1package Unicode::UCD; 2 3use strict; 4use warnings; 5no warnings 'surrogate'; # surrogates can be inputs to this 6use charnames (); 7 8our $VERSION = '0.58'; 9 10require Exporter; 11 12our @ISA = qw(Exporter); 13 14our @EXPORT_OK = qw(charinfo 15 charblock charscript 16 charblocks charscripts 17 charinrange 18 general_categories bidi_types 19 compexcl 20 casefold all_casefolds casespec 21 namedseq 22 num 23 prop_aliases 24 prop_value_aliases 25 prop_invlist 26 prop_invmap 27 search_invlist 28 MAX_CP 29 ); 30 31use Carp; 32 33sub IS_ASCII_PLATFORM { ord("A") == 65 } 34 35=head1 NAME 36 37Unicode::UCD - Unicode character database 38 39=head1 SYNOPSIS 40 41 use Unicode::UCD 'charinfo'; 42 my $charinfo = charinfo($codepoint); 43 44 use Unicode::UCD 'casefold'; 45 my $casefold = casefold(0xFB00); 46 47 use Unicode::UCD 'all_casefolds'; 48 my $all_casefolds_ref = all_casefolds(); 49 50 use Unicode::UCD 'casespec'; 51 my $casespec = casespec(0xFB00); 52 53 use Unicode::UCD 'charblock'; 54 my $charblock = charblock($codepoint); 55 56 use Unicode::UCD 'charscript'; 57 my $charscript = charscript($codepoint); 58 59 use Unicode::UCD 'charblocks'; 60 my $charblocks = charblocks(); 61 62 use Unicode::UCD 'charscripts'; 63 my $charscripts = charscripts(); 64 65 use Unicode::UCD qw(charscript charinrange); 66 my $range = charscript($script); 67 print "looks like $script\n" if charinrange($range, $codepoint); 68 69 use Unicode::UCD qw(general_categories bidi_types); 70 my $categories = general_categories(); 71 my $types = bidi_types(); 72 73 use Unicode::UCD 'prop_aliases'; 74 my @space_names = prop_aliases("space"); 75 76 use Unicode::UCD 'prop_value_aliases'; 77 my @gc_punct_names = prop_value_aliases("Gc", "Punct"); 78 79 use Unicode::UCD 'prop_invlist'; 80 my @puncts = prop_invlist("gc=punctuation"); 81 82 use Unicode::UCD 'prop_invmap'; 83 my ($list_ref, $map_ref, $format, $missing) 84 = prop_invmap("General Category"); 85 86 use Unicode::UCD 'search_invlist'; 87 my $index = search_invlist(\@invlist, $code_point); 88 89 use Unicode::UCD 'compexcl'; 90 my $compexcl = compexcl($codepoint); 91 92 use Unicode::UCD 'namedseq'; 93 my $namedseq = namedseq($named_sequence_name); 94 95 my $unicode_version = Unicode::UCD::UnicodeVersion(); 96 97 my $convert_to_numeric = 98 Unicode::UCD::num("\N{RUMI DIGIT ONE}\N{RUMI DIGIT TWO}"); 99 100=head1 DESCRIPTION 101 102The Unicode::UCD module offers a series of functions that 103provide a simple interface to the Unicode 104Character Database. 105 106=head2 code point argument 107 108Some of the functions are called with a I<code point argument>, which is either 109a decimal or a hexadecimal scalar designating a code point in the platform's 110native character set (extended to Unicode), or C<U+> followed by hexadecimals 111designating a Unicode code point. A leading 0 will force a hexadecimal 112interpretation, as will a hexadecimal digit that isn't a decimal digit. 113 114Examples: 115 116 223 # Decimal 223 in native character set 117 0223 # Hexadecimal 223, native (= 547 decimal) 118 0xDF # Hexadecimal DF, native (= 223 decimal 119 U+DF # Hexadecimal DF, in Unicode's character set 120 (= LATIN SMALL LETTER SHARP S) 121 122Note that the largest code point in Unicode is U+10FFFF. 123 124=cut 125 126my $BLOCKSFH; 127my $VERSIONFH; 128my $CASEFOLDFH; 129my $CASESPECFH; 130my $NAMEDSEQFH; 131my $v_unicode_version; # v-string. 132 133sub openunicode { 134 my ($rfh, @path) = @_; 135 my $f; 136 unless (defined $$rfh) { 137 for my $d (@INC) { 138 use File::Spec; 139 $f = File::Spec->catfile($d, "unicore", @path); 140 last if open($$rfh, $f); 141 undef $f; 142 } 143 croak __PACKAGE__, ": failed to find ", 144 File::Spec->catfile(@path), " in @INC" 145 unless defined $f; 146 } 147 return $f; 148} 149 150sub _dclone ($) { # Use Storable::dclone if available; otherwise emulate it. 151 152 use if defined &DynaLoader::boot_DynaLoader, Storable => qw(dclone); 153 154 return dclone(shift) if defined &dclone; 155 156 my $arg = shift; 157 my $type = ref $arg; 158 return $arg unless $type; # No deep cloning needed for scalars 159 160 if ($type eq 'ARRAY') { 161 my @return; 162 foreach my $element (@$arg) { 163 push @return, &_dclone($element); 164 } 165 return \@return; 166 } 167 elsif ($type eq 'HASH') { 168 my %return; 169 foreach my $key (keys %$arg) { 170 $return{$key} = &_dclone($arg->{$key}); 171 } 172 return \%return; 173 } 174 else { 175 croak "_dclone can't handle " . $type; 176 } 177} 178 179=head2 B<charinfo()> 180 181 use Unicode::UCD 'charinfo'; 182 183 my $charinfo = charinfo(0x41); 184 185This returns information about the input L</code point argument> 186as a reference to a hash of fields as defined by the Unicode 187standard. If the L</code point argument> is not assigned in the standard 188(i.e., has the general category C<Cn> meaning C<Unassigned>) 189or is a non-character (meaning it is guaranteed to never be assigned in 190the standard), 191C<undef> is returned. 192 193Fields that aren't applicable to the particular code point argument exist in the 194returned hash, and are empty. 195 196The keys in the hash with the meanings of their values are: 197 198=over 199 200=item B<code> 201 202the input native L</code point argument> expressed in hexadecimal, with 203leading zeros 204added if necessary to make it contain at least four hexdigits 205 206=item B<name> 207 208name of I<code>, all IN UPPER CASE. 209Some control-type code points do not have names. 210This field will be empty for C<Surrogate> and C<Private Use> code points, 211and for the others without a name, 212it will contain a description enclosed in angle brackets, like 213C<E<lt>controlE<gt>>. 214 215 216=item B<category> 217 218The short name of the general category of I<code>. 219This will match one of the keys in the hash returned by L</general_categories()>. 220 221The L</prop_value_aliases()> function can be used to get all the synonyms 222of the category name. 223 224=item B<combining> 225 226the combining class number for I<code> used in the Canonical Ordering Algorithm. 227For Unicode 5.1, this is described in Section 3.11 C<Canonical Ordering Behavior> 228available at 229L<http://www.unicode.org/versions/Unicode5.1.0/> 230 231The L</prop_value_aliases()> function can be used to get all the synonyms 232of the combining class number. 233 234=item B<bidi> 235 236bidirectional type of I<code>. 237This will match one of the keys in the hash returned by L</bidi_types()>. 238 239The L</prop_value_aliases()> function can be used to get all the synonyms 240of the bidi type name. 241 242=item B<decomposition> 243 244is empty if I<code> has no decomposition; or is one or more codes 245(separated by spaces) that, taken in order, represent a decomposition for 246I<code>. Each has at least four hexdigits. 247The codes may be preceded by a word enclosed in angle brackets, then a space, 248like C<E<lt>compatE<gt> >, giving the type of decomposition 249 250This decomposition may be an intermediate one whose components are also 251decomposable. Use L<Unicode::Normalize> to get the final decomposition. 252 253=item B<decimal> 254 255if I<code> represents a decimal digit this is its integer numeric value 256 257=item B<digit> 258 259if I<code> represents some other digit-like number, this is its integer 260numeric value 261 262=item B<numeric> 263 264if I<code> represents a whole or rational number, this is its numeric value. 265Rational values are expressed as a string like C<1/4>. 266 267=item B<mirrored> 268 269C<Y> or C<N> designating if I<code> is mirrored in bidirectional text 270 271=item B<unicode10> 272 273name of I<code> in the Unicode 1.0 standard if one 274existed for this code point and is different from the current name 275 276=item B<comment> 277 278As of Unicode 6.0, this is always empty. 279 280=item B<upper> 281 282is empty if there is no single code point uppercase mapping for I<code> 283(its uppercase mapping is itself); 284otherwise it is that mapping expressed as at least four hexdigits. 285(L</casespec()> should be used in addition to B<charinfo()> 286for case mappings when the calling program can cope with multiple code point 287mappings.) 288 289=item B<lower> 290 291is empty if there is no single code point lowercase mapping for I<code> 292(its lowercase mapping is itself); 293otherwise it is that mapping expressed as at least four hexdigits. 294(L</casespec()> should be used in addition to B<charinfo()> 295for case mappings when the calling program can cope with multiple code point 296mappings.) 297 298=item B<title> 299 300is empty if there is no single code point titlecase mapping for I<code> 301(its titlecase mapping is itself); 302otherwise it is that mapping expressed as at least four hexdigits. 303(L</casespec()> should be used in addition to B<charinfo()> 304for case mappings when the calling program can cope with multiple code point 305mappings.) 306 307=item B<block> 308 309the block I<code> belongs to (used in C<\p{Blk=...}>). 310See L</Blocks versus Scripts>. 311 312 313=item B<script> 314 315the script I<code> belongs to. 316See L</Blocks versus Scripts>. 317 318=back 319 320Note that you cannot do (de)composition and casing based solely on the 321I<decomposition>, I<combining>, I<lower>, I<upper>, and I<title> fields; 322you will need also the L</compexcl()>, and L</casespec()> functions. 323 324=cut 325 326# NB: This function is nearly duplicated in charnames.pm 327sub _getcode { 328 my $arg = shift; 329 330 if ($arg =~ /^[1-9]\d*$/) { 331 return $arg; 332 } 333 elsif ($arg =~ /^(?:0[xX])?([[:xdigit:]]+)$/) { 334 return CORE::hex($1); 335 } 336 elsif ($arg =~ /^[Uu]\+([[:xdigit:]]+)$/) { # Is of form U+0000, means 337 # wants the Unicode code 338 # point, not the native one 339 my $decimal = CORE::hex($1); 340 return $decimal if IS_ASCII_PLATFORM; 341 return utf8::unicode_to_native($decimal); 342 } 343 344 return; 345} 346 347# Populated by _num. Converts real number back to input rational 348my %real_to_rational; 349 350# To store the contents of files found on disk. 351my @BIDIS; 352my @CATEGORIES; 353my @DECOMPOSITIONS; 354my @NUMERIC_TYPES; 355my %SIMPLE_LOWER; 356my %SIMPLE_TITLE; 357my %SIMPLE_UPPER; 358my %UNICODE_1_NAMES; 359my %ISO_COMMENT; 360 361sub charinfo { 362 363 # This function has traditionally mimicked what is in UnicodeData.txt, 364 # warts and all. This is a re-write that avoids UnicodeData.txt so that 365 # it can be removed to save disk space. Instead, this assembles 366 # information gotten by other methods that get data from various other 367 # files. It uses charnames to get the character name; and various 368 # mktables tables. 369 370 use feature 'unicode_strings'; 371 372 # Will fail if called under minitest 373 use if defined &DynaLoader::boot_DynaLoader, "Unicode::Normalize" => qw(getCombinClass NFD); 374 375 my $arg = shift; 376 my $code = _getcode($arg); 377 croak __PACKAGE__, "::charinfo: unknown code '$arg'" unless defined $code; 378 379 # Non-unicode implies undef. 380 return if $code > 0x10FFFF; 381 382 my %prop; 383 my $char = chr($code); 384 385 @CATEGORIES =_read_table("To/Gc.pl") unless @CATEGORIES; 386 $prop{'category'} = _search(\@CATEGORIES, 0, $#CATEGORIES, $code) 387 // $utf8::SwashInfo{'ToGc'}{'missing'}; 388 389 return if $prop{'category'} eq 'Cn'; # Unassigned code points are undef 390 391 $prop{'code'} = sprintf "%04X", $code; 392 $prop{'name'} = ($char =~ /\p{Cntrl}/) ? '<control>' 393 : (charnames::viacode($code) // ""); 394 395 $prop{'combining'} = getCombinClass($code); 396 397 @BIDIS =_read_table("To/Bc.pl") unless @BIDIS; 398 $prop{'bidi'} = _search(\@BIDIS, 0, $#BIDIS, $code) 399 // $utf8::SwashInfo{'ToBc'}{'missing'}; 400 401 # For most code points, we can just read in "unicore/Decomposition.pl", as 402 # its contents are exactly what should be output. But that file doesn't 403 # contain the data for the Hangul syllable decompositions, which can be 404 # algorithmically computed, and NFD() does that, so we call NFD() for 405 # those. We can't use NFD() for everything, as it does a complete 406 # recursive decomposition, and what this function has always done is to 407 # return what's in UnicodeData.txt which doesn't show that recursiveness. 408 # Fortunately, the NFD() of the Hanguls doesn't have any recursion 409 # issues. 410 # Having no decomposition implies an empty field; otherwise, all but 411 # "Canonical" imply a compatible decomposition, and the type is prefixed 412 # to that, as it is in UnicodeData.txt 413 UnicodeVersion() unless defined $v_unicode_version; 414 if ($v_unicode_version ge v2.0.0 && $char =~ /\p{Block=Hangul_Syllables}/) { 415 # The code points of the decomposition are output in standard Unicode 416 # hex format, separated by blanks. 417 $prop{'decomposition'} = join " ", map { sprintf("%04X", $_)} 418 unpack "U*", NFD($char); 419 } 420 else { 421 @DECOMPOSITIONS = _read_table("Decomposition.pl") 422 unless @DECOMPOSITIONS; 423 $prop{'decomposition'} = _search(\@DECOMPOSITIONS, 0, $#DECOMPOSITIONS, 424 $code) // ""; 425 } 426 427 # Can use num() to get the numeric values, if any. 428 if (! defined (my $value = num($char))) { 429 $prop{'decimal'} = $prop{'digit'} = $prop{'numeric'} = ""; 430 } 431 else { 432 if ($char =~ /\d/) { 433 $prop{'decimal'} = $prop{'digit'} = $prop{'numeric'} = $value; 434 } 435 else { 436 437 # For non-decimal-digits, we have to read in the Numeric type 438 # to distinguish them. It is not just a matter of integer vs. 439 # rational, as some whole number values are not considered digits, 440 # e.g., TAMIL NUMBER TEN. 441 $prop{'decimal'} = ""; 442 443 @NUMERIC_TYPES =_read_table("To/Nt.pl") unless @NUMERIC_TYPES; 444 if ((_search(\@NUMERIC_TYPES, 0, $#NUMERIC_TYPES, $code) // "") 445 eq 'Digit') 446 { 447 $prop{'digit'} = $prop{'numeric'} = $value; 448 } 449 else { 450 $prop{'digit'} = ""; 451 $prop{'numeric'} = $real_to_rational{$value} // $value; 452 } 453 } 454 } 455 456 $prop{'mirrored'} = ($char =~ /\p{Bidi_Mirrored}/) ? 'Y' : 'N'; 457 458 %UNICODE_1_NAMES =_read_table("To/Na1.pl", "use_hash") unless %UNICODE_1_NAMES; 459 $prop{'unicode10'} = $UNICODE_1_NAMES{$code} // ""; 460 461 UnicodeVersion() unless defined $v_unicode_version; 462 if ($v_unicode_version ge v6.0.0) { 463 $prop{'comment'} = ""; 464 } 465 else { 466 %ISO_COMMENT = _read_table("To/Isc.pl", "use_hash") unless %ISO_COMMENT; 467 $prop{'comment'} = (defined $ISO_COMMENT{$code}) 468 ? $ISO_COMMENT{$code} 469 : ""; 470 } 471 472 %SIMPLE_UPPER = _read_table("To/Uc.pl", "use_hash") unless %SIMPLE_UPPER; 473 $prop{'upper'} = (defined $SIMPLE_UPPER{$code}) 474 ? sprintf("%04X", $SIMPLE_UPPER{$code}) 475 : ""; 476 477 %SIMPLE_LOWER = _read_table("To/Lc.pl", "use_hash") unless %SIMPLE_LOWER; 478 $prop{'lower'} = (defined $SIMPLE_LOWER{$code}) 479 ? sprintf("%04X", $SIMPLE_LOWER{$code}) 480 : ""; 481 482 %SIMPLE_TITLE = _read_table("To/Tc.pl", "use_hash") unless %SIMPLE_TITLE; 483 $prop{'title'} = (defined $SIMPLE_TITLE{$code}) 484 ? sprintf("%04X", $SIMPLE_TITLE{$code}) 485 : ""; 486 487 $prop{block} = charblock($code); 488 $prop{script} = charscript($code); 489 return \%prop; 490} 491 492sub _search { # Binary search in a [[lo,hi,prop],[...],...] table. 493 my ($table, $lo, $hi, $code) = @_; 494 495 return if $lo > $hi; 496 497 my $mid = int(($lo+$hi) / 2); 498 499 if ($table->[$mid]->[0] < $code) { 500 if ($table->[$mid]->[1] >= $code) { 501 return $table->[$mid]->[2]; 502 } else { 503 _search($table, $mid + 1, $hi, $code); 504 } 505 } elsif ($table->[$mid]->[0] > $code) { 506 _search($table, $lo, $mid - 1, $code); 507 } else { 508 return $table->[$mid]->[2]; 509 } 510} 511 512sub _read_table ($;$) { 513 514 # Returns the contents of the mktables generated table file located at $1 515 # in the form of either an array of arrays or a hash, depending on if the 516 # optional second parameter is true (for hash return) or not. In the case 517 # of a hash return, each key is a code point, and its corresponding value 518 # is what the table gives as the code point's corresponding value. In the 519 # case of an array return, each outer array denotes a range with [0] the 520 # start point of that range; [1] the end point; and [2] the value that 521 # every code point in the range has. The hash return is useful for fast 522 # lookup when the table contains only single code point ranges. The array 523 # return takes much less memory when there are large ranges. 524 # 525 # This function has the side effect of setting 526 # $utf8::SwashInfo{$property}{'format'} to be the mktables format of the 527 # table; and 528 # $utf8::SwashInfo{$property}{'missing'} to be the value for all entries 529 # not listed in the table. 530 # where $property is the Unicode property name, preceded by 'To' for map 531 # properties., e.g., 'ToSc'. 532 # 533 # Table entries look like one of: 534 # 0000 0040 Common # [65] 535 # 00AA Latin 536 537 my $table = shift; 538 my $return_hash = shift; 539 $return_hash = 0 unless defined $return_hash; 540 my @return; 541 my %return; 542 local $_; 543 my $list = do "unicore/$table"; 544 545 # Look up if this property requires adjustments, which we do below if it 546 # does. 547 require "unicore/Heavy.pl"; 548 my $property = $table =~ s/\.pl//r; 549 $property = $utf8::file_to_swash_name{$property}; 550 my $to_adjust = defined $property 551 && $utf8::SwashInfo{$property}{'format'} =~ / ^ a /x; 552 553 for (split /^/m, $list) { 554 my ($start, $end, $value) = / ^ (.+?) \t (.*?) \t (.+?) 555 \s* ( \# .* )? # Optional comment 556 $ /x; 557 my $decimal_start = hex $start; 558 my $decimal_end = ($end eq "") ? $decimal_start : hex $end; 559 $value = hex $value if $to_adjust 560 && $utf8::SwashInfo{$property}{'format'} eq 'ax'; 561 if ($return_hash) { 562 foreach my $i ($decimal_start .. $decimal_end) { 563 $return{$i} = ($to_adjust) 564 ? $value + $i - $decimal_start 565 : $value; 566 } 567 } 568 elsif (! $to_adjust 569 && @return 570 && $return[-1][1] == $decimal_start - 1 571 && $return[-1][2] eq $value) 572 { 573 # If this is merely extending the previous range, do just that. 574 $return[-1]->[1] = $decimal_end; 575 } 576 else { 577 push @return, [ $decimal_start, $decimal_end, $value ]; 578 } 579 } 580 return ($return_hash) ? %return : @return; 581} 582 583sub charinrange { 584 my ($range, $arg) = @_; 585 my $code = _getcode($arg); 586 croak __PACKAGE__, "::charinrange: unknown code '$arg'" 587 unless defined $code; 588 _search($range, 0, $#$range, $code); 589} 590 591=head2 B<charblock()> 592 593 use Unicode::UCD 'charblock'; 594 595 my $charblock = charblock(0x41); 596 my $charblock = charblock(1234); 597 my $charblock = charblock(0x263a); 598 my $charblock = charblock("U+263a"); 599 600 my $range = charblock('Armenian'); 601 602With a L</code point argument> C<charblock()> returns the I<block> the code point 603belongs to, e.g. C<Basic Latin>. The old-style block name is returned (see 604L</Old-style versus new-style block names>). 605If the code point is unassigned, this returns the block it would belong to if 606it were assigned. (If the Unicode version being used is so early as to not 607have blocks, all code points are considered to be in C<No_Block>.) 608 609See also L</Blocks versus Scripts>. 610 611If supplied with an argument that can't be a code point, C<charblock()> tries to 612do the opposite and interpret the argument as an old-style block name. On an 613ASCII platform, the return value is a I<range set> with one range: an 614anonymous list with a single element that consists of another anonymous list 615whose first element is the first code point in the block, and whose second 616element is the final code point in the block. On an EBCDIC 617platform, the first two Unicode blocks are not contiguous. Their range sets 618are lists containing I<start-of-range>, I<end-of-range> code point pairs. You 619can test whether a code point is in a range set using the L</charinrange()> 620function. (To be precise, each I<range set> contains a third array element, 621after the range boundary ones: the old_style block name.) 622 623If the argument to C<charblock()> is not a known block, C<undef> is 624returned. 625 626=cut 627 628my @BLOCKS; 629my %BLOCKS; 630 631sub _charblocks { 632 633 # Can't read from the mktables table because it loses the hyphens in the 634 # original. 635 unless (@BLOCKS) { 636 UnicodeVersion() unless defined $v_unicode_version; 637 if ($v_unicode_version lt v2.0.0) { 638 my $subrange = [ 0, 0x10FFFF, 'No_Block' ]; 639 push @BLOCKS, $subrange; 640 push @{$BLOCKS{'No_Block'}}, $subrange; 641 } 642 elsif (openunicode(\$BLOCKSFH, "Blocks.txt")) { 643 local $_; 644 local $/ = "\n"; 645 while (<$BLOCKSFH>) { 646 if (/^([0-9A-F]+)\.\.([0-9A-F]+);\s+(.+)/) { 647 my ($lo, $hi) = (hex($1), hex($2)); 648 my $subrange = [ $lo, $hi, $3 ]; 649 push @BLOCKS, $subrange; 650 push @{$BLOCKS{$3}}, $subrange; 651 } 652 } 653 close($BLOCKSFH); 654 if (! IS_ASCII_PLATFORM) { 655 # The first two blocks, through 0xFF, are wrong on EBCDIC 656 # platforms. 657 658 my @new_blocks = _read_table("To/Blk.pl"); 659 660 # Get rid of the first two ranges in the Unicode version, and 661 # replace them with the ones computed by mktables. 662 shift @BLOCKS; 663 shift @BLOCKS; 664 delete $BLOCKS{'Basic Latin'}; 665 delete $BLOCKS{'Latin-1 Supplement'}; 666 667 # But there are multiple entries in the computed versions, and 668 # we change their names to (which we know) to be the old-style 669 # ones. 670 for my $i (0.. @new_blocks - 1) { 671 if ($new_blocks[$i][2] =~ s/Basic_Latin/Basic Latin/ 672 or $new_blocks[$i][2] =~ 673 s/Latin_1_Supplement/Latin-1 Supplement/) 674 { 675 push @{$BLOCKS{$new_blocks[$i][2]}}, $new_blocks[$i]; 676 } 677 else { 678 splice @new_blocks, $i; 679 last; 680 } 681 } 682 unshift @BLOCKS, @new_blocks; 683 } 684 } 685 } 686} 687 688sub charblock { 689 my $arg = shift; 690 691 _charblocks() unless @BLOCKS; 692 693 my $code = _getcode($arg); 694 695 if (defined $code) { 696 my $result = _search(\@BLOCKS, 0, $#BLOCKS, $code); 697 return $result if defined $result; 698 return 'No_Block'; 699 } 700 elsif (exists $BLOCKS{$arg}) { 701 return _dclone $BLOCKS{$arg}; 702 } 703} 704 705=head2 B<charscript()> 706 707 use Unicode::UCD 'charscript'; 708 709 my $charscript = charscript(0x41); 710 my $charscript = charscript(1234); 711 my $charscript = charscript("U+263a"); 712 713 my $range = charscript('Thai'); 714 715With a L</code point argument>, C<charscript()> returns the I<script> the 716code point belongs to, e.g., C<Latin>, C<Greek>, C<Han>. 717If the code point is unassigned or the Unicode version being used is so early 718that it doesn't have scripts, this function returns C<"Unknown">. 719 720If supplied with an argument that can't be a code point, charscript() tries 721to do the opposite and interpret the argument as a script name. The 722return value is a I<range set>: an anonymous list of lists that contain 723I<start-of-range>, I<end-of-range> code point pairs. You can test whether a 724code point is in a range set using the L</charinrange()> function. 725(To be precise, each I<range set> contains a third array element, 726after the range boundary ones: the script name.) 727 728If the C<charscript()> argument is not a known script, C<undef> is returned. 729 730See also L</Blocks versus Scripts>. 731 732=cut 733 734my @SCRIPTS; 735my %SCRIPTS; 736 737sub _charscripts { 738 unless (@SCRIPTS) { 739 UnicodeVersion() unless defined $v_unicode_version; 740 if ($v_unicode_version lt v3.1.0) { 741 push @SCRIPTS, [ 0, 0x10FFFF, 'Unknown' ]; 742 } 743 else { 744 @SCRIPTS =_read_table("To/Sc.pl"); 745 } 746 } 747 foreach my $entry (@SCRIPTS) { 748 $entry->[2] =~ s/(_\w)/\L$1/g; # Preserve old-style casing 749 push @{$SCRIPTS{$entry->[2]}}, $entry; 750 } 751} 752 753sub charscript { 754 my $arg = shift; 755 756 _charscripts() unless @SCRIPTS; 757 758 my $code = _getcode($arg); 759 760 if (defined $code) { 761 my $result = _search(\@SCRIPTS, 0, $#SCRIPTS, $code); 762 return $result if defined $result; 763 return $utf8::SwashInfo{'ToSc'}{'missing'}; 764 } elsif (exists $SCRIPTS{$arg}) { 765 return _dclone $SCRIPTS{$arg}; 766 } 767 768 return; 769} 770 771=head2 B<charblocks()> 772 773 use Unicode::UCD 'charblocks'; 774 775 my $charblocks = charblocks(); 776 777C<charblocks()> returns a reference to a hash with the known block names 778as the keys, and the code point ranges (see L</charblock()>) as the values. 779 780The names are in the old-style (see L</Old-style versus new-style block 781names>). 782 783L<prop_invmap("block")|/prop_invmap()> can be used to get this same data in a 784different type of data structure. 785 786See also L</Blocks versus Scripts>. 787 788=cut 789 790sub charblocks { 791 _charblocks() unless %BLOCKS; 792 return _dclone \%BLOCKS; 793} 794 795=head2 B<charscripts()> 796 797 use Unicode::UCD 'charscripts'; 798 799 my $charscripts = charscripts(); 800 801C<charscripts()> returns a reference to a hash with the known script 802names as the keys, and the code point ranges (see L</charscript()>) as 803the values. 804 805L<prop_invmap("script")|/prop_invmap()> can be used to get this same data in a 806different type of data structure. 807 808See also L</Blocks versus Scripts>. 809 810=cut 811 812sub charscripts { 813 _charscripts() unless %SCRIPTS; 814 return _dclone \%SCRIPTS; 815} 816 817=head2 B<charinrange()> 818 819In addition to using the C<\p{Blk=...}> and C<\P{Blk=...}> constructs, you 820can also test whether a code point is in the I<range> as returned by 821L</charblock()> and L</charscript()> or as the values of the hash returned 822by L</charblocks()> and L</charscripts()> by using C<charinrange()>: 823 824 use Unicode::UCD qw(charscript charinrange); 825 826 $range = charscript('Hiragana'); 827 print "looks like hiragana\n" if charinrange($range, $codepoint); 828 829=cut 830 831my %GENERAL_CATEGORIES = 832 ( 833 'L' => 'Letter', 834 'LC' => 'CasedLetter', 835 'Lu' => 'UppercaseLetter', 836 'Ll' => 'LowercaseLetter', 837 'Lt' => 'TitlecaseLetter', 838 'Lm' => 'ModifierLetter', 839 'Lo' => 'OtherLetter', 840 'M' => 'Mark', 841 'Mn' => 'NonspacingMark', 842 'Mc' => 'SpacingMark', 843 'Me' => 'EnclosingMark', 844 'N' => 'Number', 845 'Nd' => 'DecimalNumber', 846 'Nl' => 'LetterNumber', 847 'No' => 'OtherNumber', 848 'P' => 'Punctuation', 849 'Pc' => 'ConnectorPunctuation', 850 'Pd' => 'DashPunctuation', 851 'Ps' => 'OpenPunctuation', 852 'Pe' => 'ClosePunctuation', 853 'Pi' => 'InitialPunctuation', 854 'Pf' => 'FinalPunctuation', 855 'Po' => 'OtherPunctuation', 856 'S' => 'Symbol', 857 'Sm' => 'MathSymbol', 858 'Sc' => 'CurrencySymbol', 859 'Sk' => 'ModifierSymbol', 860 'So' => 'OtherSymbol', 861 'Z' => 'Separator', 862 'Zs' => 'SpaceSeparator', 863 'Zl' => 'LineSeparator', 864 'Zp' => 'ParagraphSeparator', 865 'C' => 'Other', 866 'Cc' => 'Control', 867 'Cf' => 'Format', 868 'Cs' => 'Surrogate', 869 'Co' => 'PrivateUse', 870 'Cn' => 'Unassigned', 871 ); 872 873sub general_categories { 874 return _dclone \%GENERAL_CATEGORIES; 875} 876 877=head2 B<general_categories()> 878 879 use Unicode::UCD 'general_categories'; 880 881 my $categories = general_categories(); 882 883This returns a reference to a hash which has short 884general category names (such as C<Lu>, C<Nd>, C<Zs>, C<S>) as keys and long 885names (such as C<UppercaseLetter>, C<DecimalNumber>, C<SpaceSeparator>, 886C<Symbol>) as values. The hash is reversible in case you need to go 887from the long names to the short names. The general category is the 888one returned from 889L</charinfo()> under the C<category> key. 890 891The L</prop_value_aliases()> function can be used to get all the synonyms of 892the category name. 893 894=cut 895 896my %BIDI_TYPES = 897 ( 898 'L' => 'Left-to-Right', 899 'LRE' => 'Left-to-Right Embedding', 900 'LRO' => 'Left-to-Right Override', 901 'R' => 'Right-to-Left', 902 'AL' => 'Right-to-Left Arabic', 903 'RLE' => 'Right-to-Left Embedding', 904 'RLO' => 'Right-to-Left Override', 905 'PDF' => 'Pop Directional Format', 906 'EN' => 'European Number', 907 'ES' => 'European Number Separator', 908 'ET' => 'European Number Terminator', 909 'AN' => 'Arabic Number', 910 'CS' => 'Common Number Separator', 911 'NSM' => 'Non-Spacing Mark', 912 'BN' => 'Boundary Neutral', 913 'B' => 'Paragraph Separator', 914 'S' => 'Segment Separator', 915 'WS' => 'Whitespace', 916 'ON' => 'Other Neutrals', 917 ); 918 919=head2 B<bidi_types()> 920 921 use Unicode::UCD 'bidi_types'; 922 923 my $categories = bidi_types(); 924 925This returns a reference to a hash which has the short 926bidi (bidirectional) type names (such as C<L>, C<R>) as keys and long 927names (such as C<Left-to-Right>, C<Right-to-Left>) as values. The 928hash is reversible in case you need to go from the long names to the 929short names. The bidi type is the one returned from 930L</charinfo()> 931under the C<bidi> key. For the exact meaning of the various bidi classes 932the Unicode TR9 is recommended reading: 933L<http://www.unicode.org/reports/tr9/> 934(as of Unicode 5.0.0) 935 936The L</prop_value_aliases()> function can be used to get all the synonyms of 937the bidi type name. 938 939=cut 940 941sub bidi_types { 942 return _dclone \%BIDI_TYPES; 943} 944 945=head2 B<compexcl()> 946 947 use Unicode::UCD 'compexcl'; 948 949 my $compexcl = compexcl(0x09dc); 950 951This routine returns C<undef> if the Unicode version being used is so early 952that it doesn't have this property. 953 954C<compexcl()> is included for backwards 955compatibility, but as of Perl 5.12 and more modern Unicode versions, for 956most purposes it is probably more convenient to use one of the following 957instead: 958 959 my $compexcl = chr(0x09dc) =~ /\p{Comp_Ex}; 960 my $compexcl = chr(0x09dc) =~ /\p{Full_Composition_Exclusion}; 961 962or even 963 964 my $compexcl = chr(0x09dc) =~ /\p{CE}; 965 my $compexcl = chr(0x09dc) =~ /\p{Composition_Exclusion}; 966 967The first two forms return B<true> if the L</code point argument> should not 968be produced by composition normalization. For the final two forms to return 969B<true>, it is additionally required that this fact not otherwise be 970determinable from the Unicode data base. 971 972This routine behaves identically to the final two forms. That is, 973it does not return B<true> if the code point has a decomposition 974consisting of another single code point, nor if its decomposition starts 975with a code point whose combining class is non-zero. Code points that meet 976either of these conditions should also not be produced by composition 977normalization, which is probably why you should use the 978C<Full_Composition_Exclusion> property instead, as shown above. 979 980The routine returns B<false> otherwise. 981 982=cut 983 984sub compexcl { 985 my $arg = shift; 986 my $code = _getcode($arg); 987 croak __PACKAGE__, "::compexcl: unknown code '$arg'" 988 unless defined $code; 989 990 UnicodeVersion() unless defined $v_unicode_version; 991 return if $v_unicode_version lt v3.0.0; 992 993 no warnings "non_unicode"; # So works on non-Unicode code points 994 return chr($code) =~ /\p{Composition_Exclusion}/; 995} 996 997=head2 B<casefold()> 998 999 use Unicode::UCD 'casefold'; 1000 1001 my $casefold = casefold(0xDF); 1002 if (defined $casefold) { 1003 my @full_fold_hex = split / /, $casefold->{'full'}; 1004 my $full_fold_string = 1005 join "", map {chr(hex($_))} @full_fold_hex; 1006 my @turkic_fold_hex = 1007 split / /, ($casefold->{'turkic'} ne "") 1008 ? $casefold->{'turkic'} 1009 : $casefold->{'full'}; 1010 my $turkic_fold_string = 1011 join "", map {chr(hex($_))} @turkic_fold_hex; 1012 } 1013 if (defined $casefold && $casefold->{'simple'} ne "") { 1014 my $simple_fold_hex = $casefold->{'simple'}; 1015 my $simple_fold_string = chr(hex($simple_fold_hex)); 1016 } 1017 1018This returns the (almost) locale-independent case folding of the 1019character specified by the L</code point argument>. (Starting in Perl v5.16, 1020the core function C<fc()> returns the C<full> mapping (described below) 1021faster than this does, and for entire strings.) 1022 1023If there is no case folding for the input code point, C<undef> is returned. 1024 1025If there is a case folding for that code point, a reference to a hash 1026with the following fields is returned: 1027 1028=over 1029 1030=item B<code> 1031 1032the input native L</code point argument> expressed in hexadecimal, with 1033leading zeros 1034added if necessary to make it contain at least four hexdigits 1035 1036=item B<full> 1037 1038one or more codes (separated by spaces) that, taken in order, give the 1039code points for the case folding for I<code>. 1040Each has at least four hexdigits. 1041 1042=item B<simple> 1043 1044is empty, or is exactly one code with at least four hexdigits which can be used 1045as an alternative case folding when the calling program cannot cope with the 1046fold being a sequence of multiple code points. If I<full> is just one code 1047point, then I<simple> equals I<full>. If there is no single code point folding 1048defined for I<code>, then I<simple> is the empty string. Otherwise, it is an 1049inferior, but still better-than-nothing alternative folding to I<full>. 1050 1051=item B<mapping> 1052 1053is the same as I<simple> if I<simple> is not empty, and it is the same as I<full> 1054otherwise. It can be considered to be the simplest possible folding for 1055I<code>. It is defined primarily for backwards compatibility. 1056 1057=item B<status> 1058 1059is C<C> (for C<common>) if the best possible fold is a single code point 1060(I<simple> equals I<full> equals I<mapping>). It is C<S> if there are distinct 1061folds, I<simple> and I<full> (I<mapping> equals I<simple>). And it is C<F> if 1062there is only a I<full> fold (I<mapping> equals I<full>; I<simple> is empty). 1063Note that this 1064describes the contents of I<mapping>. It is defined primarily for backwards 1065compatibility. 1066 1067For Unicode versions between 3.1 and 3.1.1 inclusive, I<status> can also be 1068C<I> which is the same as C<C> but is a special case for dotted uppercase I and 1069dotless lowercase i: 1070 1071=over 1072 1073=item Z<>B<*> If you use this C<I> mapping 1074 1075the result is case-insensitive, 1076but dotless and dotted I's are not distinguished 1077 1078=item Z<>B<*> If you exclude this C<I> mapping 1079 1080the result is not fully case-insensitive, but 1081dotless and dotted I's are distinguished 1082 1083=back 1084 1085=item B<turkic> 1086 1087contains any special folding for Turkic languages. For versions of Unicode 1088starting with 3.2, this field is empty unless I<code> has a different folding 1089in Turkic languages, in which case it is one or more codes (separated by 1090spaces) that, taken in order, give the code points for the case folding for 1091I<code> in those languages. 1092Each code has at least four hexdigits. 1093Note that this folding does not maintain canonical equivalence without 1094additional processing. 1095 1096For Unicode versions between 3.1 and 3.1.1 inclusive, this field is empty unless 1097there is a 1098special folding for Turkic languages, in which case I<status> is C<I>, and 1099I<mapping>, I<full>, I<simple>, and I<turkic> are all equal. 1100 1101=back 1102 1103Programs that want complete generality and the best folding results should use 1104the folding contained in the I<full> field. But note that the fold for some 1105code points will be a sequence of multiple code points. 1106 1107Programs that can't cope with the fold mapping being multiple code points can 1108use the folding contained in the I<simple> field, with the loss of some 1109generality. In Unicode 5.1, about 7% of the defined foldings have no single 1110code point folding. 1111 1112The I<mapping> and I<status> fields are provided for backwards compatibility for 1113existing programs. They contain the same values as in previous versions of 1114this function. 1115 1116Locale is not completely independent. The I<turkic> field contains results to 1117use when the locale is a Turkic language. 1118 1119For more information about case mappings see 1120L<http://www.unicode.org/unicode/reports/tr21> 1121 1122=cut 1123 1124my %CASEFOLD; 1125 1126sub _casefold { 1127 unless (%CASEFOLD) { # Populate the hash 1128 my ($full_invlist_ref, $full_invmap_ref, undef, $default) 1129 = prop_invmap('Case_Folding'); 1130 1131 # Use the recipe given in the prop_invmap() pod to convert the 1132 # inversion map into the hash. 1133 for my $i (0 .. @$full_invlist_ref - 1 - 1) { 1134 next if $full_invmap_ref->[$i] == $default; 1135 my $adjust = -1; 1136 for my $j ($full_invlist_ref->[$i] .. $full_invlist_ref->[$i+1] -1) { 1137 $adjust++; 1138 if (! ref $full_invmap_ref->[$i]) { 1139 1140 # This is a single character mapping 1141 $CASEFOLD{$j}{'status'} = 'C'; 1142 $CASEFOLD{$j}{'simple'} 1143 = $CASEFOLD{$j}{'full'} 1144 = $CASEFOLD{$j}{'mapping'} 1145 = sprintf("%04X", $full_invmap_ref->[$i] + $adjust); 1146 $CASEFOLD{$j}{'code'} = sprintf("%04X", $j); 1147 $CASEFOLD{$j}{'turkic'} = ""; 1148 } 1149 else { # prop_invmap ensures that $adjust is 0 for a ref 1150 $CASEFOLD{$j}{'status'} = 'F'; 1151 $CASEFOLD{$j}{'full'} 1152 = $CASEFOLD{$j}{'mapping'} 1153 = join " ", map { sprintf "%04X", $_ } 1154 @{$full_invmap_ref->[$i]}; 1155 $CASEFOLD{$j}{'simple'} = ""; 1156 $CASEFOLD{$j}{'code'} = sprintf("%04X", $j); 1157 $CASEFOLD{$j}{'turkic'} = ""; 1158 } 1159 } 1160 } 1161 1162 # We have filled in the full mappings above, assuming there were no 1163 # simple ones for the ones with multi-character maps. Now, we find 1164 # and fix the cases where that assumption was false. 1165 (my ($simple_invlist_ref, $simple_invmap_ref, undef), $default) 1166 = prop_invmap('Simple_Case_Folding'); 1167 for my $i (0 .. @$simple_invlist_ref - 1 - 1) { 1168 next if $simple_invmap_ref->[$i] == $default; 1169 my $adjust = -1; 1170 for my $j ($simple_invlist_ref->[$i] 1171 .. $simple_invlist_ref->[$i+1] -1) 1172 { 1173 $adjust++; 1174 next if $CASEFOLD{$j}{'status'} eq 'C'; 1175 $CASEFOLD{$j}{'status'} = 'S'; 1176 $CASEFOLD{$j}{'simple'} 1177 = $CASEFOLD{$j}{'mapping'} 1178 = sprintf("%04X", $simple_invmap_ref->[$i] + $adjust); 1179 $CASEFOLD{$j}{'code'} = sprintf("%04X", $j); 1180 $CASEFOLD{$j}{'turkic'} = ""; 1181 } 1182 } 1183 1184 # We hard-code in the turkish rules 1185 UnicodeVersion() unless defined $v_unicode_version; 1186 if ($v_unicode_version ge v3.2.0) { 1187 1188 # These two code points should already have regular entries, so 1189 # just fill in the turkish fields 1190 $CASEFOLD{ord('I')}{'turkic'} = '0131'; 1191 $CASEFOLD{0x130}{'turkic'} = sprintf "%04X", ord('i'); 1192 } 1193 elsif ($v_unicode_version ge v3.1.0) { 1194 1195 # These two code points don't have entries otherwise. 1196 $CASEFOLD{0x130}{'code'} = '0130'; 1197 $CASEFOLD{0x131}{'code'} = '0131'; 1198 $CASEFOLD{0x130}{'status'} = $CASEFOLD{0x131}{'status'} = 'I'; 1199 $CASEFOLD{0x130}{'turkic'} 1200 = $CASEFOLD{0x130}{'mapping'} 1201 = $CASEFOLD{0x130}{'full'} 1202 = $CASEFOLD{0x130}{'simple'} 1203 = $CASEFOLD{0x131}{'turkic'} 1204 = $CASEFOLD{0x131}{'mapping'} 1205 = $CASEFOLD{0x131}{'full'} 1206 = $CASEFOLD{0x131}{'simple'} 1207 = sprintf "%04X", ord('i'); 1208 } 1209 } 1210} 1211 1212sub casefold { 1213 my $arg = shift; 1214 my $code = _getcode($arg); 1215 croak __PACKAGE__, "::casefold: unknown code '$arg'" 1216 unless defined $code; 1217 1218 _casefold() unless %CASEFOLD; 1219 1220 return $CASEFOLD{$code}; 1221} 1222 1223=head2 B<all_casefolds()> 1224 1225 1226 use Unicode::UCD 'all_casefolds'; 1227 1228 my $all_folds_ref = all_casefolds(); 1229 foreach my $char_with_casefold (sort { $a <=> $b } 1230 keys %$all_folds_ref) 1231 { 1232 printf "%04X:", $char_with_casefold; 1233 my $casefold = $all_folds_ref->{$char_with_casefold}; 1234 1235 # Get folds for $char_with_casefold 1236 1237 my @full_fold_hex = split / /, $casefold->{'full'}; 1238 my $full_fold_string = 1239 join "", map {chr(hex($_))} @full_fold_hex; 1240 print " full=", join " ", @full_fold_hex; 1241 my @turkic_fold_hex = 1242 split / /, ($casefold->{'turkic'} ne "") 1243 ? $casefold->{'turkic'} 1244 : $casefold->{'full'}; 1245 my $turkic_fold_string = 1246 join "", map {chr(hex($_))} @turkic_fold_hex; 1247 print "; turkic=", join " ", @turkic_fold_hex; 1248 if (defined $casefold && $casefold->{'simple'} ne "") { 1249 my $simple_fold_hex = $casefold->{'simple'}; 1250 my $simple_fold_string = chr(hex($simple_fold_hex)); 1251 print "; simple=$simple_fold_hex"; 1252 } 1253 print "\n"; 1254 } 1255 1256This returns all the case foldings in the current version of Unicode in the 1257form of a reference to a hash. Each key to the hash is the decimal 1258representation of a Unicode character that has a casefold to other than 1259itself. The casefold of a semi-colon is itself, so it isn't in the hash; 1260likewise for a lowercase "a", but there is an entry for a capital "A". The 1261hash value for each key is another hash, identical to what is returned by 1262L</casefold()> if called with that code point as its argument. So the value 1263C<< all_casefolds()->{ord("A")}' >> is equivalent to C<casefold(ord("A"))>; 1264 1265=cut 1266 1267sub all_casefolds () { 1268 _casefold() unless %CASEFOLD; 1269 return _dclone \%CASEFOLD; 1270} 1271 1272=head2 B<casespec()> 1273 1274 use Unicode::UCD 'casespec'; 1275 1276 my $casespec = casespec(0xFB00); 1277 1278This returns the potentially locale-dependent case mappings of the L</code point 1279argument>. The mappings may be longer than a single code point (which the basic 1280Unicode case mappings as returned by L</charinfo()> never are). 1281 1282If there are no case mappings for the L</code point argument>, or if all three 1283possible mappings (I<lower>, I<title> and I<upper>) result in single code 1284points and are locale independent and unconditional, C<undef> is returned 1285(which means that the case mappings, if any, for the code point are those 1286returned by L</charinfo()>). 1287 1288Otherwise, a reference to a hash giving the mappings (or a reference to a hash 1289of such hashes, explained below) is returned with the following keys and their 1290meanings: 1291 1292The keys in the bottom layer hash with the meanings of their values are: 1293 1294=over 1295 1296=item B<code> 1297 1298the input native L</code point argument> expressed in hexadecimal, with 1299leading zeros 1300added if necessary to make it contain at least four hexdigits 1301 1302=item B<lower> 1303 1304one or more codes (separated by spaces) that, taken in order, give the 1305code points for the lower case of I<code>. 1306Each has at least four hexdigits. 1307 1308=item B<title> 1309 1310one or more codes (separated by spaces) that, taken in order, give the 1311code points for the title case of I<code>. 1312Each has at least four hexdigits. 1313 1314=item B<upper> 1315 1316one or more codes (separated by spaces) that, taken in order, give the 1317code points for the upper case of I<code>. 1318Each has at least four hexdigits. 1319 1320=item B<condition> 1321 1322the conditions for the mappings to be valid. 1323If C<undef>, the mappings are always valid. 1324When defined, this field is a list of conditions, 1325all of which must be true for the mappings to be valid. 1326The list consists of one or more 1327I<locales> (see below) 1328and/or I<contexts> (explained in the next paragraph), 1329separated by spaces. 1330(Other than as used to separate elements, spaces are to be ignored.) 1331Case distinctions in the condition list are not significant. 1332Conditions preceded by "NON_" represent the negation of the condition. 1333 1334A I<context> is one of those defined in the Unicode standard. 1335For Unicode 5.1, they are defined in Section 3.13 C<Default Case Operations> 1336available at 1337L<http://www.unicode.org/versions/Unicode5.1.0/>. 1338These are for context-sensitive casing. 1339 1340=back 1341 1342The hash described above is returned for locale-independent casing, where 1343at least one of the mappings has length longer than one. If C<undef> is 1344returned, the code point may have mappings, but if so, all are length one, 1345and are returned by L</charinfo()>. 1346Note that when this function does return a value, it will be for the complete 1347set of mappings for a code point, even those whose length is one. 1348 1349If there are additional casing rules that apply only in certain locales, 1350an additional key for each will be defined in the returned hash. Each such key 1351will be its locale name, defined as a 2-letter ISO 3166 country code, possibly 1352followed by a "_" and a 2-letter ISO language code (possibly followed by a "_" 1353and a variant code). You can find the lists of all possible locales, see 1354L<Locale::Country> and L<Locale::Language>. 1355(In Unicode 6.0, the only locales returned by this function 1356are C<lt>, C<tr>, and C<az>.) 1357 1358Each locale key is a reference to a hash that has the form above, and gives 1359the casing rules for that particular locale, which take precedence over the 1360locale-independent ones when in that locale. 1361 1362If the only casing for a code point is locale-dependent, then the returned 1363hash will not have any of the base keys, like C<code>, C<upper>, etc., but 1364will contain only locale keys. 1365 1366For more information about case mappings see 1367L<http://www.unicode.org/unicode/reports/tr21/> 1368 1369=cut 1370 1371my %CASESPEC; 1372 1373sub _casespec { 1374 unless (%CASESPEC) { 1375 UnicodeVersion() unless defined $v_unicode_version; 1376 if ($v_unicode_version lt v2.1.8) { 1377 %CASESPEC = {}; 1378 } 1379 elsif (openunicode(\$CASESPECFH, "SpecialCasing.txt")) { 1380 local $_; 1381 local $/ = "\n"; 1382 while (<$CASESPECFH>) { 1383 if (/^([0-9A-F]+); ([0-9A-F]+(?: [0-9A-F]+)*)?; ([0-9A-F]+(?: [0-9A-F]+)*)?; ([0-9A-F]+(?: [0-9A-F]+)*)?; (\w+(?: \w+)*)?/) { 1384 1385 my ($hexcode, $lower, $title, $upper, $condition) = 1386 ($1, $2, $3, $4, $5); 1387 if (! IS_ASCII_PLATFORM) { # Remap entry to native 1388 foreach my $var_ref (\$hexcode, 1389 \$lower, 1390 \$title, 1391 \$upper) 1392 { 1393 next unless defined $$var_ref; 1394 $$var_ref = join " ", 1395 map { sprintf("%04X", 1396 utf8::unicode_to_native(hex $_)) } 1397 split " ", $$var_ref; 1398 } 1399 } 1400 1401 my $code = hex($hexcode); 1402 1403 # In 2.1.8, there were duplicate entries; ignore all but 1404 # the first one -- there were no conditions in the file 1405 # anyway. 1406 if (exists $CASESPEC{$code} && $v_unicode_version ne v2.1.8) 1407 { 1408 if (exists $CASESPEC{$code}->{code}) { 1409 my ($oldlower, 1410 $oldtitle, 1411 $oldupper, 1412 $oldcondition) = 1413 @{$CASESPEC{$code}}{qw(lower 1414 title 1415 upper 1416 condition)}; 1417 if (defined $oldcondition) { 1418 my ($oldlocale) = 1419 ($oldcondition =~ /^([a-z][a-z](?:_\S+)?)/); 1420 delete $CASESPEC{$code}; 1421 $CASESPEC{$code}->{$oldlocale} = 1422 { code => $hexcode, 1423 lower => $oldlower, 1424 title => $oldtitle, 1425 upper => $oldupper, 1426 condition => $oldcondition }; 1427 } 1428 } 1429 my ($locale) = 1430 ($condition =~ /^([a-z][a-z](?:_\S+)?)/); 1431 $CASESPEC{$code}->{$locale} = 1432 { code => $hexcode, 1433 lower => $lower, 1434 title => $title, 1435 upper => $upper, 1436 condition => $condition }; 1437 } else { 1438 $CASESPEC{$code} = 1439 { code => $hexcode, 1440 lower => $lower, 1441 title => $title, 1442 upper => $upper, 1443 condition => $condition }; 1444 } 1445 } 1446 } 1447 close($CASESPECFH); 1448 } 1449 } 1450} 1451 1452sub casespec { 1453 my $arg = shift; 1454 my $code = _getcode($arg); 1455 croak __PACKAGE__, "::casespec: unknown code '$arg'" 1456 unless defined $code; 1457 1458 _casespec() unless %CASESPEC; 1459 1460 return ref $CASESPEC{$code} ? _dclone $CASESPEC{$code} : $CASESPEC{$code}; 1461} 1462 1463=head2 B<namedseq()> 1464 1465 use Unicode::UCD 'namedseq'; 1466 1467 my $namedseq = namedseq("KATAKANA LETTER AINU P"); 1468 my @namedseq = namedseq("KATAKANA LETTER AINU P"); 1469 my %namedseq = namedseq(); 1470 1471If used with a single argument in a scalar context, returns the string 1472consisting of the code points of the named sequence, or C<undef> if no 1473named sequence by that name exists. If used with a single argument in 1474a list context, it returns the list of the ordinals of the code points. 1475 1476If used with no 1477arguments in a list context, it returns a hash with the names of all the 1478named sequences as the keys and their sequences as strings as 1479the values. Otherwise, it returns C<undef> or an empty list depending 1480on the context. 1481 1482This function only operates on officially approved (not provisional) named 1483sequences. 1484 1485Note that as of Perl 5.14, C<\N{KATAKANA LETTER AINU P}> will insert the named 1486sequence into double-quoted strings, and C<charnames::string_vianame("KATAKANA 1487LETTER AINU P")> will return the same string this function does, but will also 1488operate on character names that aren't named sequences, without you having to 1489know which are which. See L<charnames>. 1490 1491=cut 1492 1493my %NAMEDSEQ; 1494 1495sub _namedseq { 1496 unless (%NAMEDSEQ) { 1497 if (openunicode(\$NAMEDSEQFH, "Name.pl")) { 1498 local $_; 1499 local $/ = "\n"; 1500 while (<$NAMEDSEQFH>) { 1501 if (/^ [0-9A-F]+ \ /x) { 1502 chomp; 1503 my ($sequence, $name) = split /\t/; 1504 my @s = map { chr(hex($_)) } split(' ', $sequence); 1505 $NAMEDSEQ{$name} = join("", @s); 1506 } 1507 } 1508 close($NAMEDSEQFH); 1509 } 1510 } 1511} 1512 1513sub namedseq { 1514 1515 # Use charnames::string_vianame() which now returns this information, 1516 # unless the caller wants the hash returned, in which case we read it in, 1517 # and thereafter use it instead of calling charnames, as it is faster. 1518 1519 my $wantarray = wantarray(); 1520 if (defined $wantarray) { 1521 if ($wantarray) { 1522 if (@_ == 0) { 1523 _namedseq() unless %NAMEDSEQ; 1524 return %NAMEDSEQ; 1525 } elsif (@_ == 1) { 1526 my $s; 1527 if (%NAMEDSEQ) { 1528 $s = $NAMEDSEQ{ $_[0] }; 1529 } 1530 else { 1531 $s = charnames::string_vianame($_[0]); 1532 } 1533 return defined $s ? map { ord($_) } split('', $s) : (); 1534 } 1535 } elsif (@_ == 1) { 1536 return $NAMEDSEQ{ $_[0] } if %NAMEDSEQ; 1537 return charnames::string_vianame($_[0]); 1538 } 1539 } 1540 return; 1541} 1542 1543my %NUMERIC; 1544 1545sub _numeric { 1546 my @numbers = _read_table("To/Nv.pl"); 1547 foreach my $entry (@numbers) { 1548 my ($start, $end, $value) = @$entry; 1549 1550 # If value contains a slash, convert to decimal, add a reverse hash 1551 # used by charinfo. 1552 if ((my @rational = split /\//, $value) == 2) { 1553 my $real = $rational[0] / $rational[1]; 1554 $real_to_rational{$real} = $value; 1555 $value = $real; 1556 1557 # Should only be single element, but just in case... 1558 for my $i ($start .. $end) { 1559 $NUMERIC{$i} = $value; 1560 } 1561 } 1562 else { 1563 # The values require adjusting, as is in 'a' format 1564 for my $i ($start .. $end) { 1565 $NUMERIC{$i} = $value + $i - $start; 1566 } 1567 } 1568 } 1569 1570 # Decided unsafe to use these that aren't officially part of the Unicode 1571 # standard. 1572 #use Math::Trig; 1573 #my $pi = acos(-1.0); 1574 #$NUMERIC{0x03C0} = $pi; 1575 1576 # Euler's constant, not to be confused with Euler's number 1577 #$NUMERIC{0x2107} = 0.57721566490153286060651209008240243104215933593992; 1578 1579 # Euler's number 1580 #$NUMERIC{0x212F} = 2.7182818284590452353602874713526624977572; 1581 1582 return; 1583} 1584 1585=pod 1586 1587=head2 B<num()> 1588 1589 use Unicode::UCD 'num'; 1590 1591 my $val = num("123"); 1592 my $one_quarter = num("\N{VULGAR FRACTION 1/4}"); 1593 1594C<num()> returns the numeric value of the input Unicode string; or C<undef> if it 1595doesn't think the entire string has a completely valid, safe numeric value. 1596 1597If the string is just one character in length, the Unicode numeric value 1598is returned if it has one, or C<undef> otherwise. Note that this need 1599not be a whole number. C<num("\N{TIBETAN DIGIT HALF ZERO}")>, for 1600example returns -0.5. 1601 1602=cut 1603 1604#A few characters to which Unicode doesn't officially 1605#assign a numeric value are considered numeric by C<num>. 1606#These are: 1607 1608# EULER CONSTANT 0.5772... (this is NOT Euler's number) 1609# SCRIPT SMALL E 2.71828... (this IS Euler's number) 1610# GREEK SMALL LETTER PI 3.14159... 1611 1612=pod 1613 1614If the string is more than one character, C<undef> is returned unless 1615all its characters are decimal digits (that is, they would match C<\d+>), 1616from the same script. For example if you have an ASCII '0' and a Bengali 1617'3', mixed together, they aren't considered a valid number, and C<undef> 1618is returned. A further restriction is that the digits all have to be of 1619the same form. A half-width digit mixed with a full-width one will 1620return C<undef>. The Arabic script has two sets of digits; C<num> will 1621return C<undef> unless all the digits in the string come from the same 1622set. 1623 1624C<num> errs on the side of safety, and there may be valid strings of 1625decimal digits that it doesn't recognize. Note that Unicode defines 1626a number of "digit" characters that aren't "decimal digit" characters. 1627"Decimal digits" have the property that they have a positional value, i.e., 1628there is a units position, a 10's position, a 100's, etc, AND they are 1629arranged in Unicode in blocks of 10 contiguous code points. The Chinese 1630digits, for example, are not in such a contiguous block, and so Unicode 1631doesn't view them as decimal digits, but merely digits, and so C<\d> will not 1632match them. A single-character string containing one of these digits will 1633have its decimal value returned by C<num>, but any longer string containing 1634only these digits will return C<undef>. 1635 1636Strings of multiple sub- and superscripts are not recognized as numbers. You 1637can use either of the compatibility decompositions in Unicode::Normalize to 1638change these into digits, and then call C<num> on the result. 1639 1640=cut 1641 1642# To handle sub, superscripts, this could if called in list context, 1643# consider those, and return the <decomposition> type in the second 1644# array element. 1645 1646sub num { 1647 my $string = $_[0]; 1648 1649 _numeric unless %NUMERIC; 1650 1651 my $length = length($string); 1652 return $NUMERIC{ord($string)} if $length == 1; 1653 return if $string =~ /\D/; 1654 my $first_ord = ord(substr($string, 0, 1)); 1655 my $value = $NUMERIC{$first_ord}; 1656 1657 # To be a valid decimal number, it should be in a block of 10 consecutive 1658 # characters, whose values are 0, 1, 2, ... 9. Therefore this digit's 1659 # value is its offset in that block from the character that means zero. 1660 my $zero_ord = $first_ord - $value; 1661 1662 # Unicode 6.0 instituted the rule that only digits in a consecutive 1663 # block of 10 would be considered decimal digits. If this is an earlier 1664 # release, we verify that this first character is a member of such a 1665 # block. That is, that the block of characters surrounding this one 1666 # consists of all \d characters whose numeric values are the expected 1667 # ones. 1668 UnicodeVersion() unless defined $v_unicode_version; 1669 if ($v_unicode_version lt v6.0.0) { 1670 for my $i (0 .. 9) { 1671 my $ord = $zero_ord + $i; 1672 return unless chr($ord) =~ /\d/; 1673 my $numeric = $NUMERIC{$ord}; 1674 return unless defined $numeric; 1675 return unless $numeric == $i; 1676 } 1677 } 1678 1679 for my $i (1 .. $length -1) { 1680 1681 # Here we know either by verifying, or by fact of the first character 1682 # being a \d in Unicode 6.0 or later, that any character between the 1683 # character that means 0, and 9 positions above it must be \d, and 1684 # must have its value correspond to its offset from the zero. Any 1685 # characters outside these 10 do not form a legal number for this 1686 # function. 1687 my $ord = ord(substr($string, $i, 1)); 1688 my $digit = $ord - $zero_ord; 1689 return unless $digit >= 0 && $digit <= 9; 1690 $value = $value * 10 + $digit; 1691 } 1692 1693 return $value; 1694} 1695 1696=pod 1697 1698=head2 B<prop_aliases()> 1699 1700 use Unicode::UCD 'prop_aliases'; 1701 1702 my ($short_name, $full_name, @other_names) = prop_aliases("space"); 1703 my $same_full_name = prop_aliases("Space"); # Scalar context 1704 my ($same_short_name) = prop_aliases("Space"); # gets 0th element 1705 print "The full name is $full_name\n"; 1706 print "The short name is $short_name\n"; 1707 print "The other aliases are: ", join(", ", @other_names), "\n"; 1708 1709 prints: 1710 The full name is White_Space 1711 The short name is WSpace 1712 The other aliases are: Space 1713 1714Most Unicode properties have several synonymous names. Typically, there is at 1715least a short name, convenient to type, and a long name that more fully 1716describes the property, and hence is more easily understood. 1717 1718If you know one name for a Unicode property, you can use C<prop_aliases> to find 1719either the long name (when called in scalar context), or a list of all of the 1720names, somewhat ordered so that the short name is in the 0th element, the long 1721name in the next element, and any other synonyms are in the remaining 1722elements, in no particular order. 1723 1724The long name is returned in a form nicely capitalized, suitable for printing. 1725 1726The input parameter name is loosely matched, which means that white space, 1727hyphens, and underscores are ignored (except for the trailing underscore in 1728the old_form grandfathered-in C<"L_">, which is better written as C<"LC">, and 1729both of which mean C<General_Category=Cased Letter>). 1730 1731If the name is unknown, C<undef> is returned (or an empty list in list 1732context). Note that Perl typically recognizes property names in regular 1733expressions with an optional C<"Is_>" (with or without the underscore) 1734prefixed to them, such as C<\p{isgc=punct}>. This function does not recognize 1735those in the input, returning C<undef>. Nor are they included in the output 1736as possible synonyms. 1737 1738C<prop_aliases> does know about the Perl extensions to Unicode properties, 1739such as C<Any> and C<XPosixAlpha>, and the single form equivalents to Unicode 1740properties such as C<XDigit>, C<Greek>, C<In_Greek>, and C<Is_Greek>. The 1741final example demonstrates that the C<"Is_"> prefix is recognized for these 1742extensions; it is needed to resolve ambiguities. For example, 1743C<prop_aliases('lc')> returns the list C<(lc, Lowercase_Mapping)>, but 1744C<prop_aliases('islc')> returns C<(Is_LC, Cased_Letter)>. This is 1745because C<islc> is a Perl extension which is short for 1746C<General_Category=Cased Letter>. The lists returned for the Perl extensions 1747will not include the C<"Is_"> prefix (whether or not the input had it) unless 1748needed to resolve ambiguities, as shown in the C<"islc"> example, where the 1749returned list had one element containing C<"Is_">, and the other without. 1750 1751It is also possible for the reverse to happen: C<prop_aliases('isc')> returns 1752the list C<(isc, ISO_Comment)>; whereas C<prop_aliases('c')> returns 1753C<(C, Other)> (the latter being a Perl extension meaning 1754C<General_Category=Other>. 1755L<perluniprops/Properties accessible through Unicode::UCD> lists the available 1756forms, including which ones are discouraged from use. 1757 1758Those discouraged forms are accepted as input to C<prop_aliases>, but are not 1759returned in the lists. C<prop_aliases('isL&')> and C<prop_aliases('isL_')>, 1760which are old synonyms for C<"Is_LC"> and should not be used in new code, are 1761examples of this. These both return C<(Is_LC, Cased_Letter)>. Thus this 1762function allows you to take a discouraged form, and find its acceptable 1763alternatives. The same goes with single-form Block property equivalences. 1764Only the forms that begin with C<"In_"> are not discouraged; if you pass 1765C<prop_aliases> a discouraged form, you will get back the equivalent ones that 1766begin with C<"In_">. It will otherwise look like a new-style block name (see. 1767L</Old-style versus new-style block names>). 1768 1769C<prop_aliases> does not know about any user-defined properties, and will 1770return C<undef> if called with one of those. Likewise for Perl internal 1771properties, with the exception of "Perl_Decimal_Digit" which it does know 1772about (and which is documented below in L</prop_invmap()>). 1773 1774=cut 1775 1776# It may be that there are use cases where the discouraged forms should be 1777# returned. If that comes up, an optional boolean second parameter to the 1778# function could be created, for example. 1779 1780# These are created by mktables for this routine and stored in unicore/UCD.pl 1781# where their structures are described. 1782our %string_property_loose_to_name; 1783our %ambiguous_names; 1784our %loose_perlprop_to_name; 1785our %prop_aliases; 1786 1787sub prop_aliases ($) { 1788 my $prop = $_[0]; 1789 return unless defined $prop; 1790 1791 require "unicore/UCD.pl"; 1792 require "unicore/Heavy.pl"; 1793 require "utf8_heavy.pl"; 1794 1795 # The property name may be loosely or strictly matched; we don't know yet. 1796 # But both types use lower-case. 1797 $prop = lc $prop; 1798 1799 # It is loosely matched if its lower case isn't known to be strict. 1800 my $list_ref; 1801 if (! exists $utf8::stricter_to_file_of{$prop}) { 1802 my $loose = utf8::_loose_name($prop); 1803 1804 # There is a hash that converts from any loose name to its standard 1805 # form, mapping all synonyms for a name to one name that can be used 1806 # as a key into another hash. The whole concept is for memory 1807 # savings, as the second hash doesn't have to have all the 1808 # combinations. Actually, there are two hashes that do the 1809 # converstion. One is used in utf8_heavy.pl (stored in Heavy.pl) for 1810 # looking up properties matchable in regexes. This function needs to 1811 # access string properties, which aren't available in regexes, so a 1812 # second conversion hash is made for them (stored in UCD.pl). Look in 1813 # the string one now, as the rest can have an optional 'is' prefix, 1814 # which these don't. 1815 if (exists $string_property_loose_to_name{$loose}) { 1816 1817 # Convert to its standard loose name. 1818 $prop = $string_property_loose_to_name{$loose}; 1819 } 1820 else { 1821 my $retrying = 0; # bool. ? Has an initial 'is' been stripped 1822 RETRY: 1823 if (exists $utf8::loose_property_name_of{$loose} 1824 && (! $retrying 1825 || ! exists $ambiguous_names{$loose})) 1826 { 1827 # Found an entry giving the standard form. We don't get here 1828 # (in the test above) when we've stripped off an 1829 # 'is' and the result is an ambiguous name. That is because 1830 # these are official Unicode properties (though Perl can have 1831 # an optional 'is' prefix meaning the official property), and 1832 # all ambiguous cases involve a Perl single-form extension 1833 # for the gc, script, or block properties, and the stripped 1834 # 'is' means that they mean one of those, and not one of 1835 # these 1836 $prop = $utf8::loose_property_name_of{$loose}; 1837 } 1838 elsif (exists $loose_perlprop_to_name{$loose}) { 1839 1840 # This hash is specifically for this function to list Perl 1841 # extensions that aren't in the earlier hashes. If there is 1842 # only one element, the short and long names are identical. 1843 # Otherwise the form is already in the same form as 1844 # %prop_aliases, which is handled at the end of the function. 1845 $list_ref = $loose_perlprop_to_name{$loose}; 1846 if (@$list_ref == 1) { 1847 my @list = ($list_ref->[0], $list_ref->[0]); 1848 $list_ref = \@list; 1849 } 1850 } 1851 elsif (! exists $utf8::loose_to_file_of{$loose}) { 1852 1853 # loose_to_file_of is a complete list of loose names. If not 1854 # there, the input is unknown. 1855 return; 1856 } 1857 elsif ($loose =~ / [:=] /x) { 1858 1859 # Here we found the name but not its aliases, so it has to 1860 # exist. Exclude property-value combinations. (This shows up 1861 # for something like ccc=vr which matches loosely, but is a 1862 # synonym for ccc=9 which matches only strictly. 1863 return; 1864 } 1865 else { 1866 1867 # Here it has to exist, and isn't a property-value 1868 # combination. This means it must be one of the Perl 1869 # single-form extensions. First see if it is for a 1870 # property-value combination in one of the following 1871 # properties. 1872 my @list; 1873 foreach my $property ("gc", "script") { 1874 @list = prop_value_aliases($property, $loose); 1875 last if @list; 1876 } 1877 if (@list) { 1878 1879 # Here, it is one of those property-value combination 1880 # single-form synonyms. There are ambiguities with some 1881 # of these. Check against the list for these, and adjust 1882 # if necessary. 1883 for my $i (0 .. @list -1) { 1884 if (exists $ambiguous_names 1885 {utf8::_loose_name(lc $list[$i])}) 1886 { 1887 # The ambiguity is resolved by toggling whether or 1888 # not it has an 'is' prefix 1889 $list[$i] =~ s/^Is_// or $list[$i] =~ s/^/Is_/; 1890 } 1891 } 1892 return @list; 1893 } 1894 1895 # Here, it wasn't one of the gc or script single-form 1896 # extensions. It could be a block property single-form 1897 # extension. An 'in' prefix definitely means that, and should 1898 # be looked up without the prefix. However, starting in 1899 # Unicode 6.1, we have to special case 'indic...', as there 1900 # is a property that begins with that name. We shouldn't 1901 # strip the 'in' from that. I'm (khw) generalizing this to 1902 # 'indic' instead of the single property, because I suspect 1903 # that others of this class may come along in the future. 1904 # However, this could backfire and a block created whose name 1905 # begins with 'dic...', and we would want to strip the 'in'. 1906 # At which point this would have to be tweaked. 1907 my $began_with_in = $loose =~ s/^in(?!dic)//; 1908 @list = prop_value_aliases("block", $loose); 1909 if (@list) { 1910 map { $_ =~ s/^/In_/ } @list; 1911 return @list; 1912 } 1913 1914 # Here still haven't found it. The last opportunity for it 1915 # being valid is only if it began with 'is'. We retry without 1916 # the 'is', setting a flag to that effect so that we don't 1917 # accept things that begin with 'isis...' 1918 if (! $retrying && ! $began_with_in && $loose =~ s/^is//) { 1919 $retrying = 1; 1920 goto RETRY; 1921 } 1922 1923 # Here, didn't find it. Since it was in %loose_to_file_of, we 1924 # should have been able to find it. 1925 carp __PACKAGE__, "::prop_aliases: Unexpectedly could not find '$prop'. Send bug report to perlbug\@perl.org"; 1926 return; 1927 } 1928 } 1929 } 1930 1931 if (! $list_ref) { 1932 # Here, we have set $prop to a standard form name of the input. Look 1933 # it up in the structure created by mktables for this purpose, which 1934 # contains both strict and loosely matched properties. Avoid 1935 # autovivifying. 1936 $list_ref = $prop_aliases{$prop} if exists $prop_aliases{$prop}; 1937 return unless $list_ref; 1938 } 1939 1940 # The full name is in element 1. 1941 return $list_ref->[1] unless wantarray; 1942 1943 return @{_dclone $list_ref}; 1944} 1945 1946=pod 1947 1948=head2 B<prop_value_aliases()> 1949 1950 use Unicode::UCD 'prop_value_aliases'; 1951 1952 my ($short_name, $full_name, @other_names) 1953 = prop_value_aliases("Gc", "Punct"); 1954 my $same_full_name = prop_value_aliases("Gc", "P"); # Scalar cntxt 1955 my ($same_short_name) = prop_value_aliases("Gc", "P"); # gets 0th 1956 # element 1957 print "The full name is $full_name\n"; 1958 print "The short name is $short_name\n"; 1959 print "The other aliases are: ", join(", ", @other_names), "\n"; 1960 1961 prints: 1962 The full name is Punctuation 1963 The short name is P 1964 The other aliases are: Punct 1965 1966Some Unicode properties have a restricted set of legal values. For example, 1967all binary properties are restricted to just C<true> or C<false>; and there 1968are only a few dozen possible General Categories. 1969 1970For such properties, there are usually several synonyms for each possible 1971value. For example, in binary properties, I<truth> can be represented by any of 1972the strings "Y", "Yes", "T", or "True"; and the General Category 1973"Punctuation" by that string, or "Punct", or simply "P". 1974 1975Like property names, there is typically at least a short name for each such 1976property-value, and a long name. If you know any name of the property-value, 1977you can use C<prop_value_aliases>() to get the long name (when called in 1978scalar context), or a list of all the names, with the short name in the 0th 1979element, the long name in the next element, and any other synonyms in the 1980remaining elements, in no particular order, except that any all-numeric 1981synonyms will be last. 1982 1983The long name is returned in a form nicely capitalized, suitable for printing. 1984 1985Case, white space, hyphens, and underscores are ignored in the input parameters 1986(except for the trailing underscore in the old-form grandfathered-in general 1987category property value C<"L_">, which is better written as C<"LC">). 1988 1989If either name is unknown, C<undef> is returned. Note that Perl typically 1990recognizes property names in regular expressions with an optional C<"Is_>" 1991(with or without the underscore) prefixed to them, such as C<\p{isgc=punct}>. 1992This function does not recognize those in the property parameter, returning 1993C<undef>. 1994 1995If called with a property that doesn't have synonyms for its values, it 1996returns the input value, possibly normalized with capitalization and 1997underscores. 1998 1999For the block property, new-style block names are returned (see 2000L</Old-style versus new-style block names>). 2001 2002To find the synonyms for single-forms, such as C<\p{Any}>, use 2003L</prop_aliases()> instead. 2004 2005C<prop_value_aliases> does not know about any user-defined properties, and 2006will return C<undef> if called with one of those. 2007 2008=cut 2009 2010# These are created by mktables for this routine and stored in unicore/UCD.pl 2011# where their structures are described. 2012our %loose_to_standard_value; 2013our %prop_value_aliases; 2014 2015sub prop_value_aliases ($$) { 2016 my ($prop, $value) = @_; 2017 return unless defined $prop && defined $value; 2018 2019 require "unicore/UCD.pl"; 2020 require "utf8_heavy.pl"; 2021 2022 # Find the property name synonym that's used as the key in other hashes, 2023 # which is element 0 in the returned list. 2024 ($prop) = prop_aliases($prop); 2025 return if ! $prop; 2026 $prop = utf8::_loose_name(lc $prop); 2027 2028 # Here is a legal property, but the hash below (created by mktables for 2029 # this purpose) only knows about the properties that have a very finite 2030 # number of potential values, that is not ones whose value could be 2031 # anything, like most (if not all) string properties. These don't have 2032 # synonyms anyway. Simply return the input. For example, there is no 2033 # synonym for ('Uppercase_Mapping', A'). 2034 return $value if ! exists $prop_value_aliases{$prop}; 2035 2036 # The value name may be loosely or strictly matched; we don't know yet. 2037 # But both types use lower-case. 2038 $value = lc $value; 2039 2040 # If the name isn't found under loose matching, it certainly won't be 2041 # found under strict 2042 my $loose_value = utf8::_loose_name($value); 2043 return unless exists $loose_to_standard_value{"$prop=$loose_value"}; 2044 2045 # Similarly if the combination under loose matching doesn't exist, it 2046 # won't exist under strict. 2047 my $standard_value = $loose_to_standard_value{"$prop=$loose_value"}; 2048 return unless exists $prop_value_aliases{$prop}{$standard_value}; 2049 2050 # Here we did find a combination under loose matching rules. But it could 2051 # be that is a strict property match that shouldn't have matched. 2052 # %prop_value_aliases is set up so that the strict matches will appear as 2053 # if they were in loose form. Thus, if the non-loose version is legal, 2054 # we're ok, can skip the further check. 2055 if (! exists $utf8::stricter_to_file_of{"$prop=$value"} 2056 2057 # We're also ok and skip the further check if value loosely matches. 2058 # mktables has verified that no strict name under loose rules maps to 2059 # an existing loose name. This code relies on the very limited 2060 # circumstances that strict names can be here. Strict name matching 2061 # happens under two conditions: 2062 # 1) when the name begins with an underscore. But this function 2063 # doesn't accept those, and %prop_value_aliases doesn't have 2064 # them. 2065 # 2) When the values are numeric, in which case we need to look 2066 # further, but their squeezed-out loose values will be in 2067 # %stricter_to_file_of 2068 && exists $utf8::stricter_to_file_of{"$prop=$loose_value"}) 2069 { 2070 # The only thing that's legal loosely under strict is that can have an 2071 # underscore between digit pairs XXX 2072 while ($value =~ s/(\d)_(\d)/$1$2/g) {} 2073 return unless exists $utf8::stricter_to_file_of{"$prop=$value"}; 2074 } 2075 2076 # Here, we know that the combination exists. Return it. 2077 my $list_ref = $prop_value_aliases{$prop}{$standard_value}; 2078 if (@$list_ref > 1) { 2079 # The full name is in element 1. 2080 return $list_ref->[1] unless wantarray; 2081 2082 return @{_dclone $list_ref}; 2083 } 2084 2085 return $list_ref->[0] unless wantarray; 2086 2087 # Only 1 element means that it repeats 2088 return ( $list_ref->[0], $list_ref->[0] ); 2089} 2090 2091# All 1 bits is the largest possible UV. 2092$Unicode::UCD::MAX_CP = ~0; 2093 2094=pod 2095 2096=head2 B<prop_invlist()> 2097 2098C<prop_invlist> returns an inversion list (described below) that defines all the 2099code points for the binary Unicode property (or "property=value" pair) given 2100by the input parameter string: 2101 2102 use feature 'say'; 2103 use Unicode::UCD 'prop_invlist'; 2104 say join ", ", prop_invlist("Any"); 2105 2106 prints: 2107 0, 1114112 2108 2109If the input is unknown C<undef> is returned in scalar context; an empty-list 2110in list context. If the input is known, the number of elements in 2111the list is returned if called in scalar context. 2112 2113L<perluniprops|perluniprops/Properties accessible through \p{} and \P{}> gives 2114the list of properties that this function accepts, as well as all the possible 2115forms for them (including with the optional "Is_" prefixes). (Except this 2116function doesn't accept any Perl-internal properties, some of which are listed 2117there.) This function uses the same loose or tighter matching rules for 2118resolving the input property's name as is done for regular expressions. These 2119are also specified in L<perluniprops|perluniprops/Properties accessible 2120through \p{} and \P{}>. Examples of using the "property=value" form are: 2121 2122 say join ", ", prop_invlist("Script=Shavian"); 2123 2124 prints: 2125 66640, 66688 2126 2127 say join ", ", prop_invlist("ASCII_Hex_Digit=No"); 2128 2129 prints: 2130 0, 48, 58, 65, 71, 97, 103 2131 2132 say join ", ", prop_invlist("ASCII_Hex_Digit=Yes"); 2133 2134 prints: 2135 48, 58, 65, 71, 97, 103 2136 2137Inversion lists are a compact way of specifying Unicode property-value 2138definitions. The 0th item in the list is the lowest code point that has the 2139property-value. The next item (item [1]) is the lowest code point beyond that 2140one that does NOT have the property-value. And the next item beyond that 2141([2]) is the lowest code point beyond that one that does have the 2142property-value, and so on. Put another way, each element in the list gives 2143the beginning of a range that has the property-value (for even numbered 2144elements), or doesn't have the property-value (for odd numbered elements). 2145The name for this data structure stems from the fact that each element in the 2146list toggles (or inverts) whether the corresponding range is or isn't on the 2147list. 2148 2149In the final example above, the first ASCII Hex digit is code point 48, the 2150character "0", and all code points from it through 57 (a "9") are ASCII hex 2151digits. Code points 58 through 64 aren't, but 65 (an "A") through 70 (an "F") 2152are, as are 97 ("a") through 102 ("f"). 103 starts a range of code points 2153that aren't ASCII hex digits. That range extends to infinity, which on your 2154computer can be found in the variable C<$Unicode::UCD::MAX_CP>. (This 2155variable is as close to infinity as Perl can get on your platform, and may be 2156too high for some operations to work; you may wish to use a smaller number for 2157your purposes.) 2158 2159Note that the inversion lists returned by this function can possibly include 2160non-Unicode code points, that is anything above 0x10FFFF. Unicode properties 2161are not defined on such code points. You might wish to change the output to 2162not include these. Simply add 0x110000 at the end of the non-empty returned 2163list if it isn't already that value; and pop that value if it is; like: 2164 2165 my @list = prop_invlist("foo"); 2166 if (@list) { 2167 if ($list[-1] == 0x110000) { 2168 pop @list; # Defeat the turning on for above Unicode 2169 } 2170 else { 2171 push @list, 0x110000; # Turn off for above Unicode 2172 } 2173 } 2174 2175It is a simple matter to expand out an inversion list to a full list of all 2176code points that have the property-value: 2177 2178 my @invlist = prop_invlist($property_name); 2179 die "empty" unless @invlist; 2180 my @full_list; 2181 for (my $i = 0; $i < @invlist; $i += 2) { 2182 my $upper = ($i + 1) < @invlist 2183 ? $invlist[$i+1] - 1 # In range 2184 : $Unicode::UCD::MAX_CP; # To infinity. You may want 2185 # to stop much much earlier; 2186 # going this high may expose 2187 # perl deficiencies with very 2188 # large numbers. 2189 for my $j ($invlist[$i] .. $upper) { 2190 push @full_list, $j; 2191 } 2192 } 2193 2194C<prop_invlist> does not know about any user-defined nor Perl internal-only 2195properties, and will return C<undef> if called with one of those. 2196 2197The L</search_invlist()> function is provided for finding a code point within 2198an inversion list. 2199 2200=cut 2201 2202# User-defined properties could be handled with some changes to utf8_heavy.pl; 2203# and implementing here of dealing with EXTRAS. If done, consideration should 2204# be given to the fact that the user subroutine could return different results 2205# with each call; security issues need to be thought about. 2206 2207# These are created by mktables for this routine and stored in unicore/UCD.pl 2208# where their structures are described. 2209our %loose_defaults; 2210our $MAX_UNICODE_CODEPOINT; 2211 2212sub prop_invlist ($;$) { 2213 my $prop = $_[0]; 2214 2215 # Undocumented way to get at Perl internal properties 2216 my $internal_ok = defined $_[1] && $_[1] eq '_perl_core_internal_ok'; 2217 2218 return if ! defined $prop; 2219 2220 require "utf8_heavy.pl"; 2221 2222 # Warnings for these are only for regexes, so not applicable to us 2223 no warnings 'deprecated'; 2224 2225 # Get the swash definition of the property-value. 2226 my $swash = utf8::SWASHNEW(__PACKAGE__, $prop, undef, 1, 0); 2227 2228 # Fail if not found, or isn't a boolean property-value, or is a 2229 # user-defined property, or is internal-only. 2230 return if ! $swash 2231 || ref $swash eq "" 2232 || $swash->{'BITS'} != 1 2233 || $swash->{'USER_DEFINED'} 2234 || (! $internal_ok && $prop =~ /^\s*_/); 2235 2236 if ($swash->{'EXTRAS'}) { 2237 carp __PACKAGE__, "::prop_invlist: swash returned for $prop unexpectedly has EXTRAS magic"; 2238 return; 2239 } 2240 if ($swash->{'SPECIALS'}) { 2241 carp __PACKAGE__, "::prop_invlist: swash returned for $prop unexpectedly has SPECIALS magic"; 2242 return; 2243 } 2244 2245 my @invlist; 2246 2247 if ($swash->{'LIST'} =~ /^V/) { 2248 2249 # A 'V' as the first character marks the input as already an inversion 2250 # list, in which case, all we need to do is put the remaining lines 2251 # into our array. 2252 @invlist = split "\n", $swash->{'LIST'} =~ s/ \s* (?: \# .* )? $ //xmgr; 2253 shift @invlist; 2254 } 2255 else { 2256 # The input lines look like: 2257 # 0041\t005A # [26] 2258 # 005F 2259 2260 # Split into lines, stripped of trailing comments 2261 foreach my $range (split "\n", 2262 $swash->{'LIST'} =~ s/ \s* (?: \# .* )? $ //xmgr) 2263 { 2264 # And find the beginning and end of the range on the line 2265 my ($hex_begin, $hex_end) = split "\t", $range; 2266 my $begin = hex $hex_begin; 2267 2268 # If the new range merely extends the old, we remove the marker 2269 # created the last time through the loop for the old's end, which 2270 # causes the new one's end to be used instead. 2271 if (@invlist && $begin == $invlist[-1]) { 2272 pop @invlist; 2273 } 2274 else { 2275 # Add the beginning of the range 2276 push @invlist, $begin; 2277 } 2278 2279 if (defined $hex_end) { # The next item starts with the code point 1 2280 # beyond the end of the range. 2281 no warnings 'portable'; 2282 my $end = hex $hex_end; 2283 last if $end == $Unicode::UCD::MAX_CP; 2284 push @invlist, $end + 1; 2285 } 2286 else { # No end of range, is a single code point. 2287 push @invlist, $begin + 1; 2288 } 2289 } 2290 } 2291 2292 # Could need to be inverted: add or subtract a 0 at the beginning of the 2293 # list. 2294 if ($swash->{'INVERT_IT'}) { 2295 if (@invlist && $invlist[0] == 0) { 2296 shift @invlist; 2297 } 2298 else { 2299 unshift @invlist, 0; 2300 } 2301 } 2302 2303 return @invlist; 2304} 2305 2306=pod 2307 2308=head2 B<prop_invmap()> 2309 2310 use Unicode::UCD 'prop_invmap'; 2311 my ($list_ref, $map_ref, $format, $default) 2312 = prop_invmap("General Category"); 2313 2314C<prop_invmap> is used to get the complete mapping definition for a property, 2315in the form of an inversion map. An inversion map consists of two parallel 2316arrays. One is an ordered list of code points that mark range beginnings, and 2317the other gives the value (or mapping) that all code points in the 2318corresponding range have. 2319 2320C<prop_invmap> is called with the name of the desired property. The name is 2321loosely matched, meaning that differences in case, white-space, hyphens, and 2322underscores are not meaningful (except for the trailing underscore in the 2323old-form grandfathered-in property C<"L_">, which is better written as C<"LC">, 2324or even better, C<"Gc=LC">). 2325 2326Many Unicode properties have more than one name (or alias). C<prop_invmap> 2327understands all of these, including Perl extensions to them. Ambiguities are 2328resolved as described above for L</prop_aliases()>. The Perl internal 2329property "Perl_Decimal_Digit, described below, is also accepted. An empty 2330list is returned if the property name is unknown. 2331See L<perluniprops/Properties accessible through Unicode::UCD> for the 2332properties acceptable as inputs to this function. 2333 2334It is a fatal error to call this function except in list context. 2335 2336In addition to the two arrays that form the inversion map, C<prop_invmap> 2337returns two other values; one is a scalar that gives some details as to the 2338format of the entries of the map array; the other is a default value, useful 2339in maps whose format name begins with the letter C<"a">, as described 2340L<below in its subsection|/a>; and for specialized purposes, such as 2341converting to another data structure, described at the end of this main 2342section. 2343 2344This means that C<prop_invmap> returns a 4 element list. For example, 2345 2346 my ($blocks_ranges_ref, $blocks_maps_ref, $format, $default) 2347 = prop_invmap("Block"); 2348 2349In this call, the two arrays will be populated as shown below (for Unicode 23506.0): 2351 2352 Index @blocks_ranges @blocks_maps 2353 0 0x0000 Basic Latin 2354 1 0x0080 Latin-1 Supplement 2355 2 0x0100 Latin Extended-A 2356 3 0x0180 Latin Extended-B 2357 4 0x0250 IPA Extensions 2358 5 0x02B0 Spacing Modifier Letters 2359 6 0x0300 Combining Diacritical Marks 2360 7 0x0370 Greek and Coptic 2361 8 0x0400 Cyrillic 2362 ... 2363 233 0x2B820 No_Block 2364 234 0x2F800 CJK Compatibility Ideographs Supplement 2365 235 0x2FA20 No_Block 2366 236 0xE0000 Tags 2367 237 0xE0080 No_Block 2368 238 0xE0100 Variation Selectors Supplement 2369 239 0xE01F0 No_Block 2370 240 0xF0000 Supplementary Private Use Area-A 2371 241 0x100000 Supplementary Private Use Area-B 2372 242 0x110000 No_Block 2373 2374The first line (with Index [0]) means that the value for code point 0 is "Basic 2375Latin". The entry "0x0080" in the @blocks_ranges column in the second line 2376means that the value from the first line, "Basic Latin", extends to all code 2377points in the range from 0 up to but not including 0x0080, that is, through 2378127. In other words, the code points from 0 to 127 are all in the "Basic 2379Latin" block. Similarly, all code points in the range from 0x0080 up to (but 2380not including) 0x0100 are in the block named "Latin-1 Supplement", etc. 2381(Notice that the return is the old-style block names; see L</Old-style versus 2382new-style block names>). 2383 2384The final line (with Index [242]) means that the value for all code points above 2385the legal Unicode maximum code point have the value "No_Block", which is the 2386term Unicode uses for a non-existing block. 2387 2388The arrays completely specify the mappings for all possible code points. 2389The final element in an inversion map returned by this function will always be 2390for the range that consists of all the code points that aren't legal Unicode, 2391but that are expressible on the platform. (That is, it starts with code point 23920x110000, the first code point above the legal Unicode maximum, and extends to 2393infinity.) The value for that range will be the same that any typical 2394unassigned code point has for the specified property. (Certain unassigned 2395code points are not "typical"; for example the non-character code points, or 2396those in blocks that are to be written right-to-left. The above-Unicode 2397range's value is not based on these atypical code points.) It could be argued 2398that, instead of treating these as unassigned Unicode code points, the value 2399for this range should be C<undef>. If you wish, you can change the returned 2400arrays accordingly. 2401 2402The maps for almost all properties are simple scalars that should be 2403interpreted as-is. 2404These values are those given in the Unicode-supplied data files, which may be 2405inconsistent as to capitalization and as to which synonym for a property-value 2406is given. The results may be normalized by using the L</prop_value_aliases()> 2407function. 2408 2409There are exceptions to the simple scalar maps. Some properties have some 2410elements in their map list that are themselves lists of scalars; and some 2411special strings are returned that are not to be interpreted as-is. Element 2412[2] (placed into C<$format> in the example above) of the returned four element 2413list tells you if the map has any of these special elements or not, as follows: 2414 2415=over 2416 2417=item B<C<s>> 2418 2419means all the elements of the map array are simple scalars, with no special 2420elements. Almost all properties are like this, like the C<block> example 2421above. 2422 2423=item B<C<sl>> 2424 2425means that some of the map array elements have the form given by C<"s">, and 2426the rest are lists of scalars. For example, here is a portion of the output 2427of calling C<prop_invmap>() with the "Script Extensions" property: 2428 2429 @scripts_ranges @scripts_maps 2430 ... 2431 0x0953 Devanagari 2432 0x0964 [ Bengali, Devanagari, Gurumukhi, Oriya ] 2433 0x0966 Devanagari 2434 0x0970 Common 2435 2436Here, the code points 0x964 and 0x965 are both used in Bengali, 2437Devanagari, Gurmukhi, and Oriya, but no other scripts. 2438 2439The Name_Alias property is also of this form. But each scalar consists of two 2440components: 1) the name, and 2) the type of alias this is. They are 2441separated by a colon and a space. In Unicode 6.1, there are several alias types: 2442 2443=over 2444 2445=item C<correction> 2446 2447indicates that the name is a corrected form for the 2448original name (which remains valid) for the same code point. 2449 2450=item C<control> 2451 2452adds a new name for a control character. 2453 2454=item C<alternate> 2455 2456is an alternate name for a character 2457 2458=item C<figment> 2459 2460is a name for a character that has been documented but was never in any 2461actual standard. 2462 2463=item C<abbreviation> 2464 2465is a common abbreviation for a character 2466 2467=back 2468 2469The lists are ordered (roughly) so the most preferred names come before less 2470preferred ones. 2471 2472For example, 2473 2474 @aliases_ranges @alias_maps 2475 ... 2476 0x009E [ 'PRIVACY MESSAGE: control', 'PM: abbreviation' ] 2477 0x009F [ 'APPLICATION PROGRAM COMMAND: control', 2478 'APC: abbreviation' 2479 ] 2480 0x00A0 'NBSP: abbreviation' 2481 0x00A1 "" 2482 0x00AD 'SHY: abbreviation' 2483 0x00AE "" 2484 0x01A2 'LATIN CAPITAL LETTER GHA: correction' 2485 0x01A3 'LATIN SMALL LETTER GHA: correction' 2486 0x01A4 "" 2487 ... 2488 2489A map to the empty string means that there is no alias defined for the code 2490point. 2491 2492=item B<C<a>> 2493 2494is like C<"s"> in that all the map array elements are scalars, but here they are 2495restricted to all being integers, and some have to be adjusted (hence the name 2496C<"a">) to get the correct result. For example, in: 2497 2498 my ($uppers_ranges_ref, $uppers_maps_ref, $format, $default) 2499 = prop_invmap("Simple_Uppercase_Mapping"); 2500 2501the returned arrays look like this: 2502 2503 @$uppers_ranges_ref @$uppers_maps_ref Note 2504 0 0 2505 97 65 'a' maps to 'A', b => B ... 2506 123 0 2507 181 924 MICRO SIGN => Greek Cap MU 2508 182 0 2509 ... 2510 2511and C<$default> is 0. 2512 2513Let's start with the second line. It says that the uppercase of code point 97 2514is 65; or C<uc("a")> == "A". But the line is for the entire range of code 2515points 97 through 122. To get the mapping for any code point in this range, 2516you take the offset it has from the beginning code point of the range, and add 2517that to the mapping for that first code point. So, the mapping for 122 ("z") 2518is derived by taking the offset of 122 from 97 (=25) and adding that to 65, 2519yielding 90 ("z"). Likewise for everything in between. 2520 2521Requiring this simple adjustment allows the returned arrays to be 2522significantly smaller than otherwise, up to a factor of 10, speeding up 2523searching through them. 2524 2525Ranges that map to C<$default>, C<"0">, behave somewhat differently. For 2526these, each code point maps to itself. So, in the first line in the example, 2527S<C<ord(uc(chr(0)))>> is 0, S<C<ord(uc(chr(1)))>> is 1, .. 2528S<C<ord(uc(chr(96)))>> is 96. 2529 2530=item B<C<al>> 2531 2532means that some of the map array elements have the form given by C<"a">, and 2533the rest are ordered lists of code points. 2534For example, in: 2535 2536 my ($uppers_ranges_ref, $uppers_maps_ref, $format, $default) 2537 = prop_invmap("Uppercase_Mapping"); 2538 2539the returned arrays look like this: 2540 2541 @$uppers_ranges_ref @$uppers_maps_ref 2542 0 0 2543 97 65 2544 123 0 2545 181 924 2546 182 0 2547 ... 2548 0x0149 [ 0x02BC 0x004E ] 2549 0x014A 0 2550 0x014B 330 2551 ... 2552 2553This is the full Uppercase_Mapping property (as opposed to the 2554Simple_Uppercase_Mapping given in the example for format C<"a">). The only 2555difference between the two in the ranges shown is that the code point at 25560x0149 (LATIN SMALL LETTER N PRECEDED BY APOSTROPHE) maps to a string of two 2557characters, 0x02BC (MODIFIER LETTER APOSTROPHE) followed by 0x004E (LATIN 2558CAPITAL LETTER N). 2559 2560No adjustments are needed to entries that are references to arrays; each such 2561entry will have exactly one element in its range, so the offset is always 0. 2562 2563The fourth (index [3]) element (C<$default>) in the list returned for this 2564format is 0. 2565 2566=item B<C<ae>> 2567 2568This is like C<"a">, but some elements are the empty string, and should not be 2569adjusted. 2570The one internal Perl property accessible by C<prop_invmap> is of this type: 2571"Perl_Decimal_Digit" returns an inversion map which gives the numeric values 2572that are represented by the Unicode decimal digit characters. Characters that 2573don't represent decimal digits map to the empty string, like so: 2574 2575 @digits @values 2576 0x0000 "" 2577 0x0030 0 2578 0x003A: "" 2579 0x0660: 0 2580 0x066A: "" 2581 0x06F0: 0 2582 0x06FA: "" 2583 0x07C0: 0 2584 0x07CA: "" 2585 0x0966: 0 2586 ... 2587 2588This means that the code points from 0 to 0x2F do not represent decimal digits; 2589the code point 0x30 (DIGIT ZERO) represents 0; code point 0x31, (DIGIT ONE), 2590represents 0+1-0 = 1; ... code point 0x39, (DIGIT NINE), represents 0+9-0 = 9; 2591... code points 0x3A through 0x65F do not represent decimal digits; 0x660 2592(ARABIC-INDIC DIGIT ZERO), represents 0; ... 0x07C1 (NKO DIGIT ONE), 2593represents 0+1-0 = 1 ... 2594 2595The fourth (index [3]) element (C<$default>) in the list returned for this 2596format is the empty string. 2597 2598=item B<C<ale>> 2599 2600is a combination of the C<"al"> type and the C<"ae"> type. Some of 2601the map array elements have the forms given by C<"al">, and 2602the rest are the empty string. The property C<NFKC_Casefold> has this form. 2603An example slice is: 2604 2605 @$ranges_ref @$maps_ref Note 2606 ... 2607 0x00AA 97 FEMININE ORDINAL INDICATOR => 'a' 2608 0x00AB 0 2609 0x00AD SOFT HYPHEN => "" 2610 0x00AE 0 2611 0x00AF [ 0x0020, 0x0304 ] MACRON => SPACE . COMBINING MACRON 2612 0x00B0 0 2613 ... 2614 2615The fourth (index [3]) element (C<$default>) in the list returned for this 2616format is 0. 2617 2618=item B<C<ar>> 2619 2620means that all the elements of the map array are either rational numbers or 2621the string C<"NaN">, meaning "Not a Number". A rational number is either an 2622integer, or two integers separated by a solidus (C<"/">). The second integer 2623represents the denominator of the division implied by the solidus, and is 2624actually always positive, so it is guaranteed not to be 0 and to not be 2625signed. When the element is a plain integer (without the 2626solidus), it may need to be adjusted to get the correct value by adding the 2627offset, just as other C<"a"> properties. No adjustment is needed for 2628fractions, as the range is guaranteed to have just a single element, and so 2629the offset is always 0. 2630 2631If you want to convert the returned map to entirely scalar numbers, you 2632can use something like this: 2633 2634 my ($invlist_ref, $invmap_ref, $format) = prop_invmap($property); 2635 if ($format && $format eq "ar") { 2636 map { $_ = eval $_ if $_ ne 'NaN' } @$map_ref; 2637 } 2638 2639Here's some entries from the output of the property "Nv", which has format 2640C<"ar">. 2641 2642 @numerics_ranges @numerics_maps Note 2643 0x00 "NaN" 2644 0x30 0 DIGIT 0 .. DIGIT 9 2645 0x3A "NaN" 2646 0xB2 2 SUPERSCRIPTs 2 and 3 2647 0xB4 "NaN" 2648 0xB9 1 SUPERSCRIPT 1 2649 0xBA "NaN" 2650 0xBC 1/4 VULGAR FRACTION 1/4 2651 0xBD 1/2 VULGAR FRACTION 1/2 2652 0xBE 3/4 VULGAR FRACTION 3/4 2653 0xBF "NaN" 2654 0x660 0 ARABIC-INDIC DIGIT ZERO .. NINE 2655 0x66A "NaN" 2656 2657The fourth (index [3]) element (C<$default>) in the list returned for this 2658format is C<"NaN">. 2659 2660=item B<C<n>> 2661 2662means the Name property. All the elements of the map array are simple 2663scalars, but some of them contain special strings that require more work to 2664get the actual name. 2665 2666Entries such as: 2667 2668 CJK UNIFIED IDEOGRAPH-<code point> 2669 2670mean that the name for the code point is "CJK UNIFIED IDEOGRAPH-" 2671with the code point (expressed in hexadecimal) appended to it, like "CJK 2672UNIFIED IDEOGRAPH-3403" (similarly for S<C<CJK COMPATIBILITY IDEOGRAPH-E<lt>code 2673pointE<gt>>>). 2674 2675Also, entries like 2676 2677 <hangul syllable> 2678 2679means that the name is algorithmically calculated. This is easily done by 2680the function L<charnames/charnames::viacode(code)>. 2681 2682Note that for control characters (C<Gc=cc>), Unicode's data files have the 2683string "C<E<lt>controlE<gt>>", but the real name of each of these characters is the empty 2684string. This function returns that real name, the empty string. (There are 2685names for these characters, but they are considered aliases, not the Name 2686property name, and are contained in the C<Name_Alias> property.) 2687 2688=item B<C<ad>> 2689 2690means the Decomposition_Mapping property. This property is like C<"al"> 2691properties, except that one of the scalar elements is of the form: 2692 2693 <hangul syllable> 2694 2695This signifies that this entry should be replaced by the decompositions for 2696all the code points whose decomposition is algorithmically calculated. (All 2697of them are currently in one range and no others outside the range are likely 2698to ever be added to Unicode; the C<"n"> format 2699has this same entry.) These can be generated via the function 2700L<Unicode::Normalize::NFD()|Unicode::Normalize>. 2701 2702Note that the mapping is the one that is specified in the Unicode data files, 2703and to get the final decomposition, it may need to be applied recursively. 2704 2705The fourth (index [3]) element (C<$default>) in the list returned for this 2706format is 0. 2707 2708=back 2709 2710Note that a format begins with the letter "a" if and only the property it is 2711for requires adjustments by adding the offsets in multi-element ranges. For 2712all these properties, an entry should be adjusted only if the map is a scalar 2713which is an integer. That is, it must match the regular expression: 2714 2715 / ^ -? \d+ $ /xa 2716 2717Further, the first element in a range never needs adjustment, as the 2718adjustment would be just adding 0. 2719 2720A binary search such as that provided by L</search_invlist()>, can be used to 2721quickly find a code point in the inversion list, and hence its corresponding 2722mapping. 2723 2724The final, fourth element (index [3], assigned to C<$default> in the "block" 2725example) in the four element list returned by this function is used with the 2726C<"a"> format types; it may also be useful for applications 2727that wish to convert the returned inversion map data structure into some 2728other, such as a hash. It gives the mapping that most code points map to 2729under the property. If you establish the convention that any code point not 2730explicitly listed in your data structure maps to this value, you can 2731potentially make your data structure much smaller. As you construct your data 2732structure from the one returned by this function, simply ignore those ranges 2733that map to this value. For example, to 2734convert to the data structure searchable by L</charinrange()>, you can follow 2735this recipe for properties that don't require adjustments: 2736 2737 my ($list_ref, $map_ref, $format, $default) = prop_invmap($property); 2738 my @range_list; 2739 2740 # Look at each element in the list, but the -2 is needed because we 2741 # look at $i+1 in the loop, and the final element is guaranteed to map 2742 # to $default by prop_invmap(), so we would skip it anyway. 2743 for my $i (0 .. @$list_ref - 2) { 2744 next if $map_ref->[$i] eq $default; 2745 push @range_list, [ $list_ref->[$i], 2746 $list_ref->[$i+1], 2747 $map_ref->[$i] 2748 ]; 2749 } 2750 2751 print charinrange(\@range_list, $code_point), "\n"; 2752 2753With this, C<charinrange()> will return C<undef> if its input code point maps 2754to C<$default>. You can avoid this by omitting the C<next> statement, and adding 2755a line after the loop to handle the final element of the inversion map. 2756 2757Similarly, this recipe can be used for properties that do require adjustments: 2758 2759 for my $i (0 .. @$list_ref - 2) { 2760 next if $map_ref->[$i] eq $default; 2761 2762 # prop_invmap() guarantees that if the mapping is to an array, the 2763 # range has just one element, so no need to worry about adjustments. 2764 if (ref $map_ref->[$i]) { 2765 push @range_list, 2766 [ $list_ref->[$i], $list_ref->[$i], $map_ref->[$i] ]; 2767 } 2768 else { # Otherwise each element is actually mapped to a separate 2769 # value, so the range has to be split into single code point 2770 # ranges. 2771 2772 my $adjustment = 0; 2773 2774 # For each code point that gets mapped to something... 2775 for my $j ($list_ref->[$i] .. $list_ref->[$i+1] -1 ) { 2776 2777 # ... add a range consisting of just it mapping to the 2778 # original plus the adjustment, which is incremented for the 2779 # next time through the loop, as the offset increases by 1 2780 # for each element in the range 2781 push @range_list, 2782 [ $j, $j, $map_ref->[$i] + $adjustment++ ]; 2783 } 2784 } 2785 } 2786 2787Note that the inversion maps returned for the C<Case_Folding> and 2788C<Simple_Case_Folding> properties do not include the Turkic-locale mappings. 2789Use L</casefold()> for these. 2790 2791C<prop_invmap> does not know about any user-defined properties, and will 2792return C<undef> if called with one of those. 2793 2794=cut 2795 2796# User-defined properties could be handled with some changes to utf8_heavy.pl; 2797# if done, consideration should be given to the fact that the user subroutine 2798# could return different results with each call, which could lead to some 2799# security issues. 2800 2801# One could store things in memory so they don't have to be recalculated, but 2802# it is unlikely this will be called often, and some properties would take up 2803# significant memory. 2804 2805# These are created by mktables for this routine and stored in unicore/UCD.pl 2806# where their structures are described. 2807our @algorithmic_named_code_points; 2808our $HANGUL_BEGIN; 2809our $HANGUL_COUNT; 2810 2811sub prop_invmap ($) { 2812 2813 croak __PACKAGE__, "::prop_invmap: must be called in list context" unless wantarray; 2814 2815 my $prop = $_[0]; 2816 return unless defined $prop; 2817 2818 # Fail internal properties 2819 return if $prop =~ /^_/; 2820 2821 # The values returned by this function. 2822 my (@invlist, @invmap, $format, $missing); 2823 2824 # The swash has two components we look at, the base list, and a hash, 2825 # named 'SPECIALS', containing any additional members whose mappings don't 2826 # fit into the base list scheme of things. These generally 'override' 2827 # any value in the base list for the same code point. 2828 my $overrides; 2829 2830 require "utf8_heavy.pl"; 2831 require "unicore/UCD.pl"; 2832 2833RETRY: 2834 2835 # If there are multiple entries for a single code point 2836 my $has_multiples = 0; 2837 2838 # Try to get the map swash for the property. They have 'To' prepended to 2839 # the property name, and 32 means we will accept 32 bit return values. 2840 # The 0 means we aren't calling this from tr///. 2841 my $swash = utf8::SWASHNEW(__PACKAGE__, "To$prop", undef, 32, 0); 2842 2843 # If didn't find it, could be because needs a proxy. And if was the 2844 # 'Block' or 'Name' property, use a proxy even if did find it. Finding it 2845 # in these cases would be the result of the installation changing mktables 2846 # to output the Block or Name tables. The Block table gives block names 2847 # in the new-style, and this routine is supposed to return old-style block 2848 # names. The Name table is valid, but we need to execute the special code 2849 # below to add in the algorithmic-defined name entries. 2850 # And NFKCCF needs conversion, so handle that here too. 2851 if (ref $swash eq "" 2852 || $swash->{'TYPE'} =~ / ^ To (?: Blk | Na | NFKCCF ) $ /x) 2853 { 2854 2855 # Get the short name of the input property, in standard form 2856 my ($second_try) = prop_aliases($prop); 2857 return unless $second_try; 2858 $second_try = utf8::_loose_name(lc $second_try); 2859 2860 if ($second_try eq "in") { 2861 2862 # This property is identical to age for inversion map purposes 2863 $prop = "age"; 2864 goto RETRY; 2865 } 2866 elsif ($second_try =~ / ^ s ( cf | fc | [ltu] c ) $ /x) { 2867 2868 # These properties use just the LIST part of the full mapping, 2869 # which includes the simple maps that are otherwise overridden by 2870 # the SPECIALS. So all we need do is to not look at the SPECIALS; 2871 # set $overrides to indicate that 2872 $overrides = -1; 2873 2874 # The full name is the simple name stripped of its initial 's' 2875 $prop = $1; 2876 2877 # .. except for this case 2878 $prop = 'cf' if $prop eq 'fc'; 2879 2880 goto RETRY; 2881 } 2882 elsif ($second_try eq "blk") { 2883 2884 # We use the old block names. Just create a fake swash from its 2885 # data. 2886 _charblocks(); 2887 my %blocks; 2888 $blocks{'LIST'} = ""; 2889 $blocks{'TYPE'} = "ToBlk"; 2890 $utf8::SwashInfo{ToBlk}{'missing'} = "No_Block"; 2891 $utf8::SwashInfo{ToBlk}{'format'} = "s"; 2892 2893 foreach my $block (@BLOCKS) { 2894 $blocks{'LIST'} .= sprintf "%x\t%x\t%s\n", 2895 $block->[0], 2896 $block->[1], 2897 $block->[2]; 2898 } 2899 $swash = \%blocks; 2900 } 2901 elsif ($second_try eq "na") { 2902 2903 # Use the combo file that has all the Name-type properties in it, 2904 # extracting just the ones that are for the actual 'Name' 2905 # property. And create a fake swash from it. 2906 my %names; 2907 $names{'LIST'} = ""; 2908 my $original = do "unicore/Name.pl"; 2909 my $algorithm_names = \@algorithmic_named_code_points; 2910 2911 # We need to remove the names from it that are aliases. For that 2912 # we need to also read in that table. Create a hash with the keys 2913 # being the code points, and the values being a list of the 2914 # aliases for the code point key. 2915 my ($aliases_code_points, $aliases_maps, undef, undef) = 2916 &prop_invmap('Name_Alias'); 2917 my %aliases; 2918 for (my $i = 0; $i < @$aliases_code_points; $i++) { 2919 my $code_point = $aliases_code_points->[$i]; 2920 $aliases{$code_point} = $aliases_maps->[$i]; 2921 2922 # If not already a list, make it into one, so that later we 2923 # can treat things uniformly 2924 if (! ref $aliases{$code_point}) { 2925 $aliases{$code_point} = [ $aliases{$code_point} ]; 2926 } 2927 2928 # Remove the alias type from the entry, retaining just the 2929 # name. 2930 map { s/:.*// } @{$aliases{$code_point}}; 2931 } 2932 2933 my $i = 0; 2934 foreach my $line (split "\n", $original) { 2935 my ($hex_code_point, $name) = split "\t", $line; 2936 2937 # Weeds out all comments, blank lines, and named sequences 2938 next if $hex_code_point =~ /[^[:xdigit:]]/a; 2939 2940 my $code_point = hex $hex_code_point; 2941 2942 # The name of all controls is the default: the empty string. 2943 # The set of controls is immutable 2944 next if chr($code_point) =~ /[[:cntrl:]]/u; 2945 2946 # If this is a name_alias, it isn't a name 2947 next if grep { $_ eq $name } @{$aliases{$code_point}}; 2948 2949 # If we are beyond where one of the special lines needs to 2950 # be inserted ... 2951 while ($i < @$algorithm_names 2952 && $code_point > $algorithm_names->[$i]->{'low'}) 2953 { 2954 2955 # ... then insert it, ahead of what we were about to 2956 # output 2957 $names{'LIST'} .= sprintf "%x\t%x\t%s\n", 2958 $algorithm_names->[$i]->{'low'}, 2959 $algorithm_names->[$i]->{'high'}, 2960 $algorithm_names->[$i]->{'name'}; 2961 2962 # Done with this range. 2963 $i++; 2964 2965 # We loop until all special lines that precede the next 2966 # regular one are output. 2967 } 2968 2969 # Here, is a normal name. 2970 $names{'LIST'} .= sprintf "%x\t\t%s\n", $code_point, $name; 2971 } # End of loop through all the names 2972 2973 $names{'TYPE'} = "ToNa"; 2974 $utf8::SwashInfo{ToNa}{'missing'} = ""; 2975 $utf8::SwashInfo{ToNa}{'format'} = "n"; 2976 $swash = \%names; 2977 } 2978 elsif ($second_try =~ / ^ ( d [mt] ) $ /x) { 2979 2980 # The file is a combination of dt and dm properties. Create a 2981 # fake swash from the portion that we want. 2982 my $original = do "unicore/Decomposition.pl"; 2983 my %decomps; 2984 2985 if ($second_try eq 'dt') { 2986 $decomps{'TYPE'} = "ToDt"; 2987 $utf8::SwashInfo{'ToDt'}{'missing'} = "None"; 2988 $utf8::SwashInfo{'ToDt'}{'format'} = "s"; 2989 } # 'dm' is handled below, with 'nfkccf' 2990 2991 $decomps{'LIST'} = ""; 2992 2993 # This property has one special range not in the file: for the 2994 # hangul syllables. But not in Unicode version 1. 2995 UnicodeVersion() unless defined $v_unicode_version; 2996 my $done_hangul = ($v_unicode_version lt v2.0.0) 2997 ? 1 2998 : 0; # Have we done the hangul range ? 2999 foreach my $line (split "\n", $original) { 3000 my ($hex_lower, $hex_upper, $type_and_map) = split "\t", $line; 3001 my $code_point = hex $hex_lower; 3002 my $value; 3003 my $redo = 0; 3004 3005 # The type, enclosed in <...>, precedes the mapping separated 3006 # by blanks 3007 if ($type_and_map =~ / ^ < ( .* ) > \s+ (.*) $ /x) { 3008 $value = ($second_try eq 'dt') ? $1 : $2 3009 } 3010 else { # If there is no type specified, it's canonical 3011 $value = ($second_try eq 'dt') 3012 ? "Canonical" : 3013 $type_and_map; 3014 } 3015 3016 # Insert the hangul range at the appropriate spot. 3017 if (! $done_hangul && $code_point > $HANGUL_BEGIN) { 3018 $done_hangul = 1; 3019 $decomps{'LIST'} .= 3020 sprintf "%x\t%x\t%s\n", 3021 $HANGUL_BEGIN, 3022 $HANGUL_BEGIN + $HANGUL_COUNT - 1, 3023 ($second_try eq 'dt') 3024 ? "Canonical" 3025 : "<hangul syllable>"; 3026 } 3027 3028 if ($value =~ / / && $hex_upper ne "" && $hex_upper ne $hex_lower) { 3029 $line = sprintf("%04X\t%s\t%s", hex($hex_lower) + 1, $hex_upper, $value); 3030 $hex_upper = ""; 3031 $redo = 1; 3032 } 3033 3034 # And append this to our constructed LIST. 3035 $decomps{'LIST'} .= "$hex_lower\t$hex_upper\t$value\n"; 3036 3037 redo if $redo; 3038 } 3039 $swash = \%decomps; 3040 } 3041 elsif ($second_try ne 'nfkccf') { # Don't know this property. Fail. 3042 return; 3043 } 3044 3045 if ($second_try eq 'nfkccf' || $second_try eq 'dm') { 3046 3047 # The 'nfkccf' property is stored in the old format for backwards 3048 # compatibility for any applications that has read its file 3049 # directly before prop_invmap() existed. 3050 # And the code above has extracted the 'dm' property from its file 3051 # yielding the same format. So here we convert them to adjusted 3052 # format for compatibility with the other properties similar to 3053 # them. 3054 my %revised_swash; 3055 3056 # We construct a new converted list. 3057 my $list = ""; 3058 3059 my @ranges = split "\n", $swash->{'LIST'}; 3060 for (my $i = 0; $i < @ranges; $i++) { 3061 my ($hex_begin, $hex_end, $map) = split "\t", $ranges[$i]; 3062 3063 # The dm property has maps that are space separated sequences 3064 # of code points, as well as the special entry "<hangul 3065 # syllable>, which also contains a blank. 3066 my @map = split " ", $map; 3067 if (@map > 1) { 3068 3069 # If it's just the special entry, append as-is. 3070 if ($map eq '<hangul syllable>') { 3071 $list .= "$ranges[$i]\n"; 3072 } 3073 else { 3074 3075 # These should all be single-element ranges. 3076 croak __PACKAGE__, "::prop_invmap: Not expecting a mapping with multiple code points in a multi-element range, $ranges[$i]" if $hex_end ne "" && $hex_end ne $hex_begin; 3077 3078 # Convert them to decimal, as that's what's expected. 3079 $list .= "$hex_begin\t\t" 3080 . join(" ", map { hex } @map) 3081 . "\n"; 3082 } 3083 next; 3084 } 3085 3086 # Here, the mapping doesn't have a blank, is for a single code 3087 # point. 3088 my $begin = hex $hex_begin; 3089 my $end = (defined $hex_end && $hex_end ne "") 3090 ? hex $hex_end 3091 : $begin; 3092 3093 # Again, the output is to be in decimal. 3094 my $decimal_map = hex $map; 3095 3096 # We know that multi-element ranges with the same mapping 3097 # should not be adjusted, as after the adjustment 3098 # multi-element ranges are for consecutive increasing code 3099 # points. Further, the final element in the list won't be 3100 # adjusted, as there is nothing after it to include in the 3101 # adjustment 3102 if ($begin != $end || $i == @ranges -1) { 3103 3104 # So just convert these to single-element ranges 3105 foreach my $code_point ($begin .. $end) { 3106 $list .= sprintf("%04X\t\t%d\n", 3107 $code_point, $decimal_map); 3108 } 3109 } 3110 else { 3111 3112 # Here, we have a candidate for adjusting. What we do is 3113 # look through the subsequent adjacent elements in the 3114 # input. If the map to the next one differs by 1 from the 3115 # one before, then we combine into a larger range with the 3116 # initial map. Loop doing this until we find one that 3117 # can't be combined. 3118 3119 my $offset = 0; # How far away are we from the initial 3120 # map 3121 my $squished = 0; # ? Did we squish at least two 3122 # elements together into one range 3123 for ( ; $i < @ranges; $i++) { 3124 my ($next_hex_begin, $next_hex_end, $next_map) 3125 = split "\t", $ranges[$i+1]; 3126 3127 # In the case of 'dm', the map may be a sequence of 3128 # multiple code points, which are never combined with 3129 # another range 3130 last if $next_map =~ / /; 3131 3132 $offset++; 3133 my $next_decimal_map = hex $next_map; 3134 3135 # If the next map is not next in sequence, it 3136 # shouldn't be combined. 3137 last if $next_decimal_map != $decimal_map + $offset; 3138 3139 my $next_begin = hex $next_hex_begin; 3140 3141 # Likewise, if the next element isn't adjacent to the 3142 # previous one, it shouldn't be combined. 3143 last if $next_begin != $begin + $offset; 3144 3145 my $next_end = (defined $next_hex_end 3146 && $next_hex_end ne "") 3147 ? hex $next_hex_end 3148 : $next_begin; 3149 3150 # And finally, if the next element is a multi-element 3151 # range, it shouldn't be combined. 3152 last if $next_end != $next_begin; 3153 3154 # Here, we will combine. Loop to see if we should 3155 # combine the next element too. 3156 $squished = 1; 3157 } 3158 3159 if ($squished) { 3160 3161 # Here, 'i' is the element number of the last element to 3162 # be combined, and the range is single-element, or we 3163 # wouldn't be combining. Get it's code point. 3164 my ($hex_end, undef, undef) = split "\t", $ranges[$i]; 3165 $list .= "$hex_begin\t$hex_end\t$decimal_map\n"; 3166 } else { 3167 3168 # Here, no combining done. Just append the initial 3169 # (and current) values. 3170 $list .= "$hex_begin\t\t$decimal_map\n"; 3171 } 3172 } 3173 } # End of loop constructing the converted list 3174 3175 # Finish up the data structure for our converted swash 3176 my $type = ($second_try eq 'nfkccf') ? 'ToNFKCCF' : 'ToDm'; 3177 $revised_swash{'LIST'} = $list; 3178 $revised_swash{'TYPE'} = $type; 3179 $revised_swash{'SPECIALS'} = $swash->{'SPECIALS'}; 3180 $swash = \%revised_swash; 3181 3182 $utf8::SwashInfo{$type}{'missing'} = 0; 3183 $utf8::SwashInfo{$type}{'format'} = 'a'; 3184 } 3185 } 3186 3187 if ($swash->{'EXTRAS'}) { 3188 carp __PACKAGE__, "::prop_invmap: swash returned for $prop unexpectedly has EXTRAS magic"; 3189 return; 3190 } 3191 3192 # Here, have a valid swash return. Examine it. 3193 my $returned_prop = $swash->{'TYPE'}; 3194 3195 # All properties but binary ones should have 'missing' and 'format' 3196 # entries 3197 $missing = $utf8::SwashInfo{$returned_prop}{'missing'}; 3198 $missing = 'N' unless defined $missing; 3199 3200 $format = $utf8::SwashInfo{$returned_prop}{'format'}; 3201 $format = 'b' unless defined $format; 3202 3203 my $requires_adjustment = $format =~ /^a/; 3204 3205 if ($swash->{'LIST'} =~ /^V/) { 3206 @invlist = split "\n", $swash->{'LIST'} =~ s/ \s* (?: \# .* )? $ //xmgr; 3207 shift @invlist; 3208 foreach my $i (0 .. @invlist - 1) { 3209 $invmap[$i] = ($i % 2 == 0) ? 'Y' : 'N' 3210 } 3211 3212 # The map includes lines for all code points; add one for the range 3213 # from 0 to the first Y. 3214 if ($invlist[0] != 0) { 3215 unshift @invlist, 0; 3216 unshift @invmap, 'N'; 3217 } 3218 } 3219 else { 3220 # The LIST input lines look like: 3221 # ... 3222 # 0374\t\tCommon 3223 # 0375\t0377\tGreek # [3] 3224 # 037A\t037D\tGreek # [4] 3225 # 037E\t\tCommon 3226 # 0384\t\tGreek 3227 # ... 3228 # 3229 # Convert them to like 3230 # 0374 => Common 3231 # 0375 => Greek 3232 # 0378 => $missing 3233 # 037A => Greek 3234 # 037E => Common 3235 # 037F => $missing 3236 # 0384 => Greek 3237 # 3238 # For binary properties, the final non-comment column is absent, and 3239 # assumed to be 'Y'. 3240 3241 foreach my $range (split "\n", $swash->{'LIST'}) { 3242 $range =~ s/ \s* (?: \# .* )? $ //xg; # rmv trailing space, comments 3243 3244 # Find the beginning and end of the range on the line 3245 my ($hex_begin, $hex_end, $map) = split "\t", $range; 3246 my $begin = hex $hex_begin; 3247 no warnings 'portable'; 3248 my $end = (defined $hex_end && $hex_end ne "") 3249 ? hex $hex_end 3250 : $begin; 3251 3252 # Each time through the loop (after the first): 3253 # $invlist[-2] contains the beginning of the previous range processed 3254 # $invlist[-1] contains the end+1 of the previous range processed 3255 # $invmap[-2] contains the value of the previous range processed 3256 # $invmap[-1] contains the default value for missing ranges 3257 # ($missing) 3258 # 3259 # Thus, things are set up for the typical case of a new 3260 # non-adjacent range of non-missings to be added. But, if the new 3261 # range is adjacent, it needs to replace the [-1] element; and if 3262 # the new range is a multiple value of the previous one, it needs 3263 # to be added to the [-2] map element. 3264 3265 # The first time through, everything will be empty. If the 3266 # property doesn't have a range that begins at 0, add one that 3267 # maps to $missing 3268 if (! @invlist) { 3269 if ($begin != 0) { 3270 push @invlist, 0; 3271 push @invmap, $missing; 3272 } 3273 } 3274 elsif (@invlist > 1 && $invlist[-2] == $begin) { 3275 3276 # Here we handle the case where the input has multiple entries 3277 # for each code point. mktables should have made sure that 3278 # each such range contains only one code point. At this 3279 # point, $invlist[-1] is the $missing that was added at the 3280 # end of the last loop iteration, and [-2] is the last real 3281 # input code point, and that code point is the same as the one 3282 # we are adding now, making the new one a multiple entry. Add 3283 # it to the existing entry, either by pushing it to the 3284 # existing list of multiple entries, or converting the single 3285 # current entry into a list with both on it. This is all we 3286 # need do for this iteration. 3287 3288 if ($end != $begin) { 3289 croak __PACKAGE__, ":prop_invmap: Multiple maps per code point in '$prop' require single-element ranges: begin=$begin, end=$end, map=$map"; 3290 } 3291 if (! ref $invmap[-2]) { 3292 $invmap[-2] = [ $invmap[-2], $map ]; 3293 } 3294 else { 3295 push @{$invmap[-2]}, $map; 3296 } 3297 $has_multiples = 1; 3298 next; 3299 } 3300 elsif ($invlist[-1] == $begin) { 3301 3302 # If the input isn't in the most compact form, so that there 3303 # are two adjacent ranges that map to the same thing, they 3304 # should be combined (EXCEPT where the arrays require 3305 # adjustments, in which case everything is already set up 3306 # correctly). This happens in our constructed dt mapping, as 3307 # Element [-2] is the map for the latest range so far 3308 # processed. Just set the beginning point of the map to 3309 # $missing (in invlist[-1]) to 1 beyond where this range ends. 3310 # For example, in 3311 # 12\t13\tXYZ 3312 # 14\t17\tXYZ 3313 # we have set it up so that it looks like 3314 # 12 => XYZ 3315 # 14 => $missing 3316 # 3317 # We now see that it should be 3318 # 12 => XYZ 3319 # 18 => $missing 3320 if (! $requires_adjustment && @invlist > 1 && ( (defined $map) 3321 ? $invmap[-2] eq $map 3322 : $invmap[-2] eq 'Y')) 3323 { 3324 $invlist[-1] = $end + 1; 3325 next; 3326 } 3327 3328 # Here, the range started in the previous iteration that maps 3329 # to $missing starts at the same code point as this range. 3330 # That means there is no gap to fill that that range was 3331 # intended for, so we just pop it off the parallel arrays. 3332 pop @invlist; 3333 pop @invmap; 3334 } 3335 3336 # Add the range beginning, and the range's map. 3337 push @invlist, $begin; 3338 if ($returned_prop eq 'ToDm') { 3339 3340 # The decomposition maps are either a line like <hangul 3341 # syllable> which are to be taken as is; or a sequence of code 3342 # points in hex and separated by blanks. Convert them to 3343 # decimal, and if there is more than one, use an anonymous 3344 # array as the map. 3345 if ($map =~ /^ < /x) { 3346 push @invmap, $map; 3347 } 3348 else { 3349 my @map = split " ", $map; 3350 if (@map == 1) { 3351 push @invmap, $map[0]; 3352 } 3353 else { 3354 push @invmap, \@map; 3355 } 3356 } 3357 } 3358 else { 3359 3360 # Otherwise, convert hex formatted list entries to decimal; 3361 # add a 'Y' map for the missing value in binary properties, or 3362 # otherwise, use the input map unchanged. 3363 $map = ($format eq 'x' || $format eq 'ax') 3364 ? hex $map 3365 : $format eq 'b' 3366 ? 'Y' 3367 : $map; 3368 push @invmap, $map; 3369 } 3370 3371 # We just started a range. It ends with $end. The gap between it 3372 # and the next element in the list must be filled with a range 3373 # that maps to the default value. If there is no gap, the next 3374 # iteration will pop this, unless there is no next iteration, and 3375 # we have filled all of the Unicode code space, so check for that 3376 # and skip. 3377 if ($end < $Unicode::UCD::MAX_CP) { 3378 push @invlist, $end + 1; 3379 push @invmap, $missing; 3380 } 3381 } 3382 } 3383 3384 # If the property is empty, make all code points use the value for missing 3385 # ones. 3386 if (! @invlist) { 3387 push @invlist, 0; 3388 push @invmap, $missing; 3389 } 3390 3391 # The final element is always for just the above-Unicode code points. If 3392 # not already there, add it. It merely splits the current final range 3393 # that extends to infinity into two elements, each with the same map. 3394 # (This is to conform with the API that says the final element is for 3395 # $MAX_UNICODE_CODEPOINT + 1 .. INFINITY.) 3396 if ($invlist[-1] != $MAX_UNICODE_CODEPOINT + 1) { 3397 push @invmap, $invmap[-1]; 3398 push @invlist, $MAX_UNICODE_CODEPOINT + 1; 3399 } 3400 3401 # The second component of the map are those values that require 3402 # non-standard specification, stored in SPECIALS. These override any 3403 # duplicate code points in LIST. If we are using a proxy, we may have 3404 # already set $overrides based on the proxy. 3405 $overrides = $swash->{'SPECIALS'} unless defined $overrides; 3406 if ($overrides) { 3407 3408 # A negative $overrides implies that the SPECIALS should be ignored, 3409 # and a simple 'a' list is the value. 3410 if ($overrides < 0) { 3411 $format = 'a'; 3412 } 3413 else { 3414 3415 # Currently, all overrides are for properties that normally map to 3416 # single code points, but now some will map to lists of code 3417 # points (but there is an exception case handled below). 3418 $format = 'al'; 3419 3420 # Look through the overrides. 3421 foreach my $cp_maybe_utf8 (keys %$overrides) { 3422 my $cp; 3423 my @map; 3424 3425 # If the overrides came from SPECIALS, the code point keys are 3426 # packed UTF-8. 3427 if ($overrides == $swash->{'SPECIALS'}) { 3428 $cp = unpack("C0U", $cp_maybe_utf8); 3429 @map = unpack "U0U*", $swash->{'SPECIALS'}{$cp_maybe_utf8}; 3430 3431 # The empty string will show up unpacked as an empty 3432 # array. 3433 $format = 'ale' if @map == 0; 3434 } 3435 else { 3436 3437 # But if we generated the overrides, we didn't bother to 3438 # pack them, and we, so far, do this only for properties 3439 # that are 'a' ones. 3440 $cp = $cp_maybe_utf8; 3441 @map = hex $overrides->{$cp}; 3442 $format = 'a'; 3443 } 3444 3445 # Find the range that the override applies to. 3446 my $i = search_invlist(\@invlist, $cp); 3447 if ($cp < $invlist[$i] || $cp >= $invlist[$i + 1]) { 3448 croak __PACKAGE__, "::prop_invmap: wrong_range, cp=$cp; i=$i, current=$invlist[$i]; next=$invlist[$i + 1]" 3449 } 3450 3451 # And what that range currently maps to 3452 my $cur_map = $invmap[$i]; 3453 3454 # If there is a gap between the next range and the code point 3455 # we are overriding, we have to add elements to both arrays to 3456 # fill that gap, using the map that applies to it, which is 3457 # $cur_map, since it is part of the current range. 3458 if ($invlist[$i + 1] > $cp + 1) { 3459 #use feature 'say'; 3460 #say "Before splice:"; 3461 #say 'i-2=[', $i-2, ']', sprintf("%04X maps to %s", $invlist[$i-2], $invmap[$i-2]) if $i >= 2; 3462 #say 'i-1=[', $i-1, ']', sprintf("%04X maps to %s", $invlist[$i-1], $invmap[$i-1]) if $i >= 1; 3463 #say 'i =[', $i, ']', sprintf("%04X maps to %s", $invlist[$i], $invmap[$i]); 3464 #say 'i+1=[', $i+1, ']', sprintf("%04X maps to %s", $invlist[$i+1], $invmap[$i+1]) if $i < @invlist + 1; 3465 #say 'i+2=[', $i+2, ']', sprintf("%04X maps to %s", $invlist[$i+2], $invmap[$i+2]) if $i < @invlist + 2; 3466 3467 splice @invlist, $i + 1, 0, $cp + 1; 3468 splice @invmap, $i + 1, 0, $cur_map; 3469 3470 #say "After splice:"; 3471 #say 'i-2=[', $i-2, ']', sprintf("%04X maps to %s", $invlist[$i-2], $invmap[$i-2]) if $i >= 2; 3472 #say 'i-1=[', $i-1, ']', sprintf("%04X maps to %s", $invlist[$i-1], $invmap[$i-1]) if $i >= 1; 3473 #say 'i =[', $i, ']', sprintf("%04X maps to %s", $invlist[$i], $invmap[$i]); 3474 #say 'i+1=[', $i+1, ']', sprintf("%04X maps to %s", $invlist[$i+1], $invmap[$i+1]) if $i < @invlist + 1; 3475 #say 'i+2=[', $i+2, ']', sprintf("%04X maps to %s", $invlist[$i+2], $invmap[$i+2]) if $i < @invlist + 2; 3476 } 3477 3478 # If the remaining portion of the range is multiple code 3479 # points (ending with the one we are replacing, guaranteed by 3480 # the earlier splice). We must split it into two 3481 if ($invlist[$i] < $cp) { 3482 $i++; # Compensate for the new element 3483 3484 #use feature 'say'; 3485 #say "Before splice:"; 3486 #say 'i-2=[', $i-2, ']', sprintf("%04X maps to %s", $invlist[$i-2], $invmap[$i-2]) if $i >= 2; 3487 #say 'i-1=[', $i-1, ']', sprintf("%04X maps to %s", $invlist[$i-1], $invmap[$i-1]) if $i >= 1; 3488 #say 'i =[', $i, ']', sprintf("%04X maps to %s", $invlist[$i], $invmap[$i]); 3489 #say 'i+1=[', $i+1, ']', sprintf("%04X maps to %s", $invlist[$i+1], $invmap[$i+1]) if $i < @invlist + 1; 3490 #say 'i+2=[', $i+2, ']', sprintf("%04X maps to %s", $invlist[$i+2], $invmap[$i+2]) if $i < @invlist + 2; 3491 3492 splice @invlist, $i, 0, $cp; 3493 splice @invmap, $i, 0, 'dummy'; 3494 3495 #say "After splice:"; 3496 #say 'i-2=[', $i-2, ']', sprintf("%04X maps to %s", $invlist[$i-2], $invmap[$i-2]) if $i >= 2; 3497 #say 'i-1=[', $i-1, ']', sprintf("%04X maps to %s", $invlist[$i-1], $invmap[$i-1]) if $i >= 1; 3498 #say 'i =[', $i, ']', sprintf("%04X maps to %s", $invlist[$i], $invmap[$i]); 3499 #say 'i+1=[', $i+1, ']', sprintf("%04X maps to %s", $invlist[$i+1], $invmap[$i+1]) if $i < @invlist + 1; 3500 #say 'i+2=[', $i+2, ']', sprintf("%04X maps to %s", $invlist[$i+2], $invmap[$i+2]) if $i < @invlist + 2; 3501 } 3502 3503 # Here, the range we are overriding contains a single code 3504 # point. The result could be the empty string, a single 3505 # value, or a list. If the last case, we use an anonymous 3506 # array. 3507 $invmap[$i] = (scalar @map == 0) 3508 ? "" 3509 : (scalar @map > 1) 3510 ? \@map 3511 : $map[0]; 3512 } 3513 } 3514 } 3515 elsif ($format eq 'x') { 3516 3517 # All hex-valued properties are really to code points, and have been 3518 # converted to decimal. 3519 $format = 's'; 3520 } 3521 elsif ($returned_prop eq 'ToDm') { 3522 $format = 'ad'; 3523 } 3524 elsif ($format eq 'sw') { # blank-separated elements to form a list. 3525 map { $_ = [ split " ", $_ ] if $_ =~ / / } @invmap; 3526 $format = 'sl'; 3527 } 3528 elsif ($returned_prop eq 'ToNameAlias') { 3529 3530 # This property currently doesn't have any lists, but theoretically 3531 # could 3532 $format = 'sl'; 3533 } 3534 elsif ($returned_prop eq 'ToPerlDecimalDigit') { 3535 $format = 'ae'; 3536 } 3537 elsif ($returned_prop eq 'ToNv') { 3538 3539 # The one property that has this format is stored as a delta, so needs 3540 # to indicate that need to add code point to it. 3541 $format = 'ar'; 3542 } 3543 elsif ($format ne 'n' && $format ne 'a') { 3544 3545 # All others are simple scalars 3546 $format = 's'; 3547 } 3548 if ($has_multiples && $format !~ /l/) { 3549 croak __PACKAGE__, "::prop_invmap: Wrong format '$format' for prop_invmap('$prop'); should indicate has lists"; 3550 } 3551 3552 return (\@invlist, \@invmap, $format, $missing); 3553} 3554 3555sub search_invlist { 3556 3557=pod 3558 3559=head2 B<search_invlist()> 3560 3561 use Unicode::UCD qw(prop_invmap prop_invlist); 3562 use Unicode::UCD 'search_invlist'; 3563 3564 my @invlist = prop_invlist($property_name); 3565 print $code_point, ((search_invlist(\@invlist, $code_point) // -1) % 2) 3566 ? " isn't" 3567 : " is", 3568 " in $property_name\n"; 3569 3570 my ($blocks_ranges_ref, $blocks_map_ref) = prop_invmap("Block"); 3571 my $index = search_invlist($blocks_ranges_ref, $code_point); 3572 print "$code_point is in block ", $blocks_map_ref->[$index], "\n"; 3573 3574C<search_invlist> is used to search an inversion list returned by 3575C<prop_invlist> or C<prop_invmap> for a particular L</code point argument>. 3576C<undef> is returned if the code point is not found in the inversion list 3577(this happens only when it is not a legal L<code point argument>, or is less 3578than the list's first element). A warning is raised in the first instance. 3579 3580Otherwise, it returns the index into the list of the range that contains the 3581code point.; that is, find C<i> such that 3582 3583 list[i]<= code_point < list[i+1]. 3584 3585As explained in L</prop_invlist()>, whether a code point is in the list or not 3586depends on if the index is even (in) or odd (not in). And as explained in 3587L</prop_invmap()>, the index is used with the returned parallel array to find 3588the mapping. 3589 3590=cut 3591 3592 3593 my $list_ref = shift; 3594 my $input_code_point = shift; 3595 my $code_point = _getcode($input_code_point); 3596 3597 if (! defined $code_point) { 3598 carp __PACKAGE__, "::search_invlist: unknown code '$input_code_point'"; 3599 return; 3600 } 3601 3602 my $max_element = @$list_ref - 1; 3603 3604 # Return undef if list is empty or requested item is before the first element. 3605 return if $max_element < 0; 3606 return if $code_point < $list_ref->[0]; 3607 3608 # Short cut something at the far-end of the table. This also allows us to 3609 # refer to element [$i+1] without fear of being out-of-bounds in the loop 3610 # below. 3611 return $max_element if $code_point >= $list_ref->[$max_element]; 3612 3613 use integer; # want integer division 3614 3615 my $i = $max_element / 2; 3616 3617 my $lower = 0; 3618 my $upper = $max_element; 3619 while (1) { 3620 3621 if ($code_point >= $list_ref->[$i]) { 3622 3623 # Here we have met the lower constraint. We can quit if we 3624 # also meet the upper one. 3625 last if $code_point < $list_ref->[$i+1]; 3626 3627 $lower = $i; # Still too low. 3628 3629 } 3630 else { 3631 3632 # Here, $code_point < $list_ref[$i], so look lower down. 3633 $upper = $i; 3634 } 3635 3636 # Split search domain in half to try again. 3637 my $temp = ($upper + $lower) / 2; 3638 3639 # No point in continuing unless $i changes for next time 3640 # in the loop. 3641 return $i if $temp == $i; 3642 $i = $temp; 3643 } # End of while loop 3644 3645 # Here we have found the offset 3646 return $i; 3647} 3648 3649=head2 Unicode::UCD::UnicodeVersion 3650 3651This returns the version of the Unicode Character Database, in other words, the 3652version of the Unicode standard the database implements. The version is a 3653string of numbers delimited by dots (C<'.'>). 3654 3655=cut 3656 3657my $UNICODEVERSION; 3658 3659sub UnicodeVersion { 3660 unless (defined $UNICODEVERSION) { 3661 openunicode(\$VERSIONFH, "version"); 3662 local $/ = "\n"; 3663 chomp($UNICODEVERSION = <$VERSIONFH>); 3664 close($VERSIONFH); 3665 croak __PACKAGE__, "::VERSION: strange version '$UNICODEVERSION'" 3666 unless $UNICODEVERSION =~ /^\d+(?:\.\d+)+$/; 3667 } 3668 $v_unicode_version = pack "C*", split /\./, $UNICODEVERSION; 3669 return $UNICODEVERSION; 3670} 3671 3672=head2 B<Blocks versus Scripts> 3673 3674The difference between a block and a script is that scripts are closer 3675to the linguistic notion of a set of code points required to present 3676languages, while block is more of an artifact of the Unicode code point 3677numbering and separation into blocks of consecutive code points (so far the 3678size of a block is some multiple of 16, like 128 or 256). 3679 3680For example the Latin B<script> is spread over several B<blocks>, such 3681as C<Basic Latin>, C<Latin 1 Supplement>, C<Latin Extended-A>, and 3682C<Latin Extended-B>. On the other hand, the Latin script does not 3683contain all the characters of the C<Basic Latin> block (also known as 3684ASCII): it includes only the letters, and not, for example, the digits 3685or the punctuation. 3686 3687For blocks see L<http://www.unicode.org/Public/UNIDATA/Blocks.txt> 3688 3689For scripts see UTR #24: L<http://www.unicode.org/unicode/reports/tr24/> 3690 3691=head2 B<Matching Scripts and Blocks> 3692 3693Scripts are matched with the regular-expression construct 3694C<\p{...}> (e.g. C<\p{Tibetan}> matches characters of the Tibetan script), 3695while C<\p{Blk=...}> is used for blocks (e.g. C<\p{Blk=Tibetan}> matches 3696any of the 256 code points in the Tibetan block). 3697 3698=head2 Old-style versus new-style block names 3699 3700Unicode publishes the names of blocks in two different styles, though the two 3701are equivalent under Unicode's loose matching rules. 3702 3703The original style uses blanks and hyphens in the block names (except for 3704C<No_Block>), like so: 3705 3706 Miscellaneous Mathematical Symbols-B 3707 3708The newer style replaces these with underscores, like this: 3709 3710 Miscellaneous_Mathematical_Symbols_B 3711 3712This newer style is consistent with the values of other Unicode properties. 3713To preserve backward compatibility, all the functions in Unicode::UCD that 3714return block names (except one) return the old-style ones. That one function, 3715L</prop_value_aliases()> can be used to convert from old-style to new-style: 3716 3717 my $new_style = prop_values_aliases("block", $old_style); 3718 3719Perl also has single-form extensions that refer to blocks, C<In_Cyrillic>, 3720meaning C<Block=Cyrillic>. These have always been written in the new style. 3721 3722To convert from new-style to old-style, follow this recipe: 3723 3724 $old_style = charblock((prop_invlist("block=$new_style"))[0]); 3725 3726(which finds the range of code points in the block using C<prop_invlist>, 3727gets the lower end of the range (0th element) and then looks up the old name 3728for its block using C<charblock>). 3729 3730Note that starting in Unicode 6.1, many of the block names have shorter 3731synonyms. These are always given in the new style. 3732 3733=head1 AUTHOR 3734 3735Jarkko Hietaniemi. Now maintained by perl5 porters. 3736 3737=cut 3738 37391; 3740