xref: /openbsd-src/gnu/usr.bin/perl/pp_sort.c (revision f2da64fbbbf1b03f09f390ab01267c93dfd77c4c)
1 /*    pp_sort.c
2  *
3  *    Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4  *    2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
5  *
6  *    You may distribute under the terms of either the GNU General Public
7  *    License or the Artistic License, as specified in the README file.
8  *
9  */
10 
11 /*
12  *   ...they shuffled back towards the rear of the line.  'No, not at the
13  *   rear!' the slave-driver shouted.  'Three files up. And stay there...
14  *
15  *     [p.931 of _The Lord of the Rings_, VI/ii: "The Land of Shadow"]
16  */
17 
18 /* This file contains pp ("push/pop") functions that
19  * execute the opcodes that make up a perl program. A typical pp function
20  * expects to find its arguments on the stack, and usually pushes its
21  * results onto the stack, hence the 'pp' terminology. Each OP structure
22  * contains a pointer to the relevant pp_foo() function.
23  *
24  * This particular file just contains pp_sort(), which is complex
25  * enough to merit its own file! See the other pp*.c files for the rest of
26  * the pp_ functions.
27  */
28 
29 #include "EXTERN.h"
30 #define PERL_IN_PP_SORT_C
31 #include "perl.h"
32 
33 #if defined(UNDER_CE)
34 /* looks like 'small' is reserved word for WINCE (or somesuch)*/
35 #define	small xsmall
36 #endif
37 
38 #define sv_cmp_static Perl_sv_cmp
39 #define sv_cmp_locale_static Perl_sv_cmp_locale
40 
41 #ifndef SMALLSORT
42 #define	SMALLSORT (200)
43 #endif
44 
45 /* Flags for qsortsv and mergesortsv */
46 #define SORTf_DESC   1
47 #define SORTf_STABLE 2
48 #define SORTf_QSORT  4
49 
50 /*
51  * The mergesort implementation is by Peter M. Mcilroy <pmcilroy@lucent.com>.
52  *
53  * The original code was written in conjunction with BSD Computer Software
54  * Research Group at University of California, Berkeley.
55  *
56  * See also: "Optimistic Sorting and Information Theoretic Complexity"
57  *           Peter McIlroy
58  *           SODA (Fourth Annual ACM-SIAM Symposium on Discrete Algorithms),
59  *           pp 467-474, Austin, Texas, 25-27 January 1993.
60  *
61  * The integration to Perl is by John P. Linderman <jpl.jpl@gmail.com>.
62  *
63  * The code can be distributed under the same terms as Perl itself.
64  *
65  */
66 
67 
68 typedef char * aptr;		/* pointer for arithmetic on sizes */
69 typedef SV * gptr;		/* pointers in our lists */
70 
71 /* Binary merge internal sort, with a few special mods
72 ** for the special perl environment it now finds itself in.
73 **
74 ** Things that were once options have been hotwired
75 ** to values suitable for this use.  In particular, we'll always
76 ** initialize looking for natural runs, we'll always produce stable
77 ** output, and we'll always do Peter McIlroy's binary merge.
78 */
79 
80 /* Pointer types for arithmetic and storage and convenience casts */
81 
82 #define	APTR(P)	((aptr)(P))
83 #define	GPTP(P)	((gptr *)(P))
84 #define GPPP(P) ((gptr **)(P))
85 
86 
87 /* byte offset from pointer P to (larger) pointer Q */
88 #define	BYTEOFF(P, Q) (APTR(Q) - APTR(P))
89 
90 #define PSIZE sizeof(gptr)
91 
92 /* If PSIZE is power of 2, make PSHIFT that power, if that helps */
93 
94 #ifdef	PSHIFT
95 #define	PNELEM(P, Q)	(BYTEOFF(P,Q) >> (PSHIFT))
96 #define	PNBYTE(N)	((N) << (PSHIFT))
97 #define	PINDEX(P, N)	(GPTP(APTR(P) + PNBYTE(N)))
98 #else
99 /* Leave optimization to compiler */
100 #define	PNELEM(P, Q)	(GPTP(Q) - GPTP(P))
101 #define	PNBYTE(N)	((N) * (PSIZE))
102 #define	PINDEX(P, N)	(GPTP(P) + (N))
103 #endif
104 
105 /* Pointer into other corresponding to pointer into this */
106 #define	POTHER(P, THIS, OTHER) GPTP(APTR(OTHER) + BYTEOFF(THIS,P))
107 
108 #define FROMTOUPTO(src, dst, lim) do *dst++ = *src++; while(src<lim)
109 
110 
111 /* Runs are identified by a pointer in the auxiliary list.
112 ** The pointer is at the start of the list,
113 ** and it points to the start of the next list.
114 ** NEXT is used as an lvalue, too.
115 */
116 
117 #define	NEXT(P)		(*GPPP(P))
118 
119 
120 /* PTHRESH is the minimum number of pairs with the same sense to justify
121 ** checking for a run and extending it.  Note that PTHRESH counts PAIRS,
122 ** not just elements, so PTHRESH == 8 means a run of 16.
123 */
124 
125 #define	PTHRESH (8)
126 
127 /* RTHRESH is the number of elements in a run that must compare low
128 ** to the low element from the opposing run before we justify
129 ** doing a binary rampup instead of single stepping.
130 ** In random input, N in a row low should only happen with
131 ** probability 2^(1-N), so we can risk that we are dealing
132 ** with orderly input without paying much when we aren't.
133 */
134 
135 #define RTHRESH (6)
136 
137 
138 /*
139 ** Overview of algorithm and variables.
140 ** The array of elements at list1 will be organized into runs of length 2,
141 ** or runs of length >= 2 * PTHRESH.  We only try to form long runs when
142 ** PTHRESH adjacent pairs compare in the same way, suggesting overall order.
143 **
144 ** Unless otherwise specified, pair pointers address the first of two elements.
145 **
146 ** b and b+1 are a pair that compare with sense "sense".
147 ** b is the "bottom" of adjacent pairs that might form a longer run.
148 **
149 ** p2 parallels b in the list2 array, where runs are defined by
150 ** a pointer chain.
151 **
152 ** t represents the "top" of the adjacent pairs that might extend
153 ** the run beginning at b.  Usually, t addresses a pair
154 ** that compares with opposite sense from (b,b+1).
155 ** However, it may also address a singleton element at the end of list1,
156 ** or it may be equal to "last", the first element beyond list1.
157 **
158 ** r addresses the Nth pair following b.  If this would be beyond t,
159 ** we back it off to t.  Only when r is less than t do we consider the
160 ** run long enough to consider checking.
161 **
162 ** q addresses a pair such that the pairs at b through q already form a run.
163 ** Often, q will equal b, indicating we only are sure of the pair itself.
164 ** However, a search on the previous cycle may have revealed a longer run,
165 ** so q may be greater than b.
166 **
167 ** p is used to work back from a candidate r, trying to reach q,
168 ** which would mean b through r would be a run.  If we discover such a run,
169 ** we start q at r and try to push it further towards t.
170 ** If b through r is NOT a run, we detect the wrong order at (p-1,p).
171 ** In any event, after the check (if any), we have two main cases.
172 **
173 ** 1) Short run.  b <= q < p <= r <= t.
174 **	b through q is a run (perhaps trivial)
175 **	q through p are uninteresting pairs
176 **	p through r is a run
177 **
178 ** 2) Long run.  b < r <= q < t.
179 **	b through q is a run (of length >= 2 * PTHRESH)
180 **
181 ** Note that degenerate cases are not only possible, but likely.
182 ** For example, if the pair following b compares with opposite sense,
183 ** then b == q < p == r == t.
184 */
185 
186 
187 static IV
188 dynprep(pTHX_ gptr *list1, gptr *list2, size_t nmemb, const SVCOMPARE_t cmp)
189 {
190     I32 sense;
191     gptr *b, *p, *q, *t, *p2;
192     gptr *last, *r;
193     IV runs = 0;
194 
195     b = list1;
196     last = PINDEX(b, nmemb);
197     sense = (cmp(aTHX_ *b, *(b+1)) > 0);
198     for (p2 = list2; b < last; ) {
199 	/* We just started, or just reversed sense.
200 	** Set t at end of pairs with the prevailing sense.
201 	*/
202 	for (p = b+2, t = p; ++p < last; t = ++p) {
203 	    if ((cmp(aTHX_ *t, *p) > 0) != sense) break;
204 	}
205 	q = b;
206 	/* Having laid out the playing field, look for long runs */
207 	do {
208 	    p = r = b + (2 * PTHRESH);
209 	    if (r >= t) p = r = t;	/* too short to care about */
210 	    else {
211 		while (((cmp(aTHX_ *(p-1), *p) > 0) == sense) &&
212 		       ((p -= 2) > q)) {}
213 		if (p <= q) {
214 		    /* b through r is a (long) run.
215 		    ** Extend it as far as possible.
216 		    */
217 		    p = q = r;
218 		    while (((p += 2) < t) &&
219 			   ((cmp(aTHX_ *(p-1), *p) > 0) == sense)) q = p;
220 		    r = p = q + 2;	/* no simple pairs, no after-run */
221 		}
222 	    }
223 	    if (q > b) {		/* run of greater than 2 at b */
224 		gptr *savep = p;
225 
226 		p = q += 2;
227 		/* pick up singleton, if possible */
228 		if ((p == t) &&
229 		    ((t + 1) == last) &&
230 		    ((cmp(aTHX_ *(p-1), *p) > 0) == sense))
231 		    savep = r = p = q = last;
232 		p2 = NEXT(p2) = p2 + (p - b); ++runs;
233 		if (sense)
234 		    while (b < --p) {
235 			const gptr c = *b;
236 			*b++ = *p;
237 			*p = c;
238 		    }
239 		p = savep;
240 	    }
241 	    while (q < p) {		/* simple pairs */
242 		p2 = NEXT(p2) = p2 + 2; ++runs;
243 		if (sense) {
244 		    const gptr c = *q++;
245 		    *(q-1) = *q;
246 		    *q++ = c;
247 		} else q += 2;
248 	    }
249 	    if (((b = p) == t) && ((t+1) == last)) {
250 		NEXT(p2) = p2 + 1; ++runs;
251 		b++;
252 	    }
253 	    q = r;
254 	} while (b < t);
255 	sense = !sense;
256     }
257     return runs;
258 }
259 
260 
261 /* The original merge sort, in use since 5.7, was as fast as, or faster than,
262  * qsort on many platforms, but slower than qsort, conspicuously so,
263  * on others.  The most likely explanation was platform-specific
264  * differences in cache sizes and relative speeds.
265  *
266  * The quicksort divide-and-conquer algorithm guarantees that, as the
267  * problem is subdivided into smaller and smaller parts, the parts
268  * fit into smaller (and faster) caches.  So it doesn't matter how
269  * many levels of cache exist, quicksort will "find" them, and,
270  * as long as smaller is faster, take advantage of them.
271  *
272  * By contrast, consider how the original mergesort algorithm worked.
273  * Suppose we have five runs (each typically of length 2 after dynprep).
274  *
275  * pass               base                        aux
276  *  0              1 2 3 4 5
277  *  1                                           12 34 5
278  *  2                1234 5
279  *  3                                            12345
280  *  4                 12345
281  *
282  * Adjacent pairs are merged in "grand sweeps" through the input.
283  * This means, on pass 1, the records in runs 1 and 2 aren't revisited until
284  * runs 3 and 4 are merged and the runs from run 5 have been copied.
285  * The only cache that matters is one large enough to hold *all* the input.
286  * On some platforms, this may be many times slower than smaller caches.
287  *
288  * The following pseudo-code uses the same basic merge algorithm,
289  * but in a divide-and-conquer way.
290  *
291  * # merge $runs runs at offset $offset of list $list1 into $list2.
292  * # all unmerged runs ($runs == 1) originate in list $base.
293  * sub mgsort2 {
294  *     my ($offset, $runs, $base, $list1, $list2) = @_;
295  *
296  *     if ($runs == 1) {
297  *         if ($list1 is $base) copy run to $list2
298  *         return offset of end of list (or copy)
299  *     } else {
300  *         $off2 = mgsort2($offset, $runs-($runs/2), $base, $list2, $list1)
301  *         mgsort2($off2, $runs/2, $base, $list2, $list1)
302  *         merge the adjacent runs at $offset of $list1 into $list2
303  *         return the offset of the end of the merged runs
304  *     }
305  * }
306  * mgsort2(0, $runs, $base, $aux, $base);
307  *
308  * For our 5 runs, the tree of calls looks like
309  *
310  *           5
311  *      3        2
312  *   2     1   1   1
313  * 1   1
314  *
315  * 1   2   3   4   5
316  *
317  * and the corresponding activity looks like
318  *
319  * copy runs 1 and 2 from base to aux
320  * merge runs 1 and 2 from aux to base
321  * (run 3 is where it belongs, no copy needed)
322  * merge runs 12 and 3 from base to aux
323  * (runs 4 and 5 are where they belong, no copy needed)
324  * merge runs 4 and 5 from base to aux
325  * merge runs 123 and 45 from aux to base
326  *
327  * Note that we merge runs 1 and 2 immediately after copying them,
328  * while they are still likely to be in fast cache.  Similarly,
329  * run 3 is merged with run 12 while it still may be lingering in cache.
330  * This implementation should therefore enjoy much of the cache-friendly
331  * behavior that quicksort does.  In addition, it does less copying
332  * than the original mergesort implementation (only runs 1 and 2 are copied)
333  * and the "balancing" of merges is better (merged runs comprise more nearly
334  * equal numbers of original runs).
335  *
336  * The actual cache-friendly implementation will use a pseudo-stack
337  * to avoid recursion, and will unroll processing of runs of length 2,
338  * but it is otherwise similar to the recursive implementation.
339  */
340 
341 typedef struct {
342     IV	offset;		/* offset of 1st of 2 runs at this level */
343     IV	runs;		/* how many runs must be combined into 1 */
344 } off_runs;		/* pseudo-stack element */
345 
346 
347 static I32
348 cmp_desc(pTHX_ gptr const a, gptr const b)
349 {
350     dVAR;
351     return -PL_sort_RealCmp(aTHX_ a, b);
352 }
353 
354 STATIC void
355 S_mergesortsv(pTHX_ gptr *base, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
356 {
357     dVAR;
358     IV i, run, offset;
359     I32 sense, level;
360     gptr *f1, *f2, *t, *b, *p;
361     int iwhich;
362     gptr *aux;
363     gptr *p1;
364     gptr small[SMALLSORT];
365     gptr *which[3];
366     off_runs stack[60], *stackp;
367     SVCOMPARE_t savecmp = NULL;
368 
369     if (nmemb <= 1) return;			/* sorted trivially */
370 
371     if ((flags & SORTf_DESC) != 0) {
372 	savecmp = PL_sort_RealCmp;	/* Save current comparison routine, if any */
373 	PL_sort_RealCmp = cmp;	/* Put comparison routine where cmp_desc can find it */
374 	cmp = cmp_desc;
375     }
376 
377     if (nmemb <= SMALLSORT) aux = small;	/* use stack for aux array */
378     else { Newx(aux,nmemb,gptr); }		/* allocate auxiliary array */
379     level = 0;
380     stackp = stack;
381     stackp->runs = dynprep(aTHX_ base, aux, nmemb, cmp);
382     stackp->offset = offset = 0;
383     which[0] = which[2] = base;
384     which[1] = aux;
385     for (;;) {
386 	/* On levels where both runs have be constructed (stackp->runs == 0),
387 	 * merge them, and note the offset of their end, in case the offset
388 	 * is needed at the next level up.  Hop up a level, and,
389 	 * as long as stackp->runs is 0, keep merging.
390 	 */
391 	IV runs = stackp->runs;
392 	if (runs == 0) {
393 	    gptr *list1, *list2;
394 	    iwhich = level & 1;
395 	    list1 = which[iwhich];		/* area where runs are now */
396 	    list2 = which[++iwhich];		/* area for merged runs */
397 	    do {
398 		gptr *l1, *l2, *tp2;
399 		offset = stackp->offset;
400 		f1 = p1 = list1 + offset;		/* start of first run */
401 		p = tp2 = list2 + offset;	/* where merged run will go */
402 		t = NEXT(p);			/* where first run ends */
403 		f2 = l1 = POTHER(t, list2, list1); /* ... on the other side */
404 		t = NEXT(t);			/* where second runs ends */
405 		l2 = POTHER(t, list2, list1);	/* ... on the other side */
406 		offset = PNELEM(list2, t);
407 		while (f1 < l1 && f2 < l2) {
408 		    /* If head 1 is larger than head 2, find ALL the elements
409 		    ** in list 2 strictly less than head1, write them all,
410 		    ** then head 1.  Then compare the new heads, and repeat,
411 		    ** until one or both lists are exhausted.
412 		    **
413 		    ** In all comparisons (after establishing
414 		    ** which head to merge) the item to merge
415 		    ** (at pointer q) is the first operand of
416 		    ** the comparison.  When we want to know
417 		    ** if "q is strictly less than the other",
418 		    ** we can't just do
419 		    **    cmp(q, other) < 0
420 		    ** because stability demands that we treat equality
421 		    ** as high when q comes from l2, and as low when
422 		    ** q was from l1.  So we ask the question by doing
423 		    **    cmp(q, other) <= sense
424 		    ** and make sense == 0 when equality should look low,
425 		    ** and -1 when equality should look high.
426 		    */
427 
428 		    gptr *q;
429 		    if (cmp(aTHX_ *f1, *f2) <= 0) {
430 			q = f2; b = f1; t = l1;
431 			sense = -1;
432 		    } else {
433 			q = f1; b = f2; t = l2;
434 			sense = 0;
435 		    }
436 
437 
438 		    /* ramp up
439 		    **
440 		    ** Leave t at something strictly
441 		    ** greater than q (or at the end of the list),
442 		    ** and b at something strictly less than q.
443 		    */
444 		    for (i = 1, run = 0 ;;) {
445 			if ((p = PINDEX(b, i)) >= t) {
446 			    /* off the end */
447 			    if (((p = PINDEX(t, -1)) > b) &&
448 				(cmp(aTHX_ *q, *p) <= sense))
449 				 t = p;
450 			    else b = p;
451 			    break;
452 			} else if (cmp(aTHX_ *q, *p) <= sense) {
453 			    t = p;
454 			    break;
455 			} else b = p;
456 			if (++run >= RTHRESH) i += i;
457 		    }
458 
459 
460 		    /* q is known to follow b and must be inserted before t.
461 		    ** Increment b, so the range of possibilities is [b,t).
462 		    ** Round binary split down, to favor early appearance.
463 		    ** Adjust b and t until q belongs just before t.
464 		    */
465 
466 		    b++;
467 		    while (b < t) {
468 			p = PINDEX(b, (PNELEM(b, t) - 1) / 2);
469 			if (cmp(aTHX_ *q, *p) <= sense) {
470 			    t = p;
471 			} else b = p + 1;
472 		    }
473 
474 
475 		    /* Copy all the strictly low elements */
476 
477 		    if (q == f1) {
478 			FROMTOUPTO(f2, tp2, t);
479 			*tp2++ = *f1++;
480 		    } else {
481 			FROMTOUPTO(f1, tp2, t);
482 			*tp2++ = *f2++;
483 		    }
484 		}
485 
486 
487 		/* Run out remaining list */
488 		if (f1 == l1) {
489 		       if (f2 < l2) FROMTOUPTO(f2, tp2, l2);
490 		} else              FROMTOUPTO(f1, tp2, l1);
491 		p1 = NEXT(p1) = POTHER(tp2, list2, list1);
492 
493 		if (--level == 0) goto done;
494 		--stackp;
495 		t = list1; list1 = list2; list2 = t;	/* swap lists */
496 	    } while ((runs = stackp->runs) == 0);
497 	}
498 
499 
500 	stackp->runs = 0;		/* current run will finish level */
501 	/* While there are more than 2 runs remaining,
502 	 * turn them into exactly 2 runs (at the "other" level),
503 	 * each made up of approximately half the runs.
504 	 * Stack the second half for later processing,
505 	 * and set about producing the first half now.
506 	 */
507 	while (runs > 2) {
508 	    ++level;
509 	    ++stackp;
510 	    stackp->offset = offset;
511 	    runs -= stackp->runs = runs / 2;
512 	}
513 	/* We must construct a single run from 1 or 2 runs.
514 	 * All the original runs are in which[0] == base.
515 	 * The run we construct must end up in which[level&1].
516 	 */
517 	iwhich = level & 1;
518 	if (runs == 1) {
519 	    /* Constructing a single run from a single run.
520 	     * If it's where it belongs already, there's nothing to do.
521 	     * Otherwise, copy it to where it belongs.
522 	     * A run of 1 is either a singleton at level 0,
523 	     * or the second half of a split 3.  In neither event
524 	     * is it necessary to set offset.  It will be set by the merge
525 	     * that immediately follows.
526 	     */
527 	    if (iwhich) {	/* Belongs in aux, currently in base */
528 		f1 = b = PINDEX(base, offset);	/* where list starts */
529 		f2 = PINDEX(aux, offset);	/* where list goes */
530 		t = NEXT(f2);			/* where list will end */
531 		offset = PNELEM(aux, t);	/* offset thereof */
532 		t = PINDEX(base, offset);	/* where it currently ends */
533 		FROMTOUPTO(f1, f2, t);		/* copy */
534 		NEXT(b) = t;			/* set up parallel pointer */
535 	    } else if (level == 0) goto done;	/* single run at level 0 */
536 	} else {
537 	    /* Constructing a single run from two runs.
538 	     * The merge code at the top will do that.
539 	     * We need only make sure the two runs are in the "other" array,
540 	     * so they'll end up in the correct array after the merge.
541 	     */
542 	    ++level;
543 	    ++stackp;
544 	    stackp->offset = offset;
545 	    stackp->runs = 0;	/* take care of both runs, trigger merge */
546 	    if (!iwhich) {	/* Merged runs belong in aux, copy 1st */
547 		f1 = b = PINDEX(base, offset);	/* where first run starts */
548 		f2 = PINDEX(aux, offset);	/* where it will be copied */
549 		t = NEXT(f2);			/* where first run will end */
550 		offset = PNELEM(aux, t);	/* offset thereof */
551 		p = PINDEX(base, offset);	/* end of first run */
552 		t = NEXT(t);			/* where second run will end */
553 		t = PINDEX(base, PNELEM(aux, t)); /* where it now ends */
554 		FROMTOUPTO(f1, f2, t);		/* copy both runs */
555 		NEXT(b) = p;			/* paralleled pointer for 1st */
556 		NEXT(p) = t;			/* ... and for second */
557 	    }
558 	}
559     }
560 done:
561     if (aux != small) Safefree(aux);	/* free iff allocated */
562     if (flags) {
563 	 PL_sort_RealCmp = savecmp;	/* Restore current comparison routine, if any */
564     }
565     return;
566 }
567 
568 /*
569  * The quicksort implementation was derived from source code contributed
570  * by Tom Horsley.
571  *
572  * NOTE: this code was derived from Tom Horsley's qsort replacement
573  * and should not be confused with the original code.
574  */
575 
576 /* Copyright (C) Tom Horsley, 1997. All rights reserved.
577 
578    Permission granted to distribute under the same terms as perl which are
579    (briefly):
580 
581     This program is free software; you can redistribute it and/or modify
582     it under the terms of either:
583 
584 	a) the GNU General Public License as published by the Free
585 	Software Foundation; either version 1, or (at your option) any
586 	later version, or
587 
588 	b) the "Artistic License" which comes with this Kit.
589 
590    Details on the perl license can be found in the perl source code which
591    may be located via the www.perl.com web page.
592 
593    This is the most wonderfulest possible qsort I can come up with (and
594    still be mostly portable) My (limited) tests indicate it consistently
595    does about 20% fewer calls to compare than does the qsort in the Visual
596    C++ library, other vendors may vary.
597 
598    Some of the ideas in here can be found in "Algorithms" by Sedgewick,
599    others I invented myself (or more likely re-invented since they seemed
600    pretty obvious once I watched the algorithm operate for a while).
601 
602    Most of this code was written while watching the Marlins sweep the Giants
603    in the 1997 National League Playoffs - no Braves fans allowed to use this
604    code (just kidding :-).
605 
606    I realize that if I wanted to be true to the perl tradition, the only
607    comment in this file would be something like:
608 
609    ...they shuffled back towards the rear of the line. 'No, not at the
610    rear!'  the slave-driver shouted. 'Three files up. And stay there...
611 
612    However, I really needed to violate that tradition just so I could keep
613    track of what happens myself, not to mention some poor fool trying to
614    understand this years from now :-).
615 */
616 
617 /* ********************************************************** Configuration */
618 
619 #ifndef QSORT_ORDER_GUESS
620 #define QSORT_ORDER_GUESS 2	/* Select doubling version of the netBSD trick */
621 #endif
622 
623 /* QSORT_MAX_STACK is the largest number of partitions that can be stacked up for
624    future processing - a good max upper bound is log base 2 of memory size
625    (32 on 32 bit machines, 64 on 64 bit machines, etc). In reality can
626    safely be smaller than that since the program is taking up some space and
627    most operating systems only let you grab some subset of contiguous
628    memory (not to mention that you are normally sorting data larger than
629    1 byte element size :-).
630 */
631 #ifndef QSORT_MAX_STACK
632 #define QSORT_MAX_STACK 32
633 #endif
634 
635 /* QSORT_BREAK_EVEN is the size of the largest partition we should insertion sort.
636    Anything bigger and we use qsort. If you make this too small, the qsort
637    will probably break (or become less efficient), because it doesn't expect
638    the middle element of a partition to be the same as the right or left -
639    you have been warned).
640 */
641 #ifndef QSORT_BREAK_EVEN
642 #define QSORT_BREAK_EVEN 6
643 #endif
644 
645 /* QSORT_PLAY_SAFE is the size of the largest partition we're willing
646    to go quadratic on.  We innoculate larger partitions against
647    quadratic behavior by shuffling them before sorting.  This is not
648    an absolute guarantee of non-quadratic behavior, but it would take
649    staggeringly bad luck to pick extreme elements as the pivot
650    from randomized data.
651 */
652 #ifndef QSORT_PLAY_SAFE
653 #define QSORT_PLAY_SAFE 255
654 #endif
655 
656 /* ************************************************************* Data Types */
657 
658 /* hold left and right index values of a partition waiting to be sorted (the
659    partition includes both left and right - right is NOT one past the end or
660    anything like that).
661 */
662 struct partition_stack_entry {
663    int left;
664    int right;
665 #ifdef QSORT_ORDER_GUESS
666    int qsort_break_even;
667 #endif
668 };
669 
670 /* ******************************************************* Shorthand Macros */
671 
672 /* Note that these macros will be used from inside the qsort function where
673    we happen to know that the variable 'elt_size' contains the size of an
674    array element and the variable 'temp' points to enough space to hold a
675    temp element and the variable 'array' points to the array being sorted
676    and 'compare' is the pointer to the compare routine.
677 
678    Also note that there are very many highly architecture specific ways
679    these might be sped up, but this is simply the most generally portable
680    code I could think of.
681 */
682 
683 /* Return < 0 == 0 or > 0 as the value of elt1 is < elt2, == elt2, > elt2
684 */
685 #define qsort_cmp(elt1, elt2) \
686    ((*compare)(aTHX_ array[elt1], array[elt2]))
687 
688 #ifdef QSORT_ORDER_GUESS
689 #define QSORT_NOTICE_SWAP swapped++;
690 #else
691 #define QSORT_NOTICE_SWAP
692 #endif
693 
694 /* swaps contents of array elements elt1, elt2.
695 */
696 #define qsort_swap(elt1, elt2) \
697    STMT_START { \
698       QSORT_NOTICE_SWAP \
699       temp = array[elt1]; \
700       array[elt1] = array[elt2]; \
701       array[elt2] = temp; \
702    } STMT_END
703 
704 /* rotate contents of elt1, elt2, elt3 such that elt1 gets elt2, elt2 gets
705    elt3 and elt3 gets elt1.
706 */
707 #define qsort_rotate(elt1, elt2, elt3) \
708    STMT_START { \
709       QSORT_NOTICE_SWAP \
710       temp = array[elt1]; \
711       array[elt1] = array[elt2]; \
712       array[elt2] = array[elt3]; \
713       array[elt3] = temp; \
714    } STMT_END
715 
716 /* ************************************************************ Debug stuff */
717 
718 #ifdef QSORT_DEBUG
719 
720 static void
721 break_here()
722 {
723    return; /* good place to set a breakpoint */
724 }
725 
726 #define qsort_assert(t) (void)( (t) || (break_here(), 0) )
727 
728 static void
729 doqsort_all_asserts(
730    void * array,
731    size_t num_elts,
732    size_t elt_size,
733    int (*compare)(const void * elt1, const void * elt2),
734    int pc_left, int pc_right, int u_left, int u_right)
735 {
736    int i;
737 
738    qsort_assert(pc_left <= pc_right);
739    qsort_assert(u_right < pc_left);
740    qsort_assert(pc_right < u_left);
741    for (i = u_right + 1; i < pc_left; ++i) {
742       qsort_assert(qsort_cmp(i, pc_left) < 0);
743    }
744    for (i = pc_left; i < pc_right; ++i) {
745       qsort_assert(qsort_cmp(i, pc_right) == 0);
746    }
747    for (i = pc_right + 1; i < u_left; ++i) {
748       qsort_assert(qsort_cmp(pc_right, i) < 0);
749    }
750 }
751 
752 #define qsort_all_asserts(PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT) \
753    doqsort_all_asserts(array, num_elts, elt_size, compare, \
754                  PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT)
755 
756 #else
757 
758 #define qsort_assert(t) ((void)0)
759 
760 #define qsort_all_asserts(PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT) ((void)0)
761 
762 #endif
763 
764 /* ****************************************************************** qsort */
765 
766 STATIC void /* the standard unstable (u) quicksort (qsort) */
767 S_qsortsvu(pTHX_ SV ** array, size_t num_elts, SVCOMPARE_t compare)
768 {
769    SV * temp;
770    struct partition_stack_entry partition_stack[QSORT_MAX_STACK];
771    int next_stack_entry = 0;
772    int part_left;
773    int part_right;
774 #ifdef QSORT_ORDER_GUESS
775    int qsort_break_even;
776    int swapped;
777 #endif
778 
779     PERL_ARGS_ASSERT_QSORTSVU;
780 
781    /* Make sure we actually have work to do.
782    */
783    if (num_elts <= 1) {
784       return;
785    }
786 
787    /* Inoculate large partitions against quadratic behavior */
788    if (num_elts > QSORT_PLAY_SAFE) {
789       size_t n;
790       SV ** const q = array;
791       for (n = num_elts; n > 1; ) {
792          const size_t j = (size_t)(n-- * Drand01());
793          temp = q[j];
794          q[j] = q[n];
795          q[n] = temp;
796       }
797    }
798 
799    /* Setup the initial partition definition and fall into the sorting loop
800    */
801    part_left = 0;
802    part_right = (int)(num_elts - 1);
803 #ifdef QSORT_ORDER_GUESS
804    qsort_break_even = QSORT_BREAK_EVEN;
805 #else
806 #define qsort_break_even QSORT_BREAK_EVEN
807 #endif
808    for ( ; ; ) {
809       if ((part_right - part_left) >= qsort_break_even) {
810          /* OK, this is gonna get hairy, so lets try to document all the
811             concepts and abbreviations and variables and what they keep
812             track of:
813 
814             pc: pivot chunk - the set of array elements we accumulate in the
815                 middle of the partition, all equal in value to the original
816                 pivot element selected. The pc is defined by:
817 
818                 pc_left - the leftmost array index of the pc
819                 pc_right - the rightmost array index of the pc
820 
821                 we start with pc_left == pc_right and only one element
822                 in the pivot chunk (but it can grow during the scan).
823 
824             u:  uncompared elements - the set of elements in the partition
825                 we have not yet compared to the pivot value. There are two
826                 uncompared sets during the scan - one to the left of the pc
827                 and one to the right.
828 
829                 u_right - the rightmost index of the left side's uncompared set
830                 u_left - the leftmost index of the right side's uncompared set
831 
832                 The leftmost index of the left sides's uncompared set
833                 doesn't need its own variable because it is always defined
834                 by the leftmost edge of the whole partition (part_left). The
835                 same goes for the rightmost edge of the right partition
836                 (part_right).
837 
838                 We know there are no uncompared elements on the left once we
839                 get u_right < part_left and no uncompared elements on the
840                 right once u_left > part_right. When both these conditions
841                 are met, we have completed the scan of the partition.
842 
843                 Any elements which are between the pivot chunk and the
844                 uncompared elements should be less than the pivot value on
845                 the left side and greater than the pivot value on the right
846                 side (in fact, the goal of the whole algorithm is to arrange
847                 for that to be true and make the groups of less-than and
848                 greater-then elements into new partitions to sort again).
849 
850             As you marvel at the complexity of the code and wonder why it
851             has to be so confusing. Consider some of the things this level
852             of confusion brings:
853 
854             Once I do a compare, I squeeze every ounce of juice out of it. I
855             never do compare calls I don't have to do, and I certainly never
856             do redundant calls.
857 
858             I also never swap any elements unless I can prove there is a
859             good reason. Many sort algorithms will swap a known value with
860             an uncompared value just to get things in the right place (or
861             avoid complexity :-), but that uncompared value, once it gets
862             compared, may then have to be swapped again. A lot of the
863             complexity of this code is due to the fact that it never swaps
864             anything except compared values, and it only swaps them when the
865             compare shows they are out of position.
866          */
867          int pc_left, pc_right;
868          int u_right, u_left;
869 
870          int s;
871 
872          pc_left = ((part_left + part_right) / 2);
873          pc_right = pc_left;
874          u_right = pc_left - 1;
875          u_left = pc_right + 1;
876 
877          /* Qsort works best when the pivot value is also the median value
878             in the partition (unfortunately you can't find the median value
879             without first sorting :-), so to give the algorithm a helping
880             hand, we pick 3 elements and sort them and use the median value
881             of that tiny set as the pivot value.
882 
883             Some versions of qsort like to use the left middle and right as
884             the 3 elements to sort so they can insure the ends of the
885             partition will contain values which will stop the scan in the
886             compare loop, but when you have to call an arbitrarily complex
887             routine to do a compare, its really better to just keep track of
888             array index values to know when you hit the edge of the
889             partition and avoid the extra compare. An even better reason to
890             avoid using a compare call is the fact that you can drop off the
891             edge of the array if someone foolishly provides you with an
892             unstable compare function that doesn't always provide consistent
893             results.
894 
895             So, since it is simpler for us to compare the three adjacent
896             elements in the middle of the partition, those are the ones we
897             pick here (conveniently pointed at by u_right, pc_left, and
898             u_left). The values of the left, center, and right elements
899             are refered to as l c and r in the following comments.
900          */
901 
902 #ifdef QSORT_ORDER_GUESS
903          swapped = 0;
904 #endif
905          s = qsort_cmp(u_right, pc_left);
906          if (s < 0) {
907             /* l < c */
908             s = qsort_cmp(pc_left, u_left);
909             /* if l < c, c < r - already in order - nothing to do */
910             if (s == 0) {
911                /* l < c, c == r - already in order, pc grows */
912                ++pc_right;
913                qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
914             } else if (s > 0) {
915                /* l < c, c > r - need to know more */
916                s = qsort_cmp(u_right, u_left);
917                if (s < 0) {
918                   /* l < c, c > r, l < r - swap c & r to get ordered */
919                   qsort_swap(pc_left, u_left);
920                   qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
921                } else if (s == 0) {
922                   /* l < c, c > r, l == r - swap c&r, grow pc */
923                   qsort_swap(pc_left, u_left);
924                   --pc_left;
925                   qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
926                } else {
927                   /* l < c, c > r, l > r - make lcr into rlc to get ordered */
928                   qsort_rotate(pc_left, u_right, u_left);
929                   qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
930                }
931             }
932          } else if (s == 0) {
933             /* l == c */
934             s = qsort_cmp(pc_left, u_left);
935             if (s < 0) {
936                /* l == c, c < r - already in order, grow pc */
937                --pc_left;
938                qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
939             } else if (s == 0) {
940                /* l == c, c == r - already in order, grow pc both ways */
941                --pc_left;
942                ++pc_right;
943                qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
944             } else {
945                /* l == c, c > r - swap l & r, grow pc */
946                qsort_swap(u_right, u_left);
947                ++pc_right;
948                qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
949             }
950          } else {
951             /* l > c */
952             s = qsort_cmp(pc_left, u_left);
953             if (s < 0) {
954                /* l > c, c < r - need to know more */
955                s = qsort_cmp(u_right, u_left);
956                if (s < 0) {
957                   /* l > c, c < r, l < r - swap l & c to get ordered */
958                   qsort_swap(u_right, pc_left);
959                   qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
960                } else if (s == 0) {
961                   /* l > c, c < r, l == r - swap l & c, grow pc */
962                   qsort_swap(u_right, pc_left);
963                   ++pc_right;
964                   qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
965                } else {
966                   /* l > c, c < r, l > r - rotate lcr into crl to order */
967                   qsort_rotate(u_right, pc_left, u_left);
968                   qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
969                }
970             } else if (s == 0) {
971                /* l > c, c == r - swap ends, grow pc */
972                qsort_swap(u_right, u_left);
973                --pc_left;
974                qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
975             } else {
976                /* l > c, c > r - swap ends to get in order */
977                qsort_swap(u_right, u_left);
978                qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
979             }
980          }
981          /* We now know the 3 middle elements have been compared and
982             arranged in the desired order, so we can shrink the uncompared
983             sets on both sides
984          */
985          --u_right;
986          ++u_left;
987          qsort_all_asserts(pc_left, pc_right, u_left, u_right);
988 
989          /* The above massive nested if was the simple part :-). We now have
990             the middle 3 elements ordered and we need to scan through the
991             uncompared sets on either side, swapping elements that are on
992             the wrong side or simply shuffling equal elements around to get
993             all equal elements into the pivot chunk.
994          */
995 
996          for ( ; ; ) {
997             int still_work_on_left;
998             int still_work_on_right;
999 
1000             /* Scan the uncompared values on the left. If I find a value
1001                equal to the pivot value, move it over so it is adjacent to
1002                the pivot chunk and expand the pivot chunk. If I find a value
1003                less than the pivot value, then just leave it - its already
1004                on the correct side of the partition. If I find a greater
1005                value, then stop the scan.
1006             */
1007             while ((still_work_on_left = (u_right >= part_left))) {
1008                s = qsort_cmp(u_right, pc_left);
1009                if (s < 0) {
1010                   --u_right;
1011                } else if (s == 0) {
1012                   --pc_left;
1013                   if (pc_left != u_right) {
1014                      qsort_swap(u_right, pc_left);
1015                   }
1016                   --u_right;
1017                } else {
1018                   break;
1019                }
1020                qsort_assert(u_right < pc_left);
1021                qsort_assert(pc_left <= pc_right);
1022                qsort_assert(qsort_cmp(u_right + 1, pc_left) <= 0);
1023                qsort_assert(qsort_cmp(pc_left, pc_right) == 0);
1024             }
1025 
1026             /* Do a mirror image scan of uncompared values on the right
1027             */
1028             while ((still_work_on_right = (u_left <= part_right))) {
1029                s = qsort_cmp(pc_right, u_left);
1030                if (s < 0) {
1031                   ++u_left;
1032                } else if (s == 0) {
1033                   ++pc_right;
1034                   if (pc_right != u_left) {
1035                      qsort_swap(pc_right, u_left);
1036                   }
1037                   ++u_left;
1038                } else {
1039                   break;
1040                }
1041                qsort_assert(u_left > pc_right);
1042                qsort_assert(pc_left <= pc_right);
1043                qsort_assert(qsort_cmp(pc_right, u_left - 1) <= 0);
1044                qsort_assert(qsort_cmp(pc_left, pc_right) == 0);
1045             }
1046 
1047             if (still_work_on_left) {
1048                /* I know I have a value on the left side which needs to be
1049                   on the right side, but I need to know more to decide
1050                   exactly the best thing to do with it.
1051                */
1052                if (still_work_on_right) {
1053                   /* I know I have values on both side which are out of
1054                      position. This is a big win because I kill two birds
1055                      with one swap (so to speak). I can advance the
1056                      uncompared pointers on both sides after swapping both
1057                      of them into the right place.
1058                   */
1059                   qsort_swap(u_right, u_left);
1060                   --u_right;
1061                   ++u_left;
1062                   qsort_all_asserts(pc_left, pc_right, u_left, u_right);
1063                } else {
1064                   /* I have an out of position value on the left, but the
1065                      right is fully scanned, so I "slide" the pivot chunk
1066                      and any less-than values left one to make room for the
1067                      greater value over on the right. If the out of position
1068                      value is immediately adjacent to the pivot chunk (there
1069                      are no less-than values), I can do that with a swap,
1070                      otherwise, I have to rotate one of the less than values
1071                      into the former position of the out of position value
1072                      and the right end of the pivot chunk into the left end
1073                      (got all that?).
1074                   */
1075                   --pc_left;
1076                   if (pc_left == u_right) {
1077                      qsort_swap(u_right, pc_right);
1078                      qsort_all_asserts(pc_left, pc_right-1, u_left, u_right-1);
1079                   } else {
1080                      qsort_rotate(u_right, pc_left, pc_right);
1081                      qsort_all_asserts(pc_left, pc_right-1, u_left, u_right-1);
1082                   }
1083                   --pc_right;
1084                   --u_right;
1085                }
1086             } else if (still_work_on_right) {
1087                /* Mirror image of complex case above: I have an out of
1088                   position value on the right, but the left is fully
1089                   scanned, so I need to shuffle things around to make room
1090                   for the right value on the left.
1091                */
1092                ++pc_right;
1093                if (pc_right == u_left) {
1094                   qsort_swap(u_left, pc_left);
1095                   qsort_all_asserts(pc_left+1, pc_right, u_left+1, u_right);
1096                } else {
1097                   qsort_rotate(pc_right, pc_left, u_left);
1098                   qsort_all_asserts(pc_left+1, pc_right, u_left+1, u_right);
1099                }
1100                ++pc_left;
1101                ++u_left;
1102             } else {
1103                /* No more scanning required on either side of partition,
1104                   break out of loop and figure out next set of partitions
1105                */
1106                break;
1107             }
1108          }
1109 
1110          /* The elements in the pivot chunk are now in the right place. They
1111             will never move or be compared again. All I have to do is decide
1112             what to do with the stuff to the left and right of the pivot
1113             chunk.
1114 
1115             Notes on the QSORT_ORDER_GUESS ifdef code:
1116 
1117             1. If I just built these partitions without swapping any (or
1118                very many) elements, there is a chance that the elements are
1119                already ordered properly (being properly ordered will
1120                certainly result in no swapping, but the converse can't be
1121                proved :-).
1122 
1123             2. A (properly written) insertion sort will run faster on
1124                already ordered data than qsort will.
1125 
1126             3. Perhaps there is some way to make a good guess about
1127                switching to an insertion sort earlier than partition size 6
1128                (for instance - we could save the partition size on the stack
1129                and increase the size each time we find we didn't swap, thus
1130                switching to insertion sort earlier for partitions with a
1131                history of not swapping).
1132 
1133             4. Naturally, if I just switch right away, it will make
1134                artificial benchmarks with pure ascending (or descending)
1135                data look really good, but is that a good reason in general?
1136                Hard to say...
1137          */
1138 
1139 #ifdef QSORT_ORDER_GUESS
1140          if (swapped < 3) {
1141 #if QSORT_ORDER_GUESS == 1
1142             qsort_break_even = (part_right - part_left) + 1;
1143 #endif
1144 #if QSORT_ORDER_GUESS == 2
1145             qsort_break_even *= 2;
1146 #endif
1147 #if QSORT_ORDER_GUESS == 3
1148             const int prev_break = qsort_break_even;
1149             qsort_break_even *= qsort_break_even;
1150             if (qsort_break_even < prev_break) {
1151                qsort_break_even = (part_right - part_left) + 1;
1152             }
1153 #endif
1154          } else {
1155             qsort_break_even = QSORT_BREAK_EVEN;
1156          }
1157 #endif
1158 
1159          if (part_left < pc_left) {
1160             /* There are elements on the left which need more processing.
1161                Check the right as well before deciding what to do.
1162             */
1163             if (pc_right < part_right) {
1164                /* We have two partitions to be sorted. Stack the biggest one
1165                   and process the smallest one on the next iteration. This
1166                   minimizes the stack height by insuring that any additional
1167                   stack entries must come from the smallest partition which
1168                   (because it is smallest) will have the fewest
1169                   opportunities to generate additional stack entries.
1170                */
1171                if ((part_right - pc_right) > (pc_left - part_left)) {
1172                   /* stack the right partition, process the left */
1173                   partition_stack[next_stack_entry].left = pc_right + 1;
1174                   partition_stack[next_stack_entry].right = part_right;
1175 #ifdef QSORT_ORDER_GUESS
1176                   partition_stack[next_stack_entry].qsort_break_even = qsort_break_even;
1177 #endif
1178                   part_right = pc_left - 1;
1179                } else {
1180                   /* stack the left partition, process the right */
1181                   partition_stack[next_stack_entry].left = part_left;
1182                   partition_stack[next_stack_entry].right = pc_left - 1;
1183 #ifdef QSORT_ORDER_GUESS
1184                   partition_stack[next_stack_entry].qsort_break_even = qsort_break_even;
1185 #endif
1186                   part_left = pc_right + 1;
1187                }
1188                qsort_assert(next_stack_entry < QSORT_MAX_STACK);
1189                ++next_stack_entry;
1190             } else {
1191                /* The elements on the left are the only remaining elements
1192                   that need sorting, arrange for them to be processed as the
1193                   next partition.
1194                */
1195                part_right = pc_left - 1;
1196             }
1197          } else if (pc_right < part_right) {
1198             /* There is only one chunk on the right to be sorted, make it
1199                the new partition and loop back around.
1200             */
1201             part_left = pc_right + 1;
1202          } else {
1203             /* This whole partition wound up in the pivot chunk, so
1204                we need to get a new partition off the stack.
1205             */
1206             if (next_stack_entry == 0) {
1207                /* the stack is empty - we are done */
1208                break;
1209             }
1210             --next_stack_entry;
1211             part_left = partition_stack[next_stack_entry].left;
1212             part_right = partition_stack[next_stack_entry].right;
1213 #ifdef QSORT_ORDER_GUESS
1214             qsort_break_even = partition_stack[next_stack_entry].qsort_break_even;
1215 #endif
1216          }
1217       } else {
1218          /* This partition is too small to fool with qsort complexity, just
1219             do an ordinary insertion sort to minimize overhead.
1220          */
1221          int i;
1222          /* Assume 1st element is in right place already, and start checking
1223             at 2nd element to see where it should be inserted.
1224          */
1225          for (i = part_left + 1; i <= part_right; ++i) {
1226             int j;
1227             /* Scan (backwards - just in case 'i' is already in right place)
1228                through the elements already sorted to see if the ith element
1229                belongs ahead of one of them.
1230             */
1231             for (j = i - 1; j >= part_left; --j) {
1232                if (qsort_cmp(i, j) >= 0) {
1233                   /* i belongs right after j
1234                   */
1235                   break;
1236                }
1237             }
1238             ++j;
1239             if (j != i) {
1240                /* Looks like we really need to move some things
1241                */
1242 	       int k;
1243 	       temp = array[i];
1244 	       for (k = i - 1; k >= j; --k)
1245 		  array[k + 1] = array[k];
1246                array[j] = temp;
1247             }
1248          }
1249 
1250          /* That partition is now sorted, grab the next one, or get out
1251             of the loop if there aren't any more.
1252          */
1253 
1254          if (next_stack_entry == 0) {
1255             /* the stack is empty - we are done */
1256             break;
1257          }
1258          --next_stack_entry;
1259          part_left = partition_stack[next_stack_entry].left;
1260          part_right = partition_stack[next_stack_entry].right;
1261 #ifdef QSORT_ORDER_GUESS
1262          qsort_break_even = partition_stack[next_stack_entry].qsort_break_even;
1263 #endif
1264       }
1265    }
1266 
1267    /* Believe it or not, the array is sorted at this point! */
1268 }
1269 
1270 /* Stabilize what is, presumably, an otherwise unstable sort method.
1271  * We do that by allocating (or having on hand) an array of pointers
1272  * that is the same size as the original array of elements to be sorted.
1273  * We initialize this parallel array with the addresses of the original
1274  * array elements.  This indirection can make you crazy.
1275  * Some pictures can help.  After initializing, we have
1276  *
1277  *  indir                  list1
1278  * +----+                 +----+
1279  * |    | --------------> |    | ------> first element to be sorted
1280  * +----+                 +----+
1281  * |    | --------------> |    | ------> second element to be sorted
1282  * +----+                 +----+
1283  * |    | --------------> |    | ------> third element to be sorted
1284  * +----+                 +----+
1285  *  ...
1286  * +----+                 +----+
1287  * |    | --------------> |    | ------> n-1st element to be sorted
1288  * +----+                 +----+
1289  * |    | --------------> |    | ------> n-th element to be sorted
1290  * +----+                 +----+
1291  *
1292  * During the sort phase, we leave the elements of list1 where they are,
1293  * and sort the pointers in the indirect array in the same order determined
1294  * by the original comparison routine on the elements pointed to.
1295  * Because we don't move the elements of list1 around through
1296  * this phase, we can break ties on elements that compare equal
1297  * using their address in the list1 array, ensuring stability.
1298  * This leaves us with something looking like
1299  *
1300  *  indir                  list1
1301  * +----+                 +----+
1302  * |    | --+       +---> |    | ------> first element to be sorted
1303  * +----+   |       |     +----+
1304  * |    | --|-------|---> |    | ------> second element to be sorted
1305  * +----+   |       |     +----+
1306  * |    | --|-------+ +-> |    | ------> third element to be sorted
1307  * +----+   |         |   +----+
1308  *  ...
1309  * +----+    | |   | |    +----+
1310  * |    | ---|-+   | +--> |    | ------> n-1st element to be sorted
1311  * +----+    |     |      +----+
1312  * |    | ---+     +----> |    | ------> n-th element to be sorted
1313  * +----+                 +----+
1314  *
1315  * where the i-th element of the indirect array points to the element
1316  * that should be i-th in the sorted array.  After the sort phase,
1317  * we have to put the elements of list1 into the places
1318  * dictated by the indirect array.
1319  */
1320 
1321 
1322 static I32
1323 cmpindir(pTHX_ gptr const a, gptr const b)
1324 {
1325     dVAR;
1326     gptr * const ap = (gptr *)a;
1327     gptr * const bp = (gptr *)b;
1328     const I32 sense = PL_sort_RealCmp(aTHX_ *ap, *bp);
1329 
1330     if (sense)
1331 	return sense;
1332     return (ap > bp) ? 1 : ((ap < bp) ? -1 : 0);
1333 }
1334 
1335 static I32
1336 cmpindir_desc(pTHX_ gptr const a, gptr const b)
1337 {
1338     dVAR;
1339     gptr * const ap = (gptr *)a;
1340     gptr * const bp = (gptr *)b;
1341     const I32 sense = PL_sort_RealCmp(aTHX_ *ap, *bp);
1342 
1343     /* Reverse the default */
1344     if (sense)
1345 	return -sense;
1346     /* But don't reverse the stability test.  */
1347     return (ap > bp) ? 1 : ((ap < bp) ? -1 : 0);
1348 
1349 }
1350 
1351 STATIC void
1352 S_qsortsv(pTHX_ gptr *list1, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
1353 {
1354     dVAR;
1355     if ((flags & SORTf_STABLE) != 0) {
1356 	 gptr **pp, *q;
1357 	 size_t n, j, i;
1358 	 gptr *small[SMALLSORT], **indir, tmp;
1359 	 SVCOMPARE_t savecmp;
1360 	 if (nmemb <= 1) return;     /* sorted trivially */
1361 
1362 	 /* Small arrays can use the stack, big ones must be allocated */
1363 	 if (nmemb <= SMALLSORT) indir = small;
1364 	 else { Newx(indir, nmemb, gptr *); }
1365 
1366 	 /* Copy pointers to original array elements into indirect array */
1367 	 for (n = nmemb, pp = indir, q = list1; n--; ) *pp++ = q++;
1368 
1369 	 savecmp = PL_sort_RealCmp;	/* Save current comparison routine, if any */
1370 	 PL_sort_RealCmp = cmp;	/* Put comparison routine where cmpindir can find it */
1371 
1372 	 /* sort, with indirection */
1373 	 if (flags & SORTf_DESC)
1374 	    qsortsvu((gptr *)indir, nmemb, cmpindir_desc);
1375 	else
1376 	    qsortsvu((gptr *)indir, nmemb, cmpindir);
1377 
1378 	 pp = indir;
1379 	 q = list1;
1380 	 for (n = nmemb; n--; ) {
1381 	      /* Assert A: all elements of q with index > n are already
1382 	       * in place.  This is vacuously true at the start, and we
1383 	       * put element n where it belongs below (if it wasn't
1384 	       * already where it belonged). Assert B: we only move
1385 	       * elements that aren't where they belong,
1386 	       * so, by A, we never tamper with elements above n.
1387 	       */
1388 	      j = pp[n] - q;		/* This sets j so that q[j] is
1389 					 * at pp[n].  *pp[j] belongs in
1390 					 * q[j], by construction.
1391 					 */
1392 	      if (n != j) {		/* all's well if n == j */
1393 		   tmp = q[j];		/* save what's in q[j] */
1394 		   do {
1395 			q[j] = *pp[j];	/* put *pp[j] where it belongs */
1396 			i = pp[j] - q;	/* the index in q of the element
1397 					 * just moved */
1398 			pp[j] = q + j;	/* this is ok now */
1399 		   } while ((j = i) != n);
1400 		   /* There are only finitely many (nmemb) addresses
1401 		    * in the pp array.
1402 		    * So we must eventually revisit an index we saw before.
1403 		    * Suppose the first revisited index is k != n.
1404 		    * An index is visited because something else belongs there.
1405 		    * If we visit k twice, then two different elements must
1406 		    * belong in the same place, which cannot be.
1407 		    * So j must get back to n, the loop terminates,
1408 		    * and we put the saved element where it belongs.
1409 		    */
1410 		   q[n] = tmp;		/* put what belongs into
1411 					 * the n-th element */
1412 	      }
1413 	 }
1414 
1415 	/* free iff allocated */
1416 	 if (indir != small) { Safefree(indir); }
1417 	 /* restore prevailing comparison routine */
1418 	 PL_sort_RealCmp = savecmp;
1419     } else if ((flags & SORTf_DESC) != 0) {
1420 	 const SVCOMPARE_t savecmp = PL_sort_RealCmp;	/* Save current comparison routine, if any */
1421 	 PL_sort_RealCmp = cmp;	/* Put comparison routine where cmp_desc can find it */
1422 	 cmp = cmp_desc;
1423 	 qsortsvu(list1, nmemb, cmp);
1424 	 /* restore prevailing comparison routine */
1425 	 PL_sort_RealCmp = savecmp;
1426     } else {
1427 	 qsortsvu(list1, nmemb, cmp);
1428     }
1429 }
1430 
1431 /*
1432 =head1 Array Manipulation Functions
1433 
1434 =for apidoc sortsv
1435 
1436 Sort an array.  Here is an example:
1437 
1438     sortsv(AvARRAY(av), av_top_index(av)+1, Perl_sv_cmp_locale);
1439 
1440 Currently this always uses mergesort.  See sortsv_flags for a more
1441 flexible routine.
1442 
1443 =cut
1444 */
1445 
1446 void
1447 Perl_sortsv(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp)
1448 {
1449     PERL_ARGS_ASSERT_SORTSV;
1450 
1451     sortsv_flags(array, nmemb, cmp, 0);
1452 }
1453 
1454 /*
1455 =for apidoc sortsv_flags
1456 
1457 Sort an array, with various options.
1458 
1459 =cut
1460 */
1461 void
1462 Perl_sortsv_flags(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
1463 {
1464     PERL_ARGS_ASSERT_SORTSV_FLAGS;
1465 
1466     if (flags & SORTf_QSORT)
1467 	S_qsortsv(aTHX_ array, nmemb, cmp, flags);
1468     else
1469 	S_mergesortsv(aTHX_ array, nmemb, cmp, flags);
1470 }
1471 
1472 #define SvNSIOK(sv) ((SvFLAGS(sv) & SVf_NOK) || ((SvFLAGS(sv) & (SVf_IOK|SVf_IVisUV)) == SVf_IOK))
1473 #define SvSIOK(sv) ((SvFLAGS(sv) & (SVf_IOK|SVf_IVisUV)) == SVf_IOK)
1474 #define SvNSIV(sv) ( SvNOK(sv) ? SvNVX(sv) : ( SvSIOK(sv) ? SvIVX(sv) : sv_2nv(sv) ) )
1475 
1476 PP(pp_sort)
1477 {
1478     dVAR; dSP; dMARK; dORIGMARK;
1479     SV **p1 = ORIGMARK+1, **p2;
1480     SSize_t max, i;
1481     AV* av = NULL;
1482     GV *gv;
1483     CV *cv = NULL;
1484     I32 gimme = GIMME;
1485     OP* const nextop = PL_op->op_next;
1486     I32 overloading = 0;
1487     bool hasargs = FALSE;
1488     bool copytmps;
1489     I32 is_xsub = 0;
1490     I32 sorting_av = 0;
1491     const U8 priv = PL_op->op_private;
1492     const U8 flags = PL_op->op_flags;
1493     U32 sort_flags = 0;
1494     void (*sortsvp)(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
1495       = Perl_sortsv_flags;
1496     I32 all_SIVs = 1;
1497 
1498     if ((priv & OPpSORT_DESCEND) != 0)
1499 	sort_flags |= SORTf_DESC;
1500     if ((priv & OPpSORT_QSORT) != 0)
1501 	sort_flags |= SORTf_QSORT;
1502     if ((priv & OPpSORT_STABLE) != 0)
1503 	sort_flags |= SORTf_STABLE;
1504 
1505     if (gimme != G_ARRAY) {
1506 	SP = MARK;
1507 	EXTEND(SP,1);
1508 	RETPUSHUNDEF;
1509     }
1510 
1511     ENTER;
1512     SAVEVPTR(PL_sortcop);
1513     if (flags & OPf_STACKED) {
1514 	if (flags & OPf_SPECIAL) {
1515 	    OP *nullop = cLISTOP->op_first->op_sibling;	/* pass pushmark */
1516             assert(nullop->op_type == OP_NULL);
1517 	    PL_sortcop = nullop->op_next;
1518 	}
1519 	else {
1520 	    GV *autogv = NULL;
1521 	    HV *stash;
1522 	    cv = sv_2cv(*++MARK, &stash, &gv, GV_ADD);
1523 	  check_cv:
1524 	    if (cv && SvPOK(cv)) {
1525 		const char * const proto = SvPV_nolen_const(MUTABLE_SV(cv));
1526 		if (proto && strEQ(proto, "$$")) {
1527 		    hasargs = TRUE;
1528 		}
1529 	    }
1530 	    if (cv && CvISXSUB(cv) && CvXSUB(cv)) {
1531 		is_xsub = 1;
1532 	    }
1533 	    else if (!(cv && CvROOT(cv))) {
1534 		if (gv) {
1535 		    goto autoload;
1536 		}
1537 		else if (!CvANON(cv) && (gv = CvGV(cv))) {
1538 		  if (cv != GvCV(gv)) cv = GvCV(gv);
1539 		 autoload:
1540 		  if (!autogv && (
1541 			autogv = gv_autoload_pvn(
1542 			    GvSTASH(gv), GvNAME(gv), GvNAMELEN(gv),
1543 			    GvNAMEUTF8(gv) ? SVf_UTF8 : 0
1544 			)
1545 		     )) {
1546 		    cv = GvCVu(autogv);
1547 		    goto check_cv;
1548 		  }
1549 		  else {
1550 		    SV *tmpstr = sv_newmortal();
1551 		    gv_efullname3(tmpstr, gv, NULL);
1552 		    DIE(aTHX_ "Undefined sort subroutine \"%"SVf"\" called",
1553 			SVfARG(tmpstr));
1554 		  }
1555 		}
1556 		else {
1557 		    DIE(aTHX_ "Undefined subroutine in sort");
1558 		}
1559 	    }
1560 
1561 	    if (is_xsub)
1562 		PL_sortcop = (OP*)cv;
1563 	    else
1564 		PL_sortcop = CvSTART(cv);
1565 	}
1566     }
1567     else {
1568 	PL_sortcop = NULL;
1569     }
1570 
1571     /* optimiser converts "@a = sort @a" to "sort \@a";
1572      * in case of tied @a, pessimise: push (@a) onto stack, then assign
1573      * result back to @a at the end of this function */
1574     if (priv & OPpSORT_INPLACE) {
1575 	assert( MARK+1 == SP && *SP && SvTYPE(*SP) == SVt_PVAV);
1576 	(void)POPMARK; /* remove mark associated with ex-OP_AASSIGN */
1577 	av = MUTABLE_AV((*SP));
1578 	max = AvFILL(av) + 1;
1579 	if (SvMAGICAL(av)) {
1580 	    MEXTEND(SP, max);
1581 	    for (i=0; i < max; i++) {
1582 		SV **svp = av_fetch(av, i, FALSE);
1583 		*SP++ = (svp) ? *svp : NULL;
1584 	    }
1585 	    SP--;
1586 	    p1 = p2 = SP - (max-1);
1587 	}
1588 	else {
1589 	    if (SvREADONLY(av))
1590 		Perl_croak_no_modify();
1591 	    else
1592 	    {
1593 		SvREADONLY_on(av);
1594 		save_pushptr((void *)av, SAVEt_READONLY_OFF);
1595 	    }
1596 	    p1 = p2 = AvARRAY(av);
1597 	    sorting_av = 1;
1598 	}
1599     }
1600     else {
1601 	p2 = MARK+1;
1602 	max = SP - MARK;
1603    }
1604 
1605     /* shuffle stack down, removing optional initial cv (p1!=p2), plus
1606      * any nulls; also stringify or converting to integer or number as
1607      * required any args */
1608     copytmps = !sorting_av && PL_sortcop;
1609     for (i=max; i > 0 ; i--) {
1610 	if ((*p1 = *p2++)) {			/* Weed out nulls. */
1611 	    if (copytmps && SvPADTMP(*p1)) {
1612                 assert(!IS_PADGV(*p1));
1613 		*p1 = sv_mortalcopy(*p1);
1614             }
1615 	    SvTEMP_off(*p1);
1616 	    if (!PL_sortcop) {
1617 		if (priv & OPpSORT_NUMERIC) {
1618 		    if (priv & OPpSORT_INTEGER) {
1619 			if (!SvIOK(*p1))
1620 			    (void)sv_2iv_flags(*p1, SV_GMAGIC|SV_SKIP_OVERLOAD);
1621 		    }
1622 		    else {
1623 			if (!SvNSIOK(*p1))
1624 			    (void)sv_2nv_flags(*p1, SV_GMAGIC|SV_SKIP_OVERLOAD);
1625 			if (all_SIVs && !SvSIOK(*p1))
1626 			    all_SIVs = 0;
1627 		    }
1628 		}
1629 		else {
1630 		    if (!SvPOK(*p1))
1631 			(void)sv_2pv_flags(*p1, 0,
1632 			    SV_GMAGIC|SV_CONST_RETURN|SV_SKIP_OVERLOAD);
1633 		}
1634 		if (SvAMAGIC(*p1))
1635 		    overloading = 1;
1636 	    }
1637 	    p1++;
1638 	}
1639 	else
1640 	    max--;
1641     }
1642     if (sorting_av)
1643 	AvFILLp(av) = max-1;
1644 
1645     if (max > 1) {
1646 	SV **start;
1647 	if (PL_sortcop) {
1648 	    PERL_CONTEXT *cx;
1649 	    SV** newsp;
1650 	    const bool oldcatch = CATCH_GET;
1651 
1652 	    SAVETMPS;
1653 	    SAVEOP();
1654 
1655 	    CATCH_SET(TRUE);
1656 	    PUSHSTACKi(PERLSI_SORT);
1657 	    if (!hasargs && !is_xsub) {
1658 		SAVEGENERICSV(PL_firstgv);
1659 		SAVEGENERICSV(PL_secondgv);
1660 		PL_firstgv = MUTABLE_GV(SvREFCNT_inc(
1661 		    gv_fetchpvs("a", GV_ADD|GV_NOTQUAL, SVt_PV)
1662 		));
1663 		PL_secondgv = MUTABLE_GV(SvREFCNT_inc(
1664 		    gv_fetchpvs("b", GV_ADD|GV_NOTQUAL, SVt_PV)
1665 		));
1666 		SAVESPTR(GvSV(PL_firstgv));
1667 		SAVESPTR(GvSV(PL_secondgv));
1668 	    }
1669 
1670 	    PUSHBLOCK(cx, CXt_NULL, PL_stack_base);
1671 	    if (!(flags & OPf_SPECIAL)) {
1672 		cx->cx_type = CXt_SUB;
1673 		cx->blk_gimme = G_SCALAR;
1674 		/* If our comparison routine is already active (CvDEPTH is
1675 		 * is not 0),  then PUSHSUB does not increase the refcount,
1676 		 * so we have to do it ourselves, because the LEAVESUB fur-
1677 		 * ther down lowers it. */
1678 		if (CvDEPTH(cv)) SvREFCNT_inc_simple_void_NN(cv);
1679 		PUSHSUB(cx);
1680 		if (!is_xsub) {
1681 		    PADLIST * const padlist = CvPADLIST(cv);
1682 
1683 		    if (++CvDEPTH(cv) >= 2) {
1684 			PERL_STACK_OVERFLOW_CHECK();
1685 			pad_push(padlist, CvDEPTH(cv));
1686 		    }
1687 		    SAVECOMPPAD();
1688 		    PAD_SET_CUR_NOSAVE(padlist, CvDEPTH(cv));
1689 
1690 		    if (hasargs) {
1691 			/* This is mostly copied from pp_entersub */
1692 			AV * const av = MUTABLE_AV(PAD_SVl(0));
1693 
1694 			cx->blk_sub.savearray = GvAV(PL_defgv);
1695 			GvAV(PL_defgv) = MUTABLE_AV(SvREFCNT_inc_simple(av));
1696 			CX_CURPAD_SAVE(cx->blk_sub);
1697 			cx->blk_sub.argarray = av;
1698 		    }
1699 
1700 		}
1701 	    }
1702 	    cx->cx_type |= CXp_MULTICALL;
1703 
1704 	    start = p1 - max;
1705 	    sortsvp(aTHX_ start, max,
1706 		    (is_xsub ? S_sortcv_xsub : hasargs ? S_sortcv_stacked : S_sortcv),
1707 		    sort_flags);
1708 
1709 	    if (!(flags & OPf_SPECIAL)) {
1710 		SV *sv;
1711 		/* Reset cx, in case the context stack has been
1712 		   reallocated. */
1713 		cx = &cxstack[cxstack_ix];
1714 		POPSUB(cx, sv);
1715 		LEAVESUB(sv);
1716 	    }
1717 	    POPBLOCK(cx,PL_curpm);
1718 	    PL_stack_sp = newsp;
1719 	    POPSTACK;
1720 	    CATCH_SET(oldcatch);
1721 	}
1722 	else {
1723 	    MEXTEND(SP, 20);	/* Can't afford stack realloc on signal. */
1724 	    start = sorting_av ? AvARRAY(av) : ORIGMARK+1;
1725 	    sortsvp(aTHX_ start, max,
1726 		    (priv & OPpSORT_NUMERIC)
1727 		        ? ( ( ( priv & OPpSORT_INTEGER) || all_SIVs)
1728 			    ? ( overloading ? S_amagic_i_ncmp : S_sv_i_ncmp)
1729 			    : ( overloading ? S_amagic_ncmp : S_sv_ncmp ) )
1730 			: ( IN_LOCALE_RUNTIME
1731 			    ? ( overloading
1732 				? (SVCOMPARE_t)S_amagic_cmp_locale
1733 				: (SVCOMPARE_t)sv_cmp_locale_static)
1734 			    : ( overloading ? (SVCOMPARE_t)S_amagic_cmp : (SVCOMPARE_t)sv_cmp_static)),
1735 		    sort_flags);
1736 	}
1737 	if ((priv & OPpSORT_REVERSE) != 0) {
1738 	    SV **q = start+max-1;
1739 	    while (start < q) {
1740 		SV * const tmp = *start;
1741 		*start++ = *q;
1742 		*q-- = tmp;
1743 	    }
1744 	}
1745     }
1746     if (sorting_av)
1747 	SvREADONLY_off(av);
1748     else if (av && !sorting_av) {
1749 	/* simulate pp_aassign of tied AV */
1750 	SV** const base = MARK+1;
1751 	for (i=0; i < max; i++) {
1752 	    base[i] = newSVsv(base[i]);
1753 	}
1754 	av_clear(av);
1755 	av_extend(av, max);
1756 	for (i=0; i < max; i++) {
1757 	    SV * const sv = base[i];
1758 	    SV ** const didstore = av_store(av, i, sv);
1759 	    if (SvSMAGICAL(sv))
1760 		mg_set(sv);
1761 	    if (!didstore)
1762 		sv_2mortal(sv);
1763 	}
1764     }
1765     LEAVE;
1766     PL_stack_sp = ORIGMARK + (sorting_av ? 0 : max);
1767     return nextop;
1768 }
1769 
1770 static I32
1771 S_sortcv(pTHX_ SV *const a, SV *const b)
1772 {
1773     dVAR;
1774     const I32 oldsaveix = PL_savestack_ix;
1775     const I32 oldscopeix = PL_scopestack_ix;
1776     I32 result;
1777     SV *resultsv;
1778     PMOP * const pm = PL_curpm;
1779     OP * const sortop = PL_op;
1780     COP * const cop = PL_curcop;
1781 
1782     PERL_ARGS_ASSERT_SORTCV;
1783 
1784     GvSV(PL_firstgv) = a;
1785     GvSV(PL_secondgv) = b;
1786     PL_stack_sp = PL_stack_base;
1787     PL_op = PL_sortcop;
1788     CALLRUNOPS(aTHX);
1789     PL_op = sortop;
1790     PL_curcop = cop;
1791     if (PL_stack_sp != PL_stack_base + 1) {
1792 	assert(PL_stack_sp == PL_stack_base);
1793 	resultsv = &PL_sv_undef;
1794     }
1795     else resultsv = *PL_stack_sp;
1796     if (SvNIOK_nog(resultsv)) result = SvIV(resultsv);
1797     else {
1798 	ENTER;
1799 	SAVEVPTR(PL_curpad);
1800 	PL_curpad = 0;
1801 	result = SvIV(resultsv);
1802 	LEAVE;
1803     }
1804     while (PL_scopestack_ix > oldscopeix) {
1805 	LEAVE;
1806     }
1807     leave_scope(oldsaveix);
1808     PL_curpm = pm;
1809     return result;
1810 }
1811 
1812 static I32
1813 S_sortcv_stacked(pTHX_ SV *const a, SV *const b)
1814 {
1815     dVAR;
1816     const I32 oldsaveix = PL_savestack_ix;
1817     const I32 oldscopeix = PL_scopestack_ix;
1818     I32 result;
1819     AV * const av = GvAV(PL_defgv);
1820     PMOP * const pm = PL_curpm;
1821     OP * const sortop = PL_op;
1822     COP * const cop = PL_curcop;
1823     SV **pad;
1824 
1825     PERL_ARGS_ASSERT_SORTCV_STACKED;
1826 
1827     if (AvREAL(av)) {
1828 	av_clear(av);
1829 	AvREAL_off(av);
1830 	AvREIFY_on(av);
1831     }
1832     if (AvMAX(av) < 1) {
1833 	SV **ary = AvALLOC(av);
1834 	if (AvARRAY(av) != ary) {
1835 	    AvMAX(av) += AvARRAY(av) - AvALLOC(av);
1836 	    AvARRAY(av) = ary;
1837 	}
1838 	if (AvMAX(av) < 1) {
1839 	    AvMAX(av) = 1;
1840 	    Renew(ary,2,SV*);
1841 	    AvARRAY(av) = ary;
1842 	    AvALLOC(av) = ary;
1843 	}
1844     }
1845     AvFILLp(av) = 1;
1846 
1847     AvARRAY(av)[0] = a;
1848     AvARRAY(av)[1] = b;
1849     PL_stack_sp = PL_stack_base;
1850     PL_op = PL_sortcop;
1851     CALLRUNOPS(aTHX);
1852     PL_op = sortop;
1853     PL_curcop = cop;
1854     pad = PL_curpad; PL_curpad = 0;
1855     if (PL_stack_sp != PL_stack_base + 1) {
1856 	assert(PL_stack_sp == PL_stack_base);
1857 	result = SvIV(&PL_sv_undef);
1858     }
1859     else result = SvIV(*PL_stack_sp);
1860     PL_curpad = pad;
1861     while (PL_scopestack_ix > oldscopeix) {
1862 	LEAVE;
1863     }
1864     leave_scope(oldsaveix);
1865     PL_curpm = pm;
1866     return result;
1867 }
1868 
1869 static I32
1870 S_sortcv_xsub(pTHX_ SV *const a, SV *const b)
1871 {
1872     dVAR; dSP;
1873     const I32 oldsaveix = PL_savestack_ix;
1874     const I32 oldscopeix = PL_scopestack_ix;
1875     CV * const cv=MUTABLE_CV(PL_sortcop);
1876     I32 result;
1877     PMOP * const pm = PL_curpm;
1878 
1879     PERL_ARGS_ASSERT_SORTCV_XSUB;
1880 
1881     SP = PL_stack_base;
1882     PUSHMARK(SP);
1883     EXTEND(SP, 2);
1884     *++SP = a;
1885     *++SP = b;
1886     PUTBACK;
1887     (void)(*CvXSUB(cv))(aTHX_ cv);
1888     if (PL_stack_sp != PL_stack_base + 1)
1889 	Perl_croak(aTHX_ "Sort subroutine didn't return single value");
1890     result = SvIV(*PL_stack_sp);
1891     while (PL_scopestack_ix > oldscopeix) {
1892 	LEAVE;
1893     }
1894     leave_scope(oldsaveix);
1895     PL_curpm = pm;
1896     return result;
1897 }
1898 
1899 
1900 static I32
1901 S_sv_ncmp(pTHX_ SV *const a, SV *const b)
1902 {
1903     const NV nv1 = SvNSIV(a);
1904     const NV nv2 = SvNSIV(b);
1905 
1906     PERL_ARGS_ASSERT_SV_NCMP;
1907 
1908 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
1909     if (Perl_isnan(nv1) || Perl_isnan(nv2)) {
1910 #else
1911     if (nv1 != nv1 || nv2 != nv2) {
1912 #endif
1913 	if (ckWARN(WARN_UNINITIALIZED)) report_uninit(NULL);
1914 	return 0;
1915     }
1916     return nv1 < nv2 ? -1 : nv1 > nv2 ? 1 : 0;
1917 }
1918 
1919 static I32
1920 S_sv_i_ncmp(pTHX_ SV *const a, SV *const b)
1921 {
1922     const IV iv1 = SvIV(a);
1923     const IV iv2 = SvIV(b);
1924 
1925     PERL_ARGS_ASSERT_SV_I_NCMP;
1926 
1927     return iv1 < iv2 ? -1 : iv1 > iv2 ? 1 : 0;
1928 }
1929 
1930 #define tryCALL_AMAGICbin(left,right,meth) \
1931     (SvAMAGIC(left)||SvAMAGIC(right)) \
1932 	? amagic_call(left, right, meth, 0) \
1933 	: NULL;
1934 
1935 #define SORT_NORMAL_RETURN_VALUE(val)  (((val) > 0) ? 1 : ((val) ? -1 : 0))
1936 
1937 static I32
1938 S_amagic_ncmp(pTHX_ SV *const a, SV *const b)
1939 {
1940     dVAR;
1941     SV * const tmpsv = tryCALL_AMAGICbin(a,b,ncmp_amg);
1942 
1943     PERL_ARGS_ASSERT_AMAGIC_NCMP;
1944 
1945     if (tmpsv) {
1946         if (SvIOK(tmpsv)) {
1947             const I32 i = SvIVX(tmpsv);
1948             return SORT_NORMAL_RETURN_VALUE(i);
1949         }
1950 	else {
1951 	    const NV d = SvNV(tmpsv);
1952 	    return SORT_NORMAL_RETURN_VALUE(d);
1953 	}
1954      }
1955      return S_sv_ncmp(aTHX_ a, b);
1956 }
1957 
1958 static I32
1959 S_amagic_i_ncmp(pTHX_ SV *const a, SV *const b)
1960 {
1961     dVAR;
1962     SV * const tmpsv = tryCALL_AMAGICbin(a,b,ncmp_amg);
1963 
1964     PERL_ARGS_ASSERT_AMAGIC_I_NCMP;
1965 
1966     if (tmpsv) {
1967         if (SvIOK(tmpsv)) {
1968             const I32 i = SvIVX(tmpsv);
1969             return SORT_NORMAL_RETURN_VALUE(i);
1970         }
1971 	else {
1972 	    const NV d = SvNV(tmpsv);
1973 	    return SORT_NORMAL_RETURN_VALUE(d);
1974 	}
1975     }
1976     return S_sv_i_ncmp(aTHX_ a, b);
1977 }
1978 
1979 static I32
1980 S_amagic_cmp(pTHX_ SV *const str1, SV *const str2)
1981 {
1982     dVAR;
1983     SV * const tmpsv = tryCALL_AMAGICbin(str1,str2,scmp_amg);
1984 
1985     PERL_ARGS_ASSERT_AMAGIC_CMP;
1986 
1987     if (tmpsv) {
1988         if (SvIOK(tmpsv)) {
1989             const I32 i = SvIVX(tmpsv);
1990             return SORT_NORMAL_RETURN_VALUE(i);
1991         }
1992 	else {
1993 	    const NV d = SvNV(tmpsv);
1994 	    return SORT_NORMAL_RETURN_VALUE(d);
1995 	}
1996     }
1997     return sv_cmp(str1, str2);
1998 }
1999 
2000 static I32
2001 S_amagic_cmp_locale(pTHX_ SV *const str1, SV *const str2)
2002 {
2003     dVAR;
2004     SV * const tmpsv = tryCALL_AMAGICbin(str1,str2,scmp_amg);
2005 
2006     PERL_ARGS_ASSERT_AMAGIC_CMP_LOCALE;
2007 
2008     if (tmpsv) {
2009         if (SvIOK(tmpsv)) {
2010             const I32 i = SvIVX(tmpsv);
2011             return SORT_NORMAL_RETURN_VALUE(i);
2012         }
2013 	else {
2014 	    const NV d = SvNV(tmpsv);
2015 	    return SORT_NORMAL_RETURN_VALUE(d);
2016 	}
2017     }
2018     return sv_cmp_locale(str1, str2);
2019 }
2020 
2021 /*
2022  * Local variables:
2023  * c-indentation-style: bsd
2024  * c-basic-offset: 4
2025  * indent-tabs-mode: nil
2026  * End:
2027  *
2028  * ex: set ts=8 sts=4 sw=4 et:
2029  */
2030