xref: /openbsd-src/gnu/usr.bin/perl/lib/Unicode/UCD.pm (revision e5157e49389faebcb42b7237d55fbf096d9c2523)
1package Unicode::UCD;
2
3use strict;
4use warnings;
5no warnings 'surrogate';    # surrogates can be inputs to this
6use charnames ();
7
8our $VERSION = '0.58';
9
10require Exporter;
11
12our @ISA = qw(Exporter);
13
14our @EXPORT_OK = qw(charinfo
15		    charblock charscript
16		    charblocks charscripts
17		    charinrange
18		    general_categories bidi_types
19		    compexcl
20		    casefold all_casefolds casespec
21		    namedseq
22                    num
23                    prop_aliases
24                    prop_value_aliases
25                    prop_invlist
26                    prop_invmap
27                    search_invlist
28                    MAX_CP
29                );
30
31use Carp;
32
33sub IS_ASCII_PLATFORM { ord("A") == 65 }
34
35=head1 NAME
36
37Unicode::UCD - Unicode character database
38
39=head1 SYNOPSIS
40
41    use Unicode::UCD 'charinfo';
42    my $charinfo   = charinfo($codepoint);
43
44    use Unicode::UCD 'casefold';
45    my $casefold = casefold(0xFB00);
46
47    use Unicode::UCD 'all_casefolds';
48    my $all_casefolds_ref = all_casefolds();
49
50    use Unicode::UCD 'casespec';
51    my $casespec = casespec(0xFB00);
52
53    use Unicode::UCD 'charblock';
54    my $charblock  = charblock($codepoint);
55
56    use Unicode::UCD 'charscript';
57    my $charscript = charscript($codepoint);
58
59    use Unicode::UCD 'charblocks';
60    my $charblocks = charblocks();
61
62    use Unicode::UCD 'charscripts';
63    my $charscripts = charscripts();
64
65    use Unicode::UCD qw(charscript charinrange);
66    my $range = charscript($script);
67    print "looks like $script\n" if charinrange($range, $codepoint);
68
69    use Unicode::UCD qw(general_categories bidi_types);
70    my $categories = general_categories();
71    my $types = bidi_types();
72
73    use Unicode::UCD 'prop_aliases';
74    my @space_names = prop_aliases("space");
75
76    use Unicode::UCD 'prop_value_aliases';
77    my @gc_punct_names = prop_value_aliases("Gc", "Punct");
78
79    use Unicode::UCD 'prop_invlist';
80    my @puncts = prop_invlist("gc=punctuation");
81
82    use Unicode::UCD 'prop_invmap';
83    my ($list_ref, $map_ref, $format, $missing)
84                                      = prop_invmap("General Category");
85
86    use Unicode::UCD 'search_invlist';
87    my $index = search_invlist(\@invlist, $code_point);
88
89    use Unicode::UCD 'compexcl';
90    my $compexcl = compexcl($codepoint);
91
92    use Unicode::UCD 'namedseq';
93    my $namedseq = namedseq($named_sequence_name);
94
95    my $unicode_version = Unicode::UCD::UnicodeVersion();
96
97    my $convert_to_numeric =
98              Unicode::UCD::num("\N{RUMI DIGIT ONE}\N{RUMI DIGIT TWO}");
99
100=head1 DESCRIPTION
101
102The Unicode::UCD module offers a series of functions that
103provide a simple interface to the Unicode
104Character Database.
105
106=head2 code point argument
107
108Some of the functions are called with a I<code point argument>, which is either
109a decimal or a hexadecimal scalar designating a code point in the platform's
110native character set (extended to Unicode), or C<U+> followed by hexadecimals
111designating a Unicode code point.  A leading 0 will force a hexadecimal
112interpretation, as will a hexadecimal digit that isn't a decimal digit.
113
114Examples:
115
116    223     # Decimal 223 in native character set
117    0223    # Hexadecimal 223, native (= 547 decimal)
118    0xDF    # Hexadecimal DF, native (= 223 decimal
119    U+DF    # Hexadecimal DF, in Unicode's character set
120                              (= LATIN SMALL LETTER SHARP S)
121
122Note that the largest code point in Unicode is U+10FFFF.
123
124=cut
125
126my $BLOCKSFH;
127my $VERSIONFH;
128my $CASEFOLDFH;
129my $CASESPECFH;
130my $NAMEDSEQFH;
131my $v_unicode_version;  # v-string.
132
133sub openunicode {
134    my ($rfh, @path) = @_;
135    my $f;
136    unless (defined $$rfh) {
137	for my $d (@INC) {
138	    use File::Spec;
139	    $f = File::Spec->catfile($d, "unicore", @path);
140	    last if open($$rfh, $f);
141	    undef $f;
142	}
143	croak __PACKAGE__, ": failed to find ",
144              File::Spec->catfile(@path), " in @INC"
145	    unless defined $f;
146    }
147    return $f;
148}
149
150sub _dclone ($) {   # Use Storable::dclone if available; otherwise emulate it.
151
152    use if defined &DynaLoader::boot_DynaLoader, Storable => qw(dclone);
153
154    return dclone(shift) if defined &dclone;
155
156    my $arg = shift;
157    my $type = ref $arg;
158    return $arg unless $type;   # No deep cloning needed for scalars
159
160    if ($type eq 'ARRAY') {
161        my @return;
162        foreach my $element (@$arg) {
163            push @return, &_dclone($element);
164        }
165        return \@return;
166    }
167    elsif ($type eq 'HASH') {
168        my %return;
169        foreach my $key (keys %$arg) {
170            $return{$key} = &_dclone($arg->{$key});
171        }
172        return \%return;
173    }
174    else {
175        croak "_dclone can't handle " . $type;
176    }
177}
178
179=head2 B<charinfo()>
180
181    use Unicode::UCD 'charinfo';
182
183    my $charinfo = charinfo(0x41);
184
185This returns information about the input L</code point argument>
186as a reference to a hash of fields as defined by the Unicode
187standard.  If the L</code point argument> is not assigned in the standard
188(i.e., has the general category C<Cn> meaning C<Unassigned>)
189or is a non-character (meaning it is guaranteed to never be assigned in
190the standard),
191C<undef> is returned.
192
193Fields that aren't applicable to the particular code point argument exist in the
194returned hash, and are empty.
195
196The keys in the hash with the meanings of their values are:
197
198=over
199
200=item B<code>
201
202the input native L</code point argument> expressed in hexadecimal, with
203leading zeros
204added if necessary to make it contain at least four hexdigits
205
206=item B<name>
207
208name of I<code>, all IN UPPER CASE.
209Some control-type code points do not have names.
210This field will be empty for C<Surrogate> and C<Private Use> code points,
211and for the others without a name,
212it will contain a description enclosed in angle brackets, like
213C<E<lt>controlE<gt>>.
214
215
216=item B<category>
217
218The short name of the general category of I<code>.
219This will match one of the keys in the hash returned by L</general_categories()>.
220
221The L</prop_value_aliases()> function can be used to get all the synonyms
222of the category name.
223
224=item B<combining>
225
226the combining class number for I<code> used in the Canonical Ordering Algorithm.
227For Unicode 5.1, this is described in Section 3.11 C<Canonical Ordering Behavior>
228available at
229L<http://www.unicode.org/versions/Unicode5.1.0/>
230
231The L</prop_value_aliases()> function can be used to get all the synonyms
232of the combining class number.
233
234=item B<bidi>
235
236bidirectional type of I<code>.
237This will match one of the keys in the hash returned by L</bidi_types()>.
238
239The L</prop_value_aliases()> function can be used to get all the synonyms
240of the bidi type name.
241
242=item B<decomposition>
243
244is empty if I<code> has no decomposition; or is one or more codes
245(separated by spaces) that, taken in order, represent a decomposition for
246I<code>.  Each has at least four hexdigits.
247The codes may be preceded by a word enclosed in angle brackets, then a space,
248like C<E<lt>compatE<gt> >, giving the type of decomposition
249
250This decomposition may be an intermediate one whose components are also
251decomposable.  Use L<Unicode::Normalize> to get the final decomposition.
252
253=item B<decimal>
254
255if I<code> represents a decimal digit this is its integer numeric value
256
257=item B<digit>
258
259if I<code> represents some other digit-like number, this is its integer
260numeric value
261
262=item B<numeric>
263
264if I<code> represents a whole or rational number, this is its numeric value.
265Rational values are expressed as a string like C<1/4>.
266
267=item B<mirrored>
268
269C<Y> or C<N> designating if I<code> is mirrored in bidirectional text
270
271=item B<unicode10>
272
273name of I<code> in the Unicode 1.0 standard if one
274existed for this code point and is different from the current name
275
276=item B<comment>
277
278As of Unicode 6.0, this is always empty.
279
280=item B<upper>
281
282is empty if there is no single code point uppercase mapping for I<code>
283(its uppercase mapping is itself);
284otherwise it is that mapping expressed as at least four hexdigits.
285(L</casespec()> should be used in addition to B<charinfo()>
286for case mappings when the calling program can cope with multiple code point
287mappings.)
288
289=item B<lower>
290
291is empty if there is no single code point lowercase mapping for I<code>
292(its lowercase mapping is itself);
293otherwise it is that mapping expressed as at least four hexdigits.
294(L</casespec()> should be used in addition to B<charinfo()>
295for case mappings when the calling program can cope with multiple code point
296mappings.)
297
298=item B<title>
299
300is empty if there is no single code point titlecase mapping for I<code>
301(its titlecase mapping is itself);
302otherwise it is that mapping expressed as at least four hexdigits.
303(L</casespec()> should be used in addition to B<charinfo()>
304for case mappings when the calling program can cope with multiple code point
305mappings.)
306
307=item B<block>
308
309the block I<code> belongs to (used in C<\p{Blk=...}>).
310See L</Blocks versus Scripts>.
311
312
313=item B<script>
314
315the script I<code> belongs to.
316See L</Blocks versus Scripts>.
317
318=back
319
320Note that you cannot do (de)composition and casing based solely on the
321I<decomposition>, I<combining>, I<lower>, I<upper>, and I<title> fields;
322you will need also the L</compexcl()>, and L</casespec()> functions.
323
324=cut
325
326# NB: This function is nearly duplicated in charnames.pm
327sub _getcode {
328    my $arg = shift;
329
330    if ($arg =~ /^[1-9]\d*$/) {
331	return $arg;
332    }
333    elsif ($arg =~ /^(?:0[xX])?([[:xdigit:]]+)$/) {
334	return CORE::hex($1);
335    }
336    elsif ($arg =~ /^[Uu]\+([[:xdigit:]]+)$/) { # Is of form U+0000, means
337                                                # wants the Unicode code
338                                                # point, not the native one
339        my $decimal = CORE::hex($1);
340        return $decimal if IS_ASCII_PLATFORM;
341        return utf8::unicode_to_native($decimal);
342    }
343
344    return;
345}
346
347# Populated by _num.  Converts real number back to input rational
348my %real_to_rational;
349
350# To store the contents of files found on disk.
351my @BIDIS;
352my @CATEGORIES;
353my @DECOMPOSITIONS;
354my @NUMERIC_TYPES;
355my %SIMPLE_LOWER;
356my %SIMPLE_TITLE;
357my %SIMPLE_UPPER;
358my %UNICODE_1_NAMES;
359my %ISO_COMMENT;
360
361sub charinfo {
362
363    # This function has traditionally mimicked what is in UnicodeData.txt,
364    # warts and all.  This is a re-write that avoids UnicodeData.txt so that
365    # it can be removed to save disk space.  Instead, this assembles
366    # information gotten by other methods that get data from various other
367    # files.  It uses charnames to get the character name; and various
368    # mktables tables.
369
370    use feature 'unicode_strings';
371
372    # Will fail if called under minitest
373    use if defined &DynaLoader::boot_DynaLoader, "Unicode::Normalize" => qw(getCombinClass NFD);
374
375    my $arg  = shift;
376    my $code = _getcode($arg);
377    croak __PACKAGE__, "::charinfo: unknown code '$arg'" unless defined $code;
378
379    # Non-unicode implies undef.
380    return if $code > 0x10FFFF;
381
382    my %prop;
383    my $char = chr($code);
384
385    @CATEGORIES =_read_table("To/Gc.pl") unless @CATEGORIES;
386    $prop{'category'} = _search(\@CATEGORIES, 0, $#CATEGORIES, $code)
387                        // $utf8::SwashInfo{'ToGc'}{'missing'};
388
389    return if $prop{'category'} eq 'Cn';    # Unassigned code points are undef
390
391    $prop{'code'} = sprintf "%04X", $code;
392    $prop{'name'} = ($char =~ /\p{Cntrl}/) ? '<control>'
393                                           : (charnames::viacode($code) // "");
394
395    $prop{'combining'} = getCombinClass($code);
396
397    @BIDIS =_read_table("To/Bc.pl") unless @BIDIS;
398    $prop{'bidi'} = _search(\@BIDIS, 0, $#BIDIS, $code)
399                    // $utf8::SwashInfo{'ToBc'}{'missing'};
400
401    # For most code points, we can just read in "unicore/Decomposition.pl", as
402    # its contents are exactly what should be output.  But that file doesn't
403    # contain the data for the Hangul syllable decompositions, which can be
404    # algorithmically computed, and NFD() does that, so we call NFD() for
405    # those.  We can't use NFD() for everything, as it does a complete
406    # recursive decomposition, and what this function has always done is to
407    # return what's in UnicodeData.txt which doesn't show that recursiveness.
408    # Fortunately, the NFD() of the Hanguls doesn't have any recursion
409    # issues.
410    # Having no decomposition implies an empty field; otherwise, all but
411    # "Canonical" imply a compatible decomposition, and the type is prefixed
412    # to that, as it is in UnicodeData.txt
413    UnicodeVersion() unless defined $v_unicode_version;
414    if ($v_unicode_version ge v2.0.0 && $char =~ /\p{Block=Hangul_Syllables}/) {
415        # The code points of the decomposition are output in standard Unicode
416        # hex format, separated by blanks.
417        $prop{'decomposition'} = join " ", map { sprintf("%04X", $_)}
418                                           unpack "U*", NFD($char);
419    }
420    else {
421        @DECOMPOSITIONS = _read_table("Decomposition.pl")
422                          unless @DECOMPOSITIONS;
423        $prop{'decomposition'} = _search(\@DECOMPOSITIONS, 0, $#DECOMPOSITIONS,
424                                                                $code) // "";
425    }
426
427    # Can use num() to get the numeric values, if any.
428    if (! defined (my $value = num($char))) {
429        $prop{'decimal'} = $prop{'digit'} = $prop{'numeric'} = "";
430    }
431    else {
432        if ($char =~ /\d/) {
433            $prop{'decimal'} = $prop{'digit'} = $prop{'numeric'} = $value;
434        }
435        else {
436
437            # For non-decimal-digits, we have to read in the Numeric type
438            # to distinguish them.  It is not just a matter of integer vs.
439            # rational, as some whole number values are not considered digits,
440            # e.g., TAMIL NUMBER TEN.
441            $prop{'decimal'} = "";
442
443            @NUMERIC_TYPES =_read_table("To/Nt.pl") unless @NUMERIC_TYPES;
444            if ((_search(\@NUMERIC_TYPES, 0, $#NUMERIC_TYPES, $code) // "")
445                eq 'Digit')
446            {
447                $prop{'digit'} = $prop{'numeric'} = $value;
448            }
449            else {
450                $prop{'digit'} = "";
451                $prop{'numeric'} = $real_to_rational{$value} // $value;
452            }
453        }
454    }
455
456    $prop{'mirrored'} = ($char =~ /\p{Bidi_Mirrored}/) ? 'Y' : 'N';
457
458    %UNICODE_1_NAMES =_read_table("To/Na1.pl", "use_hash") unless %UNICODE_1_NAMES;
459    $prop{'unicode10'} = $UNICODE_1_NAMES{$code} // "";
460
461    UnicodeVersion() unless defined $v_unicode_version;
462    if ($v_unicode_version ge v6.0.0) {
463        $prop{'comment'} = "";
464    }
465    else {
466        %ISO_COMMENT = _read_table("To/Isc.pl", "use_hash") unless %ISO_COMMENT;
467        $prop{'comment'} = (defined $ISO_COMMENT{$code})
468                           ? $ISO_COMMENT{$code}
469                           : "";
470    }
471
472    %SIMPLE_UPPER = _read_table("To/Uc.pl", "use_hash") unless %SIMPLE_UPPER;
473    $prop{'upper'} = (defined $SIMPLE_UPPER{$code})
474                     ? sprintf("%04X", $SIMPLE_UPPER{$code})
475                     : "";
476
477    %SIMPLE_LOWER = _read_table("To/Lc.pl", "use_hash") unless %SIMPLE_LOWER;
478    $prop{'lower'} = (defined $SIMPLE_LOWER{$code})
479                     ? sprintf("%04X", $SIMPLE_LOWER{$code})
480                     : "";
481
482    %SIMPLE_TITLE = _read_table("To/Tc.pl", "use_hash") unless %SIMPLE_TITLE;
483    $prop{'title'} = (defined $SIMPLE_TITLE{$code})
484                     ? sprintf("%04X", $SIMPLE_TITLE{$code})
485                     : "";
486
487    $prop{block}  = charblock($code);
488    $prop{script} = charscript($code);
489    return \%prop;
490}
491
492sub _search { # Binary search in a [[lo,hi,prop],[...],...] table.
493    my ($table, $lo, $hi, $code) = @_;
494
495    return if $lo > $hi;
496
497    my $mid = int(($lo+$hi) / 2);
498
499    if ($table->[$mid]->[0] < $code) {
500	if ($table->[$mid]->[1] >= $code) {
501	    return $table->[$mid]->[2];
502	} else {
503	    _search($table, $mid + 1, $hi, $code);
504	}
505    } elsif ($table->[$mid]->[0] > $code) {
506	_search($table, $lo, $mid - 1, $code);
507    } else {
508	return $table->[$mid]->[2];
509    }
510}
511
512sub _read_table ($;$) {
513
514    # Returns the contents of the mktables generated table file located at $1
515    # in the form of either an array of arrays or a hash, depending on if the
516    # optional second parameter is true (for hash return) or not.  In the case
517    # of a hash return, each key is a code point, and its corresponding value
518    # is what the table gives as the code point's corresponding value.  In the
519    # case of an array return, each outer array denotes a range with [0] the
520    # start point of that range; [1] the end point; and [2] the value that
521    # every code point in the range has.  The hash return is useful for fast
522    # lookup when the table contains only single code point ranges.  The array
523    # return takes much less memory when there are large ranges.
524    #
525    # This function has the side effect of setting
526    # $utf8::SwashInfo{$property}{'format'} to be the mktables format of the
527    #                                       table; and
528    # $utf8::SwashInfo{$property}{'missing'} to be the value for all entries
529    #                                        not listed in the table.
530    # where $property is the Unicode property name, preceded by 'To' for map
531    # properties., e.g., 'ToSc'.
532    #
533    # Table entries look like one of:
534    # 0000	0040	Common	# [65]
535    # 00AA		Latin
536
537    my $table = shift;
538    my $return_hash = shift;
539    $return_hash = 0 unless defined $return_hash;
540    my @return;
541    my %return;
542    local $_;
543    my $list = do "unicore/$table";
544
545    # Look up if this property requires adjustments, which we do below if it
546    # does.
547    require "unicore/Heavy.pl";
548    my $property = $table =~ s/\.pl//r;
549    $property = $utf8::file_to_swash_name{$property};
550    my $to_adjust = defined $property
551                    && $utf8::SwashInfo{$property}{'format'} =~ / ^ a /x;
552
553    for (split /^/m, $list) {
554        my ($start, $end, $value) = / ^ (.+?) \t (.*?) \t (.+?)
555                                        \s* ( \# .* )?  # Optional comment
556                                        $ /x;
557        my $decimal_start = hex $start;
558        my $decimal_end = ($end eq "") ? $decimal_start : hex $end;
559        $value = hex $value if $to_adjust
560                               && $utf8::SwashInfo{$property}{'format'} eq 'ax';
561        if ($return_hash) {
562            foreach my $i ($decimal_start .. $decimal_end) {
563                $return{$i} = ($to_adjust)
564                              ? $value + $i - $decimal_start
565                              : $value;
566            }
567        }
568        elsif (! $to_adjust
569               && @return
570               && $return[-1][1] == $decimal_start - 1
571               && $return[-1][2] eq $value)
572        {
573            # If this is merely extending the previous range, do just that.
574            $return[-1]->[1] = $decimal_end;
575        }
576        else {
577            push @return, [ $decimal_start, $decimal_end, $value ];
578        }
579    }
580    return ($return_hash) ? %return : @return;
581}
582
583sub charinrange {
584    my ($range, $arg) = @_;
585    my $code = _getcode($arg);
586    croak __PACKAGE__, "::charinrange: unknown code '$arg'"
587	unless defined $code;
588    _search($range, 0, $#$range, $code);
589}
590
591=head2 B<charblock()>
592
593    use Unicode::UCD 'charblock';
594
595    my $charblock = charblock(0x41);
596    my $charblock = charblock(1234);
597    my $charblock = charblock(0x263a);
598    my $charblock = charblock("U+263a");
599
600    my $range     = charblock('Armenian');
601
602With a L</code point argument> C<charblock()> returns the I<block> the code point
603belongs to, e.g.  C<Basic Latin>.  The old-style block name is returned (see
604L</Old-style versus new-style block names>).
605If the code point is unassigned, this returns the block it would belong to if
606it were assigned.  (If the Unicode version being used is so early as to not
607have blocks, all code points are considered to be in C<No_Block>.)
608
609See also L</Blocks versus Scripts>.
610
611If supplied with an argument that can't be a code point, C<charblock()> tries to
612do the opposite and interpret the argument as an old-style block name.  On an
613ASCII platform, the return value is a I<range set> with one range: an
614anonymous list with a single element that consists of another anonymous list
615whose first element is the first code point in the block, and whose second
616element is the final code point in the block.  On an EBCDIC
617platform, the first two Unicode blocks are not contiguous.  Their range sets
618are lists containing I<start-of-range>, I<end-of-range> code point pairs.  You
619can test whether a code point is in a range set using the L</charinrange()>
620function.  (To be precise, each I<range set> contains a third array element,
621after the range boundary ones: the old_style block name.)
622
623If the argument to C<charblock()> is not a known block, C<undef> is
624returned.
625
626=cut
627
628my @BLOCKS;
629my %BLOCKS;
630
631sub _charblocks {
632
633    # Can't read from the mktables table because it loses the hyphens in the
634    # original.
635    unless (@BLOCKS) {
636        UnicodeVersion() unless defined $v_unicode_version;
637        if ($v_unicode_version lt v2.0.0) {
638            my $subrange = [ 0, 0x10FFFF, 'No_Block' ];
639            push @BLOCKS, $subrange;
640            push @{$BLOCKS{'No_Block'}}, $subrange;
641        }
642        elsif (openunicode(\$BLOCKSFH, "Blocks.txt")) {
643	    local $_;
644	    local $/ = "\n";
645	    while (<$BLOCKSFH>) {
646		if (/^([0-9A-F]+)\.\.([0-9A-F]+);\s+(.+)/) {
647		    my ($lo, $hi) = (hex($1), hex($2));
648		    my $subrange = [ $lo, $hi, $3 ];
649		    push @BLOCKS, $subrange;
650		    push @{$BLOCKS{$3}}, $subrange;
651		}
652	    }
653	    close($BLOCKSFH);
654            if (! IS_ASCII_PLATFORM) {
655                # The first two blocks, through 0xFF, are wrong on EBCDIC
656                # platforms.
657
658                my @new_blocks = _read_table("To/Blk.pl");
659
660                # Get rid of the first two ranges in the Unicode version, and
661                # replace them with the ones computed by mktables.
662                shift @BLOCKS;
663                shift @BLOCKS;
664                delete $BLOCKS{'Basic Latin'};
665                delete $BLOCKS{'Latin-1 Supplement'};
666
667                # But there are multiple entries in the computed versions, and
668                # we change their names to (which we know) to be the old-style
669                # ones.
670                for my $i (0.. @new_blocks - 1) {
671                    if ($new_blocks[$i][2] =~ s/Basic_Latin/Basic Latin/
672                        or $new_blocks[$i][2] =~
673                                    s/Latin_1_Supplement/Latin-1 Supplement/)
674                    {
675                        push @{$BLOCKS{$new_blocks[$i][2]}}, $new_blocks[$i];
676                    }
677                    else {
678                        splice @new_blocks, $i;
679                        last;
680                    }
681                }
682                unshift @BLOCKS, @new_blocks;
683            }
684	}
685    }
686}
687
688sub charblock {
689    my $arg = shift;
690
691    _charblocks() unless @BLOCKS;
692
693    my $code = _getcode($arg);
694
695    if (defined $code) {
696	my $result = _search(\@BLOCKS, 0, $#BLOCKS, $code);
697        return $result if defined $result;
698        return 'No_Block';
699    }
700    elsif (exists $BLOCKS{$arg}) {
701        return _dclone $BLOCKS{$arg};
702    }
703}
704
705=head2 B<charscript()>
706
707    use Unicode::UCD 'charscript';
708
709    my $charscript = charscript(0x41);
710    my $charscript = charscript(1234);
711    my $charscript = charscript("U+263a");
712
713    my $range      = charscript('Thai');
714
715With a L</code point argument>, C<charscript()> returns the I<script> the
716code point belongs to, e.g., C<Latin>, C<Greek>, C<Han>.
717If the code point is unassigned or the Unicode version being used is so early
718that it doesn't have scripts, this function returns C<"Unknown">.
719
720If supplied with an argument that can't be a code point, charscript() tries
721to do the opposite and interpret the argument as a script name. The
722return value is a I<range set>: an anonymous list of lists that contain
723I<start-of-range>, I<end-of-range> code point pairs. You can test whether a
724code point is in a range set using the L</charinrange()> function.
725(To be precise, each I<range set> contains a third array element,
726after the range boundary ones: the script name.)
727
728If the C<charscript()> argument is not a known script, C<undef> is returned.
729
730See also L</Blocks versus Scripts>.
731
732=cut
733
734my @SCRIPTS;
735my %SCRIPTS;
736
737sub _charscripts {
738    unless (@SCRIPTS) {
739        UnicodeVersion() unless defined $v_unicode_version;
740        if ($v_unicode_version lt v3.1.0) {
741            push @SCRIPTS, [ 0, 0x10FFFF, 'Unknown' ];
742        }
743        else {
744            @SCRIPTS =_read_table("To/Sc.pl");
745        }
746    }
747    foreach my $entry (@SCRIPTS) {
748        $entry->[2] =~ s/(_\w)/\L$1/g;  # Preserve old-style casing
749        push @{$SCRIPTS{$entry->[2]}}, $entry;
750    }
751}
752
753sub charscript {
754    my $arg = shift;
755
756    _charscripts() unless @SCRIPTS;
757
758    my $code = _getcode($arg);
759
760    if (defined $code) {
761	my $result = _search(\@SCRIPTS, 0, $#SCRIPTS, $code);
762        return $result if defined $result;
763        return $utf8::SwashInfo{'ToSc'}{'missing'};
764    } elsif (exists $SCRIPTS{$arg}) {
765        return _dclone $SCRIPTS{$arg};
766    }
767
768    return;
769}
770
771=head2 B<charblocks()>
772
773    use Unicode::UCD 'charblocks';
774
775    my $charblocks = charblocks();
776
777C<charblocks()> returns a reference to a hash with the known block names
778as the keys, and the code point ranges (see L</charblock()>) as the values.
779
780The names are in the old-style (see L</Old-style versus new-style block
781names>).
782
783L<prop_invmap("block")|/prop_invmap()> can be used to get this same data in a
784different type of data structure.
785
786See also L</Blocks versus Scripts>.
787
788=cut
789
790sub charblocks {
791    _charblocks() unless %BLOCKS;
792    return _dclone \%BLOCKS;
793}
794
795=head2 B<charscripts()>
796
797    use Unicode::UCD 'charscripts';
798
799    my $charscripts = charscripts();
800
801C<charscripts()> returns a reference to a hash with the known script
802names as the keys, and the code point ranges (see L</charscript()>) as
803the values.
804
805L<prop_invmap("script")|/prop_invmap()> can be used to get this same data in a
806different type of data structure.
807
808See also L</Blocks versus Scripts>.
809
810=cut
811
812sub charscripts {
813    _charscripts() unless %SCRIPTS;
814    return _dclone \%SCRIPTS;
815}
816
817=head2 B<charinrange()>
818
819In addition to using the C<\p{Blk=...}> and C<\P{Blk=...}> constructs, you
820can also test whether a code point is in the I<range> as returned by
821L</charblock()> and L</charscript()> or as the values of the hash returned
822by L</charblocks()> and L</charscripts()> by using C<charinrange()>:
823
824    use Unicode::UCD qw(charscript charinrange);
825
826    $range = charscript('Hiragana');
827    print "looks like hiragana\n" if charinrange($range, $codepoint);
828
829=cut
830
831my %GENERAL_CATEGORIES =
832 (
833    'L'  =>         'Letter',
834    'LC' =>         'CasedLetter',
835    'Lu' =>         'UppercaseLetter',
836    'Ll' =>         'LowercaseLetter',
837    'Lt' =>         'TitlecaseLetter',
838    'Lm' =>         'ModifierLetter',
839    'Lo' =>         'OtherLetter',
840    'M'  =>         'Mark',
841    'Mn' =>         'NonspacingMark',
842    'Mc' =>         'SpacingMark',
843    'Me' =>         'EnclosingMark',
844    'N'  =>         'Number',
845    'Nd' =>         'DecimalNumber',
846    'Nl' =>         'LetterNumber',
847    'No' =>         'OtherNumber',
848    'P'  =>         'Punctuation',
849    'Pc' =>         'ConnectorPunctuation',
850    'Pd' =>         'DashPunctuation',
851    'Ps' =>         'OpenPunctuation',
852    'Pe' =>         'ClosePunctuation',
853    'Pi' =>         'InitialPunctuation',
854    'Pf' =>         'FinalPunctuation',
855    'Po' =>         'OtherPunctuation',
856    'S'  =>         'Symbol',
857    'Sm' =>         'MathSymbol',
858    'Sc' =>         'CurrencySymbol',
859    'Sk' =>         'ModifierSymbol',
860    'So' =>         'OtherSymbol',
861    'Z'  =>         'Separator',
862    'Zs' =>         'SpaceSeparator',
863    'Zl' =>         'LineSeparator',
864    'Zp' =>         'ParagraphSeparator',
865    'C'  =>         'Other',
866    'Cc' =>         'Control',
867    'Cf' =>         'Format',
868    'Cs' =>         'Surrogate',
869    'Co' =>         'PrivateUse',
870    'Cn' =>         'Unassigned',
871 );
872
873sub general_categories {
874    return _dclone \%GENERAL_CATEGORIES;
875}
876
877=head2 B<general_categories()>
878
879    use Unicode::UCD 'general_categories';
880
881    my $categories = general_categories();
882
883This returns a reference to a hash which has short
884general category names (such as C<Lu>, C<Nd>, C<Zs>, C<S>) as keys and long
885names (such as C<UppercaseLetter>, C<DecimalNumber>, C<SpaceSeparator>,
886C<Symbol>) as values.  The hash is reversible in case you need to go
887from the long names to the short names.  The general category is the
888one returned from
889L</charinfo()> under the C<category> key.
890
891The L</prop_value_aliases()> function can be used to get all the synonyms of
892the category name.
893
894=cut
895
896my %BIDI_TYPES =
897 (
898   'L'   => 'Left-to-Right',
899   'LRE' => 'Left-to-Right Embedding',
900   'LRO' => 'Left-to-Right Override',
901   'R'   => 'Right-to-Left',
902   'AL'  => 'Right-to-Left Arabic',
903   'RLE' => 'Right-to-Left Embedding',
904   'RLO' => 'Right-to-Left Override',
905   'PDF' => 'Pop Directional Format',
906   'EN'  => 'European Number',
907   'ES'  => 'European Number Separator',
908   'ET'  => 'European Number Terminator',
909   'AN'  => 'Arabic Number',
910   'CS'  => 'Common Number Separator',
911   'NSM' => 'Non-Spacing Mark',
912   'BN'  => 'Boundary Neutral',
913   'B'   => 'Paragraph Separator',
914   'S'   => 'Segment Separator',
915   'WS'  => 'Whitespace',
916   'ON'  => 'Other Neutrals',
917 );
918
919=head2 B<bidi_types()>
920
921    use Unicode::UCD 'bidi_types';
922
923    my $categories = bidi_types();
924
925This returns a reference to a hash which has the short
926bidi (bidirectional) type names (such as C<L>, C<R>) as keys and long
927names (such as C<Left-to-Right>, C<Right-to-Left>) as values.  The
928hash is reversible in case you need to go from the long names to the
929short names.  The bidi type is the one returned from
930L</charinfo()>
931under the C<bidi> key.  For the exact meaning of the various bidi classes
932the Unicode TR9 is recommended reading:
933L<http://www.unicode.org/reports/tr9/>
934(as of Unicode 5.0.0)
935
936The L</prop_value_aliases()> function can be used to get all the synonyms of
937the bidi type name.
938
939=cut
940
941sub bidi_types {
942    return _dclone \%BIDI_TYPES;
943}
944
945=head2 B<compexcl()>
946
947    use Unicode::UCD 'compexcl';
948
949    my $compexcl = compexcl(0x09dc);
950
951This routine returns C<undef> if the Unicode version being used is so early
952that it doesn't have this property.
953
954C<compexcl()> is included for backwards
955compatibility, but as of Perl 5.12 and more modern Unicode versions, for
956most purposes it is probably more convenient to use one of the following
957instead:
958
959    my $compexcl = chr(0x09dc) =~ /\p{Comp_Ex};
960    my $compexcl = chr(0x09dc) =~ /\p{Full_Composition_Exclusion};
961
962or even
963
964    my $compexcl = chr(0x09dc) =~ /\p{CE};
965    my $compexcl = chr(0x09dc) =~ /\p{Composition_Exclusion};
966
967The first two forms return B<true> if the L</code point argument> should not
968be produced by composition normalization.  For the final two forms to return
969B<true>, it is additionally required that this fact not otherwise be
970determinable from the Unicode data base.
971
972This routine behaves identically to the final two forms.  That is,
973it does not return B<true> if the code point has a decomposition
974consisting of another single code point, nor if its decomposition starts
975with a code point whose combining class is non-zero.  Code points that meet
976either of these conditions should also not be produced by composition
977normalization, which is probably why you should use the
978C<Full_Composition_Exclusion> property instead, as shown above.
979
980The routine returns B<false> otherwise.
981
982=cut
983
984sub compexcl {
985    my $arg  = shift;
986    my $code = _getcode($arg);
987    croak __PACKAGE__, "::compexcl: unknown code '$arg'"
988	unless defined $code;
989
990    UnicodeVersion() unless defined $v_unicode_version;
991    return if $v_unicode_version lt v3.0.0;
992
993    no warnings "non_unicode";     # So works on non-Unicode code points
994    return chr($code) =~ /\p{Composition_Exclusion}/;
995}
996
997=head2 B<casefold()>
998
999    use Unicode::UCD 'casefold';
1000
1001    my $casefold = casefold(0xDF);
1002    if (defined $casefold) {
1003        my @full_fold_hex = split / /, $casefold->{'full'};
1004        my $full_fold_string =
1005                    join "", map {chr(hex($_))} @full_fold_hex;
1006        my @turkic_fold_hex =
1007                        split / /, ($casefold->{'turkic'} ne "")
1008                                        ? $casefold->{'turkic'}
1009                                        : $casefold->{'full'};
1010        my $turkic_fold_string =
1011                        join "", map {chr(hex($_))} @turkic_fold_hex;
1012    }
1013    if (defined $casefold && $casefold->{'simple'} ne "") {
1014        my $simple_fold_hex = $casefold->{'simple'};
1015        my $simple_fold_string = chr(hex($simple_fold_hex));
1016    }
1017
1018This returns the (almost) locale-independent case folding of the
1019character specified by the L</code point argument>.  (Starting in Perl v5.16,
1020the core function C<fc()> returns the C<full> mapping (described below)
1021faster than this does, and for entire strings.)
1022
1023If there is no case folding for the input code point, C<undef> is returned.
1024
1025If there is a case folding for that code point, a reference to a hash
1026with the following fields is returned:
1027
1028=over
1029
1030=item B<code>
1031
1032the input native L</code point argument> expressed in hexadecimal, with
1033leading zeros
1034added if necessary to make it contain at least four hexdigits
1035
1036=item B<full>
1037
1038one or more codes (separated by spaces) that, taken in order, give the
1039code points for the case folding for I<code>.
1040Each has at least four hexdigits.
1041
1042=item B<simple>
1043
1044is empty, or is exactly one code with at least four hexdigits which can be used
1045as an alternative case folding when the calling program cannot cope with the
1046fold being a sequence of multiple code points.  If I<full> is just one code
1047point, then I<simple> equals I<full>.  If there is no single code point folding
1048defined for I<code>, then I<simple> is the empty string.  Otherwise, it is an
1049inferior, but still better-than-nothing alternative folding to I<full>.
1050
1051=item B<mapping>
1052
1053is the same as I<simple> if I<simple> is not empty, and it is the same as I<full>
1054otherwise.  It can be considered to be the simplest possible folding for
1055I<code>.  It is defined primarily for backwards compatibility.
1056
1057=item B<status>
1058
1059is C<C> (for C<common>) if the best possible fold is a single code point
1060(I<simple> equals I<full> equals I<mapping>).  It is C<S> if there are distinct
1061folds, I<simple> and I<full> (I<mapping> equals I<simple>).  And it is C<F> if
1062there is only a I<full> fold (I<mapping> equals I<full>; I<simple> is empty).
1063Note that this
1064describes the contents of I<mapping>.  It is defined primarily for backwards
1065compatibility.
1066
1067For Unicode versions between 3.1 and 3.1.1 inclusive, I<status> can also be
1068C<I> which is the same as C<C> but is a special case for dotted uppercase I and
1069dotless lowercase i:
1070
1071=over
1072
1073=item Z<>B<*> If you use this C<I> mapping
1074
1075the result is case-insensitive,
1076but dotless and dotted I's are not distinguished
1077
1078=item Z<>B<*> If you exclude this C<I> mapping
1079
1080the result is not fully case-insensitive, but
1081dotless and dotted I's are distinguished
1082
1083=back
1084
1085=item B<turkic>
1086
1087contains any special folding for Turkic languages.  For versions of Unicode
1088starting with 3.2, this field is empty unless I<code> has a different folding
1089in Turkic languages, in which case it is one or more codes (separated by
1090spaces) that, taken in order, give the code points for the case folding for
1091I<code> in those languages.
1092Each code has at least four hexdigits.
1093Note that this folding does not maintain canonical equivalence without
1094additional processing.
1095
1096For Unicode versions between 3.1 and 3.1.1 inclusive, this field is empty unless
1097there is a
1098special folding for Turkic languages, in which case I<status> is C<I>, and
1099I<mapping>, I<full>, I<simple>, and I<turkic> are all equal.
1100
1101=back
1102
1103Programs that want complete generality and the best folding results should use
1104the folding contained in the I<full> field.  But note that the fold for some
1105code points will be a sequence of multiple code points.
1106
1107Programs that can't cope with the fold mapping being multiple code points can
1108use the folding contained in the I<simple> field, with the loss of some
1109generality.  In Unicode 5.1, about 7% of the defined foldings have no single
1110code point folding.
1111
1112The I<mapping> and I<status> fields are provided for backwards compatibility for
1113existing programs.  They contain the same values as in previous versions of
1114this function.
1115
1116Locale is not completely independent.  The I<turkic> field contains results to
1117use when the locale is a Turkic language.
1118
1119For more information about case mappings see
1120L<http://www.unicode.org/unicode/reports/tr21>
1121
1122=cut
1123
1124my %CASEFOLD;
1125
1126sub _casefold {
1127    unless (%CASEFOLD) {   # Populate the hash
1128        my ($full_invlist_ref, $full_invmap_ref, undef, $default)
1129                                                = prop_invmap('Case_Folding');
1130
1131        # Use the recipe given in the prop_invmap() pod to convert the
1132        # inversion map into the hash.
1133        for my $i (0 .. @$full_invlist_ref - 1 - 1) {
1134            next if $full_invmap_ref->[$i] == $default;
1135            my $adjust = -1;
1136            for my $j ($full_invlist_ref->[$i] .. $full_invlist_ref->[$i+1] -1) {
1137                $adjust++;
1138                if (! ref $full_invmap_ref->[$i]) {
1139
1140                    # This is a single character mapping
1141                    $CASEFOLD{$j}{'status'} = 'C';
1142                    $CASEFOLD{$j}{'simple'}
1143                        = $CASEFOLD{$j}{'full'}
1144                        = $CASEFOLD{$j}{'mapping'}
1145                        = sprintf("%04X", $full_invmap_ref->[$i] + $adjust);
1146                    $CASEFOLD{$j}{'code'} = sprintf("%04X", $j);
1147                    $CASEFOLD{$j}{'turkic'} = "";
1148                }
1149                else {  # prop_invmap ensures that $adjust is 0 for a ref
1150                    $CASEFOLD{$j}{'status'} = 'F';
1151                    $CASEFOLD{$j}{'full'}
1152                    = $CASEFOLD{$j}{'mapping'}
1153                    = join " ", map { sprintf "%04X", $_ }
1154                                                    @{$full_invmap_ref->[$i]};
1155                    $CASEFOLD{$j}{'simple'} = "";
1156                    $CASEFOLD{$j}{'code'} = sprintf("%04X", $j);
1157                    $CASEFOLD{$j}{'turkic'} = "";
1158                }
1159            }
1160        }
1161
1162        # We have filled in the full mappings above, assuming there were no
1163        # simple ones for the ones with multi-character maps.  Now, we find
1164        # and fix the cases where that assumption was false.
1165        (my ($simple_invlist_ref, $simple_invmap_ref, undef), $default)
1166                                        = prop_invmap('Simple_Case_Folding');
1167        for my $i (0 .. @$simple_invlist_ref - 1 - 1) {
1168            next if $simple_invmap_ref->[$i] == $default;
1169            my $adjust = -1;
1170            for my $j ($simple_invlist_ref->[$i]
1171                       .. $simple_invlist_ref->[$i+1] -1)
1172            {
1173                $adjust++;
1174                next if $CASEFOLD{$j}{'status'} eq 'C';
1175                $CASEFOLD{$j}{'status'} = 'S';
1176                $CASEFOLD{$j}{'simple'}
1177                    = $CASEFOLD{$j}{'mapping'}
1178                    = sprintf("%04X", $simple_invmap_ref->[$i] + $adjust);
1179                $CASEFOLD{$j}{'code'} = sprintf("%04X", $j);
1180                $CASEFOLD{$j}{'turkic'} = "";
1181            }
1182        }
1183
1184        # We hard-code in the turkish rules
1185        UnicodeVersion() unless defined $v_unicode_version;
1186        if ($v_unicode_version ge v3.2.0) {
1187
1188            # These two code points should already have regular entries, so
1189            # just fill in the turkish fields
1190            $CASEFOLD{ord('I')}{'turkic'} = '0131';
1191            $CASEFOLD{0x130}{'turkic'} = sprintf "%04X", ord('i');
1192        }
1193        elsif ($v_unicode_version ge v3.1.0) {
1194
1195            # These two code points don't have entries otherwise.
1196            $CASEFOLD{0x130}{'code'} = '0130';
1197            $CASEFOLD{0x131}{'code'} = '0131';
1198            $CASEFOLD{0x130}{'status'} = $CASEFOLD{0x131}{'status'} = 'I';
1199            $CASEFOLD{0x130}{'turkic'}
1200                = $CASEFOLD{0x130}{'mapping'}
1201                = $CASEFOLD{0x130}{'full'}
1202                = $CASEFOLD{0x130}{'simple'}
1203                = $CASEFOLD{0x131}{'turkic'}
1204                = $CASEFOLD{0x131}{'mapping'}
1205                = $CASEFOLD{0x131}{'full'}
1206                = $CASEFOLD{0x131}{'simple'}
1207                = sprintf "%04X", ord('i');
1208        }
1209    }
1210}
1211
1212sub casefold {
1213    my $arg  = shift;
1214    my $code = _getcode($arg);
1215    croak __PACKAGE__, "::casefold: unknown code '$arg'"
1216	unless defined $code;
1217
1218    _casefold() unless %CASEFOLD;
1219
1220    return $CASEFOLD{$code};
1221}
1222
1223=head2 B<all_casefolds()>
1224
1225
1226    use Unicode::UCD 'all_casefolds';
1227
1228    my $all_folds_ref = all_casefolds();
1229    foreach my $char_with_casefold (sort { $a <=> $b }
1230                                    keys %$all_folds_ref)
1231    {
1232        printf "%04X:", $char_with_casefold;
1233        my $casefold = $all_folds_ref->{$char_with_casefold};
1234
1235        # Get folds for $char_with_casefold
1236
1237        my @full_fold_hex = split / /, $casefold->{'full'};
1238        my $full_fold_string =
1239                    join "", map {chr(hex($_))} @full_fold_hex;
1240        print " full=", join " ", @full_fold_hex;
1241        my @turkic_fold_hex =
1242                        split / /, ($casefold->{'turkic'} ne "")
1243                                        ? $casefold->{'turkic'}
1244                                        : $casefold->{'full'};
1245        my $turkic_fold_string =
1246                        join "", map {chr(hex($_))} @turkic_fold_hex;
1247        print "; turkic=", join " ", @turkic_fold_hex;
1248        if (defined $casefold && $casefold->{'simple'} ne "") {
1249            my $simple_fold_hex = $casefold->{'simple'};
1250            my $simple_fold_string = chr(hex($simple_fold_hex));
1251            print "; simple=$simple_fold_hex";
1252        }
1253        print "\n";
1254    }
1255
1256This returns all the case foldings in the current version of Unicode in the
1257form of a reference to a hash.  Each key to the hash is the decimal
1258representation of a Unicode character that has a casefold to other than
1259itself.  The casefold of a semi-colon is itself, so it isn't in the hash;
1260likewise for a lowercase "a", but there is an entry for a capital "A".  The
1261hash value for each key is another hash, identical to what is returned by
1262L</casefold()> if called with that code point as its argument.  So the value
1263C<< all_casefolds()->{ord("A")}' >> is equivalent to C<casefold(ord("A"))>;
1264
1265=cut
1266
1267sub all_casefolds () {
1268    _casefold() unless %CASEFOLD;
1269    return _dclone \%CASEFOLD;
1270}
1271
1272=head2 B<casespec()>
1273
1274    use Unicode::UCD 'casespec';
1275
1276    my $casespec = casespec(0xFB00);
1277
1278This returns the potentially locale-dependent case mappings of the L</code point
1279argument>.  The mappings may be longer than a single code point (which the basic
1280Unicode case mappings as returned by L</charinfo()> never are).
1281
1282If there are no case mappings for the L</code point argument>, or if all three
1283possible mappings (I<lower>, I<title> and I<upper>) result in single code
1284points and are locale independent and unconditional, C<undef> is returned
1285(which means that the case mappings, if any, for the code point are those
1286returned by L</charinfo()>).
1287
1288Otherwise, a reference to a hash giving the mappings (or a reference to a hash
1289of such hashes, explained below) is returned with the following keys and their
1290meanings:
1291
1292The keys in the bottom layer hash with the meanings of their values are:
1293
1294=over
1295
1296=item B<code>
1297
1298the input native L</code point argument> expressed in hexadecimal, with
1299leading zeros
1300added if necessary to make it contain at least four hexdigits
1301
1302=item B<lower>
1303
1304one or more codes (separated by spaces) that, taken in order, give the
1305code points for the lower case of I<code>.
1306Each has at least four hexdigits.
1307
1308=item B<title>
1309
1310one or more codes (separated by spaces) that, taken in order, give the
1311code points for the title case of I<code>.
1312Each has at least four hexdigits.
1313
1314=item B<upper>
1315
1316one or more codes (separated by spaces) that, taken in order, give the
1317code points for the upper case of I<code>.
1318Each has at least four hexdigits.
1319
1320=item B<condition>
1321
1322the conditions for the mappings to be valid.
1323If C<undef>, the mappings are always valid.
1324When defined, this field is a list of conditions,
1325all of which must be true for the mappings to be valid.
1326The list consists of one or more
1327I<locales> (see below)
1328and/or I<contexts> (explained in the next paragraph),
1329separated by spaces.
1330(Other than as used to separate elements, spaces are to be ignored.)
1331Case distinctions in the condition list are not significant.
1332Conditions preceded by "NON_" represent the negation of the condition.
1333
1334A I<context> is one of those defined in the Unicode standard.
1335For Unicode 5.1, they are defined in Section 3.13 C<Default Case Operations>
1336available at
1337L<http://www.unicode.org/versions/Unicode5.1.0/>.
1338These are for context-sensitive casing.
1339
1340=back
1341
1342The hash described above is returned for locale-independent casing, where
1343at least one of the mappings has length longer than one.  If C<undef> is
1344returned, the code point may have mappings, but if so, all are length one,
1345and are returned by L</charinfo()>.
1346Note that when this function does return a value, it will be for the complete
1347set of mappings for a code point, even those whose length is one.
1348
1349If there are additional casing rules that apply only in certain locales,
1350an additional key for each will be defined in the returned hash.  Each such key
1351will be its locale name, defined as a 2-letter ISO 3166 country code, possibly
1352followed by a "_" and a 2-letter ISO language code (possibly followed by a "_"
1353and a variant code).  You can find the lists of all possible locales, see
1354L<Locale::Country> and L<Locale::Language>.
1355(In Unicode 6.0, the only locales returned by this function
1356are C<lt>, C<tr>, and C<az>.)
1357
1358Each locale key is a reference to a hash that has the form above, and gives
1359the casing rules for that particular locale, which take precedence over the
1360locale-independent ones when in that locale.
1361
1362If the only casing for a code point is locale-dependent, then the returned
1363hash will not have any of the base keys, like C<code>, C<upper>, etc., but
1364will contain only locale keys.
1365
1366For more information about case mappings see
1367L<http://www.unicode.org/unicode/reports/tr21/>
1368
1369=cut
1370
1371my %CASESPEC;
1372
1373sub _casespec {
1374    unless (%CASESPEC) {
1375        UnicodeVersion() unless defined $v_unicode_version;
1376        if ($v_unicode_version lt v2.1.8) {
1377            %CASESPEC = {};
1378        }
1379	elsif (openunicode(\$CASESPECFH, "SpecialCasing.txt")) {
1380	    local $_;
1381	    local $/ = "\n";
1382	    while (<$CASESPECFH>) {
1383		if (/^([0-9A-F]+); ([0-9A-F]+(?: [0-9A-F]+)*)?; ([0-9A-F]+(?: [0-9A-F]+)*)?; ([0-9A-F]+(?: [0-9A-F]+)*)?; (\w+(?: \w+)*)?/) {
1384
1385		    my ($hexcode, $lower, $title, $upper, $condition) =
1386			($1, $2, $3, $4, $5);
1387                    if (! IS_ASCII_PLATFORM) { # Remap entry to native
1388                        foreach my $var_ref (\$hexcode,
1389                                             \$lower,
1390                                             \$title,
1391                                             \$upper)
1392                        {
1393                            next unless defined $$var_ref;
1394                            $$var_ref = join " ",
1395                                        map { sprintf("%04X",
1396                                              utf8::unicode_to_native(hex $_)) }
1397                                        split " ", $$var_ref;
1398                        }
1399                    }
1400
1401		    my $code = hex($hexcode);
1402
1403                    # In 2.1.8, there were duplicate entries; ignore all but
1404                    # the first one -- there were no conditions in the file
1405                    # anyway.
1406		    if (exists $CASESPEC{$code} && $v_unicode_version ne v2.1.8)
1407                    {
1408			if (exists $CASESPEC{$code}->{code}) {
1409			    my ($oldlower,
1410				$oldtitle,
1411				$oldupper,
1412				$oldcondition) =
1413				    @{$CASESPEC{$code}}{qw(lower
1414							   title
1415							   upper
1416							   condition)};
1417			    if (defined $oldcondition) {
1418				my ($oldlocale) =
1419				($oldcondition =~ /^([a-z][a-z](?:_\S+)?)/);
1420				delete $CASESPEC{$code};
1421				$CASESPEC{$code}->{$oldlocale} =
1422				{ code      => $hexcode,
1423				  lower     => $oldlower,
1424				  title     => $oldtitle,
1425				  upper     => $oldupper,
1426				  condition => $oldcondition };
1427			    }
1428			}
1429			my ($locale) =
1430			    ($condition =~ /^([a-z][a-z](?:_\S+)?)/);
1431			$CASESPEC{$code}->{$locale} =
1432			{ code      => $hexcode,
1433			  lower     => $lower,
1434			  title     => $title,
1435			  upper     => $upper,
1436			  condition => $condition };
1437		    } else {
1438			$CASESPEC{$code} =
1439			{ code      => $hexcode,
1440			  lower     => $lower,
1441			  title     => $title,
1442			  upper     => $upper,
1443			  condition => $condition };
1444		    }
1445		}
1446	    }
1447	    close($CASESPECFH);
1448	}
1449    }
1450}
1451
1452sub casespec {
1453    my $arg  = shift;
1454    my $code = _getcode($arg);
1455    croak __PACKAGE__, "::casespec: unknown code '$arg'"
1456	unless defined $code;
1457
1458    _casespec() unless %CASESPEC;
1459
1460    return ref $CASESPEC{$code} ? _dclone $CASESPEC{$code} : $CASESPEC{$code};
1461}
1462
1463=head2 B<namedseq()>
1464
1465    use Unicode::UCD 'namedseq';
1466
1467    my $namedseq = namedseq("KATAKANA LETTER AINU P");
1468    my @namedseq = namedseq("KATAKANA LETTER AINU P");
1469    my %namedseq = namedseq();
1470
1471If used with a single argument in a scalar context, returns the string
1472consisting of the code points of the named sequence, or C<undef> if no
1473named sequence by that name exists.  If used with a single argument in
1474a list context, it returns the list of the ordinals of the code points.
1475
1476If used with no
1477arguments in a list context, it returns a hash with the names of all the
1478named sequences as the keys and their sequences as strings as
1479the values.  Otherwise, it returns C<undef> or an empty list depending
1480on the context.
1481
1482This function only operates on officially approved (not provisional) named
1483sequences.
1484
1485Note that as of Perl 5.14, C<\N{KATAKANA LETTER AINU P}> will insert the named
1486sequence into double-quoted strings, and C<charnames::string_vianame("KATAKANA
1487LETTER AINU P")> will return the same string this function does, but will also
1488operate on character names that aren't named sequences, without you having to
1489know which are which.  See L<charnames>.
1490
1491=cut
1492
1493my %NAMEDSEQ;
1494
1495sub _namedseq {
1496    unless (%NAMEDSEQ) {
1497	if (openunicode(\$NAMEDSEQFH, "Name.pl")) {
1498	    local $_;
1499	    local $/ = "\n";
1500	    while (<$NAMEDSEQFH>) {
1501		if (/^ [0-9A-F]+ \  /x) {
1502                    chomp;
1503                    my ($sequence, $name) = split /\t/;
1504		    my @s = map { chr(hex($_)) } split(' ', $sequence);
1505		    $NAMEDSEQ{$name} = join("", @s);
1506		}
1507	    }
1508	    close($NAMEDSEQFH);
1509	}
1510    }
1511}
1512
1513sub namedseq {
1514
1515    # Use charnames::string_vianame() which now returns this information,
1516    # unless the caller wants the hash returned, in which case we read it in,
1517    # and thereafter use it instead of calling charnames, as it is faster.
1518
1519    my $wantarray = wantarray();
1520    if (defined $wantarray) {
1521	if ($wantarray) {
1522	    if (@_ == 0) {
1523                _namedseq() unless %NAMEDSEQ;
1524		return %NAMEDSEQ;
1525	    } elsif (@_ == 1) {
1526		my $s;
1527                if (%NAMEDSEQ) {
1528                    $s = $NAMEDSEQ{ $_[0] };
1529                }
1530                else {
1531                    $s = charnames::string_vianame($_[0]);
1532                }
1533		return defined $s ? map { ord($_) } split('', $s) : ();
1534	    }
1535	} elsif (@_ == 1) {
1536            return $NAMEDSEQ{ $_[0] } if %NAMEDSEQ;
1537            return charnames::string_vianame($_[0]);
1538	}
1539    }
1540    return;
1541}
1542
1543my %NUMERIC;
1544
1545sub _numeric {
1546    my @numbers = _read_table("To/Nv.pl");
1547    foreach my $entry (@numbers) {
1548        my ($start, $end, $value) = @$entry;
1549
1550        # If value contains a slash, convert to decimal, add a reverse hash
1551        # used by charinfo.
1552        if ((my @rational = split /\//, $value) == 2) {
1553            my $real = $rational[0] / $rational[1];
1554            $real_to_rational{$real} = $value;
1555            $value = $real;
1556
1557            # Should only be single element, but just in case...
1558            for my $i ($start .. $end) {
1559                $NUMERIC{$i} = $value;
1560            }
1561        }
1562        else {
1563            # The values require adjusting, as is in 'a' format
1564            for my $i ($start .. $end) {
1565                $NUMERIC{$i} = $value + $i - $start;
1566            }
1567        }
1568    }
1569
1570    # Decided unsafe to use these that aren't officially part of the Unicode
1571    # standard.
1572    #use Math::Trig;
1573    #my $pi = acos(-1.0);
1574    #$NUMERIC{0x03C0} = $pi;
1575
1576    # Euler's constant, not to be confused with Euler's number
1577    #$NUMERIC{0x2107} = 0.57721566490153286060651209008240243104215933593992;
1578
1579    # Euler's number
1580    #$NUMERIC{0x212F} = 2.7182818284590452353602874713526624977572;
1581
1582    return;
1583}
1584
1585=pod
1586
1587=head2 B<num()>
1588
1589    use Unicode::UCD 'num';
1590
1591    my $val = num("123");
1592    my $one_quarter = num("\N{VULGAR FRACTION 1/4}");
1593
1594C<num()> returns the numeric value of the input Unicode string; or C<undef> if it
1595doesn't think the entire string has a completely valid, safe numeric value.
1596
1597If the string is just one character in length, the Unicode numeric value
1598is returned if it has one, or C<undef> otherwise.  Note that this need
1599not be a whole number.  C<num("\N{TIBETAN DIGIT HALF ZERO}")>, for
1600example returns -0.5.
1601
1602=cut
1603
1604#A few characters to which Unicode doesn't officially
1605#assign a numeric value are considered numeric by C<num>.
1606#These are:
1607
1608# EULER CONSTANT             0.5772...  (this is NOT Euler's number)
1609# SCRIPT SMALL E             2.71828... (this IS Euler's number)
1610# GREEK SMALL LETTER PI      3.14159...
1611
1612=pod
1613
1614If the string is more than one character, C<undef> is returned unless
1615all its characters are decimal digits (that is, they would match C<\d+>),
1616from the same script.  For example if you have an ASCII '0' and a Bengali
1617'3', mixed together, they aren't considered a valid number, and C<undef>
1618is returned.  A further restriction is that the digits all have to be of
1619the same form.  A half-width digit mixed with a full-width one will
1620return C<undef>.  The Arabic script has two sets of digits;  C<num> will
1621return C<undef> unless all the digits in the string come from the same
1622set.
1623
1624C<num> errs on the side of safety, and there may be valid strings of
1625decimal digits that it doesn't recognize.  Note that Unicode defines
1626a number of "digit" characters that aren't "decimal digit" characters.
1627"Decimal digits" have the property that they have a positional value, i.e.,
1628there is a units position, a 10's position, a 100's, etc, AND they are
1629arranged in Unicode in blocks of 10 contiguous code points.  The Chinese
1630digits, for example, are not in such a contiguous block, and so Unicode
1631doesn't view them as decimal digits, but merely digits, and so C<\d> will not
1632match them.  A single-character string containing one of these digits will
1633have its decimal value returned by C<num>, but any longer string containing
1634only these digits will return C<undef>.
1635
1636Strings of multiple sub- and superscripts are not recognized as numbers.  You
1637can use either of the compatibility decompositions in Unicode::Normalize to
1638change these into digits, and then call C<num> on the result.
1639
1640=cut
1641
1642# To handle sub, superscripts, this could if called in list context,
1643# consider those, and return the <decomposition> type in the second
1644# array element.
1645
1646sub num {
1647    my $string = $_[0];
1648
1649    _numeric unless %NUMERIC;
1650
1651    my $length = length($string);
1652    return $NUMERIC{ord($string)} if $length == 1;
1653    return if $string =~ /\D/;
1654    my $first_ord = ord(substr($string, 0, 1));
1655    my $value = $NUMERIC{$first_ord};
1656
1657    # To be a valid decimal number, it should be in a block of 10 consecutive
1658    # characters, whose values are 0, 1, 2, ... 9.  Therefore this digit's
1659    # value is its offset in that block from the character that means zero.
1660    my $zero_ord = $first_ord - $value;
1661
1662    # Unicode 6.0 instituted the rule that only digits in a consecutive
1663    # block of 10 would be considered decimal digits.  If this is an earlier
1664    # release, we verify that this first character is a member of such a
1665    # block.  That is, that the block of characters surrounding this one
1666    # consists of all \d characters whose numeric values are the expected
1667    # ones.
1668    UnicodeVersion() unless defined $v_unicode_version;
1669    if ($v_unicode_version lt v6.0.0) {
1670        for my $i (0 .. 9) {
1671            my $ord = $zero_ord + $i;
1672            return unless chr($ord) =~ /\d/;
1673            my $numeric = $NUMERIC{$ord};
1674            return unless defined $numeric;
1675            return unless $numeric == $i;
1676        }
1677    }
1678
1679    for my $i (1 .. $length -1) {
1680
1681        # Here we know either by verifying, or by fact of the first character
1682        # being a \d in Unicode 6.0 or later, that any character between the
1683        # character that means 0, and 9 positions above it must be \d, and
1684        # must have its value correspond to its offset from the zero.  Any
1685        # characters outside these 10 do not form a legal number for this
1686        # function.
1687        my $ord = ord(substr($string, $i, 1));
1688        my $digit = $ord - $zero_ord;
1689        return unless $digit >= 0 && $digit <= 9;
1690        $value = $value * 10 + $digit;
1691    }
1692
1693    return $value;
1694}
1695
1696=pod
1697
1698=head2 B<prop_aliases()>
1699
1700    use Unicode::UCD 'prop_aliases';
1701
1702    my ($short_name, $full_name, @other_names) = prop_aliases("space");
1703    my $same_full_name = prop_aliases("Space");     # Scalar context
1704    my ($same_short_name) = prop_aliases("Space");  # gets 0th element
1705    print "The full name is $full_name\n";
1706    print "The short name is $short_name\n";
1707    print "The other aliases are: ", join(", ", @other_names), "\n";
1708
1709    prints:
1710    The full name is White_Space
1711    The short name is WSpace
1712    The other aliases are: Space
1713
1714Most Unicode properties have several synonymous names.  Typically, there is at
1715least a short name, convenient to type, and a long name that more fully
1716describes the property, and hence is more easily understood.
1717
1718If you know one name for a Unicode property, you can use C<prop_aliases> to find
1719either the long name (when called in scalar context), or a list of all of the
1720names, somewhat ordered so that the short name is in the 0th element, the long
1721name in the next element, and any other synonyms are in the remaining
1722elements, in no particular order.
1723
1724The long name is returned in a form nicely capitalized, suitable for printing.
1725
1726The input parameter name is loosely matched, which means that white space,
1727hyphens, and underscores are ignored (except for the trailing underscore in
1728the old_form grandfathered-in C<"L_">, which is better written as C<"LC">, and
1729both of which mean C<General_Category=Cased Letter>).
1730
1731If the name is unknown, C<undef> is returned (or an empty list in list
1732context).  Note that Perl typically recognizes property names in regular
1733expressions with an optional C<"Is_>" (with or without the underscore)
1734prefixed to them, such as C<\p{isgc=punct}>.  This function does not recognize
1735those in the input, returning C<undef>.  Nor are they included in the output
1736as possible synonyms.
1737
1738C<prop_aliases> does know about the Perl extensions to Unicode properties,
1739such as C<Any> and C<XPosixAlpha>, and the single form equivalents to Unicode
1740properties such as C<XDigit>, C<Greek>, C<In_Greek>, and C<Is_Greek>.  The
1741final example demonstrates that the C<"Is_"> prefix is recognized for these
1742extensions; it is needed to resolve ambiguities.  For example,
1743C<prop_aliases('lc')> returns the list C<(lc, Lowercase_Mapping)>, but
1744C<prop_aliases('islc')> returns C<(Is_LC, Cased_Letter)>.  This is
1745because C<islc> is a Perl extension which is short for
1746C<General_Category=Cased Letter>.  The lists returned for the Perl extensions
1747will not include the C<"Is_"> prefix (whether or not the input had it) unless
1748needed to resolve ambiguities, as shown in the C<"islc"> example, where the
1749returned list had one element containing C<"Is_">, and the other without.
1750
1751It is also possible for the reverse to happen:  C<prop_aliases('isc')> returns
1752the list C<(isc, ISO_Comment)>; whereas C<prop_aliases('c')> returns
1753C<(C, Other)> (the latter being a Perl extension meaning
1754C<General_Category=Other>.
1755L<perluniprops/Properties accessible through Unicode::UCD> lists the available
1756forms, including which ones are discouraged from use.
1757
1758Those discouraged forms are accepted as input to C<prop_aliases>, but are not
1759returned in the lists.  C<prop_aliases('isL&')> and C<prop_aliases('isL_')>,
1760which are old synonyms for C<"Is_LC"> and should not be used in new code, are
1761examples of this.  These both return C<(Is_LC, Cased_Letter)>.  Thus this
1762function allows you to take a discouraged form, and find its acceptable
1763alternatives.  The same goes with single-form Block property equivalences.
1764Only the forms that begin with C<"In_"> are not discouraged; if you pass
1765C<prop_aliases> a discouraged form, you will get back the equivalent ones that
1766begin with C<"In_">.  It will otherwise look like a new-style block name (see.
1767L</Old-style versus new-style block names>).
1768
1769C<prop_aliases> does not know about any user-defined properties, and will
1770return C<undef> if called with one of those.  Likewise for Perl internal
1771properties, with the exception of "Perl_Decimal_Digit" which it does know
1772about (and which is documented below in L</prop_invmap()>).
1773
1774=cut
1775
1776# It may be that there are use cases where the discouraged forms should be
1777# returned.  If that comes up, an optional boolean second parameter to the
1778# function could be created, for example.
1779
1780# These are created by mktables for this routine and stored in unicore/UCD.pl
1781# where their structures are described.
1782our %string_property_loose_to_name;
1783our %ambiguous_names;
1784our %loose_perlprop_to_name;
1785our %prop_aliases;
1786
1787sub prop_aliases ($) {
1788    my $prop = $_[0];
1789    return unless defined $prop;
1790
1791    require "unicore/UCD.pl";
1792    require "unicore/Heavy.pl";
1793    require "utf8_heavy.pl";
1794
1795    # The property name may be loosely or strictly matched; we don't know yet.
1796    # But both types use lower-case.
1797    $prop = lc $prop;
1798
1799    # It is loosely matched if its lower case isn't known to be strict.
1800    my $list_ref;
1801    if (! exists $utf8::stricter_to_file_of{$prop}) {
1802        my $loose = utf8::_loose_name($prop);
1803
1804        # There is a hash that converts from any loose name to its standard
1805        # form, mapping all synonyms for a  name to one name that can be used
1806        # as a key into another hash.  The whole concept is for memory
1807        # savings, as the second hash doesn't have to have all the
1808        # combinations.  Actually, there are two hashes that do the
1809        # converstion.  One is used in utf8_heavy.pl (stored in Heavy.pl) for
1810        # looking up properties matchable in regexes.  This function needs to
1811        # access string properties, which aren't available in regexes, so a
1812        # second conversion hash is made for them (stored in UCD.pl).  Look in
1813        # the string one now, as the rest can have an optional 'is' prefix,
1814        # which these don't.
1815        if (exists $string_property_loose_to_name{$loose}) {
1816
1817            # Convert to its standard loose name.
1818            $prop = $string_property_loose_to_name{$loose};
1819        }
1820        else {
1821            my $retrying = 0;   # bool.  ? Has an initial 'is' been stripped
1822        RETRY:
1823            if (exists $utf8::loose_property_name_of{$loose}
1824                && (! $retrying
1825                    || ! exists $ambiguous_names{$loose}))
1826            {
1827                # Found an entry giving the standard form.  We don't get here
1828                # (in the test above) when we've stripped off an
1829                # 'is' and the result is an ambiguous name.  That is because
1830                # these are official Unicode properties (though Perl can have
1831                # an optional 'is' prefix meaning the official property), and
1832                # all ambiguous cases involve a Perl single-form extension
1833                # for the gc, script, or block properties, and the stripped
1834                # 'is' means that they mean one of those, and not one of
1835                # these
1836                $prop = $utf8::loose_property_name_of{$loose};
1837            }
1838            elsif (exists $loose_perlprop_to_name{$loose}) {
1839
1840                # This hash is specifically for this function to list Perl
1841                # extensions that aren't in the earlier hashes.  If there is
1842                # only one element, the short and long names are identical.
1843                # Otherwise the form is already in the same form as
1844                # %prop_aliases, which is handled at the end of the function.
1845                $list_ref = $loose_perlprop_to_name{$loose};
1846                if (@$list_ref == 1) {
1847                    my @list = ($list_ref->[0], $list_ref->[0]);
1848                    $list_ref = \@list;
1849                }
1850            }
1851            elsif (! exists $utf8::loose_to_file_of{$loose}) {
1852
1853                # loose_to_file_of is a complete list of loose names.  If not
1854                # there, the input is unknown.
1855                return;
1856            }
1857            elsif ($loose =~ / [:=] /x) {
1858
1859                # Here we found the name but not its aliases, so it has to
1860                # exist.  Exclude property-value combinations.  (This shows up
1861                # for something like ccc=vr which matches loosely, but is a
1862                # synonym for ccc=9 which matches only strictly.
1863                return;
1864            }
1865            else {
1866
1867                # Here it has to exist, and isn't a property-value
1868                # combination.  This means it must be one of the Perl
1869                # single-form extensions.  First see if it is for a
1870                # property-value combination in one of the following
1871                # properties.
1872                my @list;
1873                foreach my $property ("gc", "script") {
1874                    @list = prop_value_aliases($property, $loose);
1875                    last if @list;
1876                }
1877                if (@list) {
1878
1879                    # Here, it is one of those property-value combination
1880                    # single-form synonyms.  There are ambiguities with some
1881                    # of these.  Check against the list for these, and adjust
1882                    # if necessary.
1883                    for my $i (0 .. @list -1) {
1884                        if (exists $ambiguous_names
1885                                   {utf8::_loose_name(lc $list[$i])})
1886                        {
1887                            # The ambiguity is resolved by toggling whether or
1888                            # not it has an 'is' prefix
1889                            $list[$i] =~ s/^Is_// or $list[$i] =~ s/^/Is_/;
1890                        }
1891                    }
1892                    return @list;
1893                }
1894
1895                # Here, it wasn't one of the gc or script single-form
1896                # extensions.  It could be a block property single-form
1897                # extension.  An 'in' prefix definitely means that, and should
1898                # be looked up without the prefix.  However, starting in
1899                # Unicode 6.1, we have to special case 'indic...', as there
1900                # is a property that begins with that name.   We shouldn't
1901                # strip the 'in' from that.   I'm (khw) generalizing this to
1902                # 'indic' instead of the single property, because I suspect
1903                # that others of this class may come along in the future.
1904                # However, this could backfire and a block created whose name
1905                # begins with 'dic...', and we would want to strip the 'in'.
1906                # At which point this would have to be tweaked.
1907                my $began_with_in = $loose =~ s/^in(?!dic)//;
1908                @list = prop_value_aliases("block", $loose);
1909                if (@list) {
1910                    map { $_ =~ s/^/In_/ } @list;
1911                    return @list;
1912                }
1913
1914                # Here still haven't found it.  The last opportunity for it
1915                # being valid is only if it began with 'is'.  We retry without
1916                # the 'is', setting a flag to that effect so that we don't
1917                # accept things that begin with 'isis...'
1918                if (! $retrying && ! $began_with_in && $loose =~ s/^is//) {
1919                    $retrying = 1;
1920                    goto RETRY;
1921                }
1922
1923                # Here, didn't find it.  Since it was in %loose_to_file_of, we
1924                # should have been able to find it.
1925                carp __PACKAGE__, "::prop_aliases: Unexpectedly could not find '$prop'.  Send bug report to perlbug\@perl.org";
1926                return;
1927            }
1928        }
1929    }
1930
1931    if (! $list_ref) {
1932        # Here, we have set $prop to a standard form name of the input.  Look
1933        # it up in the structure created by mktables for this purpose, which
1934        # contains both strict and loosely matched properties.  Avoid
1935        # autovivifying.
1936        $list_ref = $prop_aliases{$prop} if exists $prop_aliases{$prop};
1937        return unless $list_ref;
1938    }
1939
1940    # The full name is in element 1.
1941    return $list_ref->[1] unless wantarray;
1942
1943    return @{_dclone $list_ref};
1944}
1945
1946=pod
1947
1948=head2 B<prop_value_aliases()>
1949
1950    use Unicode::UCD 'prop_value_aliases';
1951
1952    my ($short_name, $full_name, @other_names)
1953                                   = prop_value_aliases("Gc", "Punct");
1954    my $same_full_name = prop_value_aliases("Gc", "P");   # Scalar cntxt
1955    my ($same_short_name) = prop_value_aliases("Gc", "P"); # gets 0th
1956                                                           # element
1957    print "The full name is $full_name\n";
1958    print "The short name is $short_name\n";
1959    print "The other aliases are: ", join(", ", @other_names), "\n";
1960
1961    prints:
1962    The full name is Punctuation
1963    The short name is P
1964    The other aliases are: Punct
1965
1966Some Unicode properties have a restricted set of legal values.  For example,
1967all binary properties are restricted to just C<true> or C<false>; and there
1968are only a few dozen possible General Categories.
1969
1970For such properties, there are usually several synonyms for each possible
1971value.  For example, in binary properties, I<truth> can be represented by any of
1972the strings "Y", "Yes", "T", or "True"; and the General Category
1973"Punctuation" by that string, or "Punct", or simply "P".
1974
1975Like property names, there is typically at least a short name for each such
1976property-value, and a long name.  If you know any name of the property-value,
1977you can use C<prop_value_aliases>() to get the long name (when called in
1978scalar context), or a list of all the names, with the short name in the 0th
1979element, the long name in the next element, and any other synonyms in the
1980remaining elements, in no particular order, except that any all-numeric
1981synonyms will be last.
1982
1983The long name is returned in a form nicely capitalized, suitable for printing.
1984
1985Case, white space, hyphens, and underscores are ignored in the input parameters
1986(except for the trailing underscore in the old-form grandfathered-in general
1987category property value C<"L_">, which is better written as C<"LC">).
1988
1989If either name is unknown, C<undef> is returned.  Note that Perl typically
1990recognizes property names in regular expressions with an optional C<"Is_>"
1991(with or without the underscore) prefixed to them, such as C<\p{isgc=punct}>.
1992This function does not recognize those in the property parameter, returning
1993C<undef>.
1994
1995If called with a property that doesn't have synonyms for its values, it
1996returns the input value, possibly normalized with capitalization and
1997underscores.
1998
1999For the block property, new-style block names are returned (see
2000L</Old-style versus new-style block names>).
2001
2002To find the synonyms for single-forms, such as C<\p{Any}>, use
2003L</prop_aliases()> instead.
2004
2005C<prop_value_aliases> does not know about any user-defined properties, and
2006will return C<undef> if called with one of those.
2007
2008=cut
2009
2010# These are created by mktables for this routine and stored in unicore/UCD.pl
2011# where their structures are described.
2012our %loose_to_standard_value;
2013our %prop_value_aliases;
2014
2015sub prop_value_aliases ($$) {
2016    my ($prop, $value) = @_;
2017    return unless defined $prop && defined $value;
2018
2019    require "unicore/UCD.pl";
2020    require "utf8_heavy.pl";
2021
2022    # Find the property name synonym that's used as the key in other hashes,
2023    # which is element 0 in the returned list.
2024    ($prop) = prop_aliases($prop);
2025    return if ! $prop;
2026    $prop = utf8::_loose_name(lc $prop);
2027
2028    # Here is a legal property, but the hash below (created by mktables for
2029    # this purpose) only knows about the properties that have a very finite
2030    # number of potential values, that is not ones whose value could be
2031    # anything, like most (if not all) string properties.  These don't have
2032    # synonyms anyway.  Simply return the input.  For example, there is no
2033    # synonym for ('Uppercase_Mapping', A').
2034    return $value if ! exists $prop_value_aliases{$prop};
2035
2036    # The value name may be loosely or strictly matched; we don't know yet.
2037    # But both types use lower-case.
2038    $value = lc $value;
2039
2040    # If the name isn't found under loose matching, it certainly won't be
2041    # found under strict
2042    my $loose_value = utf8::_loose_name($value);
2043    return unless exists $loose_to_standard_value{"$prop=$loose_value"};
2044
2045    # Similarly if the combination under loose matching doesn't exist, it
2046    # won't exist under strict.
2047    my $standard_value = $loose_to_standard_value{"$prop=$loose_value"};
2048    return unless exists $prop_value_aliases{$prop}{$standard_value};
2049
2050    # Here we did find a combination under loose matching rules.  But it could
2051    # be that is a strict property match that shouldn't have matched.
2052    # %prop_value_aliases is set up so that the strict matches will appear as
2053    # if they were in loose form.  Thus, if the non-loose version is legal,
2054    # we're ok, can skip the further check.
2055    if (! exists $utf8::stricter_to_file_of{"$prop=$value"}
2056
2057        # We're also ok and skip the further check if value loosely matches.
2058        # mktables has verified that no strict name under loose rules maps to
2059        # an existing loose name.  This code relies on the very limited
2060        # circumstances that strict names can be here.  Strict name matching
2061        # happens under two conditions:
2062        # 1) when the name begins with an underscore.  But this function
2063        #    doesn't accept those, and %prop_value_aliases doesn't have
2064        #    them.
2065        # 2) When the values are numeric, in which case we need to look
2066        #    further, but their squeezed-out loose values will be in
2067        #    %stricter_to_file_of
2068        && exists $utf8::stricter_to_file_of{"$prop=$loose_value"})
2069    {
2070        # The only thing that's legal loosely under strict is that can have an
2071        # underscore between digit pairs XXX
2072        while ($value =~ s/(\d)_(\d)/$1$2/g) {}
2073        return unless exists $utf8::stricter_to_file_of{"$prop=$value"};
2074    }
2075
2076    # Here, we know that the combination exists.  Return it.
2077    my $list_ref = $prop_value_aliases{$prop}{$standard_value};
2078    if (@$list_ref > 1) {
2079        # The full name is in element 1.
2080        return $list_ref->[1] unless wantarray;
2081
2082        return @{_dclone $list_ref};
2083    }
2084
2085    return $list_ref->[0] unless wantarray;
2086
2087    # Only 1 element means that it repeats
2088    return ( $list_ref->[0], $list_ref->[0] );
2089}
2090
2091# All 1 bits is the largest possible UV.
2092$Unicode::UCD::MAX_CP = ~0;
2093
2094=pod
2095
2096=head2 B<prop_invlist()>
2097
2098C<prop_invlist> returns an inversion list (described below) that defines all the
2099code points for the binary Unicode property (or "property=value" pair) given
2100by the input parameter string:
2101
2102 use feature 'say';
2103 use Unicode::UCD 'prop_invlist';
2104 say join ", ", prop_invlist("Any");
2105
2106 prints:
2107 0, 1114112
2108
2109If the input is unknown C<undef> is returned in scalar context; an empty-list
2110in list context.  If the input is known, the number of elements in
2111the list is returned if called in scalar context.
2112
2113L<perluniprops|perluniprops/Properties accessible through \p{} and \P{}> gives
2114the list of properties that this function accepts, as well as all the possible
2115forms for them (including with the optional "Is_" prefixes).  (Except this
2116function doesn't accept any Perl-internal properties, some of which are listed
2117there.) This function uses the same loose or tighter matching rules for
2118resolving the input property's name as is done for regular expressions.  These
2119are also specified in L<perluniprops|perluniprops/Properties accessible
2120through \p{} and \P{}>.  Examples of using the "property=value" form are:
2121
2122 say join ", ", prop_invlist("Script=Shavian");
2123
2124 prints:
2125 66640, 66688
2126
2127 say join ", ", prop_invlist("ASCII_Hex_Digit=No");
2128
2129 prints:
2130 0, 48, 58, 65, 71, 97, 103
2131
2132 say join ", ", prop_invlist("ASCII_Hex_Digit=Yes");
2133
2134 prints:
2135 48, 58, 65, 71, 97, 103
2136
2137Inversion lists are a compact way of specifying Unicode property-value
2138definitions.  The 0th item in the list is the lowest code point that has the
2139property-value.  The next item (item [1]) is the lowest code point beyond that
2140one that does NOT have the property-value.  And the next item beyond that
2141([2]) is the lowest code point beyond that one that does have the
2142property-value, and so on.  Put another way, each element in the list gives
2143the beginning of a range that has the property-value (for even numbered
2144elements), or doesn't have the property-value (for odd numbered elements).
2145The name for this data structure stems from the fact that each element in the
2146list toggles (or inverts) whether the corresponding range is or isn't on the
2147list.
2148
2149In the final example above, the first ASCII Hex digit is code point 48, the
2150character "0", and all code points from it through 57 (a "9") are ASCII hex
2151digits.  Code points 58 through 64 aren't, but 65 (an "A") through 70 (an "F")
2152are, as are 97 ("a") through 102 ("f").  103 starts a range of code points
2153that aren't ASCII hex digits.  That range extends to infinity, which on your
2154computer can be found in the variable C<$Unicode::UCD::MAX_CP>.  (This
2155variable is as close to infinity as Perl can get on your platform, and may be
2156too high for some operations to work; you may wish to use a smaller number for
2157your purposes.)
2158
2159Note that the inversion lists returned by this function can possibly include
2160non-Unicode code points, that is anything above 0x10FFFF.  Unicode properties
2161are not defined on such code points.  You might wish to change the output to
2162not include these.  Simply add 0x110000 at the end of the non-empty returned
2163list if it isn't already that value; and pop that value if it is; like:
2164
2165 my @list = prop_invlist("foo");
2166 if (@list) {
2167     if ($list[-1] == 0x110000) {
2168         pop @list;  # Defeat the turning on for above Unicode
2169     }
2170     else {
2171         push @list, 0x110000; # Turn off for above Unicode
2172     }
2173 }
2174
2175It is a simple matter to expand out an inversion list to a full list of all
2176code points that have the property-value:
2177
2178 my @invlist = prop_invlist($property_name);
2179 die "empty" unless @invlist;
2180 my @full_list;
2181 for (my $i = 0; $i < @invlist; $i += 2) {
2182    my $upper = ($i + 1) < @invlist
2183                ? $invlist[$i+1] - 1      # In range
2184                : $Unicode::UCD::MAX_CP;  # To infinity.  You may want
2185                                          # to stop much much earlier;
2186                                          # going this high may expose
2187                                          # perl deficiencies with very
2188                                          # large numbers.
2189    for my $j ($invlist[$i] .. $upper) {
2190        push @full_list, $j;
2191    }
2192 }
2193
2194C<prop_invlist> does not know about any user-defined nor Perl internal-only
2195properties, and will return C<undef> if called with one of those.
2196
2197The L</search_invlist()> function is provided for finding a code point within
2198an inversion list.
2199
2200=cut
2201
2202# User-defined properties could be handled with some changes to utf8_heavy.pl;
2203# and implementing here of dealing with EXTRAS.  If done, consideration should
2204# be given to the fact that the user subroutine could return different results
2205# with each call; security issues need to be thought about.
2206
2207# These are created by mktables for this routine and stored in unicore/UCD.pl
2208# where their structures are described.
2209our %loose_defaults;
2210our $MAX_UNICODE_CODEPOINT;
2211
2212sub prop_invlist ($;$) {
2213    my $prop = $_[0];
2214
2215    # Undocumented way to get at Perl internal properties
2216    my $internal_ok = defined $_[1] && $_[1] eq '_perl_core_internal_ok';
2217
2218    return if ! defined $prop;
2219
2220    require "utf8_heavy.pl";
2221
2222    # Warnings for these are only for regexes, so not applicable to us
2223    no warnings 'deprecated';
2224
2225    # Get the swash definition of the property-value.
2226    my $swash = utf8::SWASHNEW(__PACKAGE__, $prop, undef, 1, 0);
2227
2228    # Fail if not found, or isn't a boolean property-value, or is a
2229    # user-defined property, or is internal-only.
2230    return if ! $swash
2231              || ref $swash eq ""
2232              || $swash->{'BITS'} != 1
2233              || $swash->{'USER_DEFINED'}
2234              || (! $internal_ok && $prop =~ /^\s*_/);
2235
2236    if ($swash->{'EXTRAS'}) {
2237        carp __PACKAGE__, "::prop_invlist: swash returned for $prop unexpectedly has EXTRAS magic";
2238        return;
2239    }
2240    if ($swash->{'SPECIALS'}) {
2241        carp __PACKAGE__, "::prop_invlist: swash returned for $prop unexpectedly has SPECIALS magic";
2242        return;
2243    }
2244
2245    my @invlist;
2246
2247    if ($swash->{'LIST'} =~ /^V/) {
2248
2249        # A 'V' as the first character marks the input as already an inversion
2250        # list, in which case, all we need to do is put the remaining lines
2251        # into our array.
2252        @invlist = split "\n", $swash->{'LIST'} =~ s/ \s* (?: \# .* )? $ //xmgr;
2253        shift @invlist;
2254    }
2255    else {
2256        # The input lines look like:
2257        # 0041\t005A   # [26]
2258        # 005F
2259
2260        # Split into lines, stripped of trailing comments
2261        foreach my $range (split "\n",
2262                              $swash->{'LIST'} =~ s/ \s* (?: \# .* )? $ //xmgr)
2263        {
2264            # And find the beginning and end of the range on the line
2265            my ($hex_begin, $hex_end) = split "\t", $range;
2266            my $begin = hex $hex_begin;
2267
2268            # If the new range merely extends the old, we remove the marker
2269            # created the last time through the loop for the old's end, which
2270            # causes the new one's end to be used instead.
2271            if (@invlist && $begin == $invlist[-1]) {
2272                pop @invlist;
2273            }
2274            else {
2275                # Add the beginning of the range
2276                push @invlist, $begin;
2277            }
2278
2279            if (defined $hex_end) { # The next item starts with the code point 1
2280                                    # beyond the end of the range.
2281                no warnings 'portable';
2282                my $end = hex $hex_end;
2283                last if $end == $Unicode::UCD::MAX_CP;
2284                push @invlist, $end + 1;
2285            }
2286            else {  # No end of range, is a single code point.
2287                push @invlist, $begin + 1;
2288            }
2289        }
2290    }
2291
2292    # Could need to be inverted: add or subtract a 0 at the beginning of the
2293    # list.
2294    if ($swash->{'INVERT_IT'}) {
2295        if (@invlist && $invlist[0] == 0) {
2296            shift @invlist;
2297        }
2298        else {
2299            unshift @invlist, 0;
2300        }
2301    }
2302
2303    return @invlist;
2304}
2305
2306=pod
2307
2308=head2 B<prop_invmap()>
2309
2310 use Unicode::UCD 'prop_invmap';
2311 my ($list_ref, $map_ref, $format, $default)
2312                                      = prop_invmap("General Category");
2313
2314C<prop_invmap> is used to get the complete mapping definition for a property,
2315in the form of an inversion map.  An inversion map consists of two parallel
2316arrays.  One is an ordered list of code points that mark range beginnings, and
2317the other gives the value (or mapping) that all code points in the
2318corresponding range have.
2319
2320C<prop_invmap> is called with the name of the desired property.  The name is
2321loosely matched, meaning that differences in case, white-space, hyphens, and
2322underscores are not meaningful (except for the trailing underscore in the
2323old-form grandfathered-in property C<"L_">, which is better written as C<"LC">,
2324or even better, C<"Gc=LC">).
2325
2326Many Unicode properties have more than one name (or alias).  C<prop_invmap>
2327understands all of these, including Perl extensions to them.  Ambiguities are
2328resolved as described above for L</prop_aliases()>.  The Perl internal
2329property "Perl_Decimal_Digit, described below, is also accepted.  An empty
2330list is returned if the property name is unknown.
2331See L<perluniprops/Properties accessible through Unicode::UCD> for the
2332properties acceptable as inputs to this function.
2333
2334It is a fatal error to call this function except in list context.
2335
2336In addition to the two arrays that form the inversion map, C<prop_invmap>
2337returns two other values; one is a scalar that gives some details as to the
2338format of the entries of the map array; the other is a default value, useful
2339in maps whose format name begins with the letter C<"a">, as described
2340L<below in its subsection|/a>; and for specialized purposes, such as
2341converting to another data structure, described at the end of this main
2342section.
2343
2344This means that C<prop_invmap> returns a 4 element list.  For example,
2345
2346 my ($blocks_ranges_ref, $blocks_maps_ref, $format, $default)
2347                                                 = prop_invmap("Block");
2348
2349In this call, the two arrays will be populated as shown below (for Unicode
23506.0):
2351
2352 Index  @blocks_ranges  @blocks_maps
2353   0        0x0000      Basic Latin
2354   1        0x0080      Latin-1 Supplement
2355   2        0x0100      Latin Extended-A
2356   3        0x0180      Latin Extended-B
2357   4        0x0250      IPA Extensions
2358   5        0x02B0      Spacing Modifier Letters
2359   6        0x0300      Combining Diacritical Marks
2360   7        0x0370      Greek and Coptic
2361   8        0x0400      Cyrillic
2362  ...
2363 233        0x2B820     No_Block
2364 234        0x2F800     CJK Compatibility Ideographs Supplement
2365 235        0x2FA20     No_Block
2366 236        0xE0000     Tags
2367 237        0xE0080     No_Block
2368 238        0xE0100     Variation Selectors Supplement
2369 239        0xE01F0     No_Block
2370 240        0xF0000     Supplementary Private Use Area-A
2371 241        0x100000    Supplementary Private Use Area-B
2372 242        0x110000    No_Block
2373
2374The first line (with Index [0]) means that the value for code point 0 is "Basic
2375Latin".  The entry "0x0080" in the @blocks_ranges column in the second line
2376means that the value from the first line, "Basic Latin", extends to all code
2377points in the range from 0 up to but not including 0x0080, that is, through
2378127.  In other words, the code points from 0 to 127 are all in the "Basic
2379Latin" block.  Similarly, all code points in the range from 0x0080 up to (but
2380not including) 0x0100 are in the block named "Latin-1 Supplement", etc.
2381(Notice that the return is the old-style block names; see L</Old-style versus
2382new-style block names>).
2383
2384The final line (with Index [242]) means that the value for all code points above
2385the legal Unicode maximum code point have the value "No_Block", which is the
2386term Unicode uses for a non-existing block.
2387
2388The arrays completely specify the mappings for all possible code points.
2389The final element in an inversion map returned by this function will always be
2390for the range that consists of all the code points that aren't legal Unicode,
2391but that are expressible on the platform.  (That is, it starts with code point
23920x110000, the first code point above the legal Unicode maximum, and extends to
2393infinity.) The value for that range will be the same that any typical
2394unassigned code point has for the specified property.  (Certain unassigned
2395code points are not "typical"; for example the non-character code points, or
2396those in blocks that are to be written right-to-left.  The above-Unicode
2397range's value is not based on these atypical code points.)  It could be argued
2398that, instead of treating these as unassigned Unicode code points, the value
2399for this range should be C<undef>.  If you wish, you can change the returned
2400arrays accordingly.
2401
2402The maps for almost all properties are simple scalars that should be
2403interpreted as-is.
2404These values are those given in the Unicode-supplied data files, which may be
2405inconsistent as to capitalization and as to which synonym for a property-value
2406is given.  The results may be normalized by using the L</prop_value_aliases()>
2407function.
2408
2409There are exceptions to the simple scalar maps.  Some properties have some
2410elements in their map list that are themselves lists of scalars; and some
2411special strings are returned that are not to be interpreted as-is.  Element
2412[2] (placed into C<$format> in the example above) of the returned four element
2413list tells you if the map has any of these special elements or not, as follows:
2414
2415=over
2416
2417=item B<C<s>>
2418
2419means all the elements of the map array are simple scalars, with no special
2420elements.  Almost all properties are like this, like the C<block> example
2421above.
2422
2423=item B<C<sl>>
2424
2425means that some of the map array elements have the form given by C<"s">, and
2426the rest are lists of scalars.  For example, here is a portion of the output
2427of calling C<prop_invmap>() with the "Script Extensions" property:
2428
2429 @scripts_ranges  @scripts_maps
2430      ...
2431      0x0953      Devanagari
2432      0x0964      [ Bengali, Devanagari, Gurumukhi, Oriya ]
2433      0x0966      Devanagari
2434      0x0970      Common
2435
2436Here, the code points 0x964 and 0x965 are both used in Bengali,
2437Devanagari, Gurmukhi, and Oriya, but no other scripts.
2438
2439The Name_Alias property is also of this form.  But each scalar consists of two
2440components:  1) the name, and 2) the type of alias this is.  They are
2441separated by a colon and a space.  In Unicode 6.1, there are several alias types:
2442
2443=over
2444
2445=item C<correction>
2446
2447indicates that the name is a corrected form for the
2448original name (which remains valid) for the same code point.
2449
2450=item C<control>
2451
2452adds a new name for a control character.
2453
2454=item C<alternate>
2455
2456is an alternate name for a character
2457
2458=item C<figment>
2459
2460is a name for a character that has been documented but was never in any
2461actual standard.
2462
2463=item C<abbreviation>
2464
2465is a common abbreviation for a character
2466
2467=back
2468
2469The lists are ordered (roughly) so the most preferred names come before less
2470preferred ones.
2471
2472For example,
2473
2474 @aliases_ranges        @alias_maps
2475    ...
2476    0x009E        [ 'PRIVACY MESSAGE: control', 'PM: abbreviation' ]
2477    0x009F        [ 'APPLICATION PROGRAM COMMAND: control',
2478                    'APC: abbreviation'
2479                  ]
2480    0x00A0        'NBSP: abbreviation'
2481    0x00A1        ""
2482    0x00AD        'SHY: abbreviation'
2483    0x00AE        ""
2484    0x01A2        'LATIN CAPITAL LETTER GHA: correction'
2485    0x01A3        'LATIN SMALL LETTER GHA: correction'
2486    0x01A4        ""
2487    ...
2488
2489A map to the empty string means that there is no alias defined for the code
2490point.
2491
2492=item B<C<a>>
2493
2494is like C<"s"> in that all the map array elements are scalars, but here they are
2495restricted to all being integers, and some have to be adjusted (hence the name
2496C<"a">) to get the correct result.  For example, in:
2497
2498 my ($uppers_ranges_ref, $uppers_maps_ref, $format, $default)
2499                          = prop_invmap("Simple_Uppercase_Mapping");
2500
2501the returned arrays look like this:
2502
2503 @$uppers_ranges_ref    @$uppers_maps_ref   Note
2504       0                      0
2505      97                     65          'a' maps to 'A', b => B ...
2506     123                      0
2507     181                    924          MICRO SIGN => Greek Cap MU
2508     182                      0
2509     ...
2510
2511and C<$default> is 0.
2512
2513Let's start with the second line.  It says that the uppercase of code point 97
2514is 65; or C<uc("a")> == "A".  But the line is for the entire range of code
2515points 97 through 122.  To get the mapping for any code point in this range,
2516you take the offset it has from the beginning code point of the range, and add
2517that to the mapping for that first code point.  So, the mapping for 122 ("z")
2518is derived by taking the offset of 122 from 97 (=25) and adding that to 65,
2519yielding 90 ("z").  Likewise for everything in between.
2520
2521Requiring this simple adjustment allows the returned arrays to be
2522significantly smaller than otherwise, up to a factor of 10, speeding up
2523searching through them.
2524
2525Ranges that map to C<$default>, C<"0">, behave somewhat differently.  For
2526these, each code point maps to itself.  So, in the first line in the example,
2527S<C<ord(uc(chr(0)))>> is 0, S<C<ord(uc(chr(1)))>> is 1, ..
2528S<C<ord(uc(chr(96)))>> is 96.
2529
2530=item B<C<al>>
2531
2532means that some of the map array elements have the form given by C<"a">, and
2533the rest are ordered lists of code points.
2534For example, in:
2535
2536 my ($uppers_ranges_ref, $uppers_maps_ref, $format, $default)
2537                                 = prop_invmap("Uppercase_Mapping");
2538
2539the returned arrays look like this:
2540
2541 @$uppers_ranges_ref    @$uppers_maps_ref
2542       0                      0
2543      97                     65
2544     123                      0
2545     181                    924
2546     182                      0
2547     ...
2548    0x0149              [ 0x02BC 0x004E ]
2549    0x014A                    0
2550    0x014B                  330
2551     ...
2552
2553This is the full Uppercase_Mapping property (as opposed to the
2554Simple_Uppercase_Mapping given in the example for format C<"a">).  The only
2555difference between the two in the ranges shown is that the code point at
25560x0149 (LATIN SMALL LETTER N PRECEDED BY APOSTROPHE) maps to a string of two
2557characters, 0x02BC (MODIFIER LETTER APOSTROPHE) followed by 0x004E (LATIN
2558CAPITAL LETTER N).
2559
2560No adjustments are needed to entries that are references to arrays; each such
2561entry will have exactly one element in its range, so the offset is always 0.
2562
2563The fourth (index [3]) element (C<$default>) in the list returned for this
2564format is 0.
2565
2566=item B<C<ae>>
2567
2568This is like C<"a">, but some elements are the empty string, and should not be
2569adjusted.
2570The one internal Perl property accessible by C<prop_invmap> is of this type:
2571"Perl_Decimal_Digit" returns an inversion map which gives the numeric values
2572that are represented by the Unicode decimal digit characters.  Characters that
2573don't represent decimal digits map to the empty string, like so:
2574
2575 @digits    @values
2576 0x0000       ""
2577 0x0030        0
2578 0x003A:      ""
2579 0x0660:       0
2580 0x066A:      ""
2581 0x06F0:       0
2582 0x06FA:      ""
2583 0x07C0:       0
2584 0x07CA:      ""
2585 0x0966:       0
2586 ...
2587
2588This means that the code points from 0 to 0x2F do not represent decimal digits;
2589the code point 0x30 (DIGIT ZERO) represents 0;  code point 0x31, (DIGIT ONE),
2590represents 0+1-0 = 1; ... code point 0x39, (DIGIT NINE), represents 0+9-0 = 9;
2591... code points 0x3A through 0x65F do not represent decimal digits; 0x660
2592(ARABIC-INDIC DIGIT ZERO), represents 0; ... 0x07C1 (NKO DIGIT ONE),
2593represents 0+1-0 = 1 ...
2594
2595The fourth (index [3]) element (C<$default>) in the list returned for this
2596format is the empty string.
2597
2598=item B<C<ale>>
2599
2600is a combination of the C<"al"> type and the C<"ae"> type.  Some of
2601the map array elements have the forms given by C<"al">, and
2602the rest are the empty string.  The property C<NFKC_Casefold> has this form.
2603An example slice is:
2604
2605 @$ranges_ref  @$maps_ref         Note
2606    ...
2607   0x00AA       97                FEMININE ORDINAL INDICATOR => 'a'
2608   0x00AB        0
2609   0x00AD                         SOFT HYPHEN => ""
2610   0x00AE        0
2611   0x00AF     [ 0x0020, 0x0304 ]  MACRON => SPACE . COMBINING MACRON
2612   0x00B0        0
2613   ...
2614
2615The fourth (index [3]) element (C<$default>) in the list returned for this
2616format is 0.
2617
2618=item B<C<ar>>
2619
2620means that all the elements of the map array are either rational numbers or
2621the string C<"NaN">, meaning "Not a Number".  A rational number is either an
2622integer, or two integers separated by a solidus (C<"/">).  The second integer
2623represents the denominator of the division implied by the solidus, and is
2624actually always positive, so it is guaranteed not to be 0 and to not be
2625signed.  When the element is a plain integer (without the
2626solidus), it may need to be adjusted to get the correct value by adding the
2627offset, just as other C<"a"> properties.  No adjustment is needed for
2628fractions, as the range is guaranteed to have just a single element, and so
2629the offset is always 0.
2630
2631If you want to convert the returned map to entirely scalar numbers, you
2632can use something like this:
2633
2634 my ($invlist_ref, $invmap_ref, $format) = prop_invmap($property);
2635 if ($format && $format eq "ar") {
2636     map { $_ = eval $_ if $_ ne 'NaN' } @$map_ref;
2637 }
2638
2639Here's some entries from the output of the property "Nv", which has format
2640C<"ar">.
2641
2642 @numerics_ranges  @numerics_maps       Note
2643        0x00           "NaN"
2644        0x30             0           DIGIT 0 .. DIGIT 9
2645        0x3A           "NaN"
2646        0xB2             2           SUPERSCRIPTs 2 and 3
2647        0xB4           "NaN"
2648        0xB9             1           SUPERSCRIPT 1
2649        0xBA           "NaN"
2650        0xBC            1/4          VULGAR FRACTION 1/4
2651        0xBD            1/2          VULGAR FRACTION 1/2
2652        0xBE            3/4          VULGAR FRACTION 3/4
2653        0xBF           "NaN"
2654        0x660            0           ARABIC-INDIC DIGIT ZERO .. NINE
2655        0x66A          "NaN"
2656
2657The fourth (index [3]) element (C<$default>) in the list returned for this
2658format is C<"NaN">.
2659
2660=item B<C<n>>
2661
2662means the Name property.  All the elements of the map array are simple
2663scalars, but some of them contain special strings that require more work to
2664get the actual name.
2665
2666Entries such as:
2667
2668 CJK UNIFIED IDEOGRAPH-<code point>
2669
2670mean that the name for the code point is "CJK UNIFIED IDEOGRAPH-"
2671with the code point (expressed in hexadecimal) appended to it, like "CJK
2672UNIFIED IDEOGRAPH-3403" (similarly for S<C<CJK COMPATIBILITY IDEOGRAPH-E<lt>code
2673pointE<gt>>>).
2674
2675Also, entries like
2676
2677 <hangul syllable>
2678
2679means that the name is algorithmically calculated.  This is easily done by
2680the function L<charnames/charnames::viacode(code)>.
2681
2682Note that for control characters (C<Gc=cc>), Unicode's data files have the
2683string "C<E<lt>controlE<gt>>", but the real name of each of these characters is the empty
2684string.  This function returns that real name, the empty string.  (There are
2685names for these characters, but they are considered aliases, not the Name
2686property name, and are contained in the C<Name_Alias> property.)
2687
2688=item B<C<ad>>
2689
2690means the Decomposition_Mapping property.  This property is like C<"al">
2691properties, except that one of the scalar elements is of the form:
2692
2693 <hangul syllable>
2694
2695This signifies that this entry should be replaced by the decompositions for
2696all the code points whose decomposition is algorithmically calculated.  (All
2697of them are currently in one range and no others outside the range are likely
2698to ever be added to Unicode; the C<"n"> format
2699has this same entry.)  These can be generated via the function
2700L<Unicode::Normalize::NFD()|Unicode::Normalize>.
2701
2702Note that the mapping is the one that is specified in the Unicode data files,
2703and to get the final decomposition, it may need to be applied recursively.
2704
2705The fourth (index [3]) element (C<$default>) in the list returned for this
2706format is 0.
2707
2708=back
2709
2710Note that a format begins with the letter "a" if and only the property it is
2711for requires adjustments by adding the offsets in multi-element ranges.  For
2712all these properties, an entry should be adjusted only if the map is a scalar
2713which is an integer.  That is, it must match the regular expression:
2714
2715    / ^ -? \d+ $ /xa
2716
2717Further, the first element in a range never needs adjustment, as the
2718adjustment would be just adding 0.
2719
2720A binary search such as that provided by L</search_invlist()>, can be used to
2721quickly find a code point in the inversion list, and hence its corresponding
2722mapping.
2723
2724The final, fourth element (index [3], assigned to C<$default> in the "block"
2725example) in the four element list returned by this function is used with the
2726C<"a"> format types; it may also be useful for applications
2727that wish to convert the returned inversion map data structure into some
2728other, such as a hash.  It gives the mapping that most code points map to
2729under the property.  If you establish the convention that any code point not
2730explicitly listed in your data structure maps to this value, you can
2731potentially make your data structure much smaller.  As you construct your data
2732structure from the one returned by this function, simply ignore those ranges
2733that map to this value.  For example, to
2734convert to the data structure searchable by L</charinrange()>, you can follow
2735this recipe for properties that don't require adjustments:
2736
2737 my ($list_ref, $map_ref, $format, $default) = prop_invmap($property);
2738 my @range_list;
2739
2740 # Look at each element in the list, but the -2 is needed because we
2741 # look at $i+1 in the loop, and the final element is guaranteed to map
2742 # to $default by prop_invmap(), so we would skip it anyway.
2743 for my $i (0 .. @$list_ref - 2) {
2744    next if $map_ref->[$i] eq $default;
2745    push @range_list, [ $list_ref->[$i],
2746                        $list_ref->[$i+1],
2747                        $map_ref->[$i]
2748                      ];
2749 }
2750
2751 print charinrange(\@range_list, $code_point), "\n";
2752
2753With this, C<charinrange()> will return C<undef> if its input code point maps
2754to C<$default>.  You can avoid this by omitting the C<next> statement, and adding
2755a line after the loop to handle the final element of the inversion map.
2756
2757Similarly, this recipe can be used for properties that do require adjustments:
2758
2759 for my $i (0 .. @$list_ref - 2) {
2760    next if $map_ref->[$i] eq $default;
2761
2762    # prop_invmap() guarantees that if the mapping is to an array, the
2763    # range has just one element, so no need to worry about adjustments.
2764    if (ref $map_ref->[$i]) {
2765        push @range_list,
2766                   [ $list_ref->[$i], $list_ref->[$i], $map_ref->[$i] ];
2767    }
2768    else {  # Otherwise each element is actually mapped to a separate
2769            # value, so the range has to be split into single code point
2770            # ranges.
2771
2772        my $adjustment = 0;
2773
2774        # For each code point that gets mapped to something...
2775        for my $j ($list_ref->[$i] .. $list_ref->[$i+1] -1 ) {
2776
2777            # ... add a range consisting of just it mapping to the
2778            # original plus the adjustment, which is incremented for the
2779            # next time through the loop, as the offset increases by 1
2780            # for each element in the range
2781            push @range_list,
2782                             [ $j, $j, $map_ref->[$i] + $adjustment++ ];
2783        }
2784    }
2785 }
2786
2787Note that the inversion maps returned for the C<Case_Folding> and
2788C<Simple_Case_Folding> properties do not include the Turkic-locale mappings.
2789Use L</casefold()> for these.
2790
2791C<prop_invmap> does not know about any user-defined properties, and will
2792return C<undef> if called with one of those.
2793
2794=cut
2795
2796# User-defined properties could be handled with some changes to utf8_heavy.pl;
2797# if done, consideration should be given to the fact that the user subroutine
2798# could return different results with each call, which could lead to some
2799# security issues.
2800
2801# One could store things in memory so they don't have to be recalculated, but
2802# it is unlikely this will be called often, and some properties would take up
2803# significant memory.
2804
2805# These are created by mktables for this routine and stored in unicore/UCD.pl
2806# where their structures are described.
2807our @algorithmic_named_code_points;
2808our $HANGUL_BEGIN;
2809our $HANGUL_COUNT;
2810
2811sub prop_invmap ($) {
2812
2813    croak __PACKAGE__, "::prop_invmap: must be called in list context" unless wantarray;
2814
2815    my $prop = $_[0];
2816    return unless defined $prop;
2817
2818    # Fail internal properties
2819    return if $prop =~ /^_/;
2820
2821    # The values returned by this function.
2822    my (@invlist, @invmap, $format, $missing);
2823
2824    # The swash has two components we look at, the base list, and a hash,
2825    # named 'SPECIALS', containing any additional members whose mappings don't
2826    # fit into the base list scheme of things.  These generally 'override'
2827    # any value in the base list for the same code point.
2828    my $overrides;
2829
2830    require "utf8_heavy.pl";
2831    require "unicore/UCD.pl";
2832
2833RETRY:
2834
2835    # If there are multiple entries for a single code point
2836    my $has_multiples = 0;
2837
2838    # Try to get the map swash for the property.  They have 'To' prepended to
2839    # the property name, and 32 means we will accept 32 bit return values.
2840    # The 0 means we aren't calling this from tr///.
2841    my $swash = utf8::SWASHNEW(__PACKAGE__, "To$prop", undef, 32, 0);
2842
2843    # If didn't find it, could be because needs a proxy.  And if was the
2844    # 'Block' or 'Name' property, use a proxy even if did find it.  Finding it
2845    # in these cases would be the result of the installation changing mktables
2846    # to output the Block or Name tables.  The Block table gives block names
2847    # in the new-style, and this routine is supposed to return old-style block
2848    # names.  The Name table is valid, but we need to execute the special code
2849    # below to add in the algorithmic-defined name entries.
2850    # And NFKCCF needs conversion, so handle that here too.
2851    if (ref $swash eq ""
2852        || $swash->{'TYPE'} =~ / ^ To (?: Blk | Na | NFKCCF ) $ /x)
2853    {
2854
2855        # Get the short name of the input property, in standard form
2856        my ($second_try) = prop_aliases($prop);
2857        return unless $second_try;
2858        $second_try = utf8::_loose_name(lc $second_try);
2859
2860        if ($second_try eq "in") {
2861
2862            # This property is identical to age for inversion map purposes
2863            $prop = "age";
2864            goto RETRY;
2865        }
2866        elsif ($second_try =~ / ^ s ( cf | fc | [ltu] c ) $ /x) {
2867
2868            # These properties use just the LIST part of the full mapping,
2869            # which includes the simple maps that are otherwise overridden by
2870            # the SPECIALS.  So all we need do is to not look at the SPECIALS;
2871            # set $overrides to indicate that
2872            $overrides = -1;
2873
2874            # The full name is the simple name stripped of its initial 's'
2875            $prop = $1;
2876
2877            # .. except for this case
2878            $prop = 'cf' if $prop eq 'fc';
2879
2880            goto RETRY;
2881        }
2882        elsif ($second_try eq "blk") {
2883
2884            # We use the old block names.  Just create a fake swash from its
2885            # data.
2886            _charblocks();
2887            my %blocks;
2888            $blocks{'LIST'} = "";
2889            $blocks{'TYPE'} = "ToBlk";
2890            $utf8::SwashInfo{ToBlk}{'missing'} = "No_Block";
2891            $utf8::SwashInfo{ToBlk}{'format'} = "s";
2892
2893            foreach my $block (@BLOCKS) {
2894                $blocks{'LIST'} .= sprintf "%x\t%x\t%s\n",
2895                                           $block->[0],
2896                                           $block->[1],
2897                                           $block->[2];
2898            }
2899            $swash = \%blocks;
2900        }
2901        elsif ($second_try eq "na") {
2902
2903            # Use the combo file that has all the Name-type properties in it,
2904            # extracting just the ones that are for the actual 'Name'
2905            # property.  And create a fake swash from it.
2906            my %names;
2907            $names{'LIST'} = "";
2908            my $original = do "unicore/Name.pl";
2909            my $algorithm_names = \@algorithmic_named_code_points;
2910
2911            # We need to remove the names from it that are aliases.  For that
2912            # we need to also read in that table.  Create a hash with the keys
2913            # being the code points, and the values being a list of the
2914            # aliases for the code point key.
2915            my ($aliases_code_points, $aliases_maps, undef, undef) =
2916                                                &prop_invmap('Name_Alias');
2917            my %aliases;
2918            for (my $i = 0; $i < @$aliases_code_points; $i++) {
2919                my $code_point = $aliases_code_points->[$i];
2920                $aliases{$code_point} = $aliases_maps->[$i];
2921
2922                # If not already a list, make it into one, so that later we
2923                # can treat things uniformly
2924                if (! ref $aliases{$code_point}) {
2925                    $aliases{$code_point} = [ $aliases{$code_point} ];
2926                }
2927
2928                # Remove the alias type from the entry, retaining just the
2929                # name.
2930                map { s/:.*// } @{$aliases{$code_point}};
2931            }
2932
2933            my $i = 0;
2934            foreach my $line (split "\n", $original) {
2935                my ($hex_code_point, $name) = split "\t", $line;
2936
2937                # Weeds out all comments, blank lines, and named sequences
2938                next if $hex_code_point =~ /[^[:xdigit:]]/a;
2939
2940                my $code_point = hex $hex_code_point;
2941
2942                # The name of all controls is the default: the empty string.
2943                # The set of controls is immutable
2944                next if chr($code_point) =~ /[[:cntrl:]]/u;
2945
2946                # If this is a name_alias, it isn't a name
2947                next if grep { $_ eq $name } @{$aliases{$code_point}};
2948
2949                # If we are beyond where one of the special lines needs to
2950                # be inserted ...
2951                while ($i < @$algorithm_names
2952                    && $code_point > $algorithm_names->[$i]->{'low'})
2953                {
2954
2955                    # ... then insert it, ahead of what we were about to
2956                    # output
2957                    $names{'LIST'} .= sprintf "%x\t%x\t%s\n",
2958                                            $algorithm_names->[$i]->{'low'},
2959                                            $algorithm_names->[$i]->{'high'},
2960                                            $algorithm_names->[$i]->{'name'};
2961
2962                    # Done with this range.
2963                    $i++;
2964
2965                    # We loop until all special lines that precede the next
2966                    # regular one are output.
2967                }
2968
2969                # Here, is a normal name.
2970                $names{'LIST'} .= sprintf "%x\t\t%s\n", $code_point, $name;
2971            } # End of loop through all the names
2972
2973            $names{'TYPE'} = "ToNa";
2974            $utf8::SwashInfo{ToNa}{'missing'} = "";
2975            $utf8::SwashInfo{ToNa}{'format'} = "n";
2976            $swash = \%names;
2977        }
2978        elsif ($second_try =~ / ^ ( d [mt] ) $ /x) {
2979
2980            # The file is a combination of dt and dm properties.  Create a
2981            # fake swash from the portion that we want.
2982            my $original = do "unicore/Decomposition.pl";
2983            my %decomps;
2984
2985            if ($second_try eq 'dt') {
2986                $decomps{'TYPE'} = "ToDt";
2987                $utf8::SwashInfo{'ToDt'}{'missing'} = "None";
2988                $utf8::SwashInfo{'ToDt'}{'format'} = "s";
2989            }   # 'dm' is handled below, with 'nfkccf'
2990
2991            $decomps{'LIST'} = "";
2992
2993            # This property has one special range not in the file: for the
2994            # hangul syllables.  But not in Unicode version 1.
2995            UnicodeVersion() unless defined $v_unicode_version;
2996            my $done_hangul = ($v_unicode_version lt v2.0.0)
2997                              ? 1
2998                              : 0;    # Have we done the hangul range ?
2999            foreach my $line (split "\n", $original) {
3000                my ($hex_lower, $hex_upper, $type_and_map) = split "\t", $line;
3001                my $code_point = hex $hex_lower;
3002                my $value;
3003                my $redo = 0;
3004
3005                # The type, enclosed in <...>, precedes the mapping separated
3006                # by blanks
3007                if ($type_and_map =~ / ^ < ( .* ) > \s+ (.*) $ /x) {
3008                    $value = ($second_try eq 'dt') ? $1 : $2
3009                }
3010                else {  # If there is no type specified, it's canonical
3011                    $value = ($second_try eq 'dt')
3012                             ? "Canonical" :
3013                             $type_and_map;
3014                }
3015
3016                # Insert the hangul range at the appropriate spot.
3017                if (! $done_hangul && $code_point > $HANGUL_BEGIN) {
3018                    $done_hangul = 1;
3019                    $decomps{'LIST'} .=
3020                                sprintf "%x\t%x\t%s\n",
3021                                        $HANGUL_BEGIN,
3022                                        $HANGUL_BEGIN + $HANGUL_COUNT - 1,
3023                                        ($second_try eq 'dt')
3024                                        ? "Canonical"
3025                                        : "<hangul syllable>";
3026                }
3027
3028                if ($value =~ / / && $hex_upper ne "" && $hex_upper ne $hex_lower) {
3029                    $line = sprintf("%04X\t%s\t%s", hex($hex_lower) + 1, $hex_upper, $value);
3030                    $hex_upper = "";
3031                    $redo = 1;
3032                }
3033
3034                # And append this to our constructed LIST.
3035                $decomps{'LIST'} .= "$hex_lower\t$hex_upper\t$value\n";
3036
3037                redo if $redo;
3038            }
3039            $swash = \%decomps;
3040        }
3041        elsif ($second_try ne 'nfkccf') { # Don't know this property. Fail.
3042            return;
3043        }
3044
3045        if ($second_try eq 'nfkccf' || $second_try eq 'dm') {
3046
3047            # The 'nfkccf' property is stored in the old format for backwards
3048            # compatibility for any applications that has read its file
3049            # directly before prop_invmap() existed.
3050            # And the code above has extracted the 'dm' property from its file
3051            # yielding the same format.  So here we convert them to adjusted
3052            # format for compatibility with the other properties similar to
3053            # them.
3054            my %revised_swash;
3055
3056            # We construct a new converted list.
3057            my $list = "";
3058
3059            my @ranges = split "\n", $swash->{'LIST'};
3060            for (my $i = 0; $i < @ranges; $i++) {
3061                my ($hex_begin, $hex_end, $map) = split "\t", $ranges[$i];
3062
3063                # The dm property has maps that are space separated sequences
3064                # of code points, as well as the special entry "<hangul
3065                # syllable>, which also contains a blank.
3066                my @map = split " ", $map;
3067                if (@map > 1) {
3068
3069                    # If it's just the special entry, append as-is.
3070                    if ($map eq '<hangul syllable>') {
3071                        $list .= "$ranges[$i]\n";
3072                    }
3073                    else {
3074
3075                        # These should all be single-element ranges.
3076                        croak __PACKAGE__, "::prop_invmap: Not expecting a mapping with multiple code points in a multi-element range, $ranges[$i]" if $hex_end ne "" && $hex_end ne $hex_begin;
3077
3078                        # Convert them to decimal, as that's what's expected.
3079                        $list .= "$hex_begin\t\t"
3080                            . join(" ", map { hex } @map)
3081                            . "\n";
3082                    }
3083                    next;
3084                }
3085
3086                # Here, the mapping doesn't have a blank, is for a single code
3087                # point.
3088                my $begin = hex $hex_begin;
3089                my $end = (defined $hex_end && $hex_end ne "")
3090                        ? hex $hex_end
3091                        : $begin;
3092
3093                # Again, the output is to be in decimal.
3094                my $decimal_map = hex $map;
3095
3096                # We know that multi-element ranges with the same mapping
3097                # should not be adjusted, as after the adjustment
3098                # multi-element ranges are for consecutive increasing code
3099                # points.  Further, the final element in the list won't be
3100                # adjusted, as there is nothing after it to include in the
3101                # adjustment
3102                if ($begin != $end || $i == @ranges -1) {
3103
3104                    # So just convert these to single-element ranges
3105                    foreach my $code_point ($begin .. $end) {
3106                        $list .= sprintf("%04X\t\t%d\n",
3107                                        $code_point, $decimal_map);
3108                    }
3109                }
3110                else {
3111
3112                    # Here, we have a candidate for adjusting.  What we do is
3113                    # look through the subsequent adjacent elements in the
3114                    # input.  If the map to the next one differs by 1 from the
3115                    # one before, then we combine into a larger range with the
3116                    # initial map.  Loop doing this until we find one that
3117                    # can't be combined.
3118
3119                    my $offset = 0;     # How far away are we from the initial
3120                                        # map
3121                    my $squished = 0;   # ? Did we squish at least two
3122                                        # elements together into one range
3123                    for ( ; $i < @ranges; $i++) {
3124                        my ($next_hex_begin, $next_hex_end, $next_map)
3125                                                = split "\t", $ranges[$i+1];
3126
3127                        # In the case of 'dm', the map may be a sequence of
3128                        # multiple code points, which are never combined with
3129                        # another range
3130                        last if $next_map =~ / /;
3131
3132                        $offset++;
3133                        my $next_decimal_map = hex $next_map;
3134
3135                        # If the next map is not next in sequence, it
3136                        # shouldn't be combined.
3137                        last if $next_decimal_map != $decimal_map + $offset;
3138
3139                        my $next_begin = hex $next_hex_begin;
3140
3141                        # Likewise, if the next element isn't adjacent to the
3142                        # previous one, it shouldn't be combined.
3143                        last if $next_begin != $begin + $offset;
3144
3145                        my $next_end = (defined $next_hex_end
3146                                        && $next_hex_end ne "")
3147                                            ? hex $next_hex_end
3148                                            : $next_begin;
3149
3150                        # And finally, if the next element is a multi-element
3151                        # range, it shouldn't be combined.
3152                        last if $next_end != $next_begin;
3153
3154                        # Here, we will combine.  Loop to see if we should
3155                        # combine the next element too.
3156                        $squished = 1;
3157                    }
3158
3159                    if ($squished) {
3160
3161                        # Here, 'i' is the element number of the last element to
3162                        # be combined, and the range is single-element, or we
3163                        # wouldn't be combining.  Get it's code point.
3164                        my ($hex_end, undef, undef) = split "\t", $ranges[$i];
3165                        $list .= "$hex_begin\t$hex_end\t$decimal_map\n";
3166                    } else {
3167
3168                        # Here, no combining done.  Just append the initial
3169                        # (and current) values.
3170                        $list .= "$hex_begin\t\t$decimal_map\n";
3171                    }
3172                }
3173            } # End of loop constructing the converted list
3174
3175            # Finish up the data structure for our converted swash
3176            my $type = ($second_try eq 'nfkccf') ? 'ToNFKCCF' : 'ToDm';
3177            $revised_swash{'LIST'} = $list;
3178            $revised_swash{'TYPE'} = $type;
3179            $revised_swash{'SPECIALS'} = $swash->{'SPECIALS'};
3180            $swash = \%revised_swash;
3181
3182            $utf8::SwashInfo{$type}{'missing'} = 0;
3183            $utf8::SwashInfo{$type}{'format'} = 'a';
3184        }
3185    }
3186
3187    if ($swash->{'EXTRAS'}) {
3188        carp __PACKAGE__, "::prop_invmap: swash returned for $prop unexpectedly has EXTRAS magic";
3189        return;
3190    }
3191
3192    # Here, have a valid swash return.  Examine it.
3193    my $returned_prop = $swash->{'TYPE'};
3194
3195    # All properties but binary ones should have 'missing' and 'format'
3196    # entries
3197    $missing = $utf8::SwashInfo{$returned_prop}{'missing'};
3198    $missing = 'N' unless defined $missing;
3199
3200    $format = $utf8::SwashInfo{$returned_prop}{'format'};
3201    $format = 'b' unless defined $format;
3202
3203    my $requires_adjustment = $format =~ /^a/;
3204
3205    if ($swash->{'LIST'} =~ /^V/) {
3206        @invlist = split "\n", $swash->{'LIST'} =~ s/ \s* (?: \# .* )? $ //xmgr;
3207        shift @invlist;
3208        foreach my $i (0 .. @invlist - 1) {
3209            $invmap[$i] = ($i % 2 == 0) ? 'Y' : 'N'
3210        }
3211
3212        # The map includes lines for all code points; add one for the range
3213        # from 0 to the first Y.
3214        if ($invlist[0] != 0) {
3215            unshift @invlist, 0;
3216            unshift @invmap, 'N';
3217        }
3218    }
3219    else {
3220        # The LIST input lines look like:
3221        # ...
3222        # 0374\t\tCommon
3223        # 0375\t0377\tGreek   # [3]
3224        # 037A\t037D\tGreek   # [4]
3225        # 037E\t\tCommon
3226        # 0384\t\tGreek
3227        # ...
3228        #
3229        # Convert them to like
3230        # 0374 => Common
3231        # 0375 => Greek
3232        # 0378 => $missing
3233        # 037A => Greek
3234        # 037E => Common
3235        # 037F => $missing
3236        # 0384 => Greek
3237        #
3238        # For binary properties, the final non-comment column is absent, and
3239        # assumed to be 'Y'.
3240
3241        foreach my $range (split "\n", $swash->{'LIST'}) {
3242            $range =~ s/ \s* (?: \# .* )? $ //xg; # rmv trailing space, comments
3243
3244            # Find the beginning and end of the range on the line
3245            my ($hex_begin, $hex_end, $map) = split "\t", $range;
3246            my $begin = hex $hex_begin;
3247            no warnings 'portable';
3248            my $end = (defined $hex_end && $hex_end ne "")
3249                    ? hex $hex_end
3250                    : $begin;
3251
3252            # Each time through the loop (after the first):
3253            # $invlist[-2] contains the beginning of the previous range processed
3254            # $invlist[-1] contains the end+1 of the previous range processed
3255            # $invmap[-2] contains the value of the previous range processed
3256            # $invmap[-1] contains the default value for missing ranges
3257            #                                                       ($missing)
3258            #
3259            # Thus, things are set up for the typical case of a new
3260            # non-adjacent range of non-missings to be added.  But, if the new
3261            # range is adjacent, it needs to replace the [-1] element; and if
3262            # the new range is a multiple value of the previous one, it needs
3263            # to be added to the [-2] map element.
3264
3265            # The first time through, everything will be empty.  If the
3266            # property doesn't have a range that begins at 0, add one that
3267            # maps to $missing
3268            if (! @invlist) {
3269                if ($begin != 0) {
3270                    push @invlist, 0;
3271                    push @invmap, $missing;
3272                }
3273            }
3274            elsif (@invlist > 1 && $invlist[-2] == $begin) {
3275
3276                # Here we handle the case where the input has multiple entries
3277                # for each code point.  mktables should have made sure that
3278                # each such range contains only one code point.  At this
3279                # point, $invlist[-1] is the $missing that was added at the
3280                # end of the last loop iteration, and [-2] is the last real
3281                # input code point, and that code point is the same as the one
3282                # we are adding now, making the new one a multiple entry.  Add
3283                # it to the existing entry, either by pushing it to the
3284                # existing list of multiple entries, or converting the single
3285                # current entry into a list with both on it.  This is all we
3286                # need do for this iteration.
3287
3288                if ($end != $begin) {
3289                    croak __PACKAGE__, ":prop_invmap: Multiple maps per code point in '$prop' require single-element ranges: begin=$begin, end=$end, map=$map";
3290                }
3291                if (! ref $invmap[-2]) {
3292                    $invmap[-2] = [ $invmap[-2], $map ];
3293                }
3294                else {
3295                    push @{$invmap[-2]}, $map;
3296                }
3297                $has_multiples = 1;
3298                next;
3299            }
3300            elsif ($invlist[-1] == $begin) {
3301
3302                # If the input isn't in the most compact form, so that there
3303                # are two adjacent ranges that map to the same thing, they
3304                # should be combined (EXCEPT where the arrays require
3305                # adjustments, in which case everything is already set up
3306                # correctly).  This happens in our constructed dt mapping, as
3307                # Element [-2] is the map for the latest range so far
3308                # processed.  Just set the beginning point of the map to
3309                # $missing (in invlist[-1]) to 1 beyond where this range ends.
3310                # For example, in
3311                # 12\t13\tXYZ
3312                # 14\t17\tXYZ
3313                # we have set it up so that it looks like
3314                # 12 => XYZ
3315                # 14 => $missing
3316                #
3317                # We now see that it should be
3318                # 12 => XYZ
3319                # 18 => $missing
3320                if (! $requires_adjustment && @invlist > 1 && ( (defined $map)
3321                                    ? $invmap[-2] eq $map
3322                                    : $invmap[-2] eq 'Y'))
3323                {
3324                    $invlist[-1] = $end + 1;
3325                    next;
3326                }
3327
3328                # Here, the range started in the previous iteration that maps
3329                # to $missing starts at the same code point as this range.
3330                # That means there is no gap to fill that that range was
3331                # intended for, so we just pop it off the parallel arrays.
3332                pop @invlist;
3333                pop @invmap;
3334            }
3335
3336            # Add the range beginning, and the range's map.
3337            push @invlist, $begin;
3338            if ($returned_prop eq 'ToDm') {
3339
3340                # The decomposition maps are either a line like <hangul
3341                # syllable> which are to be taken as is; or a sequence of code
3342                # points in hex and separated by blanks.  Convert them to
3343                # decimal, and if there is more than one, use an anonymous
3344                # array as the map.
3345                if ($map =~ /^ < /x) {
3346                    push @invmap, $map;
3347                }
3348                else {
3349                    my @map = split " ", $map;
3350                    if (@map == 1) {
3351                        push @invmap, $map[0];
3352                    }
3353                    else {
3354                        push @invmap, \@map;
3355                    }
3356                }
3357            }
3358            else {
3359
3360                # Otherwise, convert hex formatted list entries to decimal;
3361                # add a 'Y' map for the missing value in binary properties, or
3362                # otherwise, use the input map unchanged.
3363                $map = ($format eq 'x' || $format eq 'ax')
3364                    ? hex $map
3365                    : $format eq 'b'
3366                    ? 'Y'
3367                    : $map;
3368                push @invmap, $map;
3369            }
3370
3371            # We just started a range.  It ends with $end.  The gap between it
3372            # and the next element in the list must be filled with a range
3373            # that maps to the default value.  If there is no gap, the next
3374            # iteration will pop this, unless there is no next iteration, and
3375            # we have filled all of the Unicode code space, so check for that
3376            # and skip.
3377            if ($end < $Unicode::UCD::MAX_CP) {
3378                push @invlist, $end + 1;
3379                push @invmap, $missing;
3380            }
3381        }
3382    }
3383
3384    # If the property is empty, make all code points use the value for missing
3385    # ones.
3386    if (! @invlist) {
3387        push @invlist, 0;
3388        push @invmap, $missing;
3389    }
3390
3391    # The final element is always for just the above-Unicode code points.  If
3392    # not already there, add it.  It merely splits the current final range
3393    # that extends to infinity into two elements, each with the same map.
3394    # (This is to conform with the API that says the final element is for
3395    # $MAX_UNICODE_CODEPOINT + 1 .. INFINITY.)
3396    if ($invlist[-1] != $MAX_UNICODE_CODEPOINT + 1) {
3397        push @invmap, $invmap[-1];
3398        push @invlist, $MAX_UNICODE_CODEPOINT + 1;
3399    }
3400
3401    # The second component of the map are those values that require
3402    # non-standard specification, stored in SPECIALS.  These override any
3403    # duplicate code points in LIST.  If we are using a proxy, we may have
3404    # already set $overrides based on the proxy.
3405    $overrides = $swash->{'SPECIALS'} unless defined $overrides;
3406    if ($overrides) {
3407
3408        # A negative $overrides implies that the SPECIALS should be ignored,
3409        # and a simple 'a' list is the value.
3410        if ($overrides < 0) {
3411            $format = 'a';
3412        }
3413        else {
3414
3415            # Currently, all overrides are for properties that normally map to
3416            # single code points, but now some will map to lists of code
3417            # points (but there is an exception case handled below).
3418            $format = 'al';
3419
3420            # Look through the overrides.
3421            foreach my $cp_maybe_utf8 (keys %$overrides) {
3422                my $cp;
3423                my @map;
3424
3425                # If the overrides came from SPECIALS, the code point keys are
3426                # packed UTF-8.
3427                if ($overrides == $swash->{'SPECIALS'}) {
3428                    $cp = unpack("C0U", $cp_maybe_utf8);
3429                    @map = unpack "U0U*", $swash->{'SPECIALS'}{$cp_maybe_utf8};
3430
3431                    # The empty string will show up unpacked as an empty
3432                    # array.
3433                    $format = 'ale' if @map == 0;
3434                }
3435                else {
3436
3437                    # But if we generated the overrides, we didn't bother to
3438                    # pack them, and we, so far, do this only for properties
3439                    # that are 'a' ones.
3440                    $cp = $cp_maybe_utf8;
3441                    @map = hex $overrides->{$cp};
3442                    $format = 'a';
3443                }
3444
3445                # Find the range that the override applies to.
3446                my $i = search_invlist(\@invlist, $cp);
3447                if ($cp < $invlist[$i] || $cp >= $invlist[$i + 1]) {
3448                    croak __PACKAGE__, "::prop_invmap: wrong_range, cp=$cp; i=$i, current=$invlist[$i]; next=$invlist[$i + 1]"
3449                }
3450
3451                # And what that range currently maps to
3452                my $cur_map = $invmap[$i];
3453
3454                # If there is a gap between the next range and the code point
3455                # we are overriding, we have to add elements to both arrays to
3456                # fill that gap, using the map that applies to it, which is
3457                # $cur_map, since it is part of the current range.
3458                if ($invlist[$i + 1] > $cp + 1) {
3459                    #use feature 'say';
3460                    #say "Before splice:";
3461                    #say 'i-2=[', $i-2, ']', sprintf("%04X maps to %s", $invlist[$i-2], $invmap[$i-2]) if $i >= 2;
3462                    #say 'i-1=[', $i-1, ']', sprintf("%04X maps to %s", $invlist[$i-1], $invmap[$i-1]) if $i >= 1;
3463                    #say 'i  =[', $i, ']', sprintf("%04X maps to %s", $invlist[$i], $invmap[$i]);
3464                    #say 'i+1=[', $i+1, ']', sprintf("%04X maps to %s", $invlist[$i+1], $invmap[$i+1]) if $i < @invlist + 1;
3465                    #say 'i+2=[', $i+2, ']', sprintf("%04X maps to %s", $invlist[$i+2], $invmap[$i+2]) if $i < @invlist + 2;
3466
3467                    splice @invlist, $i + 1, 0, $cp + 1;
3468                    splice @invmap, $i + 1, 0, $cur_map;
3469
3470                    #say "After splice:";
3471                    #say 'i-2=[', $i-2, ']', sprintf("%04X maps to %s", $invlist[$i-2], $invmap[$i-2]) if $i >= 2;
3472                    #say 'i-1=[', $i-1, ']', sprintf("%04X maps to %s", $invlist[$i-1], $invmap[$i-1]) if $i >= 1;
3473                    #say 'i  =[', $i, ']', sprintf("%04X maps to %s", $invlist[$i], $invmap[$i]);
3474                    #say 'i+1=[', $i+1, ']', sprintf("%04X maps to %s", $invlist[$i+1], $invmap[$i+1]) if $i < @invlist + 1;
3475                    #say 'i+2=[', $i+2, ']', sprintf("%04X maps to %s", $invlist[$i+2], $invmap[$i+2]) if $i < @invlist + 2;
3476                }
3477
3478                # If the remaining portion of the range is multiple code
3479                # points (ending with the one we are replacing, guaranteed by
3480                # the earlier splice).  We must split it into two
3481                if ($invlist[$i] < $cp) {
3482                    $i++;   # Compensate for the new element
3483
3484                    #use feature 'say';
3485                    #say "Before splice:";
3486                    #say 'i-2=[', $i-2, ']', sprintf("%04X maps to %s", $invlist[$i-2], $invmap[$i-2]) if $i >= 2;
3487                    #say 'i-1=[', $i-1, ']', sprintf("%04X maps to %s", $invlist[$i-1], $invmap[$i-1]) if $i >= 1;
3488                    #say 'i  =[', $i, ']', sprintf("%04X maps to %s", $invlist[$i], $invmap[$i]);
3489                    #say 'i+1=[', $i+1, ']', sprintf("%04X maps to %s", $invlist[$i+1], $invmap[$i+1]) if $i < @invlist + 1;
3490                    #say 'i+2=[', $i+2, ']', sprintf("%04X maps to %s", $invlist[$i+2], $invmap[$i+2]) if $i < @invlist + 2;
3491
3492                    splice @invlist, $i, 0, $cp;
3493                    splice @invmap, $i, 0, 'dummy';
3494
3495                    #say "After splice:";
3496                    #say 'i-2=[', $i-2, ']', sprintf("%04X maps to %s", $invlist[$i-2], $invmap[$i-2]) if $i >= 2;
3497                    #say 'i-1=[', $i-1, ']', sprintf("%04X maps to %s", $invlist[$i-1], $invmap[$i-1]) if $i >= 1;
3498                    #say 'i  =[', $i, ']', sprintf("%04X maps to %s", $invlist[$i], $invmap[$i]);
3499                    #say 'i+1=[', $i+1, ']', sprintf("%04X maps to %s", $invlist[$i+1], $invmap[$i+1]) if $i < @invlist + 1;
3500                    #say 'i+2=[', $i+2, ']', sprintf("%04X maps to %s", $invlist[$i+2], $invmap[$i+2]) if $i < @invlist + 2;
3501                }
3502
3503                # Here, the range we are overriding contains a single code
3504                # point.  The result could be the empty string, a single
3505                # value, or a list.  If the last case, we use an anonymous
3506                # array.
3507                $invmap[$i] = (scalar @map == 0)
3508                               ? ""
3509                               : (scalar @map > 1)
3510                                  ? \@map
3511                                  : $map[0];
3512            }
3513        }
3514    }
3515    elsif ($format eq 'x') {
3516
3517        # All hex-valued properties are really to code points, and have been
3518        # converted to decimal.
3519        $format = 's';
3520    }
3521    elsif ($returned_prop eq 'ToDm') {
3522        $format = 'ad';
3523    }
3524    elsif ($format eq 'sw') { # blank-separated elements to form a list.
3525        map { $_ = [ split " ", $_  ] if $_ =~ / / } @invmap;
3526        $format = 'sl';
3527    }
3528    elsif ($returned_prop eq 'ToNameAlias') {
3529
3530        # This property currently doesn't have any lists, but theoretically
3531        # could
3532        $format = 'sl';
3533    }
3534    elsif ($returned_prop eq 'ToPerlDecimalDigit') {
3535        $format = 'ae';
3536    }
3537    elsif ($returned_prop eq 'ToNv') {
3538
3539        # The one property that has this format is stored as a delta, so needs
3540        # to indicate that need to add code point to it.
3541        $format = 'ar';
3542    }
3543    elsif ($format ne 'n' && $format ne 'a') {
3544
3545        # All others are simple scalars
3546        $format = 's';
3547    }
3548    if ($has_multiples &&  $format !~ /l/) {
3549	croak __PACKAGE__, "::prop_invmap: Wrong format '$format' for prop_invmap('$prop'); should indicate has lists";
3550    }
3551
3552    return (\@invlist, \@invmap, $format, $missing);
3553}
3554
3555sub search_invlist {
3556
3557=pod
3558
3559=head2 B<search_invlist()>
3560
3561 use Unicode::UCD qw(prop_invmap prop_invlist);
3562 use Unicode::UCD 'search_invlist';
3563
3564 my @invlist = prop_invlist($property_name);
3565 print $code_point, ((search_invlist(\@invlist, $code_point) // -1) % 2)
3566                     ? " isn't"
3567                     : " is",
3568     " in $property_name\n";
3569
3570 my ($blocks_ranges_ref, $blocks_map_ref) = prop_invmap("Block");
3571 my $index = search_invlist($blocks_ranges_ref, $code_point);
3572 print "$code_point is in block ", $blocks_map_ref->[$index], "\n";
3573
3574C<search_invlist> is used to search an inversion list returned by
3575C<prop_invlist> or C<prop_invmap> for a particular L</code point argument>.
3576C<undef> is returned if the code point is not found in the inversion list
3577(this happens only when it is not a legal L<code point argument>, or is less
3578than the list's first element).  A warning is raised in the first instance.
3579
3580Otherwise, it returns the index into the list of the range that contains the
3581code point.; that is, find C<i> such that
3582
3583    list[i]<= code_point < list[i+1].
3584
3585As explained in L</prop_invlist()>, whether a code point is in the list or not
3586depends on if the index is even (in) or odd (not in).  And as explained in
3587L</prop_invmap()>, the index is used with the returned parallel array to find
3588the mapping.
3589
3590=cut
3591
3592
3593    my $list_ref = shift;
3594    my $input_code_point = shift;
3595    my $code_point = _getcode($input_code_point);
3596
3597    if (! defined $code_point) {
3598        carp __PACKAGE__, "::search_invlist: unknown code '$input_code_point'";
3599        return;
3600    }
3601
3602    my $max_element = @$list_ref - 1;
3603
3604    # Return undef if list is empty or requested item is before the first element.
3605    return if $max_element < 0;
3606    return if $code_point < $list_ref->[0];
3607
3608    # Short cut something at the far-end of the table.  This also allows us to
3609    # refer to element [$i+1] without fear of being out-of-bounds in the loop
3610    # below.
3611    return $max_element if $code_point >= $list_ref->[$max_element];
3612
3613    use integer;        # want integer division
3614
3615    my $i = $max_element / 2;
3616
3617    my $lower = 0;
3618    my $upper = $max_element;
3619    while (1) {
3620
3621        if ($code_point >= $list_ref->[$i]) {
3622
3623            # Here we have met the lower constraint.  We can quit if we
3624            # also meet the upper one.
3625            last if $code_point < $list_ref->[$i+1];
3626
3627            $lower = $i;        # Still too low.
3628
3629        }
3630        else {
3631
3632            # Here, $code_point < $list_ref[$i], so look lower down.
3633            $upper = $i;
3634        }
3635
3636        # Split search domain in half to try again.
3637        my $temp = ($upper + $lower) / 2;
3638
3639        # No point in continuing unless $i changes for next time
3640        # in the loop.
3641        return $i if $temp == $i;
3642        $i = $temp;
3643    } # End of while loop
3644
3645    # Here we have found the offset
3646    return $i;
3647}
3648
3649=head2 Unicode::UCD::UnicodeVersion
3650
3651This returns the version of the Unicode Character Database, in other words, the
3652version of the Unicode standard the database implements.  The version is a
3653string of numbers delimited by dots (C<'.'>).
3654
3655=cut
3656
3657my $UNICODEVERSION;
3658
3659sub UnicodeVersion {
3660    unless (defined $UNICODEVERSION) {
3661	openunicode(\$VERSIONFH, "version");
3662	local $/ = "\n";
3663	chomp($UNICODEVERSION = <$VERSIONFH>);
3664	close($VERSIONFH);
3665	croak __PACKAGE__, "::VERSION: strange version '$UNICODEVERSION'"
3666	    unless $UNICODEVERSION =~ /^\d+(?:\.\d+)+$/;
3667    }
3668    $v_unicode_version = pack "C*", split /\./, $UNICODEVERSION;
3669    return $UNICODEVERSION;
3670}
3671
3672=head2 B<Blocks versus Scripts>
3673
3674The difference between a block and a script is that scripts are closer
3675to the linguistic notion of a set of code points required to present
3676languages, while block is more of an artifact of the Unicode code point
3677numbering and separation into blocks of consecutive code points (so far the
3678size of a block is some multiple of 16, like 128 or 256).
3679
3680For example the Latin B<script> is spread over several B<blocks>, such
3681as C<Basic Latin>, C<Latin 1 Supplement>, C<Latin Extended-A>, and
3682C<Latin Extended-B>.  On the other hand, the Latin script does not
3683contain all the characters of the C<Basic Latin> block (also known as
3684ASCII): it includes only the letters, and not, for example, the digits
3685or the punctuation.
3686
3687For blocks see L<http://www.unicode.org/Public/UNIDATA/Blocks.txt>
3688
3689For scripts see UTR #24: L<http://www.unicode.org/unicode/reports/tr24/>
3690
3691=head2 B<Matching Scripts and Blocks>
3692
3693Scripts are matched with the regular-expression construct
3694C<\p{...}> (e.g. C<\p{Tibetan}> matches characters of the Tibetan script),
3695while C<\p{Blk=...}> is used for blocks (e.g. C<\p{Blk=Tibetan}> matches
3696any of the 256 code points in the Tibetan block).
3697
3698=head2 Old-style versus new-style block names
3699
3700Unicode publishes the names of blocks in two different styles, though the two
3701are equivalent under Unicode's loose matching rules.
3702
3703The original style uses blanks and hyphens in the block names (except for
3704C<No_Block>), like so:
3705
3706 Miscellaneous Mathematical Symbols-B
3707
3708The newer style replaces these with underscores, like this:
3709
3710 Miscellaneous_Mathematical_Symbols_B
3711
3712This newer style is consistent with the values of other Unicode properties.
3713To preserve backward compatibility, all the functions in Unicode::UCD that
3714return block names (except one) return the old-style ones.  That one function,
3715L</prop_value_aliases()> can be used to convert from old-style to new-style:
3716
3717 my $new_style = prop_values_aliases("block", $old_style);
3718
3719Perl also has single-form extensions that refer to blocks, C<In_Cyrillic>,
3720meaning C<Block=Cyrillic>.  These have always been written in the new style.
3721
3722To convert from new-style to old-style, follow this recipe:
3723
3724 $old_style = charblock((prop_invlist("block=$new_style"))[0]);
3725
3726(which finds the range of code points in the block using C<prop_invlist>,
3727gets the lower end of the range (0th element) and then looks up the old name
3728for its block using C<charblock>).
3729
3730Note that starting in Unicode 6.1, many of the block names have shorter
3731synonyms.  These are always given in the new style.
3732
3733=head1 AUTHOR
3734
3735Jarkko Hietaniemi.  Now maintained by perl5 porters.
3736
3737=cut
3738
37391;
3740