches) {
13054                             multi_char_matches = newAV();
13055                         }
13056 
13057                         /* <multi_char_matches> is actually an array of arrays.
13058                          * There will be one or two top-level elements: [2],
13059                          * and/or [3].  The [2] element is an array, each
13060                          * element thereof is a character which folds to two
13061                          * characters; likewise for [3].  (Unicode guarantees a
13062                          * maximum of 3 characters in any fold.)  When we
13063                          * rewrite the character class below, we will do so
13064                          * such that the longest folds are written first, so
13065                          * that it prefers the longest matching strings first.
13066                          * This is done even if it turns out that any
13067                          * quantifier is non-greedy, out of programmer
13068                          * laziness.  Tom Christiansen has agreed that this is
13069                          * ok.  This makes the test for the ligature 'ffi' come
13070                          * before the test for 'ff' */
13071                         if (av_exists(multi_char_matches, cp_count)) {
13072                             this_array_ptr = (AV**) av_fetch(multi_char_matches,
13073                                                              cp_count, FALSE);
13074                             this_array = *this_array_ptr;
13075                         }
13076                         else {
13077                             this_array = newAV();
13078                             av_store(multi_char_matches, cp_count,
13079                                      (SV*) this_array);
13080                         }
13081                         av_push(this_array, multi_fold);
13082                     }
13083 
13084                     /* This element should not be processed further in this
13085                      * class */
13086                     element_count--;
13087                     value = save_value;
13088                     prevvalue = save_prevvalue;
13089                     continue;
13090                 }
13091             }
13092         }
13093 
13094         /* Deal with this element of the class */
13095 	if (! SIZE_ONLY) {
13096 #ifndef EBCDIC
13097             cp_list = _add_range_to_invlist(cp_list, prevvalue, value);
13098 #else
13099             SV* this_range = _new_invlist(1);
13100             _append_range_to_invlist(this_range, prevvalue, value);
13101 
13102             /* In EBCDIC, the ranges 'A-Z' and 'a-z' are each not contiguous.
13103              * If this range was specified using something like 'i-j', we want
13104              * to include only the 'i' and the 'j', and not anything in
13105              * between, so exclude non-ASCII, non-alphabetics from it.
13106              * However, if the range was specified with something like
13107              * [\x89-\x91] or [\x89-j], all code points within it should be
13108              * included.  literal_endpoint==2 means both ends of the range used
13109              * a literal character, not \x{foo} */
13110 	    if (literal_endpoint == 2
13111                 && (prevvalue >= 'a' && value <= 'z')
13112                     || (prevvalue >= 'A' && value <= 'Z'))
13113             {
13114                 _invlist_intersection(this_range, PL_Posix_ptrs[_CC_ALPHA],
13115                                       &this_range);
13116             }
13117             _invlist_union(cp_list, this_range, &cp_list);
13118             literal_endpoint = 0;
13119 #endif
13120         }
13121 
13122 	range = 0; /* this range (if it was one) is done now */
13123     } /* End of loop through all the text within the brackets */
13124 
13125     /* If anything in the class expands to more than one character, we have to
13126      * deal with them by building up a substitute parse string, and recursively
13127      * calling reg() on it, instead of proceeding */
13128     if (multi_char_matches) {
13129 	SV * substitute_parse = newSVpvn_flags("?:", 2, SVs_TEMP);
13130         I32 cp_count;
13131 	STRLEN len;
13132 	char *save_end = RExC_end;
13133 	char *save_parse = RExC_parse;
13134         bool first_time = TRUE;     /* First multi-char occurrence doesn't get
13135                                        a "|" */
13136         I32 reg_flags;
13137 
13138         assert(! invert);
13139 #if 0   /* Have decided not to deal with multi-char folds in inverted classes,
13140            because too confusing */
13141         if (invert) {
13142             sv_catpv(substitute_parse, "(?:");
13143         }
13144 #endif
13145 
13146         /* Look at the longest folds first */
13147         for (cp_count = av_len(multi_char_matches); cp_count > 0; cp_count--) {
13148 
13149             if (av_exists(multi_char_matches, cp_count)) {
13150                 AV** this_array_ptr;
13151                 SV* this_sequence;
13152 
13153                 this_array_ptr = (AV**) av_fetch(multi_char_matches,
13154                                                  cp_count, FALSE);
13155                 while ((this_sequence = av_pop(*this_array_ptr)) !=
13156                                                                 &PL_sv_undef)
13157                 {
13158                     if (! first_time) {
13159                         sv_catpv(substitute_parse, "|");
13160                     }
13161                     first_time = FALSE;
13162 
13163                     sv_catpv(substitute_parse, SvPVX(this_sequence));
13164                 }
13165             }
13166         }
13167 
13168         /* If the character class contains anything else besides these
13169          * multi-character folds, have to include it in recursive parsing */
13170         if (element_count) {
13171             sv_catpv(substitute_parse, "|[");
13172             sv_catpvn(substitute_parse, orig_parse, RExC_parse - orig_parse);
13173             sv_catpv(substitute_parse, "]");
13174         }
13175 
13176         sv_catpv(substitute_parse, ")");
13177 #if 0
13178         if (invert) {
13179             /* This is a way to get the parse to skip forward a whole named
13180              * sequence instead of matching the 2nd character when it fails the
13181              * first */
13182             sv_catpv(substitute_parse, "(*THEN)(*SKIP)(*FAIL)|.)");
13183         }
13184 #endif
13185 
13186 	RExC_parse = SvPV(substitute_parse, len);
13187 	RExC_end = RExC_parse + len;
13188         RExC_in_multi_char_class = 1;
13189         RExC_emit = (regnode *)orig_emit;
13190 
13191 	ret = reg(pRExC_state, 1, &reg_flags, depth+1);
13192 
13193 	*flagp |= reg_flags&(HASWIDTH|SIMPLE|SPSTART|POSTPONED|RESTART_UTF8);
13194 
13195 	RExC_parse = save_parse;
13196 	RExC_end = save_end;
13197 	RExC_in_multi_char_class = 0;
13198         SvREFCNT_dec_NN(multi_char_matches);
13199         return ret;
13200     }
13201 
13202     /* If the character class contains only a single element, it may be
13203      * optimizable into another node type which is smaller and runs faster.
13204      * Check if this is the case for this class */
13205     if (element_count == 1 && ! ret_invlist) {
13206         U8 op = END;
13207         U8 arg = 0;
13208 
13209         if (namedclass > OOB_NAMEDCLASS) { /* this is a named class, like \w or
13210                                               [:digit:] or \p{foo} */
13211 
13212             /* All named classes are mapped into POSIXish nodes, with its FLAG
13213              * argument giving which class it is */
13214             switch ((I32)namedclass) {
13215                 case ANYOF_UNIPROP:
13216                     break;
13217 
13218                 /* These don't depend on the charset modifiers.  They always
13219                  * match under /u rules */
13220                 case ANYOF_NHORIZWS:
13221                 case ANYOF_HORIZWS:
13222                     namedclass = ANYOF_BLANK + namedclass - ANYOF_HORIZWS;
13223                     /* FALLTHROUGH */
13224 
13225                 case ANYOF_NVERTWS:
13226                 case ANYOF_VERTWS:
13227                     op = POSIXU;
13228                     goto join_posix;
13229 
13230                 /* The actual POSIXish node for all the rest depends on the
13231                  * charset modifier.  The ones in the first set depend only on
13232                  * ASCII or, if available on this platform, locale */
13233                 case ANYOF_ASCII:
13234                 case ANYOF_NASCII:
13235 #ifdef HAS_ISASCII
13236                     op = (LOC) ? POSIXL : POSIXA;
13237 #else
13238                     op = POSIXA;
13239 #endif
13240                     goto join_posix;
13241 
13242                 case ANYOF_NCASED:
13243                 case ANYOF_LOWER:
13244                 case ANYOF_NLOWER:
13245                 case ANYOF_UPPER:
13246                 case ANYOF_NUPPER:
13247                     /* under /a could be alpha */
13248                     if (FOLD) {
13249                         if (ASCII_RESTRICTED) {
13250                             namedclass = ANYOF_ALPHA + (namedclass % 2);
13251                         }
13252                         else if (! LOC) {
13253                             break;
13254                         }
13255                     }
13256                     /* FALLTHROUGH */
13257 
13258                 /* The rest have more possibilities depending on the charset.
13259                  * We take advantage of the enum ordering of the charset
13260                  * modifiers to get the exact node type, */
13261                 default:
13262                     op = POSIXD + get_regex_charset(RExC_flags);
13263                     if (op > POSIXA) { /* /aa is same as /a */
13264                         op = POSIXA;
13265                     }
13266 #ifndef HAS_ISBLANK
13267                     if (op == POSIXL
13268                         && (namedclass == ANYOF_BLANK
13269                             || namedclass == ANYOF_NBLANK))
13270                     {
13271                         op = POSIXA;
13272                     }
13273 #endif
13274 
13275                 join_posix:
13276                     /* The odd numbered ones are the complements of the
13277                      * next-lower even number one */
13278                     if (namedclass % 2 == 1) {
13279                         invert = ! invert;
13280                         namedclass--;
13281                     }
13282                     arg = namedclass_to_classnum(namedclass);
13283                     break;
13284             }
13285         }
13286         else if (value == prevvalue) {
13287 
13288             /* Here, the class consists of just a single code point */
13289 
13290             if (invert) {
13291                 if (! LOC && value == '\n') {
13292                     op = REG_ANY; /* Optimize [^\n] */
13293                     *flagp |= HASWIDTH|SIMPLE;
13294                     RExC_naughty++;
13295                 }
13296             }
13297             else if (value < 256 || UTF) {
13298 
13299                 /* Optimize a single value into an EXACTish node, but not if it
13300                  * would require converting the pattern to UTF-8. */
13301                 op = compute_EXACTish(pRExC_state);
13302             }
13303         } /* Otherwise is a range */
13304         else if (! LOC) {   /* locale could vary these */
13305             if (prevvalue == '0') {
13306                 if (value == '9') {
13307                     arg = _CC_DIGIT;
13308                     op = POSIXA;
13309                 }
13310             }
13311         }
13312 
13313         /* Here, we have changed <op> away from its initial value iff we found
13314          * an optimization */
13315         if (op != END) {
13316 
13317             /* Throw away this ANYOF regnode, and emit the calculated one,
13318              * which should correspond to the beginning, not current, state of
13319              * the parse */
13320             const char * cur_parse = RExC_parse;
13321             RExC_parse = (char *)orig_parse;
13322             if ( SIZE_ONLY) {
13323                 if (! LOC) {
13324 
13325                     /* To get locale nodes to not use the full ANYOF size would
13326                      * require moving the code above that writes the portions
13327                      * of it that aren't in other nodes to after this point.
13328                      * e.g.  ANYOF_CLASS_SET */
13329                     RExC_size = orig_size;
13330                 }
13331             }
13332             else {
13333                 RExC_emit = (regnode *)orig_emit;
13334                 if (PL_regkind[op] == POSIXD) {
13335                     if (invert) {
13336                         op += NPOSIXD - POSIXD;
13337                     }
13338                 }
13339             }
13340 
13341             ret = reg_node(pRExC_state, op);
13342 
13343             if (PL_regkind[op] == POSIXD || PL_regkind[op] == NPOSIXD) {
13344                 if (! SIZE_ONLY) {
13345                     FLAGS(ret) = arg;
13346                 }
13347                 *flagp |= HASWIDTH|SIMPLE;
13348             }
13349             else if (PL_regkind[op] == EXACT) {
13350                 alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, 0, value);
13351             }
13352 
13353             RExC_parse = (char *) cur_parse;
13354 
13355             SvREFCNT_dec(posixes);
13356             SvREFCNT_dec(cp_list);
13357             return ret;
13358         }
13359     }
13360 
13361     if (SIZE_ONLY)
13362         return ret;
13363     /****** !SIZE_ONLY (Pass 2) AFTER HERE *********/
13364 
13365     /* If folding, we calculate all characters that could fold to or from the
13366      * ones already on the list */
13367     if (FOLD && cp_list) {
13368 	UV start, end;	/* End points of code point ranges */
13369 
13370 	SV* fold_intersection = NULL;
13371 
13372         /* If the highest code point is within Latin1, we can use the
13373          * compiled-in Alphas list, and not have to go out to disk.  This
13374          * yields two false positives, the masculine and feminine ordinal
13375          * indicators, which are weeded out below using the
13376          * IS_IN_SOME_FOLD_L1() macro */
13377         if (invlist_highest(cp_list) < 256) {
13378             _invlist_intersection(PL_L1Posix_ptrs[_CC_ALPHA], cp_list,
13379                                                            &fold_intersection);
13380         }
13381         else {
13382 
13383             /* Here, there are non-Latin1 code points, so we will have to go
13384              * fetch the list of all the characters that participate in folds
13385              */
13386             if (! PL_utf8_foldable) {
13387                 SV* swash = swash_init("utf8", "_Perl_Any_Folds",
13388                                        &PL_sv_undef, 1, 0);
13389                 PL_utf8_foldable = _get_swash_invlist(swash);
13390                 SvREFCNT_dec_NN(swash);
13391             }
13392 
13393             /* This is a hash that for a particular fold gives all characters
13394              * that are involved in it */
13395             if (! PL_utf8_foldclosures) {
13396 
13397                 /* If we were unable to find any folds, then we likely won't be
13398                  * able to find the closures.  So just create an empty list.
13399                  * Folding will effectively be restricted to the non-Unicode
13400                  * rules hard-coded into Perl.  (This case happens legitimately
13401                  * during compilation of Perl itself before the Unicode tables
13402                  * are generated) */
13403                 if (_invlist_len(PL_utf8_foldable) == 0) {
13404                     PL_utf8_foldclosures = newHV();
13405                 }
13406                 else {
13407                     /* If the folds haven't been read in, call a fold function
13408                      * to force that */
13409                     if (! PL_utf8_tofold) {
13410                         U8 dummy[UTF8_MAXBYTES+1];
13411 
13412                         /* This string is just a short named one above \xff */
13413                         to_utf8_fold((U8*) HYPHEN_UTF8, dummy, NULL);
13414                         assert(PL_utf8_tofold); /* Verify that worked */
13415                     }
13416                     PL_utf8_foldclosures =
13417                                     _swash_inversion_hash(PL_utf8_tofold);
13418                 }
13419             }
13420 
13421             /* Only the characters in this class that participate in folds need
13422              * be checked.  Get the intersection of this class and all the
13423              * possible characters that are foldable.  This can quickly narrow
13424              * down a large class */
13425             _invlist_intersection(PL_utf8_foldable, cp_list,
13426                                   &fold_intersection);
13427         }
13428 
13429 	/* Now look at the foldable characters in this class individually */
13430 	invlist_iterinit(fold_intersection);
13431 	while (invlist_iternext(fold_intersection, &start, &end)) {
13432 	    UV j;
13433 
13434             /* Locale folding for Latin1 characters is deferred until runtime */
13435             if (LOC && start < 256) {
13436                 start = 256;
13437             }
13438 
13439 	    /* Look at every character in the range */
13440 	    for (j = start; j <= end; j++) {
13441 
13442 		U8 foldbuf[UTF8_MAXBYTES_CASE+1];
13443 		STRLEN foldlen;
13444                 SV** listp;
13445 
13446                 if (j < 256) {
13447 
13448                     /* We have the latin1 folding rules hard-coded here so that
13449                      * an innocent-looking character class, like /[ks]/i won't
13450                      * have to go out to disk to find the possible matches.
13451                      * XXX It would be better to generate these via regen, in
13452                      * case a new version of the Unicode standard adds new
13453                      * mappings, though that is not really likely, and may be
13454                      * caught by the default: case of the switch below. */
13455 
13456                     if (IS_IN_SOME_FOLD_L1(j)) {
13457 
13458                         /* ASCII is always matched; non-ASCII is matched only
13459                          * under Unicode rules */
13460                         if (isASCII(j) || AT_LEAST_UNI_SEMANTICS) {
13461                             cp_list =
13462                                 add_cp_to_invlist(cp_list, PL_fold_latin1[j]);
13463                         }
13464                         else {
13465                             depends_list =
13466                              add_cp_to_invlist(depends_list, PL_fold_latin1[j]);
13467                         }
13468                     }
13469 
13470                     if (HAS_NONLATIN1_FOLD_CLOSURE(j)
13471                         && (! isASCII(j) || ! ASCII_FOLD_RESTRICTED))
13472                     {
13473                         /* Certain Latin1 characters have matches outside
13474                          * Latin1.  To get here, <j> is one of those
13475                          * characters.   None of these matches is valid for
13476                          * ASCII characters under /aa, which is why the 'if'
13477                          * just above excludes those.  These matches only
13478                          * happen when the target string is utf8.  The code
13479                          * below adds the single fold closures for <j> to the
13480                          * inversion list. */
13481                         switch (j) {
13482                             case 'k':
13483                             case 'K':
13484                                 cp_list =
13485                                     add_cp_to_invlist(cp_list, KELVIN_SIGN);
13486                                 break;
13487                             case 's':
13488                             case 'S':
13489                                 cp_list = add_cp_to_invlist(cp_list,
13490                                                     LATIN_SMALL_LETTER_LONG_S);
13491                                 break;
13492                             case MICRO_SIGN:
13493                                 cp_list = add_cp_to_invlist(cp_list,
13494                                                     GREEK_CAPITAL_LETTER_MU);
13495                                 cp_list = add_cp_to_invlist(cp_list,
13496                                                     GREEK_SMALL_LETTER_MU);
13497                                 break;
13498                             case LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE:
13499                             case LATIN_SMALL_LETTER_A_WITH_RING_ABOVE:
13500                                 cp_list =
13501                                     add_cp_to_invlist(cp_list, ANGSTROM_SIGN);
13502                                 break;
13503                             case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
13504                                 cp_list = add_cp_to_invlist(cp_list,
13505                                         LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS);
13506                                 break;
13507                             case LATIN_SMALL_LETTER_SHARP_S:
13508                                 cp_list = add_cp_to_invlist(cp_list,
13509                                                 LATIN_CAPITAL_LETTER_SHARP_S);
13510                                 break;
13511                             case 'F': case 'f':
13512                             case 'I': case 'i':
13513                             case 'L': case 'l':
13514                             case 'T': case 't':
13515                             case 'A': case 'a':
13516                             case 'H': case 'h':
13517                             case 'J': case 'j':
13518                             case 'N': case 'n':
13519                             case 'W': case 'w':
13520                             case 'Y': case 'y':
13521                                 /* These all are targets of multi-character
13522                                  * folds from code points that require UTF8 to
13523                                  * express, so they can't match unless the
13524                                  * target string is in UTF-8, so no action here
13525                                  * is necessary, as regexec.c properly handles
13526                                  * the general case for UTF-8 matching and
13527                                  * multi-char folds */
13528                                 break;
13529                             default:
13530                                 /* Use deprecated warning to increase the
13531                                  * chances of this being output */
13532                                 ckWARN2regdep(RExC_parse, "Perl folding rules are not up-to-date for 0x%"UVXf"; please use the perlbug utility to report;", j);
13533                                 break;
13534                         }
13535                     }
13536                     continue;
13537                 }
13538 
13539                 /* Here is an above Latin1 character.  We don't have the rules
13540                  * hard-coded for it.  First, get its fold.  This is the simple
13541                  * fold, as the multi-character folds have been handled earlier
13542                  * and separated out */
13543 		_to_uni_fold_flags(j, foldbuf, &foldlen,
13544                                                ((LOC)
13545                                                ? FOLD_FLAGS_LOCALE
13546                                                : (ASCII_FOLD_RESTRICTED)
13547                                                   ? FOLD_FLAGS_NOMIX_ASCII
13548                                                   : 0));
13549 
13550                 /* Single character fold of above Latin1.  Add everything in
13551                  * its fold closure to the list that this node should match.
13552                  * The fold closures data structure is a hash with the keys
13553                  * being the UTF-8 of every character that is folded to, like
13554                  * 'k', and the values each an array of all code points that
13555                  * fold to its key.  e.g. [ 'k', 'K', KELVIN_SIGN ].
13556                  * Multi-character folds are not included */
13557                 if ((listp = hv_fetch(PL_utf8_foldclosures,
13558                                       (char *) foldbuf, foldlen, FALSE)))
13559                 {
13560                     AV* list = (AV*) *listp;
13561                     IV k;
13562                     for (k = 0; k <= av_len(list); k++) {
13563                         SV** c_p = av_fetch(list, k, FALSE);
13564                         UV c;
13565                         if (c_p == NULL) {
13566                             Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
13567                         }
13568                         c = SvUV(*c_p);
13569 
13570                         /* /aa doesn't allow folds between ASCII and non-; /l
13571                          * doesn't allow them between above and below 256 */
13572                         if ((ASCII_FOLD_RESTRICTED
13573                                   && (isASCII(c) != isASCII(j)))
13574                             || (LOC && ((c < 256) != (j < 256))))
13575                         {
13576                             continue;
13577                         }
13578 
13579                         /* Folds involving non-ascii Latin1 characters
13580                          * under /d are added to a separate list */
13581                         if (isASCII(c) || c > 255 || AT_LEAST_UNI_SEMANTICS)
13582                         {
13583                             cp_list = add_cp_to_invlist(cp_list, c);
13584                         }
13585                         else {
13586                           depends_list = add_cp_to_invlist(depends_list, c);
13587                         }
13588                     }
13589                 }
13590             }
13591 	}
13592 	SvREFCNT_dec_NN(fold_intersection);
13593     }
13594 
13595     /* And combine the result (if any) with any inversion list from posix
13596      * classes.  The lists are kept separate up to now because we don't want to
13597      * fold the classes (folding of those is automatically handled by the swash
13598      * fetching code) */
13599     if (posixes) {
13600         if (! DEPENDS_SEMANTICS) {
13601             if (cp_list) {
13602                 _invlist_union(cp_list, posixes, &cp_list);
13603                 SvREFCNT_dec_NN(posixes);
13604             }
13605             else {
13606                 cp_list = posixes;
13607             }
13608         }
13609         else {
13610             /* Under /d, we put into a separate list the Latin1 things that
13611              * match only when the target string is utf8 */
13612             SV* nonascii_but_latin1_properties = NULL;
13613             _invlist_intersection(posixes, PL_Latin1,
13614                                   &nonascii_but_latin1_properties);
13615             _invlist_subtract(nonascii_but_latin1_properties, PL_ASCII,
13616                               &nonascii_but_latin1_properties);
13617             _invlist_subtract(posixes, nonascii_but_latin1_properties,
13618                               &posixes);
13619             if (cp_list) {
13620                 _invlist_union(cp_list, posixes, &cp_list);
13621                 SvREFCNT_dec_NN(posixes);
13622             }
13623             else {
13624                 cp_list = posixes;
13625             }
13626 
13627             if (depends_list) {
13628                 _invlist_union(depends_list, nonascii_but_latin1_properties,
13629                                &depends_list);
13630                 SvREFCNT_dec_NN(nonascii_but_latin1_properties);
13631             }
13632             else {
13633                 depends_list = nonascii_but_latin1_properties;
13634             }
13635         }
13636     }
13637 
13638     /* And combine the result (if any) with any inversion list from properties.
13639      * The lists are kept separate up to now so that we can distinguish the two
13640      * in regards to matching above-Unicode.  A run-time warning is generated
13641      * if a Unicode property is matched against a non-Unicode code point. But,
13642      * we allow user-defined properties to match anything, without any warning,
13643      * and we also suppress the warning if there is a portion of the character
13644      * class that isn't a Unicode property, and which matches above Unicode, \W
13645      * or [\x{110000}] for example.
13646      * (Note that in this case, unlike the Posix one above, there is no
13647      * <depends_list>, because having a Unicode property forces Unicode
13648      * semantics */
13649     if (properties) {
13650         bool warn_super = ! has_user_defined_property;
13651         if (cp_list) {
13652 
13653             /* If it matters to the final outcome, see if a non-property
13654              * component of the class matches above Unicode.  If so, the
13655              * warning gets suppressed.  This is true even if just a single
13656              * such code point is specified, as though not strictly correct if
13657              * another such code point is matched against, the fact that they
13658              * are using above-Unicode code points indicates they should know
13659              * the issues involved */
13660             if (warn_super) {
13661                 bool non_prop_matches_above_Unicode =
13662                             runtime_posix_matches_above_Unicode
13663                             | (invlist_highest(cp_list) > PERL_UNICODE_MAX);
13664                 if (invert) {
13665                     non_prop_matches_above_Unicode =
13666                                             !  non_prop_matches_above_Unicode;
13667                 }
13668                 warn_super = ! non_prop_matches_above_Unicode;
13669             }
13670 
13671             _invlist_union(properties, cp_list, &cp_list);
13672             SvREFCNT_dec_NN(properties);
13673         }
13674         else {
13675             cp_list = properties;
13676         }
13677 
13678         if (warn_super) {
13679             OP(ret) = ANYOF_WARN_SUPER;
13680         }
13681     }
13682 
13683     /* Here, we have calculated what code points should be in the character
13684      * class.
13685      *
13686      * Now we can see about various optimizations.  Fold calculation (which we
13687      * did above) needs to take place before inversion.  Otherwise /[^k]/i
13688      * would invert to include K, which under /i would match k, which it
13689      * shouldn't.  Therefore we can't invert folded locale now, as it won't be
13690      * folded until runtime */
13691 
13692     /* Optimize inverted simple patterns (e.g. [^a-z]) when everything is known
13693      * at compile time.  Besides not inverting folded locale now, we can't
13694      * invert if there are things such as \w, which aren't known until runtime
13695      * */
13696     if (invert
13697         && ! (LOC && (FOLD || (ANYOF_FLAGS(ret) & ANYOF_CLASS)))
13698 	&& ! depends_list
13699 	&& ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
13700     {
13701         _invlist_invert(cp_list);
13702 
13703         /* Any swash can't be used as-is, because we've inverted things */
13704         if (swash) {
13705             SvREFCNT_dec_NN(swash);
13706             swash = NULL;
13707         }
13708 
13709 	/* Clear the invert flag since have just done it here */
13710 	invert = FALSE;
13711     }
13712 
13713     if (ret_invlist) {
13714         *ret_invlist = cp_list;
13715         SvREFCNT_dec(swash);
13716 
13717         /* Discard the generated node */
13718         if (SIZE_ONLY) {
13719             RExC_size = orig_size;
13720         }
13721         else {
13722             RExC_emit = orig_emit;
13723         }
13724         return orig_emit;
13725     }
13726 
13727     /* If we didn't do folding, it's because some information isn't available
13728      * until runtime; set the run-time fold flag for these.  (We don't have to
13729      * worry about properties folding, as that is taken care of by the swash
13730      * fetching) */
13731     if (FOLD && LOC)
13732     {
13733        ANYOF_FLAGS(ret) |= ANYOF_LOC_FOLD;
13734     }
13735 
13736     /* Some character classes are equivalent to other nodes.  Such nodes take
13737      * up less room and generally fewer operations to execute than ANYOF nodes.
13738      * Above, we checked for and optimized into some such equivalents for
13739      * certain common classes that are easy to test.  Getting to this point in
13740      * the code means that the class didn't get optimized there.  Since this
13741      * code is only executed in Pass 2, it is too late to save space--it has
13742      * been allocated in Pass 1, and currently isn't given back.  But turning
13743      * things into an EXACTish node can allow the optimizer to join it to any
13744      * adjacent such nodes.  And if the class is equivalent to things like /./,
13745      * expensive run-time swashes can be avoided.  Now that we have more
13746      * complete information, we can find things necessarily missed by the
13747      * earlier code.  I (khw) am not sure how much to look for here.  It would
13748      * be easy, but perhaps too slow, to check any candidates against all the
13749      * node types they could possibly match using _invlistEQ(). */
13750 
13751     if (cp_list
13752         && ! invert
13753         && ! depends_list
13754         && ! (ANYOF_FLAGS(ret) & ANYOF_CLASS)
13755         && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
13756     {
13757         UV start, end;
13758         U8 op = END;  /* The optimzation node-type */
13759         const char * cur_parse= RExC_parse;
13760 
13761         invlist_iterinit(cp_list);
13762         if (! invlist_iternext(cp_list, &start, &end)) {
13763 
13764             /* Here, the list is empty.  This happens, for example, when a
13765              * Unicode property is the only thing in the character class, and
13766              * it doesn't match anything.  (perluniprops.pod notes such
13767              * properties) */
13768             op = OPFAIL;
13769             *flagp |= HASWIDTH|SIMPLE;
13770         }
13771         else if (start == end) {    /* The range is a single code point */
13772             if (! invlist_iternext(cp_list, &start, &end)
13773 
13774                     /* Don't do this optimization if it would require changing
13775                      * the pattern to UTF-8 */
13776                 && (start < 256 || UTF))
13777             {
13778                 /* Here, the list contains a single code point.  Can optimize
13779                  * into an EXACT node */
13780 
13781                 value = start;
13782 
13783                 if (! FOLD) {
13784                     op = EXACT;
13785                 }
13786                 else if (LOC) {
13787 
13788                     /* A locale node under folding with one code point can be
13789                      * an EXACTFL, as its fold won't be calculated until
13790                      * runtime */
13791                     op = EXACTFL;
13792                 }
13793                 else {
13794 
13795                     /* Here, we are generally folding, but there is only one
13796                      * code point to match.  If we have to, we use an EXACT
13797                      * node, but it would be better for joining with adjacent
13798                      * nodes in the optimization pass if we used the same
13799                      * EXACTFish node that any such are likely to be.  We can
13800                      * do this iff the code point doesn't participate in any
13801                      * folds.  For example, an EXACTF of a colon is the same as
13802                      * an EXACT one, since nothing folds to or from a colon. */
13803                     if (value < 256) {
13804                         if (IS_IN_SOME_FOLD_L1(value)) {
13805                             op = EXACT;
13806                         }
13807                     }
13808                     else {
13809                         if (! PL_utf8_foldable) {
13810                             SV* swash = swash_init("utf8", "_Perl_Any_Folds",
13811                                                 &PL_sv_undef, 1, 0);
13812                             PL_utf8_foldable = _get_swash_invlist(swash);
13813                             SvREFCNT_dec_NN(swash);
13814                         }
13815                         if (_invlist_contains_cp(PL_utf8_foldable, value)) {
13816                             op = EXACT;
13817                         }
13818                     }
13819 
13820                     /* If we haven't found the node type, above, it means we
13821                      * can use the prevailing one */
13822                     if (op == END) {
13823                         op = compute_EXACTish(pRExC_state);
13824                     }
13825                 }
13826             }
13827         }
13828         else if (start == 0) {
13829             if (end == UV_MAX) {
13830                 op = SANY;
13831                 *flagp |= HASWIDTH|SIMPLE;
13832                 RExC_naughty++;
13833             }
13834             else if (end == '\n' - 1
13835                     && invlist_iternext(cp_list, &start, &end)
13836                     && start == '\n' + 1 && end == UV_MAX)
13837             {
13838                 op = REG_ANY;
13839                 *flagp |= HASWIDTH|SIMPLE;
13840                 RExC_naughty++;
13841             }
13842         }
13843         invlist_iterfinish(cp_list);
13844 
13845         if (op != END) {
13846             RExC_parse = (char *)orig_parse;
13847             RExC_emit = (regnode *)orig_emit;
13848 
13849             ret = reg_node(pRExC_state, op);
13850 
13851             RExC_parse = (char *)cur_parse;
13852 
13853             if (PL_regkind[op] == EXACT) {
13854                 alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, 0, value);
13855             }
13856 
13857             SvREFCNT_dec_NN(cp_list);
13858             return ret;
13859         }
13860     }
13861 
13862     /* Here, <cp_list> contains all the code points we can determine at
13863      * compile time that match under all conditions.  Go through it, and
13864      * for things that belong in the bitmap, put them there, and delete from
13865      * <cp_list>.  While we are at it, see if everything above 255 is in the
13866      * list, and if so, set a flag to speed up execution */
13867     ANYOF_BITMAP_ZERO(ret);
13868     if (cp_list) {
13869 
13870 	/* This gets set if we actually need to modify things */
13871 	bool change_invlist = FALSE;
13872 
13873 	UV start, end;
13874 
13875 	/* Start looking through <cp_list> */
13876 	invlist_iterinit(cp_list);
13877 	while (invlist_iternext(cp_list, &start, &end)) {
13878 	    UV high;
13879 	    int i;
13880 
13881             if (end == UV_MAX && start <= 256) {
13882                 ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL;
13883             }
13884 
13885 	    /* Quit if are above what we should change */
13886 	    if (start > 255) {
13887 		break;
13888 	    }
13889 
13890 	    change_invlist = TRUE;
13891 
13892 	    /* Set all the bits in the range, up to the max that we are doing */
13893 	    high = (end < 255) ? end : 255;
13894 	    for (i = start; i <= (int) high; i++) {
13895 		if (! ANYOF_BITMAP_TEST(ret, i)) {
13896 		    ANYOF_BITMAP_SET(ret, i);
13897 		    prevvalue = value;
13898 		    value = i;
13899 		}
13900 	    }
13901 	}
13902 	invlist_iterfinish(cp_list);
13903 
13904         /* Done with loop; remove any code points that are in the bitmap from
13905          * <cp_list> */
13906 	if (change_invlist) {
13907 	    _invlist_subtract(cp_list, PL_Latin1, &cp_list);
13908 	}
13909 
13910 	/* If have completely emptied it, remove it completely */
13911 	if (_invlist_len(cp_list) == 0) {
13912 	    SvREFCNT_dec_NN(cp_list);
13913 	    cp_list = NULL;
13914 	}
13915     }
13916 
13917     if (invert) {
13918         ANYOF_FLAGS(ret) |= ANYOF_INVERT;
13919     }
13920 
13921     /* Here, the bitmap has been populated with all the Latin1 code points that
13922      * always match.  Can now add to the overall list those that match only
13923      * when the target string is UTF-8 (<depends_list>). */
13924     if (depends_list) {
13925 	if (cp_list) {
13926 	    _invlist_union(cp_list, depends_list, &cp_list);
13927 	    SvREFCNT_dec_NN(depends_list);
13928 	}
13929 	else {
13930 	    cp_list = depends_list;
13931 	}
13932     }
13933 
13934     /* If there is a swash and more than one element, we can't use the swash in
13935      * the optimization below. */
13936     if (swash && element_count > 1) {
13937 	SvREFCNT_dec_NN(swash);
13938 	swash = NULL;
13939     }
13940 
13941     if (! cp_list
13942 	&& ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
13943     {
13944 	ARG_SET(ret, ANYOF_NONBITMAP_EMPTY);
13945     }
13946     else {
13947 	/* av[0] stores the character class description in its textual form:
13948 	 *       used later (regexec.c:Perl_regclass_swash()) to initialize the
13949 	 *       appropriate swash, and is also useful for dumping the regnode.
13950 	 * av[1] if NULL, is a placeholder to later contain the swash computed
13951 	 *       from av[0].  But if no further computation need be done, the
13952 	 *       swash is stored there now.
13953 	 * av[2] stores the cp_list inversion list for use in addition or
13954 	 *       instead of av[0]; used only if av[1] is NULL
13955 	 * av[3] is set if any component of the class is from a user-defined
13956 	 *       property; used only if av[1] is NULL */
13957 	AV * const av = newAV();
13958 	SV *rv;
13959 
13960 	av_store(av, 0, (HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
13961 			? SvREFCNT_inc(listsv) : &PL_sv_undef);
13962 	if (swash) {
13963 	    av_store(av, 1, swash);
13964 	    SvREFCNT_dec_NN(cp_list);
13965 	}
13966 	else {
13967 	    av_store(av, 1, NULL);
13968 	    if (cp_list) {
13969 		av_store(av, 2, cp_list);
13970 		av_store(av, 3, newSVuv(has_user_defined_property));
13971 	    }
13972 	}
13973 
13974 	rv = newRV_noinc(MUTABLE_SV(av));
13975 	n = add_data(pRExC_state, 1, "s");
13976 	RExC_rxi->data->data[n] = (void*)rv;
13977 	ARG_SET(ret, n);
13978     }
13979 
13980     *flagp |= HASWIDTH|SIMPLE;
13981     return ret;
13982 }
13983 #undef HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION
13984 
13985 
13986 /* reg_skipcomment()
13987 
13988    Absorbs an /x style # comments from the input stream.
13989    Returns true if there is more text remaining in the stream.
13990    Will set the REG_SEEN_RUN_ON_COMMENT flag if the comment
13991    terminates the pattern without including a newline.
13992 
13993    Note its the callers responsibility to ensure that we are
13994    actually in /x mode
13995 
13996 */
13997 
13998 STATIC bool
13999 S_reg_skipcomment(pTHX_ RExC_state_t *pRExC_state)
14000 {
14001     bool ended = 0;
14002 
14003     PERL_ARGS_ASSERT_REG_SKIPCOMMENT;
14004 
14005     while (RExC_parse < RExC_end)
14006         if (*RExC_parse++ == '\n') {
14007             ended = 1;
14008             break;
14009         }
14010     if (!ended) {
14011         /* we ran off the end of the pattern without ending
14012            the comment, so we have to add an \n when wrapping */
14013         RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
14014         return 0;
14015     } else
14016         return 1;
14017 }
14018 
14019 /* nextchar()
14020 
14021    Advances the parse position, and optionally absorbs
14022    "whitespace" from the inputstream.
14023 
14024    Without /x "whitespace" means (?#...) style comments only,
14025    with /x this means (?#...) and # comments and whitespace proper.
14026 
14027    Returns the RExC_parse point from BEFORE the scan occurs.
14028 
14029    This is the /x friendly way of saying RExC_parse++.
14030 */
14031 
14032 STATIC char*
14033 S_nextchar(pTHX_ RExC_state_t *pRExC_state)
14034 {
14035     char* const retval = RExC_parse++;
14036 
14037     PERL_ARGS_ASSERT_NEXTCHAR;
14038 
14039     for (;;) {
14040 	if (RExC_end - RExC_parse >= 3
14041 	    && *RExC_parse == '('
14042 	    && RExC_parse[1] == '?'
14043 	    && RExC_parse[2] == '#')
14044 	{
14045 	    while (*RExC_parse != ')') {
14046 		if (RExC_parse == RExC_end)
14047 		    FAIL("Sequence (?#... not terminated");
14048 		RExC_parse++;
14049 	    }
14050 	    RExC_parse++;
14051 	    continue;
14052 	}
14053 	if (RExC_flags & RXf_PMf_EXTENDED) {
14054 	    if (isSPACE(*RExC_parse)) {
14055 		RExC_parse++;
14056 		continue;
14057 	    }
14058 	    else if (*RExC_parse == '#') {
14059 	        if ( reg_skipcomment( pRExC_state ) )
14060 	            continue;
14061 	    }
14062 	}
14063 	return retval;
14064     }
14065 }
14066 
14067 /*
14068 - reg_node - emit a node
14069 */
14070 STATIC regnode *			/* Location. */
14071 S_reg_node(pTHX_ RExC_state_t *pRExC_state, U8 op)
14072 {
14073     dVAR;
14074     regnode *ptr;
14075     regnode * const ret = RExC_emit;
14076     GET_RE_DEBUG_FLAGS_DECL;
14077 
14078     PERL_ARGS_ASSERT_REG_NODE;
14079 
14080     if (SIZE_ONLY) {
14081 	SIZE_ALIGN(RExC_size);
14082 	RExC_size += 1;
14083 	return(ret);
14084     }
14085     if (RExC_emit >= RExC_emit_bound)
14086         Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p",
14087 		   op, RExC_emit, RExC_emit_bound);
14088 
14089     NODE_ALIGN_FILL(ret);
14090     ptr = ret;
14091     FILL_ADVANCE_NODE(ptr, op);
14092 #ifdef RE_TRACK_PATTERN_OFFSETS
14093     if (RExC_offsets) {         /* MJD */
14094 	MJD_OFFSET_DEBUG(("%s:%d: (op %s) %s %"UVuf" (len %"UVuf") (max %"UVuf").\n",
14095               "reg_node", __LINE__,
14096               PL_reg_name[op],
14097               (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0]
14098 		? "Overwriting end of array!\n" : "OK",
14099               (UV)(RExC_emit - RExC_emit_start),
14100               (UV)(RExC_parse - RExC_start),
14101               (UV)RExC_offsets[0]));
14102 	Set_Node_Offset(RExC_emit, RExC_parse + (op == END));
14103     }
14104 #endif
14105     RExC_emit = ptr;
14106     return(ret);
14107 }
14108 
14109 /*
14110 - reganode - emit a node with an argument
14111 */
14112 STATIC regnode *			/* Location. */
14113 S_reganode(pTHX_ RExC_state_t *pRExC_state, U8 op, U32 arg)
14114 {
14115     dVAR;
14116     regnode *ptr;
14117     regnode * const ret = RExC_emit;
14118     GET_RE_DEBUG_FLAGS_DECL;
14119 
14120     PERL_ARGS_ASSERT_REGANODE;
14121 
14122     if (SIZE_ONLY) {
14123 	SIZE_ALIGN(RExC_size);
14124 	RExC_size += 2;
14125 	/*
14126 	   We can't do this:
14127 
14128 	   assert(2==regarglen[op]+1);
14129 
14130 	   Anything larger than this has to allocate the extra amount.
14131 	   If we changed this to be:
14132 
14133 	   RExC_size += (1 + regarglen[op]);
14134 
14135 	   then it wouldn't matter. Its not clear what side effect
14136 	   might come from that so its not done so far.
14137 	   -- dmq
14138 	*/
14139 	return(ret);
14140     }
14141     if (RExC_emit >= RExC_emit_bound)
14142         Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p",
14143 		   op, RExC_emit, RExC_emit_bound);
14144 
14145     NODE_ALIGN_FILL(ret);
14146     ptr = ret;
14147     FILL_ADVANCE_NODE_ARG(ptr, op, arg);
14148 #ifdef RE_TRACK_PATTERN_OFFSETS
14149     if (RExC_offsets) {         /* MJD */
14150 	MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
14151               "reganode",
14152 	      __LINE__,
14153 	      PL_reg_name[op],
14154               (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0] ?
14155               "Overwriting end of array!\n" : "OK",
14156               (UV)(RExC_emit - RExC_emit_start),
14157               (UV)(RExC_parse - RExC_start),
14158               (UV)RExC_offsets[0]));
14159 	Set_Cur_Node_Offset;
14160     }
14161 #endif
14162     RExC_emit = ptr;
14163     return(ret);
14164 }
14165 
14166 /*
14167 - reguni - emit (if appropriate) a Unicode character
14168 */
14169 STATIC STRLEN
14170 S_reguni(pTHX_ const RExC_state_t *pRExC_state, UV uv, char* s)
14171 {
14172     dVAR;
14173 
14174     PERL_ARGS_ASSERT_REGUNI;
14175 
14176     return SIZE_ONLY ? UNISKIP(uv) : (uvchr_to_utf8((U8*)s, uv) - (U8*)s);
14177 }
14178 
14179 /*
14180 - reginsert - insert an operator in front of already-emitted operand
14181 *
14182 * Means relocating the operand.
14183 */
14184 STATIC void
14185 S_reginsert(pTHX_ RExC_state_t *pRExC_state, U8 op, regnode *opnd, U32 depth)
14186 {
14187     dVAR;
14188     regnode *src;
14189     regnode *dst;
14190     regnode *place;
14191     const int offset = regarglen[(U8)op];
14192     const int size = NODE_STEP_REGNODE + offset;
14193     GET_RE_DEBUG_FLAGS_DECL;
14194 
14195     PERL_ARGS_ASSERT_REGINSERT;
14196     PERL_UNUSED_ARG(depth);
14197 /* (PL_regkind[(U8)op] == CURLY ? EXTRA_STEP_2ARGS : 0); */
14198     DEBUG_PARSE_FMT("inst"," - %s",PL_reg_name[op]);
14199     if (SIZE_ONLY) {
14200 	RExC_size += size;
14201 	return;
14202     }
14203 
14204     src = RExC_emit;
14205     RExC_emit += size;
14206     dst = RExC_emit;
14207     if (RExC_open_parens) {
14208         int paren;
14209         /*DEBUG_PARSE_FMT("inst"," - %"IVdf, (IV)RExC_npar);*/
14210         for ( paren=0 ; paren < RExC_npar ; paren++ ) {
14211             if ( RExC_open_parens[paren] >= opnd ) {
14212                 /*DEBUG_PARSE_FMT("open"," - %d",size);*/
14213                 RExC_open_parens[paren] += size;
14214             } else {
14215                 /*DEBUG_PARSE_FMT("open"," - %s","ok");*/
14216             }
14217             if ( RExC_close_parens[paren] >= opnd ) {
14218                 /*DEBUG_PARSE_FMT("close"," - %d",size);*/
14219                 RExC_close_parens[paren] += size;
14220             } else {
14221                 /*DEBUG_PARSE_FMT("close"," - %s","ok");*/
14222             }
14223         }
14224     }
14225 
14226     while (src > opnd) {
14227 	StructCopy(--src, --dst, regnode);
14228 #ifdef RE_TRACK_PATTERN_OFFSETS
14229         if (RExC_offsets) {     /* MJD 20010112 */
14230 	    MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s copy %"UVuf" -> %"UVuf" (max %"UVuf").\n",
14231                   "reg_insert",
14232 		  __LINE__,
14233 		  PL_reg_name[op],
14234                   (UV)(dst - RExC_emit_start) > RExC_offsets[0]
14235 		    ? "Overwriting end of array!\n" : "OK",
14236                   (UV)(src - RExC_emit_start),
14237                   (UV)(dst - RExC_emit_start),
14238                   (UV)RExC_offsets[0]));
14239 	    Set_Node_Offset_To_R(dst-RExC_emit_start, Node_Offset(src));
14240 	    Set_Node_Length_To_R(dst-RExC_emit_start, Node_Length(src));
14241         }
14242 #endif
14243     }
14244 
14245 
14246     place = opnd;		/* Op node, where operand used to be. */
14247 #ifdef RE_TRACK_PATTERN_OFFSETS
14248     if (RExC_offsets) {         /* MJD */
14249 	MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
14250               "reginsert",
14251 	      __LINE__,
14252 	      PL_reg_name[op],
14253               (UV)(place - RExC_emit_start) > RExC_offsets[0]
14254               ? "Overwriting end of array!\n" : "OK",
14255               (UV)(place - RExC_emit_start),
14256               (UV)(RExC_parse - RExC_start),
14257               (UV)RExC_offsets[0]));
14258 	Set_Node_Offset(place, RExC_parse);
14259 	Set_Node_Length(place, 1);
14260     }
14261 #endif
14262     src = NEXTOPER(place);
14263     FILL_ADVANCE_NODE(place, op);
14264     Zero(src, offset, regnode);
14265 }
14266 
14267 /*
14268 - regtail - set the next-pointer at the end of a node chain of p to val.
14269 - SEE ALSO: regtail_study
14270 */
14271 /* TODO: All three parms should be const */
14272 STATIC void
14273 S_regtail(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
14274 {
14275     dVAR;
14276     regnode *scan;
14277     GET_RE_DEBUG_FLAGS_DECL;
14278 
14279     PERL_ARGS_ASSERT_REGTAIL;
14280 #ifndef DEBUGGING
14281     PERL_UNUSED_ARG(depth);
14282 #endif
14283 
14284     if (SIZE_ONLY)
14285 	return;
14286 
14287     /* Find last node. */
14288     scan = p;
14289     for (;;) {
14290 	regnode * const temp = regnext(scan);
14291         DEBUG_PARSE_r({
14292             SV * const mysv=sv_newmortal();
14293             DEBUG_PARSE_MSG((scan==p ? "tail" : ""));
14294             regprop(RExC_rx, mysv, scan);
14295             PerlIO_printf(Perl_debug_log, "~ %s (%d) %s %s\n",
14296                 SvPV_nolen_const(mysv), REG_NODE_NUM(scan),
14297                     (temp == NULL ? "->" : ""),
14298                     (temp == NULL ? PL_reg_name[OP(val)] : "")
14299             );
14300         });
14301         if (temp == NULL)
14302             break;
14303         scan = temp;
14304     }
14305 
14306     if (reg_off_by_arg[OP(scan)]) {
14307         ARG_SET(scan, val - scan);
14308     }
14309     else {
14310         NEXT_OFF(scan) = val - scan;
14311     }
14312 }
14313 
14314 #ifdef DEBUGGING
14315 /*
14316 - regtail_study - set the next-pointer at the end of a node chain of p to val.
14317 - Look for optimizable sequences at the same time.
14318 - currently only looks for EXACT chains.
14319 
14320 This is experimental code. The idea is to use this routine to perform
14321 in place optimizations on branches and groups as they are constructed,
14322 with the long term intention of removing optimization from study_chunk so
14323 that it is purely analytical.
14324 
14325 Currently only used when in DEBUG mode. The macro REGTAIL_STUDY() is used
14326 to control which is which.
14327 
14328 */
14329 /* TODO: All four parms should be const */
14330 
14331 STATIC U8
14332 S_regtail_study(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
14333 {
14334     dVAR;
14335     regnode *scan;
14336     U8 exact = PSEUDO;
14337 #ifdef EXPERIMENTAL_INPLACESCAN
14338     I32 min = 0;
14339 #endif
14340     GET_RE_DEBUG_FLAGS_DECL;
14341 
14342     PERL_ARGS_ASSERT_REGTAIL_STUDY;
14343 
14344 
14345     if (SIZE_ONLY)
14346         return exact;
14347 
14348     /* Find last node. */
14349 
14350     scan = p;
14351     for (;;) {
14352         regnode * const temp = regnext(scan);
14353 #ifdef EXPERIMENTAL_INPLACESCAN
14354         if (PL_regkind[OP(scan)] == EXACT) {
14355 	    bool has_exactf_sharp_s;	/* Unexamined in this routine */
14356             if (join_exact(pRExC_state,scan,&min, &has_exactf_sharp_s, 1,val,depth+1))
14357                 return EXACT;
14358 	}
14359 #endif
14360         if ( exact ) {
14361             switch (OP(scan)) {
14362                 case EXACT:
14363                 case EXACTF:
14364                 case EXACTFA:
14365                 case EXACTFU:
14366                 case EXACTFU_SS:
14367                 case EXACTFU_TRICKYFOLD:
14368                 case EXACTFL:
14369                         if( exact == PSEUDO )
14370                             exact= OP(scan);
14371                         else if ( exact != OP(scan) )
14372                             exact= 0;
14373                 case NOTHING:
14374                     break;
14375                 default:
14376                     exact= 0;
14377             }
14378         }
14379         DEBUG_PARSE_r({
14380             SV * const mysv=sv_newmortal();
14381             DEBUG_PARSE_MSG((scan==p ? "tsdy" : ""));
14382             regprop(RExC_rx, mysv, scan);
14383             PerlIO_printf(Perl_debug_log, "~ %s (%d) -> %s\n",
14384                 SvPV_nolen_const(mysv),
14385                 REG_NODE_NUM(scan),
14386                 PL_reg_name[exact]);
14387         });
14388 	if (temp == NULL)
14389 	    break;
14390 	scan = temp;
14391     }
14392     DEBUG_PARSE_r({
14393         SV * const mysv_val=sv_newmortal();
14394         DEBUG_PARSE_MSG("");
14395         regprop(RExC_rx, mysv_val, val);
14396         PerlIO_printf(Perl_debug_log, "~ attach to %s (%"IVdf") offset to %"IVdf"\n",
14397 		      SvPV_nolen_const(mysv_val),
14398 		      (IV)REG_NODE_NUM(val),
14399 		      (IV)(val - scan)
14400         );
14401     });
14402     if (reg_off_by_arg[OP(scan)]) {
14403 	ARG_SET(scan, val - scan);
14404     }
14405     else {
14406 	NEXT_OFF(scan) = val - scan;
14407     }
14408 
14409     return exact;
14410 }
14411 #endif
14412 
14413 /*
14414  - regdump - dump a regexp onto Perl_debug_log in vaguely comprehensible form
14415  */
14416 #ifdef DEBUGGING
14417 static void
14418 S_regdump_extflags(pTHX_ const char *lead, const U32 flags)
14419 {
14420     int bit;
14421     int set=0;
14422     regex_charset cs;
14423 
14424     for (bit=0; bit<32; bit++) {
14425         if (flags & (1<<bit)) {
14426 	    if ((1<<bit) & RXf_PMf_CHARSET) {	/* Output separately, below */
14427 		continue;
14428 	    }
14429             if (!set++ && lead)
14430                 PerlIO_printf(Perl_debug_log, "%s",lead);
14431             PerlIO_printf(Perl_debug_log, "%s ",PL_reg_extflags_name[bit]);
14432         }
14433     }
14434     if ((cs = get_regex_charset(flags)) != REGEX_DEPENDS_CHARSET) {
14435             if (!set++ && lead) {
14436                 PerlIO_printf(Perl_debug_log, "%s",lead);
14437             }
14438             switch (cs) {
14439                 case REGEX_UNICODE_CHARSET:
14440                     PerlIO_printf(Perl_debug_log, "UNICODE");
14441                     break;
14442                 case REGEX_LOCALE_CHARSET:
14443                     PerlIO_printf(Perl_debug_log, "LOCALE");
14444                     break;
14445                 case REGEX_ASCII_RESTRICTED_CHARSET:
14446                     PerlIO_printf(Perl_debug_log, "ASCII-RESTRICTED");
14447                     break;
14448                 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
14449                     PerlIO_printf(Perl_debug_log, "ASCII-MORE_RESTRICTED");
14450                     break;
14451                 default:
14452                     PerlIO_printf(Perl_debug_log, "UNKNOWN CHARACTER SET");
14453                     break;
14454             }
14455     }
14456     if (lead)  {
14457         if (set)
14458             PerlIO_printf(Perl_debug_log, "\n");
14459         else
14460             PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
14461     }
14462 }
14463 #endif
14464 
14465 void
14466 Perl_regdump(pTHX_ const regexp *r)
14467 {
14468 #ifdef DEBUGGING
14469     dVAR;
14470     SV * const sv = sv_newmortal();
14471     SV *dsv= sv_newmortal();
14472     RXi_GET_DECL(r,ri);
14473     GET_RE_DEBUG_FLAGS_DECL;
14474 
14475     PERL_ARGS_ASSERT_REGDUMP;
14476 
14477     (void)dumpuntil(r, ri->program, ri->program + 1, NULL, NULL, sv, 0, 0);
14478 
14479     /* Header fields of interest. */
14480     if (r->anchored_substr) {
14481 	RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->anchored_substr),
14482 	    RE_SV_DUMPLEN(r->anchored_substr), 30);
14483 	PerlIO_printf(Perl_debug_log,
14484 		      "anchored %s%s at %"IVdf" ",
14485 		      s, RE_SV_TAIL(r->anchored_substr),
14486 		      (IV)r->anchored_offset);
14487     } else if (r->anchored_utf8) {
14488 	RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->anchored_utf8),
14489 	    RE_SV_DUMPLEN(r->anchored_utf8), 30);
14490 	PerlIO_printf(Perl_debug_log,
14491 		      "anchored utf8 %s%s at %"IVdf" ",
14492 		      s, RE_SV_TAIL(r->anchored_utf8),
14493 		      (IV)r->anchored_offset);
14494     }
14495     if (r->float_substr) {
14496 	RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->float_substr),
14497 	    RE_SV_DUMPLEN(r->float_substr), 30);
14498 	PerlIO_printf(Perl_debug_log,
14499 		      "floating %s%s at %"IVdf"..%"UVuf" ",
14500 		      s, RE_SV_TAIL(r->float_substr),
14501 		      (IV)r->float_min_offset, (UV)r->float_max_offset);
14502     } else if (r->float_utf8) {
14503 	RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->float_utf8),
14504 	    RE_SV_DUMPLEN(r->float_utf8), 30);
14505 	PerlIO_printf(Perl_debug_log,
14506 		      "floating utf8 %s%s at %"IVdf"..%"UVuf" ",
14507 		      s, RE_SV_TAIL(r->float_utf8),
14508 		      (IV)r->float_min_offset, (UV)r->float_max_offset);
14509     }
14510     if (r->check_substr || r->check_utf8)
14511 	PerlIO_printf(Perl_debug_log,
14512 		      (const char *)
14513 		      (r->check_substr == r->float_substr
14514 		       && r->check_utf8 == r->float_utf8
14515 		       ? "(checking floating" : "(checking anchored"));
14516     if (r->extflags & RXf_NOSCAN)
14517 	PerlIO_printf(Perl_debug_log, " noscan");
14518     if (r->extflags & RXf_CHECK_ALL)
14519 	PerlIO_printf(Perl_debug_log, " isall");
14520     if (r->check_substr || r->check_utf8)
14521 	PerlIO_printf(Perl_debug_log, ") ");
14522 
14523     if (ri->regstclass) {
14524 	regprop(r, sv, ri->regstclass);
14525 	PerlIO_printf(Perl_debug_log, "stclass %s ", SvPVX_const(sv));
14526     }
14527     if (r->extflags & RXf_ANCH) {
14528 	PerlIO_printf(Perl_debug_log, "anchored");
14529 	if (r->extflags & RXf_ANCH_BOL)
14530 	    PerlIO_printf(Perl_debug_log, "(BOL)");
14531 	if (r->extflags & RXf_ANCH_MBOL)
14532 	    PerlIO_printf(Perl_debug_log, "(MBOL)");
14533 	if (r->extflags & RXf_ANCH_SBOL)
14534 	    PerlIO_printf(Perl_debug_log, "(SBOL)");
14535 	if (r->extflags & RXf_ANCH_GPOS)
14536 	    PerlIO_printf(Perl_debug_log, "(GPOS)");
14537 	PerlIO_putc(Perl_debug_log, ' ');
14538     }
14539     if (r->extflags & RXf_GPOS_SEEN)
14540 	PerlIO_printf(Perl_debug_log, "GPOS:%"UVuf" ", (UV)r->gofs);
14541     if (r->intflags & PREGf_SKIP)
14542 	PerlIO_printf(Perl_debug_log, "plus ");
14543     if (r->intflags & PREGf_IMPLICIT)
14544 	PerlIO_printf(Perl_debug_log, "implicit ");
14545     PerlIO_printf(Perl_debug_log, "minlen %"IVdf" ", (IV)r->minlen);
14546     if (r->extflags & RXf_EVAL_SEEN)
14547 	PerlIO_printf(Perl_debug_log, "with eval ");
14548     PerlIO_printf(Perl_debug_log, "\n");
14549     DEBUG_FLAGS_r(regdump_extflags("r->extflags: ",r->extflags));
14550 #else
14551     PERL_ARGS_ASSERT_REGDUMP;
14552     PERL_UNUSED_CONTEXT;
14553     PERL_UNUSED_ARG(r);
14554 #endif	/* DEBUGGING */
14555 }
14556 
14557 /*
14558 - regprop - printable representation of opcode
14559 */
14560 #define EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags) \
14561 STMT_START { \
14562         if (do_sep) {                           \
14563             Perl_sv_catpvf(aTHX_ sv,"%s][%s",PL_colors[1],PL_colors[0]); \
14564             if (flags & ANYOF_INVERT)           \
14565                 /*make sure the invert info is in each */ \
14566                 sv_catpvs(sv, "^");             \
14567             do_sep = 0;                         \
14568         }                                       \
14569 } STMT_END
14570 
14571 void
14572 Perl_regprop(pTHX_ const regexp *prog, SV *sv, const regnode *o)
14573 {
14574 #ifdef DEBUGGING
14575     dVAR;
14576     int k;
14577 
14578     /* Should be synchronized with * ANYOF_ #xdefines in regcomp.h */
14579     static const char * const anyofs[] = {
14580 #if _CC_WORDCHAR != 0 || _CC_DIGIT != 1 || _CC_ALPHA != 2 || _CC_LOWER != 3 \
14581     || _CC_UPPER != 4 || _CC_PUNCT != 5 || _CC_PRINT != 6                   \
14582     || _CC_ALPHANUMERIC != 7 || _CC_GRAPH != 8 || _CC_CASED != 9            \
14583     || _CC_SPACE != 10 || _CC_BLANK != 11 || _CC_XDIGIT != 12               \
14584     || _CC_PSXSPC != 13 || _CC_CNTRL != 14 || _CC_ASCII != 15               \
14585     || _CC_VERTSPACE != 16
14586   #error Need to adjust order of anyofs[]
14587 #endif
14588         "[\\w]",
14589         "[\\W]",
14590         "[\\d]",
14591         "[\\D]",
14592         "[:alpha:]",
14593         "[:^alpha:]",
14594         "[:lower:]",
14595         "[:^lower:]",
14596         "[:upper:]",
14597         "[:^upper:]",
14598         "[:punct:]",
14599         "[:^punct:]",
14600         "[:print:]",
14601         "[:^print:]",
14602         "[:alnum:]",
14603         "[:^alnum:]",
14604         "[:graph:]",
14605         "[:^graph:]",
14606         "[:cased:]",
14607         "[:^cased:]",
14608         "[\\s]",
14609         "[\\S]",
14610         "[:blank:]",
14611         "[:^blank:]",
14612         "[:xdigit:]",
14613         "[:^xdigit:]",
14614         "[:space:]",
14615         "[:^space:]",
14616         "[:cntrl:]",
14617         "[:^cntrl:]",
14618         "[:ascii:]",
14619         "[:^ascii:]",
14620         "[\\v]",
14621         "[\\V]"
14622     };
14623     RXi_GET_DECL(prog,progi);
14624     GET_RE_DEBUG_FLAGS_DECL;
14625 
14626     PERL_ARGS_ASSERT_REGPROP;
14627 
14628     sv_setpvs(sv, "");
14629 
14630     if (OP(o) > REGNODE_MAX)		/* regnode.type is unsigned */
14631 	/* It would be nice to FAIL() here, but this may be called from
14632 	   regexec.c, and it would be hard to supply pRExC_state. */
14633 	Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(o), (int)REGNODE_MAX);
14634     sv_catpv(sv, PL_reg_name[OP(o)]); /* Take off const! */
14635 
14636     k = PL_regkind[OP(o)];
14637 
14638     if (k == EXACT) {
14639 	sv_catpvs(sv, " ");
14640 	/* Using is_utf8_string() (via PERL_PV_UNI_DETECT)
14641 	 * is a crude hack but it may be the best for now since
14642 	 * we have no flag "this EXACTish node was UTF-8"
14643 	 * --jhi */
14644 	pv_pretty(sv, STRING(o), STR_LEN(o), 60, PL_colors[0], PL_colors[1],
14645 		  PERL_PV_ESCAPE_UNI_DETECT |
14646 		  PERL_PV_ESCAPE_NONASCII   |
14647 		  PERL_PV_PRETTY_ELLIPSES   |
14648 		  PERL_PV_PRETTY_LTGT       |
14649 		  PERL_PV_PRETTY_NOCLEAR
14650 		  );
14651     } else if (k == TRIE) {
14652 	/* print the details of the trie in dumpuntil instead, as
14653 	 * progi->data isn't available here */
14654         const char op = OP(o);
14655         const U32 n = ARG(o);
14656         const reg_ac_data * const ac = IS_TRIE_AC(op) ?
14657                (reg_ac_data *)progi->data->data[n] :
14658                NULL;
14659         const reg_trie_data * const trie
14660 	    = (reg_trie_data*)progi->data->data[!IS_TRIE_AC(op) ? n : ac->trie];
14661 
14662         Perl_sv_catpvf(aTHX_ sv, "-%s",PL_reg_name[o->flags]);
14663         DEBUG_TRIE_COMPILE_r(
14664             Perl_sv_catpvf(aTHX_ sv,
14665                 "<S:%"UVuf"/%"IVdf" W:%"UVuf" L:%"UVuf"/%"UVuf" C:%"UVuf"/%"UVuf">",
14666                 (UV)trie->startstate,
14667                 (IV)trie->statecount-1, /* -1 because of the unused 0 element */
14668                 (UV)trie->wordcount,
14669                 (UV)trie->minlen,
14670                 (UV)trie->maxlen,
14671                 (UV)TRIE_CHARCOUNT(trie),
14672                 (UV)trie->uniquecharcount
14673             )
14674         );
14675         if ( IS_ANYOF_TRIE(op) || trie->bitmap ) {
14676             int i;
14677             int rangestart = -1;
14678             U8* bitmap = IS_ANYOF_TRIE(op) ? (U8*)ANYOF_BITMAP(o) : (U8*)TRIE_BITMAP(trie);
14679             sv_catpvs(sv, "[");
14680             for (i = 0; i <= 256; i++) {
14681                 if (i < 256 && BITMAP_TEST(bitmap,i)) {
14682                     if (rangestart == -1)
14683                         rangestart = i;
14684                 } else if (rangestart != -1) {
14685                     if (i <= rangestart + 3)
14686                         for (; rangestart < i; rangestart++)
14687                             put_byte(sv, rangestart);
14688                     else {
14689                         put_byte(sv, rangestart);
14690                         sv_catpvs(sv, "-");
14691                         put_byte(sv, i - 1);
14692                     }
14693                     rangestart = -1;
14694                 }
14695             }
14696             sv_catpvs(sv, "]");
14697         }
14698 
14699     } else if (k == CURLY) {
14700 	if (OP(o) == CURLYM || OP(o) == CURLYN || OP(o) == CURLYX)
14701 	    Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* Parenth number */
14702 	Perl_sv_catpvf(aTHX_ sv, " {%d,%d}", ARG1(o), ARG2(o));
14703     }
14704     else if (k == WHILEM && o->flags)			/* Ordinal/of */
14705 	Perl_sv_catpvf(aTHX_ sv, "[%d/%d]", o->flags & 0xf, o->flags>>4);
14706     else if (k == REF || k == OPEN || k == CLOSE || k == GROUPP || OP(o)==ACCEPT) {
14707 	Perl_sv_catpvf(aTHX_ sv, "%d", (int)ARG(o));	/* Parenth number */
14708 	if ( RXp_PAREN_NAMES(prog) ) {
14709             if ( k != REF || (OP(o) < NREF)) {
14710 	        AV *list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
14711 	        SV **name= av_fetch(list, ARG(o), 0 );
14712 	        if (name)
14713 	            Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
14714             }
14715             else {
14716                 AV *list= MUTABLE_AV(progi->data->data[ progi->name_list_idx ]);
14717                 SV *sv_dat= MUTABLE_SV(progi->data->data[ ARG( o ) ]);
14718                 I32 *nums=(I32*)SvPVX(sv_dat);
14719                 SV **name= av_fetch(list, nums[0], 0 );
14720                 I32 n;
14721                 if (name) {
14722                     for ( n=0; n<SvIVX(sv_dat); n++ ) {
14723                         Perl_sv_catpvf(aTHX_ sv, "%s%"IVdf,
14724 			   	    (n ? "," : ""), (IV)nums[n]);
14725                     }
14726                     Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
14727                 }
14728             }
14729         }
14730     } else if (k == GOSUB)
14731 	Perl_sv_catpvf(aTHX_ sv, "%d[%+d]", (int)ARG(o),(int)ARG2L(o));	/* Paren and offset */
14732     else if (k == VERB) {
14733         if (!o->flags)
14734             Perl_sv_catpvf(aTHX_ sv, ":%"SVf,
14735 			   SVfARG((MUTABLE_SV(progi->data->data[ ARG( o ) ]))));
14736     } else if (k == LOGICAL)
14737 	Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags);	/* 2: embedded, otherwise 1 */
14738     else if (k == ANYOF) {
14739 	int i, rangestart = -1;
14740 	const U8 flags = ANYOF_FLAGS(o);
14741 	int do_sep = 0;
14742 
14743 
14744 	if (flags & ANYOF_LOCALE)
14745 	    sv_catpvs(sv, "{loc}");
14746 	if (flags & ANYOF_LOC_FOLD)
14747 	    sv_catpvs(sv, "{i}");
14748 	Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]);
14749 	if (flags & ANYOF_INVERT)
14750 	    sv_catpvs(sv, "^");
14751 
14752 	/* output what the standard cp 0-255 bitmap matches */
14753 	for (i = 0; i <= 256; i++) {
14754 	    if (i < 256 && ANYOF_BITMAP_TEST(o,i)) {
14755 		if (rangestart == -1)
14756 		    rangestart = i;
14757 	    } else if (rangestart != -1) {
14758 		if (i <= rangestart + 3)
14759 		    for (; rangestart < i; rangestart++)
14760 			put_byte(sv, rangestart);
14761 		else {
14762 		    put_byte(sv, rangestart);
14763 		    sv_catpvs(sv, "-");
14764 		    put_byte(sv, i - 1);
14765 		}
14766 		do_sep = 1;
14767 		rangestart = -1;
14768 	    }
14769 	}
14770 
14771         EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
14772         /* output any special charclass tests (used entirely under use locale) */
14773 	if (ANYOF_CLASS_TEST_ANY_SET(o))
14774 	    for (i = 0; i < (int)(sizeof(anyofs)/sizeof(char*)); i++)
14775 		if (ANYOF_CLASS_TEST(o,i)) {
14776 		    sv_catpv(sv, anyofs[i]);
14777 		    do_sep = 1;
14778 		}
14779 
14780         EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
14781 
14782 	if (flags & ANYOF_NON_UTF8_LATIN1_ALL) {
14783 	    sv_catpvs(sv, "{non-utf8-latin1-all}");
14784 	}
14785 
14786         /* output information about the unicode matching */
14787 	if (flags & ANYOF_UNICODE_ALL)
14788 	    sv_catpvs(sv, "{unicode_all}");
14789 	else if (ANYOF_NONBITMAP(o))
14790 	    sv_catpvs(sv, "{unicode}");
14791 	if (flags & ANYOF_NONBITMAP_NON_UTF8)
14792 	    sv_catpvs(sv, "{outside bitmap}");
14793 
14794 	if (ANYOF_NONBITMAP(o)) {
14795 	    SV *lv; /* Set if there is something outside the bit map */
14796 	    SV * const sw = regclass_swash(prog, o, FALSE, &lv, NULL);
14797             bool byte_output = FALSE;   /* If something in the bitmap has been
14798                                            output */
14799 
14800 	    if (lv && lv != &PL_sv_undef) {
14801 		if (sw) {
14802 		    U8 s[UTF8_MAXBYTES_CASE+1];
14803 
14804 		    for (i = 0; i <= 256; i++) { /* Look at chars in bitmap */
14805 			uvchr_to_utf8(s, i);
14806 
14807 			if (i < 256
14808                             && ! ANYOF_BITMAP_TEST(o, i)    /* Don't duplicate
14809                                                                things already
14810                                                                output as part
14811                                                                of the bitmap */
14812                             && swash_fetch(sw, s, TRUE))
14813                         {
14814 			    if (rangestart == -1)
14815 				rangestart = i;
14816 			} else if (rangestart != -1) {
14817                             byte_output = TRUE;
14818 			    if (i <= rangestart + 3)
14819 				for (; rangestart < i; rangestart++) {
14820 				    put_byte(sv, rangestart);
14821 				}
14822 			    else {
14823 				put_byte(sv, rangestart);
14824 				sv_catpvs(sv, "-");
14825 				put_byte(sv, i-1);
14826 			    }
14827 			    rangestart = -1;
14828 			}
14829 		    }
14830 		}
14831 
14832 		{
14833 		    char *s = savesvpv(lv);
14834 		    char * const origs = s;
14835 
14836 		    while (*s && *s != '\n')
14837 			s++;
14838 
14839 		    if (*s == '\n') {
14840 			const char * const t = ++s;
14841 
14842                         if (byte_output) {
14843                             sv_catpvs(sv, " ");
14844                         }
14845 
14846 			while (*s) {
14847 			    if (*s == '\n') {
14848 
14849                                 /* Truncate very long output */
14850 				if (s - origs > 256) {
14851 				    Perl_sv_catpvf(aTHX_ sv,
14852 						   "%.*s...",
14853 					           (int) (s - origs - 1),
14854 						   t);
14855 				    goto out_dump;
14856 				}
14857 				*s = ' ';
14858 			    }
14859 			    else if (*s == '\t') {
14860 				*s = '-';
14861 			    }
14862 			    s++;
14863 			}
14864 			if (s[-1] == ' ')
14865 			    s[-1] = 0;
14866 
14867 			sv_catpv(sv, t);
14868 		    }
14869 
14870 		out_dump:
14871 
14872 		    Safefree(origs);
14873 		}
14874 		SvREFCNT_dec_NN(lv);
14875 	    }
14876 	}
14877 
14878 	Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]);
14879     }
14880     else if (k == POSIXD || k == NPOSIXD) {
14881         U8 index = FLAGS(o) * 2;
14882         if (index > (sizeof(anyofs) / sizeof(anyofs[0]))) {
14883             Perl_sv_catpvf(aTHX_ sv, "[illegal type=%d])", index);
14884         }
14885         else {
14886             sv_catpv(sv, anyofs[index]);
14887         }
14888     }
14889     else if (k == BRANCHJ && (OP(o) == UNLESSM || OP(o) == IFMATCH))
14890 	Perl_sv_catpvf(aTHX_ sv, "[%d]", -(o->flags));
14891 #else
14892     PERL_UNUSED_CONTEXT;
14893     PERL_UNUSED_ARG(sv);
14894     PERL_UNUSED_ARG(o);
14895     PERL_UNUSED_ARG(prog);
14896 #endif	/* DEBUGGING */
14897 }
14898 
14899 SV *
14900 Perl_re_intuit_string(pTHX_ REGEXP * const r)
14901 {				/* Assume that RE_INTUIT is set */
14902     dVAR;
14903     struct regexp *const prog = ReANY(r);
14904     GET_RE_DEBUG_FLAGS_DECL;
14905 
14906     PERL_ARGS_ASSERT_RE_INTUIT_STRING;
14907     PERL_UNUSED_CONTEXT;
14908 
14909     DEBUG_COMPILE_r(
14910 	{
14911 	    const char * const s = SvPV_nolen_const(prog->check_substr
14912 		      ? prog->check_substr : prog->check_utf8);
14913 
14914 	    if (!PL_colorset) reginitcolors();
14915 	    PerlIO_printf(Perl_debug_log,
14916 		      "%sUsing REx %ssubstr:%s \"%s%.60s%s%s\"\n",
14917 		      PL_colors[4],
14918 		      prog->check_substr ? "" : "utf8 ",
14919 		      PL_colors[5],PL_colors[0],
14920 		      s,
14921 		      PL_colors[1],
14922 		      (strlen(s) > 60 ? "..." : ""));
14923 	} );
14924 
14925     return prog->check_substr ? prog->check_substr : prog->check_utf8;
14926 }
14927 
14928 /*
14929    pregfree()
14930 
14931    handles refcounting and freeing the perl core regexp structure. When
14932    it is necessary to actually free the structure the first thing it
14933    does is call the 'free' method of the regexp_engine associated to
14934    the regexp, allowing the handling of the void *pprivate; member
14935    first. (This routine is not overridable by extensions, which is why
14936    the extensions free is called first.)
14937 
14938    See regdupe and regdupe_internal if you change anything here.
14939 */
14940 #ifndef PERL_IN_XSUB_RE
14941 void
14942 Perl_pregfree(pTHX_ REGEXP *r)
14943 {
14944     SvREFCNT_dec(r);
14945 }
14946 
14947 void
14948 Perl_pregfree2(pTHX_ REGEXP *rx)
14949 {
14950     dVAR;
14951     struct regexp *const r = ReANY(rx);
14952     GET_RE_DEBUG_FLAGS_DECL;
14953 
14954     PERL_ARGS_ASSERT_PREGFREE2;
14955 
14956     if (r->mother_re) {
14957         ReREFCNT_dec(r->mother_re);
14958     } else {
14959         CALLREGFREE_PVT(rx); /* free the private data */
14960         SvREFCNT_dec(RXp_PAREN_NAMES(r));
14961 	Safefree(r->xpv_len_u.xpvlenu_pv);
14962     }
14963     if (r->substrs) {
14964         SvREFCNT_dec(r->anchored_substr);
14965         SvREFCNT_dec(r->anchored_utf8);
14966         SvREFCNT_dec(r->float_substr);
14967         SvREFCNT_dec(r->float_utf8);
14968 	Safefree(r->substrs);
14969     }
14970     RX_MATCH_COPY_FREE(rx);
14971 #ifdef PERL_ANY_COW
14972     SvREFCNT_dec(r->saved_copy);
14973 #endif
14974     Safefree(r->offs);
14975     SvREFCNT_dec(r->qr_anoncv);
14976     rx->sv_u.svu_rx = 0;
14977 }
14978 
14979 /*  reg_temp_copy()
14980 
14981     This is a hacky workaround to the structural issue of match results
14982     being stored in the regexp structure which is in turn stored in
14983     PL_curpm/PL_reg_curpm. The problem is that due to qr// the pattern
14984     could be PL_curpm in multiple contexts, and could require multiple
14985     result sets being associated with the pattern simultaneously, such
14986     as when doing a recursive match with (??{$qr})
14987 
14988     The solution is to make a lightweight copy of the regexp structure
14989     when a qr// is returned from the code executed by (??{$qr}) this
14990     lightweight copy doesn't actually own any of its data except for
14991     the starp/end and the actual regexp structure itself.
14992 
14993 */
14994 
14995 
14996 REGEXP *
14997 Perl_reg_temp_copy (pTHX_ REGEXP *ret_x, REGEXP *rx)
14998 {
14999     struct regexp *ret;
15000     struct regexp *const r = ReANY(rx);
15001     const bool islv = ret_x && SvTYPE(ret_x) == SVt_PVLV;
15002 
15003     PERL_ARGS_ASSERT_REG_TEMP_COPY;
15004 
15005     if (!ret_x)
15006 	ret_x = (REGEXP*) newSV_type(SVt_REGEXP);
15007     else {
15008 	SvOK_off((SV *)ret_x);
15009 	if (islv) {
15010 	    /* For PVLVs, SvANY points to the xpvlv body while sv_u points
15011 	       to the regexp.  (For SVt_REGEXPs, sv_upgrade has already
15012 	       made both spots point to the same regexp body.) */
15013 	    REGEXP *temp = (REGEXP *)newSV_type(SVt_REGEXP);
15014 	    assert(!SvPVX(ret_x));
15015 	    ret_x->sv_u.svu_rx = temp->sv_any;
15016 	    temp->sv_any = NULL;
15017 	    SvFLAGS(temp) = (SvFLAGS(temp) & ~SVTYPEMASK) | SVt_NULL;
15018 	    SvREFCNT_dec_NN(temp);
15019 	    /* SvCUR still resides in the xpvlv struct, so the regexp copy-
15020 	       ing below will not set it. */
15021 	    SvCUR_set(ret_x, SvCUR(rx));
15022 	}
15023     }
15024     /* This ensures that SvTHINKFIRST(sv) is true, and hence that
15025        sv_force_normal(sv) is called.  */
15026     SvFAKE_on(ret_x);
15027     ret = ReANY(ret_x);
15028 
15029     SvFLAGS(ret_x) |= SvUTF8(rx);
15030     /* We share the same string buffer as the original regexp, on which we
15031        hold a reference count, incremented when mother_re is set below.
15032        The string pointer is copied here, being part of the regexp struct.
15033      */
15034     memcpy(&(ret->xpv_cur), &(r->xpv_cur),
15035 	   sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur));
15036     if (r->offs) {
15037         const I32 npar = r->nparens+1;
15038         Newx(ret->offs, npar, regexp_paren_pair);
15039         Copy(r->offs, ret->offs, npar, regexp_paren_pair);
15040     }
15041     if (r->substrs) {
15042         Newx(ret->substrs, 1, struct reg_substr_data);
15043 	StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
15044 
15045 	SvREFCNT_inc_void(ret->anchored_substr);
15046 	SvREFCNT_inc_void(ret->anchored_utf8);
15047 	SvREFCNT_inc_void(ret->float_substr);
15048 	SvREFCNT_inc_void(ret->float_utf8);
15049 
15050 	/* check_substr and check_utf8, if non-NULL, point to either their
15051 	   anchored or float namesakes, and don't hold a second reference.  */
15052     }
15053     RX_MATCH_COPIED_off(ret_x);
15054 #ifdef PERL_ANY_COW
15055     ret->saved_copy = NULL;
15056 #endif
15057     ret->mother_re = ReREFCNT_inc(r->mother_re ? r->mother_re : rx);
15058     SvREFCNT_inc_void(ret->qr_anoncv);
15059 
15060     return ret_x;
15061 }
15062 #endif
15063 
15064 /* regfree_internal()
15065 
15066    Free the private data in a regexp. This is overloadable by
15067    extensions. Perl takes care of the regexp structure in pregfree(),
15068    this covers the *pprivate pointer which technically perl doesn't
15069    know about, however of course we have to handle the
15070    regexp_internal structure when no extension is in use.
15071 
15072    Note this is called before freeing anything in the regexp
15073    structure.
15074  */
15075 
15076 void
15077 Perl_regfree_internal(pTHX_ REGEXP * const rx)
15078 {
15079     dVAR;
15080     struct regexp *const r = ReANY(rx);
15081     RXi_GET_DECL(r,ri);
15082     GET_RE_DEBUG_FLAGS_DECL;
15083 
15084     PERL_ARGS_ASSERT_REGFREE_INTERNAL;
15085 
15086     DEBUG_COMPILE_r({
15087 	if (!PL_colorset)
15088 	    reginitcolors();
15089 	{
15090 	    SV *dsv= sv_newmortal();
15091             RE_PV_QUOTED_DECL(s, RX_UTF8(rx),
15092                 dsv, RX_PRECOMP(rx), RX_PRELEN(rx), 60);
15093             PerlIO_printf(Perl_debug_log,"%sFreeing REx:%s %s\n",
15094                 PL_colors[4],PL_colors[5],s);
15095         }
15096     });
15097 #ifdef RE_TRACK_PATTERN_OFFSETS
15098     if (ri->u.offsets)
15099         Safefree(ri->u.offsets);             /* 20010421 MJD */
15100 #endif
15101     if (ri->code_blocks) {
15102 	int n;
15103 	for (n = 0; n < ri->num_code_blocks; n++)
15104 	    SvREFCNT_dec(ri->code_blocks[n].src_regex);
15105 	Safefree(ri->code_blocks);
15106     }
15107 
15108     if (ri->data) {
15109 	int n = ri->data->count;
15110 
15111 	while (--n >= 0) {
15112           /* If you add a ->what type here, update the comment in regcomp.h */
15113 	    switch (ri->data->what[n]) {
15114 	    case 'a':
15115 	    case 'r':
15116 	    case 's':
15117 	    case 'S':
15118 	    case 'u':
15119 		SvREFCNT_dec(MUTABLE_SV(ri->data->data[n]));
15120 		break;
15121 	    case 'f':
15122 		Safefree(ri->data->data[n]);
15123 		break;
15124 	    case 'l':
15125 	    case 'L':
15126 	        break;
15127             case 'T':
15128                 { /* Aho Corasick add-on structure for a trie node.
15129                      Used in stclass optimization only */
15130                     U32 refcount;
15131                     reg_ac_data *aho=(reg_ac_data*)ri->data->data[n];
15132                     OP_REFCNT_LOCK;
15133                     refcount = --aho->refcount;
15134                     OP_REFCNT_UNLOCK;
15135                     if ( !refcount ) {
15136                         PerlMemShared_free(aho->states);
15137                         PerlMemShared_free(aho->fail);
15138 			 /* do this last!!!! */
15139                         PerlMemShared_free(ri->data->data[n]);
15140                         PerlMemShared_free(ri->regstclass);
15141                     }
15142                 }
15143                 break;
15144 	    case 't':
15145 	        {
15146 	            /* trie structure. */
15147 	            U32 refcount;
15148 	            reg_trie_data *trie=(reg_trie_data*)ri->data->data[n];
15149                     OP_REFCNT_LOCK;
15150                     refcount = --trie->refcount;
15151                     OP_REFCNT_UNLOCK;
15152                     if ( !refcount ) {
15153                         PerlMemShared_free(trie->charmap);
15154                         PerlMemShared_free(trie->states);
15155                         PerlMemShared_free(trie->trans);
15156                         if (trie->bitmap)
15157                             PerlMemShared_free(trie->bitmap);
15158                         if (trie->jump)
15159                             PerlMemShared_free(trie->jump);
15160 			PerlMemShared_free(trie->wordinfo);
15161                         /* do this last!!!! */
15162                         PerlMemShared_free(ri->data->data[n]);
15163 		    }
15164 		}
15165 		break;
15166 	    default:
15167 		Perl_croak(aTHX_ "panic: regfree data code '%c'", ri->data->what[n]);
15168 	    }
15169 	}
15170 	Safefree(ri->data->what);
15171 	Safefree(ri->data);
15172     }
15173 
15174     Safefree(ri);
15175 }
15176 
15177 #define av_dup_inc(s,t)	MUTABLE_AV(sv_dup_inc((const SV *)s,t))
15178 #define hv_dup_inc(s,t)	MUTABLE_HV(sv_dup_inc((const SV *)s,t))
15179 #define SAVEPVN(p,n)	((p) ? savepvn(p,n) : NULL)
15180 
15181 /*
15182    re_dup - duplicate a regexp.
15183 
15184    This routine is expected to clone a given regexp structure. It is only
15185    compiled under USE_ITHREADS.
15186 
15187    After all of the core data stored in struct regexp is duplicated
15188    the regexp_engine.dupe method is used to copy any private data
15189    stored in the *pprivate pointer. This allows extensions to handle
15190    any duplication it needs to do.
15191 
15192    See pregfree() and regfree_internal() if you change anything here.
15193 */
15194 #if defined(USE_ITHREADS)
15195 #ifndef PERL_IN_XSUB_RE
15196 void
15197 Perl_re_dup_guts(pTHX_ const REGEXP *sstr, REGEXP *dstr, CLONE_PARAMS *param)
15198 {
15199     dVAR;
15200     I32 npar;
15201     const struct regexp *r = ReANY(sstr);
15202     struct regexp *ret = ReANY(dstr);
15203 
15204     PERL_ARGS_ASSERT_RE_DUP_GUTS;
15205 
15206     npar = r->nparens+1;
15207     Newx(ret->offs, npar, regexp_paren_pair);
15208     Copy(r->offs, ret->offs, npar, regexp_paren_pair);
15209 
15210     if (ret->substrs) {
15211 	/* Do it this way to avoid reading from *r after the StructCopy().
15212 	   That way, if any of the sv_dup_inc()s dislodge *r from the L1
15213 	   cache, it doesn't matter.  */
15214 	const bool anchored = r->check_substr
15215 	    ? r->check_substr == r->anchored_substr
15216 	    : r->check_utf8 == r->anchored_utf8;
15217         Newx(ret->substrs, 1, struct reg_substr_data);
15218 	StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
15219 
15220 	ret->anchored_substr = sv_dup_inc(ret->anchored_substr, param);
15221 	ret->anchored_utf8 = sv_dup_inc(ret->anchored_utf8, param);
15222 	ret->float_substr = sv_dup_inc(ret->float_substr, param);
15223 	ret->float_utf8 = sv_dup_inc(ret->float_utf8, param);
15224 
15225 	/* check_substr and check_utf8, if non-NULL, point to either their
15226 	   anchored or float namesakes, and don't hold a second reference.  */
15227 
15228 	if (ret->check_substr) {
15229 	    if (anchored) {
15230 		assert(r->check_utf8 == r->anchored_utf8);
15231 		ret->check_substr = ret->anchored_substr;
15232 		ret->check_utf8 = ret->anchored_utf8;
15233 	    } else {
15234 		assert(r->check_substr == r->float_substr);
15235 		assert(r->check_utf8 == r->float_utf8);
15236 		ret->check_substr = ret->float_substr;
15237 		ret->check_utf8 = ret->float_utf8;
15238 	    }
15239 	} else if (ret->check_utf8) {
15240 	    if (anchored) {
15241 		ret->check_utf8 = ret->anchored_utf8;
15242 	    } else {
15243 		ret->check_utf8 = ret->float_utf8;
15244 	    }
15245 	}
15246     }
15247 
15248     RXp_PAREN_NAMES(ret) = hv_dup_inc(RXp_PAREN_NAMES(ret), param);
15249     ret->qr_anoncv = MUTABLE_CV(sv_dup_inc((const SV *)ret->qr_anoncv, param));
15250 
15251     if (ret->pprivate)
15252 	RXi_SET(ret,CALLREGDUPE_PVT(dstr,param));
15253 
15254     if (RX_MATCH_COPIED(dstr))
15255 	ret->subbeg  = SAVEPVN(ret->subbeg, ret->sublen);
15256     else
15257 	ret->subbeg = NULL;
15258 #ifdef PERL_ANY_COW
15259     ret->saved_copy = NULL;
15260 #endif
15261 
15262     /* Whether mother_re be set or no, we need to copy the string.  We
15263        cannot refrain from copying it when the storage points directly to
15264        our mother regexp, because that's
15265 	       1: a buffer in a different thread
15266 	       2: something we no longer hold a reference on
15267 	       so we need to copy it locally.  */
15268     RX_WRAPPED(dstr) = SAVEPVN(RX_WRAPPED(sstr), SvCUR(sstr)+1);
15269     ret->mother_re   = NULL;
15270     ret->gofs = 0;
15271 }
15272 #endif /* PERL_IN_XSUB_RE */
15273 
15274 /*
15275    regdupe_internal()
15276 
15277    This is the internal complement to regdupe() which is used to copy
15278    the structure pointed to by the *pprivate pointer in the regexp.
15279    This is the core version of the extension overridable cloning hook.
15280    The regexp structure being duplicated will be copied by perl prior
15281    to this and will be provided as the regexp *r argument, however
15282    with the /old/ structures pprivate pointer value. Thus this routine
15283    may override any copying normally done by perl.
15284 
15285    It returns a pointer to the new regexp_internal structure.
15286 */
15287 
15288 void *
15289 Perl_regdupe_internal(pTHX_ REGEXP * const rx, CLONE_PARAMS *param)
15290 {
15291     dVAR;
15292     struct regexp *const r = ReANY(rx);
15293     regexp_internal *reti;
15294     int len;
15295     RXi_GET_DECL(r,ri);
15296 
15297     PERL_ARGS_ASSERT_REGDUPE_INTERNAL;
15298 
15299     len = ProgLen(ri);
15300 
15301     Newxc(reti, sizeof(regexp_internal) + len*sizeof(regnode), char, regexp_internal);
15302     Copy(ri->program, reti->program, len+1, regnode);
15303 
15304     reti->num_code_blocks = ri->num_code_blocks;
15305     if (ri->code_blocks) {
15306 	int n;
15307 	Newxc(reti->code_blocks, ri->num_code_blocks, struct reg_code_block,
15308 		struct reg_code_block);
15309 	Copy(ri->code_blocks, reti->code_blocks, ri->num_code_blocks,
15310 		struct reg_code_block);
15311 	for (n = 0; n < ri->num_code_blocks; n++)
15312 	     reti->code_blocks[n].src_regex = (REGEXP*)
15313 		    sv_dup_inc((SV*)(ri->code_blocks[n].src_regex), param);
15314     }
15315     else
15316 	reti->code_blocks = NULL;
15317 
15318     reti->regstclass = NULL;
15319 
15320     if (ri->data) {
15321 	struct reg_data *d;
15322         const int count = ri->data->count;
15323 	int i;
15324 
15325 	Newxc(d, sizeof(struct reg_data) + count*sizeof(void *),
15326 		char, struct reg_data);
15327 	Newx(d->what, count, U8);
15328 
15329 	d->count = count;
15330 	for (i = 0; i < count; i++) {
15331 	    d->what[i] = ri->data->what[i];
15332 	    switch (d->what[i]) {
15333 	        /* see also regcomp.h and regfree_internal() */
15334 	    case 'a': /* actually an AV, but the dup function is identical.  */
15335 	    case 'r':
15336 	    case 's':
15337 	    case 'S':
15338 	    case 'u': /* actually an HV, but the dup function is identical.  */
15339 		d->data[i] = sv_dup_inc((const SV *)ri->data->data[i], param);
15340 		break;
15341 	    case 'f':
15342 		/* This is cheating. */
15343 		Newx(d->data[i], 1, struct regnode_charclass_class);
15344 		StructCopy(ri->data->data[i], d->data[i],
15345 			    struct regnode_charclass_class);
15346 		reti->regstclass = (regnode*)d->data[i];
15347 		break;
15348 	    case 'T':
15349 		/* Trie stclasses are readonly and can thus be shared
15350 		 * without duplication. We free the stclass in pregfree
15351 		 * when the corresponding reg_ac_data struct is freed.
15352 		 */
15353 		reti->regstclass= ri->regstclass;
15354 		/* Fall through */
15355 	    case 't':
15356 		OP_REFCNT_LOCK;
15357 		((reg_trie_data*)ri->data->data[i])->refcount++;
15358 		OP_REFCNT_UNLOCK;
15359 		/* Fall through */
15360 	    case 'l':
15361 	    case 'L':
15362 		d->data[i] = ri->data->data[i];
15363 		break;
15364             default:
15365 		Perl_croak(aTHX_ "panic: re_dup unknown data code '%c'", ri->data->what[i]);
15366 	    }
15367 	}
15368 
15369 	reti->data = d;
15370     }
15371     else
15372 	reti->data = NULL;
15373 
15374     reti->name_list_idx = ri->name_list_idx;
15375 
15376 #ifdef RE_TRACK_PATTERN_OFFSETS
15377     if (ri->u.offsets) {
15378         Newx(reti->u.offsets, 2*len+1, U32);
15379         Copy(ri->u.offsets, reti->u.offsets, 2*len+1, U32);
15380     }
15381 #else
15382     SetProgLen(reti,len);
15383 #endif
15384 
15385     return (void*)reti;
15386 }
15387 
15388 #endif    /* USE_ITHREADS */
15389 
15390 #ifndef PERL_IN_XSUB_RE
15391 
15392 /*
15393  - regnext - dig the "next" pointer out of a node
15394  */
15395 regnode *
15396 Perl_regnext(pTHX_ regnode *p)
15397 {
15398     dVAR;
15399     I32 offset;
15400 
15401     if (!p)
15402 	return(NULL);
15403 
15404     if (OP(p) > REGNODE_MAX) {		/* regnode.type is unsigned */
15405 	Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(p), (int)REGNODE_MAX);
15406     }
15407 
15408     offset = (reg_off_by_arg[OP(p)] ? ARG(p) : NEXT_OFF(p));
15409     if (offset == 0)
15410 	return(NULL);
15411 
15412     return(p+offset);
15413 }
15414 #endif
15415 
15416 STATIC void
15417 S_re_croak2(pTHX_ const char* pat1,const char* pat2,...)
15418 {
15419     va_list args;
15420     STRLEN l1 = strlen(pat1);
15421     STRLEN l2 = strlen(pat2);
15422     char buf[512];
15423     SV *msv;
15424     const char *message;
15425 
15426     PERL_ARGS_ASSERT_RE_CROAK2;
15427 
15428     if (l1 > 510)
15429 	l1 = 510;
15430     if (l1 + l2 > 510)
15431 	l2 = 510 - l1;
15432     Copy(pat1, buf, l1 , char);
15433     Copy(pat2, buf + l1, l2 , char);
15434     buf[l1 + l2] = '\n';
15435     buf[l1 + l2 + 1] = '\0';
15436 #ifdef I_STDARG
15437     /* ANSI variant takes additional second argument */
15438     va_start(args, pat2);
15439 #else
15440     va_start(args);
15441 #endif
15442     msv = vmess(buf, &args);
15443     va_end(args);
15444     message = SvPV_const(msv,l1);
15445     if (l1 > 512)
15446 	l1 = 512;
15447     Copy(message, buf, l1 , char);
15448     buf[l1-1] = '\0';			/* Overwrite \n */
15449     Perl_croak(aTHX_ "%s", buf);
15450 }
15451 
15452 /* XXX Here's a total kludge.  But we need to re-enter for swash routines. */
15453 
15454 #ifndef PERL_IN_XSUB_RE
15455 void
15456 Perl_save_re_context(pTHX)
15457 {
15458     dVAR;
15459 
15460     struct re_save_state *state;
15461 
15462     SAVEVPTR(PL_curcop);
15463     SSGROW(SAVESTACK_ALLOC_FOR_RE_SAVE_STATE + 1);
15464 
15465     state = (struct re_save_state *)(PL_savestack + PL_savestack_ix);
15466     PL_savestack_ix += SAVESTACK_ALLOC_FOR_RE_SAVE_STATE;
15467     SSPUSHUV(SAVEt_RE_STATE);
15468 
15469     Copy(&PL_reg_state, state, 1, struct re_save_state);
15470 
15471     PL_reg_oldsaved = NULL;
15472     PL_reg_oldsavedlen = 0;
15473     PL_reg_oldsavedoffset = 0;
15474     PL_reg_oldsavedcoffset = 0;
15475     PL_reg_maxiter = 0;
15476     PL_reg_leftiter = 0;
15477     PL_reg_poscache = NULL;
15478     PL_reg_poscache_size = 0;
15479 #ifdef PERL_ANY_COW
15480     PL_nrs = NULL;
15481 #endif
15482 
15483     /* Save $1..$n (#18107: UTF-8 s/(\w+)/uc($1)/e); AMS 20021106. */
15484     if (PL_curpm) {
15485 	const REGEXP * const rx = PM_GETRE(PL_curpm);
15486 	if (rx) {
15487 	    U32 i;
15488 	    for (i = 1; i <= RX_NPARENS(rx); i++) {
15489 		char digits[TYPE_CHARS(long)];
15490 		const STRLEN len = my_snprintf(digits, sizeof(digits), "%lu", (long)i);
15491 		GV *const *const gvp
15492 		    = (GV**)hv_fetch(PL_defstash, digits, len, 0);
15493 
15494 		if (gvp) {
15495 		    GV * const gv = *gvp;
15496 		    if (SvTYPE(gv) == SVt_PVGV && GvSV(gv))
15497 			save_scalar(gv);
15498 		}
15499 	    }
15500 	}
15501     }
15502 }
15503 #endif
15504 
15505 #ifdef DEBUGGING
15506 
15507 STATIC void
15508 S_put_byte(pTHX_ SV *sv, int c)
15509 {
15510     PERL_ARGS_ASSERT_PUT_BYTE;
15511 
15512     /* Our definition of isPRINT() ignores locales, so only bytes that are
15513        not part of UTF-8 are considered printable. I assume that the same
15514        holds for UTF-EBCDIC.
15515        Also, code point 255 is not printable in either (it's E0 in EBCDIC,
15516        which Wikipedia says:
15517 
15518        EO, or Eight Ones, is an 8-bit EBCDIC character code represented as all
15519        ones (binary 1111 1111, hexadecimal FF). It is similar, but not
15520        identical, to the ASCII delete (DEL) or rubout control character. ...
15521        it is typically mapped to hexadecimal code 9F, in order to provide a
15522        unique character mapping in both directions)
15523 
15524        So the old condition can be simplified to !isPRINT(c)  */
15525     if (!isPRINT(c)) {
15526 	if (c < 256) {
15527 	    Perl_sv_catpvf(aTHX_ sv, "\\x%02x", c);
15528 	}
15529 	else {
15530 	    Perl_sv_catpvf(aTHX_ sv, "\\x{%x}", c);
15531 	}
15532     }
15533     else {
15534 	const char string = c;
15535 	if (c == '-' || c == ']' || c == '\\' || c == '^')
15536 	    sv_catpvs(sv, "\\");
15537 	sv_catpvn(sv, &string, 1);
15538     }
15539 }
15540 
15541 
15542 #define CLEAR_OPTSTART \
15543     if (optstart) STMT_START { \
15544 	    DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log, " (%"IVdf" nodes)\n", (IV)(node - optstart))); \
15545 	    optstart=NULL; \
15546     } STMT_END
15547 
15548 #define DUMPUNTIL(b,e) CLEAR_OPTSTART; node=dumpuntil(r,start,(b),(e),last,sv,indent+1,depth+1);
15549 
15550 STATIC const regnode *
15551 S_dumpuntil(pTHX_ const regexp *r, const regnode *start, const regnode *node,
15552 	    const regnode *last, const regnode *plast,
15553 	    SV* sv, I32 indent, U32 depth)
15554 {
15555     dVAR;
15556     U8 op = PSEUDO;	/* Arbitrary non-END op. */
15557     const regnode *next;
15558     const regnode *optstart= NULL;
15559 
15560     RXi_GET_DECL(r,ri);
15561     GET_RE_DEBUG_FLAGS_DECL;
15562 
15563     PERL_ARGS_ASSERT_DUMPUNTIL;
15564 
15565 #ifdef DEBUG_DUMPUNTIL
15566     PerlIO_printf(Perl_debug_log, "--- %d : %d - %d - %d\n",indent,node-start,
15567         last ? last-start : 0,plast ? plast-start : 0);
15568 #endif
15569 
15570     if (plast && plast < last)
15571         last= plast;
15572 
15573     while (PL_regkind[op] != END && (!last || node < last)) {
15574 	/* While that wasn't END last time... */
15575 	NODE_ALIGN(node);
15576 	op = OP(node);
15577 	if (op == CLOSE || op == WHILEM)
15578 	    indent--;
15579 	next = regnext((regnode *)node);
15580 
15581 	/* Where, what. */
15582 	if (OP(node) == OPTIMIZED) {
15583 	    if (!optstart && RE_DEBUG_FLAG(RE_DEBUG_COMPILE_OPTIMISE))
15584 	        optstart = node;
15585 	    else
15586 		goto after_print;
15587 	} else
15588 	    CLEAR_OPTSTART;
15589 
15590 	regprop(r, sv, node);
15591 	PerlIO_printf(Perl_debug_log, "%4"IVdf":%*s%s", (IV)(node - start),
15592 		      (int)(2*indent + 1), "", SvPVX_const(sv));
15593 
15594         if (OP(node) != OPTIMIZED) {
15595             if (next == NULL)		/* Next ptr. */
15596                 PerlIO_printf(Perl_debug_log, " (0)");
15597             else if (PL_regkind[(U8)op] == BRANCH && PL_regkind[OP(next)] != BRANCH )
15598                 PerlIO_printf(Perl_debug_log, " (FAIL)");
15599             else
15600                 PerlIO_printf(Perl_debug_log, " (%"IVdf")", (IV)(next - start));
15601             (void)PerlIO_putc(Perl_debug_log, '\n');
15602         }
15603 
15604       after_print:
15605 	if (PL_regkind[(U8)op] == BRANCHJ) {
15606 	    assert(next);
15607 	    {
15608                 const regnode *nnode = (OP(next) == LONGJMP
15609                                        ? regnext((regnode *)next)
15610                                        : next);
15611                 if (last && nnode > last)
15612                     nnode = last;
15613                 DUMPUNTIL(NEXTOPER(NEXTOPER(node)), nnode);
15614 	    }
15615 	}
15616 	else if (PL_regkind[(U8)op] == BRANCH) {
15617 	    assert(next);
15618 	    DUMPUNTIL(NEXTOPER(node), next);
15619 	}
15620 	else if ( PL_regkind[(U8)op]  == TRIE ) {
15621 	    const regnode *this_trie = node;
15622 	    const char op = OP(node);
15623             const U32 n = ARG(node);
15624 	    const reg_ac_data * const ac = op>=AHOCORASICK ?
15625                (reg_ac_data *)ri->data->data[n] :
15626                NULL;
15627 	    const reg_trie_data * const trie =
15628 	        (reg_trie_data*)ri->data->data[op<AHOCORASICK ? n : ac->trie];
15629 #ifdef DEBUGGING
15630 	    AV *const trie_words = MUTABLE_AV(ri->data->data[n + TRIE_WORDS_OFFSET]);
15631 #endif
15632 	    const regnode *nextbranch= NULL;
15633 	    I32 word_idx;
15634             sv_setpvs(sv, "");
15635 	    for (word_idx= 0; word_idx < (I32)trie->wordcount; word_idx++) {
15636 		SV ** const elem_ptr = av_fetch(trie_words,word_idx,0);
15637 
15638                 PerlIO_printf(Perl_debug_log, "%*s%s ",
15639                    (int)(2*(indent+3)), "",
15640                     elem_ptr ? pv_pretty(sv, SvPV_nolen_const(*elem_ptr), SvCUR(*elem_ptr), 60,
15641 	                    PL_colors[0], PL_colors[1],
15642 	                    (SvUTF8(*elem_ptr) ? PERL_PV_ESCAPE_UNI : 0) |
15643 	                    PERL_PV_PRETTY_ELLIPSES    |
15644 	                    PERL_PV_PRETTY_LTGT
15645                             )
15646                             : "???"
15647                 );
15648                 if (trie->jump) {
15649                     U16 dist= trie->jump[word_idx+1];
15650 		    PerlIO_printf(Perl_debug_log, "(%"UVuf")\n",
15651 				  (UV)((dist ? this_trie + dist : next) - start));
15652                     if (dist) {
15653                         if (!nextbranch)
15654                             nextbranch= this_trie + trie->jump[0];
15655 			DUMPUNTIL(this_trie + dist, nextbranch);
15656                     }
15657                     if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
15658                         nextbranch= regnext((regnode *)nextbranch);
15659                 } else {
15660                     PerlIO_printf(Perl_debug_log, "\n");
15661 		}
15662 	    }
15663 	    if (last && next > last)
15664 	        node= last;
15665 	    else
15666 	        node= next;
15667 	}
15668 	else if ( op == CURLY ) {   /* "next" might be very big: optimizer */
15669 	    DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS,
15670                     NEXTOPER(node) + EXTRA_STEP_2ARGS + 1);
15671 	}
15672 	else if (PL_regkind[(U8)op] == CURLY && op != CURLYX) {
15673 	    assert(next);
15674 	    DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS, next);
15675 	}
15676 	else if ( op == PLUS || op == STAR) {
15677 	    DUMPUNTIL(NEXTOPER(node), NEXTOPER(node) + 1);
15678 	}
15679 	else if (PL_regkind[(U8)op] == ANYOF) {
15680 	    /* arglen 1 + class block */
15681 	    node += 1 + ((ANYOF_FLAGS(node) & ANYOF_CLASS)
15682 		    ? ANYOF_CLASS_SKIP : ANYOF_SKIP);
15683 	    node = NEXTOPER(node);
15684 	}
15685 	else if (PL_regkind[(U8)op] == EXACT) {
15686             /* Literal string, where present. */
15687 	    node += NODE_SZ_STR(node) - 1;
15688 	    node = NEXTOPER(node);
15689 	}
15690 	else {
15691 	    node = NEXTOPER(node);
15692 	    node += regarglen[(U8)op];
15693 	}
15694 	if (op == CURLYX || op == OPEN)
15695 	    indent++;
15696     }
15697     CLEAR_OPTSTART;
15698 #ifdef DEBUG_DUMPUNTIL
15699     PerlIO_printf(Perl_debug_log, "--- %d\n", (int)indent);
15700 #endif
15701     return node;
15702 }
15703 
15704 #endif	/* DEBUGGING */
15705 
15706 /*
15707  * Local variables:
15708  * c-indentation-style: bsd
15709  * c-basic-offset: 4
15710  * indent-tabs-mode: nil
15711  * End:
15712  *
15713  * ex: set ts=8 sts=4 sw=4 et:
15714  */
15715