1 /* pp_sort.c 2 * 3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others 5 * 6 * You may distribute under the terms of either the GNU General Public 7 * License or the Artistic License, as specified in the README file. 8 * 9 */ 10 11 /* 12 * ...they shuffled back towards the rear of the line. 'No, not at the 13 * rear!' the slave-driver shouted. 'Three files up. And stay there... 14 * 15 * [p.931 of _The Lord of the Rings_, VI/ii: "The Land of Shadow"] 16 */ 17 18 /* This file contains pp ("push/pop") functions that 19 * execute the opcodes that make up a perl program. A typical pp function 20 * expects to find its arguments on the stack, and usually pushes its 21 * results onto the stack, hence the 'pp' terminology. Each OP structure 22 * contains a pointer to the relevant pp_foo() function. 23 * 24 * This particular file just contains pp_sort(), which is complex 25 * enough to merit its own file! See the other pp*.c files for the rest of 26 * the pp_ functions. 27 */ 28 29 #include "EXTERN.h" 30 #define PERL_IN_PP_SORT_C 31 #include "perl.h" 32 33 #if defined(UNDER_CE) 34 /* looks like 'small' is reserved word for WINCE (or somesuch)*/ 35 #define small xsmall 36 #endif 37 38 #define sv_cmp_static Perl_sv_cmp 39 #define sv_cmp_locale_static Perl_sv_cmp_locale 40 41 #ifndef SMALLSORT 42 #define SMALLSORT (200) 43 #endif 44 45 /* Flags for qsortsv and mergesortsv */ 46 #define SORTf_DESC 1 47 #define SORTf_STABLE 2 48 #define SORTf_UNSTABLE 8 49 50 /* 51 * The mergesort implementation is by Peter M. Mcilroy <pmcilroy@lucent.com>. 52 * 53 * The original code was written in conjunction with BSD Computer Software 54 * Research Group at University of California, Berkeley. 55 * 56 * See also: "Optimistic Sorting and Information Theoretic Complexity" 57 * Peter McIlroy 58 * SODA (Fourth Annual ACM-SIAM Symposium on Discrete Algorithms), 59 * pp 467-474, Austin, Texas, 25-27 January 1993. 60 * 61 * The integration to Perl is by John P. Linderman <jpl.jpl@gmail.com>. 62 * 63 * The code can be distributed under the same terms as Perl itself. 64 * 65 */ 66 67 68 typedef char * aptr; /* pointer for arithmetic on sizes */ 69 typedef SV * gptr; /* pointers in our lists */ 70 71 /* Binary merge internal sort, with a few special mods 72 ** for the special perl environment it now finds itself in. 73 ** 74 ** Things that were once options have been hotwired 75 ** to values suitable for this use. In particular, we'll always 76 ** initialize looking for natural runs, we'll always produce stable 77 ** output, and we'll always do Peter McIlroy's binary merge. 78 */ 79 80 /* Pointer types for arithmetic and storage and convenience casts */ 81 82 #define APTR(P) ((aptr)(P)) 83 #define GPTP(P) ((gptr *)(P)) 84 #define GPPP(P) ((gptr **)(P)) 85 86 87 /* byte offset from pointer P to (larger) pointer Q */ 88 #define BYTEOFF(P, Q) (APTR(Q) - APTR(P)) 89 90 #define PSIZE sizeof(gptr) 91 92 /* If PSIZE is power of 2, make PSHIFT that power, if that helps */ 93 94 #ifdef PSHIFT 95 #define PNELEM(P, Q) (BYTEOFF(P,Q) >> (PSHIFT)) 96 #define PNBYTE(N) ((N) << (PSHIFT)) 97 #define PINDEX(P, N) (GPTP(APTR(P) + PNBYTE(N))) 98 #else 99 /* Leave optimization to compiler */ 100 #define PNELEM(P, Q) (GPTP(Q) - GPTP(P)) 101 #define PNBYTE(N) ((N) * (PSIZE)) 102 #define PINDEX(P, N) (GPTP(P) + (N)) 103 #endif 104 105 /* Pointer into other corresponding to pointer into this */ 106 #define POTHER(P, THIS, OTHER) GPTP(APTR(OTHER) + BYTEOFF(THIS,P)) 107 108 #define FROMTOUPTO(src, dst, lim) do *dst++ = *src++; while(src<lim) 109 110 111 /* Runs are identified by a pointer in the auxiliary list. 112 ** The pointer is at the start of the list, 113 ** and it points to the start of the next list. 114 ** NEXT is used as an lvalue, too. 115 */ 116 117 #define NEXT(P) (*GPPP(P)) 118 119 120 /* PTHRESH is the minimum number of pairs with the same sense to justify 121 ** checking for a run and extending it. Note that PTHRESH counts PAIRS, 122 ** not just elements, so PTHRESH == 8 means a run of 16. 123 */ 124 125 #define PTHRESH (8) 126 127 /* RTHRESH is the number of elements in a run that must compare low 128 ** to the low element from the opposing run before we justify 129 ** doing a binary rampup instead of single stepping. 130 ** In random input, N in a row low should only happen with 131 ** probability 2^(1-N), so we can risk that we are dealing 132 ** with orderly input without paying much when we aren't. 133 */ 134 135 #define RTHRESH (6) 136 137 138 /* 139 ** Overview of algorithm and variables. 140 ** The array of elements at list1 will be organized into runs of length 2, 141 ** or runs of length >= 2 * PTHRESH. We only try to form long runs when 142 ** PTHRESH adjacent pairs compare in the same way, suggesting overall order. 143 ** 144 ** Unless otherwise specified, pair pointers address the first of two elements. 145 ** 146 ** b and b+1 are a pair that compare with sense "sense". 147 ** b is the "bottom" of adjacent pairs that might form a longer run. 148 ** 149 ** p2 parallels b in the list2 array, where runs are defined by 150 ** a pointer chain. 151 ** 152 ** t represents the "top" of the adjacent pairs that might extend 153 ** the run beginning at b. Usually, t addresses a pair 154 ** that compares with opposite sense from (b,b+1). 155 ** However, it may also address a singleton element at the end of list1, 156 ** or it may be equal to "last", the first element beyond list1. 157 ** 158 ** r addresses the Nth pair following b. If this would be beyond t, 159 ** we back it off to t. Only when r is less than t do we consider the 160 ** run long enough to consider checking. 161 ** 162 ** q addresses a pair such that the pairs at b through q already form a run. 163 ** Often, q will equal b, indicating we only are sure of the pair itself. 164 ** However, a search on the previous cycle may have revealed a longer run, 165 ** so q may be greater than b. 166 ** 167 ** p is used to work back from a candidate r, trying to reach q, 168 ** which would mean b through r would be a run. If we discover such a run, 169 ** we start q at r and try to push it further towards t. 170 ** If b through r is NOT a run, we detect the wrong order at (p-1,p). 171 ** In any event, after the check (if any), we have two main cases. 172 ** 173 ** 1) Short run. b <= q < p <= r <= t. 174 ** b through q is a run (perhaps trivial) 175 ** q through p are uninteresting pairs 176 ** p through r is a run 177 ** 178 ** 2) Long run. b < r <= q < t. 179 ** b through q is a run (of length >= 2 * PTHRESH) 180 ** 181 ** Note that degenerate cases are not only possible, but likely. 182 ** For example, if the pair following b compares with opposite sense, 183 ** then b == q < p == r == t. 184 */ 185 186 187 static IV 188 dynprep(pTHX_ gptr *list1, gptr *list2, size_t nmemb, const SVCOMPARE_t cmp) 189 { 190 I32 sense; 191 gptr *b, *p, *q, *t, *p2; 192 gptr *last, *r; 193 IV runs = 0; 194 195 b = list1; 196 last = PINDEX(b, nmemb); 197 sense = (cmp(aTHX_ *b, *(b+1)) > 0); 198 for (p2 = list2; b < last; ) { 199 /* We just started, or just reversed sense. 200 ** Set t at end of pairs with the prevailing sense. 201 */ 202 for (p = b+2, t = p; ++p < last; t = ++p) { 203 if ((cmp(aTHX_ *t, *p) > 0) != sense) break; 204 } 205 q = b; 206 /* Having laid out the playing field, look for long runs */ 207 do { 208 p = r = b + (2 * PTHRESH); 209 if (r >= t) p = r = t; /* too short to care about */ 210 else { 211 while (((cmp(aTHX_ *(p-1), *p) > 0) == sense) && 212 ((p -= 2) > q)) {} 213 if (p <= q) { 214 /* b through r is a (long) run. 215 ** Extend it as far as possible. 216 */ 217 p = q = r; 218 while (((p += 2) < t) && 219 ((cmp(aTHX_ *(p-1), *p) > 0) == sense)) q = p; 220 r = p = q + 2; /* no simple pairs, no after-run */ 221 } 222 } 223 if (q > b) { /* run of greater than 2 at b */ 224 gptr *savep = p; 225 226 p = q += 2; 227 /* pick up singleton, if possible */ 228 if ((p == t) && 229 ((t + 1) == last) && 230 ((cmp(aTHX_ *(p-1), *p) > 0) == sense)) 231 savep = r = p = q = last; 232 p2 = NEXT(p2) = p2 + (p - b); ++runs; 233 if (sense) 234 while (b < --p) { 235 const gptr c = *b; 236 *b++ = *p; 237 *p = c; 238 } 239 p = savep; 240 } 241 while (q < p) { /* simple pairs */ 242 p2 = NEXT(p2) = p2 + 2; ++runs; 243 if (sense) { 244 const gptr c = *q++; 245 *(q-1) = *q; 246 *q++ = c; 247 } else q += 2; 248 } 249 if (((b = p) == t) && ((t+1) == last)) { 250 NEXT(p2) = p2 + 1; ++runs; 251 b++; 252 } 253 q = r; 254 } while (b < t); 255 sense = !sense; 256 } 257 return runs; 258 } 259 260 261 /* The original merge sort, in use since 5.7, was as fast as, or faster than, 262 * qsort on many platforms, but slower than qsort, conspicuously so, 263 * on others. The most likely explanation was platform-specific 264 * differences in cache sizes and relative speeds. 265 * 266 * The quicksort divide-and-conquer algorithm guarantees that, as the 267 * problem is subdivided into smaller and smaller parts, the parts 268 * fit into smaller (and faster) caches. So it doesn't matter how 269 * many levels of cache exist, quicksort will "find" them, and, 270 * as long as smaller is faster, take advantage of them. 271 * 272 * By contrast, consider how the original mergesort algorithm worked. 273 * Suppose we have five runs (each typically of length 2 after dynprep). 274 * 275 * pass base aux 276 * 0 1 2 3 4 5 277 * 1 12 34 5 278 * 2 1234 5 279 * 3 12345 280 * 4 12345 281 * 282 * Adjacent pairs are merged in "grand sweeps" through the input. 283 * This means, on pass 1, the records in runs 1 and 2 aren't revisited until 284 * runs 3 and 4 are merged and the runs from run 5 have been copied. 285 * The only cache that matters is one large enough to hold *all* the input. 286 * On some platforms, this may be many times slower than smaller caches. 287 * 288 * The following pseudo-code uses the same basic merge algorithm, 289 * but in a divide-and-conquer way. 290 * 291 * # merge $runs runs at offset $offset of list $list1 into $list2. 292 * # all unmerged runs ($runs == 1) originate in list $base. 293 * sub mgsort2 { 294 * my ($offset, $runs, $base, $list1, $list2) = @_; 295 * 296 * if ($runs == 1) { 297 * if ($list1 is $base) copy run to $list2 298 * return offset of end of list (or copy) 299 * } else { 300 * $off2 = mgsort2($offset, $runs-($runs/2), $base, $list2, $list1) 301 * mgsort2($off2, $runs/2, $base, $list2, $list1) 302 * merge the adjacent runs at $offset of $list1 into $list2 303 * return the offset of the end of the merged runs 304 * } 305 * } 306 * mgsort2(0, $runs, $base, $aux, $base); 307 * 308 * For our 5 runs, the tree of calls looks like 309 * 310 * 5 311 * 3 2 312 * 2 1 1 1 313 * 1 1 314 * 315 * 1 2 3 4 5 316 * 317 * and the corresponding activity looks like 318 * 319 * copy runs 1 and 2 from base to aux 320 * merge runs 1 and 2 from aux to base 321 * (run 3 is where it belongs, no copy needed) 322 * merge runs 12 and 3 from base to aux 323 * (runs 4 and 5 are where they belong, no copy needed) 324 * merge runs 4 and 5 from base to aux 325 * merge runs 123 and 45 from aux to base 326 * 327 * Note that we merge runs 1 and 2 immediately after copying them, 328 * while they are still likely to be in fast cache. Similarly, 329 * run 3 is merged with run 12 while it still may be lingering in cache. 330 * This implementation should therefore enjoy much of the cache-friendly 331 * behavior that quicksort does. In addition, it does less copying 332 * than the original mergesort implementation (only runs 1 and 2 are copied) 333 * and the "balancing" of merges is better (merged runs comprise more nearly 334 * equal numbers of original runs). 335 * 336 * The actual cache-friendly implementation will use a pseudo-stack 337 * to avoid recursion, and will unroll processing of runs of length 2, 338 * but it is otherwise similar to the recursive implementation. 339 */ 340 341 typedef struct { 342 IV offset; /* offset of 1st of 2 runs at this level */ 343 IV runs; /* how many runs must be combined into 1 */ 344 } off_runs; /* pseudo-stack element */ 345 346 347 static I32 348 cmp_desc(pTHX_ gptr const a, gptr const b) 349 { 350 return -PL_sort_RealCmp(aTHX_ a, b); 351 } 352 353 /* 354 =for apidoc sortsv_flags 355 356 In-place sort an array of SV pointers with the given comparison routine, 357 with various SORTf_* flag options. 358 359 =cut 360 */ 361 void 362 Perl_sortsv_flags(pTHX_ gptr *base, size_t nmemb, SVCOMPARE_t cmp, U32 flags) 363 { 364 IV i, run, offset; 365 I32 sense, level; 366 gptr *f1, *f2, *t, *b, *p; 367 int iwhich; 368 gptr *aux; 369 gptr *p1; 370 gptr small[SMALLSORT]; 371 gptr *which[3]; 372 off_runs stack[60], *stackp; 373 SVCOMPARE_t savecmp = NULL; 374 375 PERL_ARGS_ASSERT_SORTSV_FLAGS; 376 if (nmemb <= 1) return; /* sorted trivially */ 377 378 if ((flags & SORTf_DESC) != 0) { 379 savecmp = PL_sort_RealCmp; /* Save current comparison routine, if any */ 380 PL_sort_RealCmp = cmp; /* Put comparison routine where cmp_desc can find it */ 381 cmp = cmp_desc; 382 } 383 384 if (nmemb <= SMALLSORT) aux = small; /* use stack for aux array */ 385 else { Newx(aux,nmemb,gptr); } /* allocate auxiliary array */ 386 level = 0; 387 stackp = stack; 388 stackp->runs = dynprep(aTHX_ base, aux, nmemb, cmp); 389 stackp->offset = offset = 0; 390 which[0] = which[2] = base; 391 which[1] = aux; 392 for (;;) { 393 /* On levels where both runs have be constructed (stackp->runs == 0), 394 * merge them, and note the offset of their end, in case the offset 395 * is needed at the next level up. Hop up a level, and, 396 * as long as stackp->runs is 0, keep merging. 397 */ 398 IV runs = stackp->runs; 399 if (runs == 0) { 400 gptr *list1, *list2; 401 iwhich = level & 1; 402 list1 = which[iwhich]; /* area where runs are now */ 403 list2 = which[++iwhich]; /* area for merged runs */ 404 do { 405 gptr *l1, *l2, *tp2; 406 offset = stackp->offset; 407 f1 = p1 = list1 + offset; /* start of first run */ 408 p = tp2 = list2 + offset; /* where merged run will go */ 409 t = NEXT(p); /* where first run ends */ 410 f2 = l1 = POTHER(t, list2, list1); /* ... on the other side */ 411 t = NEXT(t); /* where second runs ends */ 412 l2 = POTHER(t, list2, list1); /* ... on the other side */ 413 offset = PNELEM(list2, t); 414 while (f1 < l1 && f2 < l2) { 415 /* If head 1 is larger than head 2, find ALL the elements 416 ** in list 2 strictly less than head1, write them all, 417 ** then head 1. Then compare the new heads, and repeat, 418 ** until one or both lists are exhausted. 419 ** 420 ** In all comparisons (after establishing 421 ** which head to merge) the item to merge 422 ** (at pointer q) is the first operand of 423 ** the comparison. When we want to know 424 ** if "q is strictly less than the other", 425 ** we can't just do 426 ** cmp(q, other) < 0 427 ** because stability demands that we treat equality 428 ** as high when q comes from l2, and as low when 429 ** q was from l1. So we ask the question by doing 430 ** cmp(q, other) <= sense 431 ** and make sense == 0 when equality should look low, 432 ** and -1 when equality should look high. 433 */ 434 435 gptr *q; 436 if (cmp(aTHX_ *f1, *f2) <= 0) { 437 q = f2; b = f1; t = l1; 438 sense = -1; 439 } else { 440 q = f1; b = f2; t = l2; 441 sense = 0; 442 } 443 444 445 /* ramp up 446 ** 447 ** Leave t at something strictly 448 ** greater than q (or at the end of the list), 449 ** and b at something strictly less than q. 450 */ 451 for (i = 1, run = 0 ;;) { 452 if ((p = PINDEX(b, i)) >= t) { 453 /* off the end */ 454 if (((p = PINDEX(t, -1)) > b) && 455 (cmp(aTHX_ *q, *p) <= sense)) 456 t = p; 457 else b = p; 458 break; 459 } else if (cmp(aTHX_ *q, *p) <= sense) { 460 t = p; 461 break; 462 } else b = p; 463 if (++run >= RTHRESH) i += i; 464 } 465 466 467 /* q is known to follow b and must be inserted before t. 468 ** Increment b, so the range of possibilities is [b,t). 469 ** Round binary split down, to favor early appearance. 470 ** Adjust b and t until q belongs just before t. 471 */ 472 473 b++; 474 while (b < t) { 475 p = PINDEX(b, (PNELEM(b, t) - 1) / 2); 476 if (cmp(aTHX_ *q, *p) <= sense) { 477 t = p; 478 } else b = p + 1; 479 } 480 481 482 /* Copy all the strictly low elements */ 483 484 if (q == f1) { 485 FROMTOUPTO(f2, tp2, t); 486 *tp2++ = *f1++; 487 } else { 488 FROMTOUPTO(f1, tp2, t); 489 *tp2++ = *f2++; 490 } 491 } 492 493 494 /* Run out remaining list */ 495 if (f1 == l1) { 496 if (f2 < l2) FROMTOUPTO(f2, tp2, l2); 497 } else FROMTOUPTO(f1, tp2, l1); 498 p1 = NEXT(p1) = POTHER(tp2, list2, list1); 499 500 if (--level == 0) goto done; 501 --stackp; 502 t = list1; list1 = list2; list2 = t; /* swap lists */ 503 } while ((runs = stackp->runs) == 0); 504 } 505 506 507 stackp->runs = 0; /* current run will finish level */ 508 /* While there are more than 2 runs remaining, 509 * turn them into exactly 2 runs (at the "other" level), 510 * each made up of approximately half the runs. 511 * Stack the second half for later processing, 512 * and set about producing the first half now. 513 */ 514 while (runs > 2) { 515 ++level; 516 ++stackp; 517 stackp->offset = offset; 518 runs -= stackp->runs = runs / 2; 519 } 520 /* We must construct a single run from 1 or 2 runs. 521 * All the original runs are in which[0] == base. 522 * The run we construct must end up in which[level&1]. 523 */ 524 iwhich = level & 1; 525 if (runs == 1) { 526 /* Constructing a single run from a single run. 527 * If it's where it belongs already, there's nothing to do. 528 * Otherwise, copy it to where it belongs. 529 * A run of 1 is either a singleton at level 0, 530 * or the second half of a split 3. In neither event 531 * is it necessary to set offset. It will be set by the merge 532 * that immediately follows. 533 */ 534 if (iwhich) { /* Belongs in aux, currently in base */ 535 f1 = b = PINDEX(base, offset); /* where list starts */ 536 f2 = PINDEX(aux, offset); /* where list goes */ 537 t = NEXT(f2); /* where list will end */ 538 offset = PNELEM(aux, t); /* offset thereof */ 539 t = PINDEX(base, offset); /* where it currently ends */ 540 FROMTOUPTO(f1, f2, t); /* copy */ 541 NEXT(b) = t; /* set up parallel pointer */ 542 } else if (level == 0) goto done; /* single run at level 0 */ 543 } else { 544 /* Constructing a single run from two runs. 545 * The merge code at the top will do that. 546 * We need only make sure the two runs are in the "other" array, 547 * so they'll end up in the correct array after the merge. 548 */ 549 ++level; 550 ++stackp; 551 stackp->offset = offset; 552 stackp->runs = 0; /* take care of both runs, trigger merge */ 553 if (!iwhich) { /* Merged runs belong in aux, copy 1st */ 554 f1 = b = PINDEX(base, offset); /* where first run starts */ 555 f2 = PINDEX(aux, offset); /* where it will be copied */ 556 t = NEXT(f2); /* where first run will end */ 557 offset = PNELEM(aux, t); /* offset thereof */ 558 p = PINDEX(base, offset); /* end of first run */ 559 t = NEXT(t); /* where second run will end */ 560 t = PINDEX(base, PNELEM(aux, t)); /* where it now ends */ 561 FROMTOUPTO(f1, f2, t); /* copy both runs */ 562 NEXT(b) = p; /* paralleled pointer for 1st */ 563 NEXT(p) = t; /* ... and for second */ 564 } 565 } 566 } 567 done: 568 if (aux != small) Safefree(aux); /* free iff allocated */ 569 if (savecmp != NULL) { 570 PL_sort_RealCmp = savecmp; /* Restore current comparison routine, if any */ 571 } 572 return; 573 } 574 575 /* 576 * The quicksort implementation was derived from source code contributed 577 * by Tom Horsley. 578 * 579 * NOTE: this code was derived from Tom Horsley's qsort replacement 580 * and should not be confused with the original code. 581 */ 582 583 /* Copyright (C) Tom Horsley, 1997. All rights reserved. 584 585 Permission granted to distribute under the same terms as perl which are 586 (briefly): 587 588 This program is free software; you can redistribute it and/or modify 589 it under the terms of either: 590 591 a) the GNU General Public License as published by the Free 592 Software Foundation; either version 1, or (at your option) any 593 later version, or 594 595 b) the "Artistic License" which comes with this Kit. 596 597 Details on the perl license can be found in the perl source code which 598 may be located via the www.perl.com web page. 599 600 This is the most wonderfulest possible qsort I can come up with (and 601 still be mostly portable) My (limited) tests indicate it consistently 602 does about 20% fewer calls to compare than does the qsort in the Visual 603 C++ library, other vendors may vary. 604 605 Some of the ideas in here can be found in "Algorithms" by Sedgewick, 606 others I invented myself (or more likely re-invented since they seemed 607 pretty obvious once I watched the algorithm operate for a while). 608 609 Most of this code was written while watching the Marlins sweep the Giants 610 in the 1997 National League Playoffs - no Braves fans allowed to use this 611 code (just kidding :-). 612 613 I realize that if I wanted to be true to the perl tradition, the only 614 comment in this file would be something like: 615 616 ...they shuffled back towards the rear of the line. 'No, not at the 617 rear!' the slave-driver shouted. 'Three files up. And stay there... 618 619 However, I really needed to violate that tradition just so I could keep 620 track of what happens myself, not to mention some poor fool trying to 621 understand this years from now :-). 622 */ 623 624 /* ********************************************************** Configuration */ 625 626 #ifndef QSORT_ORDER_GUESS 627 #define QSORT_ORDER_GUESS 2 /* Select doubling version of the netBSD trick */ 628 #endif 629 630 /* QSORT_MAX_STACK is the largest number of partitions that can be stacked up for 631 future processing - a good max upper bound is log base 2 of memory size 632 (32 on 32 bit machines, 64 on 64 bit machines, etc). In reality can 633 safely be smaller than that since the program is taking up some space and 634 most operating systems only let you grab some subset of contiguous 635 memory (not to mention that you are normally sorting data larger than 636 1 byte element size :-). 637 */ 638 #ifndef QSORT_MAX_STACK 639 #define QSORT_MAX_STACK 32 640 #endif 641 642 /* QSORT_BREAK_EVEN is the size of the largest partition we should insertion sort. 643 Anything bigger and we use qsort. If you make this too small, the qsort 644 will probably break (or become less efficient), because it doesn't expect 645 the middle element of a partition to be the same as the right or left - 646 you have been warned). 647 */ 648 #ifndef QSORT_BREAK_EVEN 649 #define QSORT_BREAK_EVEN 6 650 #endif 651 652 /* QSORT_PLAY_SAFE is the size of the largest partition we're willing 653 to go quadratic on. We innoculate larger partitions against 654 quadratic behavior by shuffling them before sorting. This is not 655 an absolute guarantee of non-quadratic behavior, but it would take 656 staggeringly bad luck to pick extreme elements as the pivot 657 from randomized data. 658 */ 659 #ifndef QSORT_PLAY_SAFE 660 #define QSORT_PLAY_SAFE 255 661 #endif 662 663 /* ************************************************************* Data Types */ 664 665 /* hold left and right index values of a partition waiting to be sorted (the 666 partition includes both left and right - right is NOT one past the end or 667 anything like that). 668 */ 669 struct partition_stack_entry { 670 int left; 671 int right; 672 #ifdef QSORT_ORDER_GUESS 673 int qsort_break_even; 674 #endif 675 }; 676 677 /* ******************************************************* Shorthand Macros */ 678 679 /* Note that these macros will be used from inside the qsort function where 680 we happen to know that the variable 'elt_size' contains the size of an 681 array element and the variable 'temp' points to enough space to hold a 682 temp element and the variable 'array' points to the array being sorted 683 and 'compare' is the pointer to the compare routine. 684 685 Also note that there are very many highly architecture specific ways 686 these might be sped up, but this is simply the most generally portable 687 code I could think of. 688 */ 689 690 /* Return < 0 == 0 or > 0 as the value of elt1 is < elt2, == elt2, > elt2 691 */ 692 #define qsort_cmp(elt1, elt2) \ 693 ((*compare)(aTHX_ array[elt1], array[elt2])) 694 695 #ifdef QSORT_ORDER_GUESS 696 #define QSORT_NOTICE_SWAP swapped++; 697 #else 698 #define QSORT_NOTICE_SWAP 699 #endif 700 701 /* swaps contents of array elements elt1, elt2. 702 */ 703 #define qsort_swap(elt1, elt2) \ 704 STMT_START { \ 705 QSORT_NOTICE_SWAP \ 706 temp = array[elt1]; \ 707 array[elt1] = array[elt2]; \ 708 array[elt2] = temp; \ 709 } STMT_END 710 711 /* rotate contents of elt1, elt2, elt3 such that elt1 gets elt2, elt2 gets 712 elt3 and elt3 gets elt1. 713 */ 714 #define qsort_rotate(elt1, elt2, elt3) \ 715 STMT_START { \ 716 QSORT_NOTICE_SWAP \ 717 temp = array[elt1]; \ 718 array[elt1] = array[elt2]; \ 719 array[elt2] = array[elt3]; \ 720 array[elt3] = temp; \ 721 } STMT_END 722 723 /* ************************************************************ Debug stuff */ 724 725 #ifdef QSORT_DEBUG 726 727 static void 728 break_here() 729 { 730 return; /* good place to set a breakpoint */ 731 } 732 733 #define qsort_assert(t) (void)( (t) || (break_here(), 0) ) 734 735 static void 736 doqsort_all_asserts( 737 void * array, 738 size_t num_elts, 739 size_t elt_size, 740 int (*compare)(const void * elt1, const void * elt2), 741 int pc_left, int pc_right, int u_left, int u_right) 742 { 743 int i; 744 745 qsort_assert(pc_left <= pc_right); 746 qsort_assert(u_right < pc_left); 747 qsort_assert(pc_right < u_left); 748 for (i = u_right + 1; i < pc_left; ++i) { 749 qsort_assert(qsort_cmp(i, pc_left) < 0); 750 } 751 for (i = pc_left; i < pc_right; ++i) { 752 qsort_assert(qsort_cmp(i, pc_right) == 0); 753 } 754 for (i = pc_right + 1; i < u_left; ++i) { 755 qsort_assert(qsort_cmp(pc_right, i) < 0); 756 } 757 } 758 759 #define qsort_all_asserts(PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT) \ 760 doqsort_all_asserts(array, num_elts, elt_size, compare, \ 761 PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT) 762 763 #else 764 765 #define qsort_assert(t) ((void)0) 766 767 #define qsort_all_asserts(PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT) ((void)0) 768 769 #endif 770 771 /* 772 =head1 Array Manipulation Functions 773 774 =for apidoc sortsv 775 776 In-place sort an array of SV pointers with the given comparison routine. 777 778 Currently this always uses mergesort. See C<L</sortsv_flags>> for a more 779 flexible routine. 780 781 =cut 782 */ 783 784 void 785 Perl_sortsv(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp) 786 { 787 PERL_ARGS_ASSERT_SORTSV; 788 789 sortsv_flags(array, nmemb, cmp, 0); 790 } 791 792 #define SvNSIOK(sv) ((SvFLAGS(sv) & SVf_NOK) || ((SvFLAGS(sv) & (SVf_IOK|SVf_IVisUV)) == SVf_IOK)) 793 #define SvSIOK(sv) ((SvFLAGS(sv) & (SVf_IOK|SVf_IVisUV)) == SVf_IOK) 794 #define SvNSIV(sv) ( SvNOK(sv) ? SvNVX(sv) : ( SvSIOK(sv) ? SvIVX(sv) : sv_2nv(sv) ) ) 795 796 PP(pp_sort) 797 { 798 dSP; dMARK; dORIGMARK; 799 SV **p1 = ORIGMARK+1, **p2; 800 SSize_t max, i; 801 AV* av = NULL; 802 GV *gv; 803 CV *cv = NULL; 804 U8 gimme = GIMME_V; 805 OP* const nextop = PL_op->op_next; 806 I32 overloading = 0; 807 bool hasargs = FALSE; 808 bool copytmps; 809 I32 is_xsub = 0; 810 const U8 priv = PL_op->op_private; 811 const U8 flags = PL_op->op_flags; 812 U32 sort_flags = 0; 813 void (*sortsvp)(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp, U32 flags) 814 = Perl_sortsv_flags; 815 I32 all_SIVs = 1; 816 817 if ((priv & OPpSORT_DESCEND) != 0) 818 sort_flags |= SORTf_DESC; 819 if ((priv & OPpSORT_STABLE) != 0) 820 sort_flags |= SORTf_STABLE; 821 if ((priv & OPpSORT_UNSTABLE) != 0) 822 sort_flags |= SORTf_UNSTABLE; 823 824 if (gimme != G_ARRAY) { 825 SP = MARK; 826 EXTEND(SP,1); 827 RETPUSHUNDEF; 828 } 829 830 ENTER; 831 SAVEVPTR(PL_sortcop); 832 if (flags & OPf_STACKED) { 833 if (flags & OPf_SPECIAL) { 834 OP *nullop = OpSIBLING(cLISTOP->op_first); /* pass pushmark */ 835 assert(nullop->op_type == OP_NULL); 836 PL_sortcop = nullop->op_next; 837 } 838 else { 839 GV *autogv = NULL; 840 HV *stash; 841 cv = sv_2cv(*++MARK, &stash, &gv, GV_ADD); 842 check_cv: 843 if (cv && SvPOK(cv)) { 844 const char * const proto = SvPV_nolen_const(MUTABLE_SV(cv)); 845 if (proto && strEQ(proto, "$$")) { 846 hasargs = TRUE; 847 } 848 } 849 if (cv && CvISXSUB(cv) && CvXSUB(cv)) { 850 is_xsub = 1; 851 } 852 else if (!(cv && CvROOT(cv))) { 853 if (gv) { 854 goto autoload; 855 } 856 else if (!CvANON(cv) && (gv = CvGV(cv))) { 857 if (cv != GvCV(gv)) cv = GvCV(gv); 858 autoload: 859 if (!autogv && ( 860 autogv = gv_autoload_pvn( 861 GvSTASH(gv), GvNAME(gv), GvNAMELEN(gv), 862 GvNAMEUTF8(gv) ? SVf_UTF8 : 0 863 ) 864 )) { 865 cv = GvCVu(autogv); 866 goto check_cv; 867 } 868 else { 869 SV *tmpstr = sv_newmortal(); 870 gv_efullname3(tmpstr, gv, NULL); 871 DIE(aTHX_ "Undefined sort subroutine \"%" SVf "\" called", 872 SVfARG(tmpstr)); 873 } 874 } 875 else { 876 DIE(aTHX_ "Undefined subroutine in sort"); 877 } 878 } 879 880 if (is_xsub) 881 PL_sortcop = (OP*)cv; 882 else 883 PL_sortcop = CvSTART(cv); 884 } 885 } 886 else { 887 PL_sortcop = NULL; 888 } 889 890 /* optimiser converts "@a = sort @a" to "sort \@a". In this case, 891 * push (@a) onto stack, then assign result back to @a at the end of 892 * this function */ 893 if (priv & OPpSORT_INPLACE) { 894 assert( MARK+1 == SP && *SP && SvTYPE(*SP) == SVt_PVAV); 895 (void)POPMARK; /* remove mark associated with ex-OP_AASSIGN */ 896 av = MUTABLE_AV((*SP)); 897 if (SvREADONLY(av)) 898 Perl_croak_no_modify(); 899 max = AvFILL(av) + 1; 900 MEXTEND(SP, max); 901 if (SvMAGICAL(av)) { 902 for (i=0; i < max; i++) { 903 SV **svp = av_fetch(av, i, FALSE); 904 *SP++ = (svp) ? *svp : NULL; 905 } 906 } 907 else { 908 SV **svp = AvARRAY(av); 909 assert(svp || max == 0); 910 for (i = 0; i < max; i++) 911 *SP++ = *svp++; 912 } 913 SP--; 914 p1 = p2 = SP - (max-1); 915 } 916 else { 917 p2 = MARK+1; 918 max = SP - MARK; 919 } 920 921 /* shuffle stack down, removing optional initial cv (p1!=p2), plus 922 * any nulls; also stringify or converting to integer or number as 923 * required any args */ 924 copytmps = cBOOL(PL_sortcop); 925 for (i=max; i > 0 ; i--) { 926 if ((*p1 = *p2++)) { /* Weed out nulls. */ 927 if (copytmps && SvPADTMP(*p1)) { 928 *p1 = sv_mortalcopy(*p1); 929 } 930 SvTEMP_off(*p1); 931 if (!PL_sortcop) { 932 if (priv & OPpSORT_NUMERIC) { 933 if (priv & OPpSORT_INTEGER) { 934 if (!SvIOK(*p1)) 935 (void)sv_2iv_flags(*p1, SV_GMAGIC|SV_SKIP_OVERLOAD); 936 } 937 else { 938 if (!SvNSIOK(*p1)) 939 (void)sv_2nv_flags(*p1, SV_GMAGIC|SV_SKIP_OVERLOAD); 940 if (all_SIVs && !SvSIOK(*p1)) 941 all_SIVs = 0; 942 } 943 } 944 else { 945 if (!SvPOK(*p1)) 946 (void)sv_2pv_flags(*p1, 0, 947 SV_GMAGIC|SV_CONST_RETURN|SV_SKIP_OVERLOAD); 948 } 949 if (SvAMAGIC(*p1)) 950 overloading = 1; 951 } 952 p1++; 953 } 954 else 955 max--; 956 } 957 if (max > 1) { 958 SV **start; 959 if (PL_sortcop) { 960 PERL_CONTEXT *cx; 961 const bool oldcatch = CATCH_GET; 962 I32 old_savestack_ix = PL_savestack_ix; 963 964 SAVEOP(); 965 966 CATCH_SET(TRUE); 967 PUSHSTACKi(PERLSI_SORT); 968 if (!hasargs && !is_xsub) { 969 SAVEGENERICSV(PL_firstgv); 970 SAVEGENERICSV(PL_secondgv); 971 PL_firstgv = MUTABLE_GV(SvREFCNT_inc( 972 gv_fetchpvs("a", GV_ADD|GV_NOTQUAL, SVt_PV) 973 )); 974 PL_secondgv = MUTABLE_GV(SvREFCNT_inc( 975 gv_fetchpvs("b", GV_ADD|GV_NOTQUAL, SVt_PV) 976 )); 977 /* make sure the GP isn't removed out from under us for 978 * the SAVESPTR() */ 979 save_gp(PL_firstgv, 0); 980 save_gp(PL_secondgv, 0); 981 /* we don't want modifications localized */ 982 GvINTRO_off(PL_firstgv); 983 GvINTRO_off(PL_secondgv); 984 SAVEGENERICSV(GvSV(PL_firstgv)); 985 SvREFCNT_inc(GvSV(PL_firstgv)); 986 SAVEGENERICSV(GvSV(PL_secondgv)); 987 SvREFCNT_inc(GvSV(PL_secondgv)); 988 } 989 990 gimme = G_SCALAR; 991 cx = cx_pushblock(CXt_NULL, gimme, PL_stack_base, old_savestack_ix); 992 if (!(flags & OPf_SPECIAL)) { 993 cx->cx_type = CXt_SUB|CXp_MULTICALL; 994 cx_pushsub(cx, cv, NULL, hasargs); 995 if (!is_xsub) { 996 PADLIST * const padlist = CvPADLIST(cv); 997 998 if (++CvDEPTH(cv) >= 2) 999 pad_push(padlist, CvDEPTH(cv)); 1000 PAD_SET_CUR_NOSAVE(padlist, CvDEPTH(cv)); 1001 1002 if (hasargs) { 1003 /* This is mostly copied from pp_entersub */ 1004 AV * const av = MUTABLE_AV(PAD_SVl(0)); 1005 1006 cx->blk_sub.savearray = GvAV(PL_defgv); 1007 GvAV(PL_defgv) = MUTABLE_AV(SvREFCNT_inc_simple(av)); 1008 } 1009 1010 } 1011 } 1012 1013 start = p1 - max; 1014 sortsvp(aTHX_ start, max, 1015 (is_xsub ? S_sortcv_xsub : hasargs ? S_sortcv_stacked : S_sortcv), 1016 sort_flags); 1017 1018 /* Reset cx, in case the context stack has been reallocated. */ 1019 cx = CX_CUR(); 1020 1021 PL_stack_sp = PL_stack_base + cx->blk_oldsp; 1022 1023 CX_LEAVE_SCOPE(cx); 1024 if (!(flags & OPf_SPECIAL)) { 1025 assert(CxTYPE(cx) == CXt_SUB); 1026 cx_popsub(cx); 1027 } 1028 else 1029 assert(CxTYPE(cx) == CXt_NULL); 1030 /* there isn't a POPNULL ! */ 1031 1032 cx_popblock(cx); 1033 CX_POP(cx); 1034 POPSTACK; 1035 CATCH_SET(oldcatch); 1036 } 1037 else { 1038 MEXTEND(SP, 20); /* Can't afford stack realloc on signal. */ 1039 start = ORIGMARK+1; 1040 sortsvp(aTHX_ start, max, 1041 (priv & OPpSORT_NUMERIC) 1042 ? ( ( ( priv & OPpSORT_INTEGER) || all_SIVs) 1043 ? ( overloading ? S_amagic_i_ncmp : S_sv_i_ncmp) 1044 : ( overloading ? S_amagic_ncmp : S_sv_ncmp ) ) 1045 : ( 1046 #ifdef USE_LOCALE_COLLATE 1047 IN_LC_RUNTIME(LC_COLLATE) 1048 ? ( overloading 1049 ? (SVCOMPARE_t)S_amagic_cmp_locale 1050 : (SVCOMPARE_t)sv_cmp_locale_static) 1051 : 1052 #endif 1053 ( overloading ? (SVCOMPARE_t)S_amagic_cmp : (SVCOMPARE_t)sv_cmp_static)), 1054 sort_flags); 1055 } 1056 if ((priv & OPpSORT_REVERSE) != 0) { 1057 SV **q = start+max-1; 1058 while (start < q) { 1059 SV * const tmp = *start; 1060 *start++ = *q; 1061 *q-- = tmp; 1062 } 1063 } 1064 } 1065 1066 if (av) { 1067 /* copy back result to the array */ 1068 SV** const base = MARK+1; 1069 if (SvMAGICAL(av)) { 1070 for (i = 0; i < max; i++) 1071 base[i] = newSVsv(base[i]); 1072 av_clear(av); 1073 av_extend(av, max); 1074 for (i=0; i < max; i++) { 1075 SV * const sv = base[i]; 1076 SV ** const didstore = av_store(av, i, sv); 1077 if (SvSMAGICAL(sv)) 1078 mg_set(sv); 1079 if (!didstore) 1080 sv_2mortal(sv); 1081 } 1082 } 1083 else { 1084 /* the elements of av are likely to be the same as the 1085 * (non-refcounted) elements on the stack, just in a different 1086 * order. However, its possible that someone's messed with av 1087 * in the meantime. So bump and unbump the relevant refcounts 1088 * first. 1089 */ 1090 for (i = 0; i < max; i++) { 1091 SV *sv = base[i]; 1092 assert(sv); 1093 if (SvREFCNT(sv) > 1) 1094 base[i] = newSVsv(sv); 1095 else 1096 SvREFCNT_inc_simple_void_NN(sv); 1097 } 1098 av_clear(av); 1099 if (max > 0) { 1100 av_extend(av, max); 1101 Copy(base, AvARRAY(av), max, SV*); 1102 } 1103 AvFILLp(av) = max - 1; 1104 AvREIFY_off(av); 1105 AvREAL_on(av); 1106 } 1107 } 1108 LEAVE; 1109 PL_stack_sp = ORIGMARK + max; 1110 return nextop; 1111 } 1112 1113 static I32 1114 S_sortcv(pTHX_ SV *const a, SV *const b) 1115 { 1116 const I32 oldsaveix = PL_savestack_ix; 1117 I32 result; 1118 PMOP * const pm = PL_curpm; 1119 COP * const cop = PL_curcop; 1120 SV *olda, *oldb; 1121 1122 PERL_ARGS_ASSERT_SORTCV; 1123 1124 olda = GvSV(PL_firstgv); 1125 GvSV(PL_firstgv) = SvREFCNT_inc_simple_NN(a); 1126 SvREFCNT_dec(olda); 1127 oldb = GvSV(PL_secondgv); 1128 GvSV(PL_secondgv) = SvREFCNT_inc_simple_NN(b); 1129 SvREFCNT_dec(oldb); 1130 PL_stack_sp = PL_stack_base; 1131 PL_op = PL_sortcop; 1132 CALLRUNOPS(aTHX); 1133 PL_curcop = cop; 1134 /* entry zero of a stack is always PL_sv_undef, which 1135 * simplifies converting a '()' return into undef in scalar context */ 1136 assert(PL_stack_sp > PL_stack_base || *PL_stack_base == &PL_sv_undef); 1137 result = SvIV(*PL_stack_sp); 1138 1139 LEAVE_SCOPE(oldsaveix); 1140 PL_curpm = pm; 1141 return result; 1142 } 1143 1144 static I32 1145 S_sortcv_stacked(pTHX_ SV *const a, SV *const b) 1146 { 1147 const I32 oldsaveix = PL_savestack_ix; 1148 I32 result; 1149 AV * const av = GvAV(PL_defgv); 1150 PMOP * const pm = PL_curpm; 1151 COP * const cop = PL_curcop; 1152 1153 PERL_ARGS_ASSERT_SORTCV_STACKED; 1154 1155 if (AvREAL(av)) { 1156 av_clear(av); 1157 AvREAL_off(av); 1158 AvREIFY_on(av); 1159 } 1160 if (AvMAX(av) < 1) { 1161 SV **ary = AvALLOC(av); 1162 if (AvARRAY(av) != ary) { 1163 AvMAX(av) += AvARRAY(av) - AvALLOC(av); 1164 AvARRAY(av) = ary; 1165 } 1166 if (AvMAX(av) < 1) { 1167 Renew(ary,2,SV*); 1168 AvMAX(av) = 1; 1169 AvARRAY(av) = ary; 1170 AvALLOC(av) = ary; 1171 } 1172 } 1173 AvFILLp(av) = 1; 1174 1175 AvARRAY(av)[0] = a; 1176 AvARRAY(av)[1] = b; 1177 PL_stack_sp = PL_stack_base; 1178 PL_op = PL_sortcop; 1179 CALLRUNOPS(aTHX); 1180 PL_curcop = cop; 1181 /* entry zero of a stack is always PL_sv_undef, which 1182 * simplifies converting a '()' return into undef in scalar context */ 1183 assert(PL_stack_sp > PL_stack_base || *PL_stack_base == &PL_sv_undef); 1184 result = SvIV(*PL_stack_sp); 1185 1186 LEAVE_SCOPE(oldsaveix); 1187 PL_curpm = pm; 1188 return result; 1189 } 1190 1191 static I32 1192 S_sortcv_xsub(pTHX_ SV *const a, SV *const b) 1193 { 1194 dSP; 1195 const I32 oldsaveix = PL_savestack_ix; 1196 CV * const cv=MUTABLE_CV(PL_sortcop); 1197 I32 result; 1198 PMOP * const pm = PL_curpm; 1199 1200 PERL_ARGS_ASSERT_SORTCV_XSUB; 1201 1202 SP = PL_stack_base; 1203 PUSHMARK(SP); 1204 EXTEND(SP, 2); 1205 *++SP = a; 1206 *++SP = b; 1207 PUTBACK; 1208 (void)(*CvXSUB(cv))(aTHX_ cv); 1209 /* entry zero of a stack is always PL_sv_undef, which 1210 * simplifies converting a '()' return into undef in scalar context */ 1211 assert(PL_stack_sp > PL_stack_base || *PL_stack_base == &PL_sv_undef); 1212 result = SvIV(*PL_stack_sp); 1213 1214 LEAVE_SCOPE(oldsaveix); 1215 PL_curpm = pm; 1216 return result; 1217 } 1218 1219 1220 static I32 1221 S_sv_ncmp(pTHX_ SV *const a, SV *const b) 1222 { 1223 I32 cmp = do_ncmp(a, b); 1224 1225 PERL_ARGS_ASSERT_SV_NCMP; 1226 1227 if (cmp == 2) { 1228 if (ckWARN(WARN_UNINITIALIZED)) report_uninit(NULL); 1229 return 0; 1230 } 1231 1232 return cmp; 1233 } 1234 1235 static I32 1236 S_sv_i_ncmp(pTHX_ SV *const a, SV *const b) 1237 { 1238 const IV iv1 = SvIV(a); 1239 const IV iv2 = SvIV(b); 1240 1241 PERL_ARGS_ASSERT_SV_I_NCMP; 1242 1243 return iv1 < iv2 ? -1 : iv1 > iv2 ? 1 : 0; 1244 } 1245 1246 #define tryCALL_AMAGICbin(left,right,meth) \ 1247 (SvAMAGIC(left)||SvAMAGIC(right)) \ 1248 ? amagic_call(left, right, meth, 0) \ 1249 : NULL; 1250 1251 #define SORT_NORMAL_RETURN_VALUE(val) (((val) > 0) ? 1 : ((val) ? -1 : 0)) 1252 1253 static I32 1254 S_amagic_ncmp(pTHX_ SV *const a, SV *const b) 1255 { 1256 SV * const tmpsv = tryCALL_AMAGICbin(a,b,ncmp_amg); 1257 1258 PERL_ARGS_ASSERT_AMAGIC_NCMP; 1259 1260 if (tmpsv) { 1261 if (SvIOK(tmpsv)) { 1262 const I32 i = SvIVX(tmpsv); 1263 return SORT_NORMAL_RETURN_VALUE(i); 1264 } 1265 else { 1266 const NV d = SvNV(tmpsv); 1267 return SORT_NORMAL_RETURN_VALUE(d); 1268 } 1269 } 1270 return S_sv_ncmp(aTHX_ a, b); 1271 } 1272 1273 static I32 1274 S_amagic_i_ncmp(pTHX_ SV *const a, SV *const b) 1275 { 1276 SV * const tmpsv = tryCALL_AMAGICbin(a,b,ncmp_amg); 1277 1278 PERL_ARGS_ASSERT_AMAGIC_I_NCMP; 1279 1280 if (tmpsv) { 1281 if (SvIOK(tmpsv)) { 1282 const I32 i = SvIVX(tmpsv); 1283 return SORT_NORMAL_RETURN_VALUE(i); 1284 } 1285 else { 1286 const NV d = SvNV(tmpsv); 1287 return SORT_NORMAL_RETURN_VALUE(d); 1288 } 1289 } 1290 return S_sv_i_ncmp(aTHX_ a, b); 1291 } 1292 1293 static I32 1294 S_amagic_cmp(pTHX_ SV *const str1, SV *const str2) 1295 { 1296 SV * const tmpsv = tryCALL_AMAGICbin(str1,str2,scmp_amg); 1297 1298 PERL_ARGS_ASSERT_AMAGIC_CMP; 1299 1300 if (tmpsv) { 1301 if (SvIOK(tmpsv)) { 1302 const I32 i = SvIVX(tmpsv); 1303 return SORT_NORMAL_RETURN_VALUE(i); 1304 } 1305 else { 1306 const NV d = SvNV(tmpsv); 1307 return SORT_NORMAL_RETURN_VALUE(d); 1308 } 1309 } 1310 return sv_cmp(str1, str2); 1311 } 1312 1313 #ifdef USE_LOCALE_COLLATE 1314 1315 static I32 1316 S_amagic_cmp_locale(pTHX_ SV *const str1, SV *const str2) 1317 { 1318 SV * const tmpsv = tryCALL_AMAGICbin(str1,str2,scmp_amg); 1319 1320 PERL_ARGS_ASSERT_AMAGIC_CMP_LOCALE; 1321 1322 if (tmpsv) { 1323 if (SvIOK(tmpsv)) { 1324 const I32 i = SvIVX(tmpsv); 1325 return SORT_NORMAL_RETURN_VALUE(i); 1326 } 1327 else { 1328 const NV d = SvNV(tmpsv); 1329 return SORT_NORMAL_RETURN_VALUE(d); 1330 } 1331 } 1332 return sv_cmp_locale(str1, str2); 1333 } 1334 1335 #endif 1336 1337 /* 1338 * ex: set ts=8 sts=4 sw=4 et: 1339 */ 1340