1 /* handy.h 2 * 3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1999, 2000, 4 * 2001, 2002, 2004, 2005, 2006, 2007, 2008, 2012 by Larry Wall and others 5 * 6 * You may distribute under the terms of either the GNU General Public 7 * License or the Artistic License, as specified in the README file. 8 * 9 */ 10 11 /* IMPORTANT NOTE: Everything whose name begins with an underscore is for 12 * internal core Perl use only. */ 13 14 #ifndef PERL_HANDY_H_ /* Guard against nested #inclusion */ 15 #define PERL_HANDY_H_ 16 17 #ifndef PERL_CORE 18 # define Null(type) ((type)NULL) 19 20 /* 21 =head1 Handy Values 22 23 =for apidoc AmU||Nullch 24 Null character pointer. (No longer available when C<PERL_CORE> is 25 defined.) 26 27 =for apidoc AmU||Nullsv 28 Null SV pointer. (No longer available when C<PERL_CORE> is defined.) 29 30 =cut 31 */ 32 33 # define Nullch Null(char*) 34 # define Nullfp Null(PerlIO*) 35 # define Nullsv Null(SV*) 36 #endif 37 38 #ifdef TRUE 39 #undef TRUE 40 #endif 41 #ifdef FALSE 42 #undef FALSE 43 #endif 44 #define TRUE (1) 45 #define FALSE (0) 46 47 /* The MUTABLE_*() macros cast pointers to the types shown, in such a way 48 * (compiler permitting) that casting away const-ness will give a warning; 49 * e.g.: 50 * 51 * const SV *sv = ...; 52 * AV *av1 = (AV*)sv; <== BAD: the const has been silently cast away 53 * AV *av2 = MUTABLE_AV(sv); <== GOOD: it may warn 54 */ 55 56 #if defined(__GNUC__) && !defined(PERL_GCC_BRACE_GROUPS_FORBIDDEN) 57 # define MUTABLE_PTR(p) ({ void *_p = (p); _p; }) 58 #else 59 # define MUTABLE_PTR(p) ((void *) (p)) 60 #endif 61 62 #define MUTABLE_AV(p) ((AV *)MUTABLE_PTR(p)) 63 #define MUTABLE_CV(p) ((CV *)MUTABLE_PTR(p)) 64 #define MUTABLE_GV(p) ((GV *)MUTABLE_PTR(p)) 65 #define MUTABLE_HV(p) ((HV *)MUTABLE_PTR(p)) 66 #define MUTABLE_IO(p) ((IO *)MUTABLE_PTR(p)) 67 #define MUTABLE_SV(p) ((SV *)MUTABLE_PTR(p)) 68 69 #if defined(I_STDBOOL) && !defined(PERL_BOOL_AS_CHAR) 70 # include <stdbool.h> 71 # ifndef HAS_BOOL 72 # define HAS_BOOL 1 73 # endif 74 #endif 75 76 /* bool is built-in for g++-2.6.3 and later, which might be used 77 for extensions. <_G_config.h> defines _G_HAVE_BOOL, but we can't 78 be sure _G_config.h will be included before this file. _G_config.h 79 also defines _G_HAVE_BOOL for both gcc and g++, but only g++ 80 actually has bool. Hence, _G_HAVE_BOOL is pretty useless for us. 81 g++ can be identified by __GNUG__. 82 Andy Dougherty February 2000 83 */ 84 #ifdef __GNUG__ /* GNU g++ has bool built-in */ 85 # ifndef PERL_BOOL_AS_CHAR 86 # ifndef HAS_BOOL 87 # define HAS_BOOL 1 88 # endif 89 # endif 90 #endif 91 92 #ifndef HAS_BOOL 93 # ifdef bool 94 # undef bool 95 # endif 96 # define bool char 97 # define HAS_BOOL 1 98 #endif 99 100 /* cast-to-bool. A simple (bool) cast may not do the right thing: if bool is 101 * defined as char for example, then the cast from int is 102 * implementation-defined (bool)!!(cbool) in a ternary triggers a bug in xlc on 103 * AIX */ 104 #define cBOOL(cbool) ((cbool) ? (bool)1 : (bool)0) 105 106 /* Try to figure out __func__ or __FUNCTION__ equivalent, if any. 107 * XXX Should really be a Configure probe, with HAS__FUNCTION__ 108 * and FUNCTION__ as results. 109 * XXX Similarly, a Configure probe for __FILE__ and __LINE__ is needed. */ 110 #if (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L) || (defined(__SUNPRO_C)) /* C99 or close enough. */ 111 # define FUNCTION__ __func__ 112 #elif (defined(USING_MSVC6)) || /* MSVC6 has neither __func__ nor __FUNCTION and no good workarounds, either. */ \ 113 (defined(__DECC_VER)) /* Tru64 or VMS, and strict C89 being used, but not modern enough cc (in Tur64, -c99 not known, only -std1). */ 114 # define FUNCTION__ "" 115 #else 116 # define FUNCTION__ __FUNCTION__ /* Common extension. */ 117 #endif 118 119 /* XXX A note on the perl source internal type system. The 120 original intent was that I32 be *exactly* 32 bits. 121 122 Currently, we only guarantee that I32 is *at least* 32 bits. 123 Specifically, if int is 64 bits, then so is I32. (This is the case 124 for the Cray.) This has the advantage of meshing nicely with 125 standard library calls (where we pass an I32 and the library is 126 expecting an int), but the disadvantage that an I32 is not 32 bits. 127 Andy Dougherty August 1996 128 129 There is no guarantee that there is *any* integral type with 130 exactly 32 bits. It is perfectly legal for a system to have 131 sizeof(short) == sizeof(int) == sizeof(long) == 8. 132 133 Similarly, there is no guarantee that I16 and U16 have exactly 16 134 bits. 135 136 For dealing with issues that may arise from various 32/64-bit 137 systems, we will ask Configure to check out 138 139 SHORTSIZE == sizeof(short) 140 INTSIZE == sizeof(int) 141 LONGSIZE == sizeof(long) 142 LONGLONGSIZE == sizeof(long long) (if HAS_LONG_LONG) 143 PTRSIZE == sizeof(void *) 144 DOUBLESIZE == sizeof(double) 145 LONG_DOUBLESIZE == sizeof(long double) (if HAS_LONG_DOUBLE). 146 147 */ 148 149 #ifdef I_INTTYPES /* e.g. Linux has int64_t without <inttypes.h> */ 150 # include <inttypes.h> 151 # ifdef INT32_MIN_BROKEN 152 # undef INT32_MIN 153 # define INT32_MIN (-2147483647-1) 154 # endif 155 # ifdef INT64_MIN_BROKEN 156 # undef INT64_MIN 157 # define INT64_MIN (-9223372036854775807LL-1) 158 # endif 159 #endif 160 161 typedef I8TYPE I8; 162 typedef U8TYPE U8; 163 typedef I16TYPE I16; 164 typedef U16TYPE U16; 165 typedef I32TYPE I32; 166 typedef U32TYPE U32; 167 168 #ifdef QUADKIND 169 typedef I64TYPE I64; 170 typedef U64TYPE U64; 171 #endif 172 173 #if defined(UINT8_MAX) && defined(INT16_MAX) && defined(INT32_MAX) 174 175 /* I8_MAX and I8_MIN constants are not defined, as I8 is an ambiguous type. 176 Please search CHAR_MAX in perl.h for further details. */ 177 #define U8_MAX UINT8_MAX 178 #define U8_MIN UINT8_MIN 179 180 #define I16_MAX INT16_MAX 181 #define I16_MIN INT16_MIN 182 #define U16_MAX UINT16_MAX 183 #define U16_MIN UINT16_MIN 184 185 #define I32_MAX INT32_MAX 186 #define I32_MIN INT32_MIN 187 #ifndef UINT32_MAX_BROKEN /* e.g. HP-UX with gcc messes this up */ 188 # define U32_MAX UINT32_MAX 189 #else 190 # define U32_MAX 4294967295U 191 #endif 192 #define U32_MIN UINT32_MIN 193 194 #else 195 196 /* I8_MAX and I8_MIN constants are not defined, as I8 is an ambiguous type. 197 Please search CHAR_MAX in perl.h for further details. */ 198 #define U8_MAX PERL_UCHAR_MAX 199 #define U8_MIN PERL_UCHAR_MIN 200 201 #define I16_MAX PERL_SHORT_MAX 202 #define I16_MIN PERL_SHORT_MIN 203 #define U16_MAX PERL_USHORT_MAX 204 #define U16_MIN PERL_USHORT_MIN 205 206 #if LONGSIZE > 4 207 # define I32_MAX PERL_INT_MAX 208 # define I32_MIN PERL_INT_MIN 209 # define U32_MAX PERL_UINT_MAX 210 # define U32_MIN PERL_UINT_MIN 211 #else 212 # define I32_MAX PERL_LONG_MAX 213 # define I32_MIN PERL_LONG_MIN 214 # define U32_MAX PERL_ULONG_MAX 215 # define U32_MIN PERL_ULONG_MIN 216 #endif 217 218 #endif 219 220 /* These C99 typedefs are useful sometimes for, say, loop variables whose 221 * maximum values are small, but for which speed trumps size. If we have a C99 222 * compiler, use that. Otherwise, a plain 'int' should be good enough. 223 * 224 * Restrict these to core for now until we are more certain this is a good 225 * idea. */ 226 #if defined(PERL_CORE) || defined(PERL_EXT) 227 # ifdef I_STDINT 228 typedef int_fast8_t PERL_INT_FAST8_T; 229 typedef uint_fast8_t PERL_UINT_FAST8_T; 230 typedef int_fast16_t PERL_INT_FAST16_T; 231 typedef uint_fast16_t PERL_UINT_FAST16_T; 232 # else 233 typedef int PERL_INT_FAST8_T; 234 typedef unsigned int PERL_UINT_FAST8_T; 235 typedef int PERL_INT_FAST16_T; 236 typedef unsigned int PERL_UINT_FAST16_T; 237 # endif 238 #endif 239 240 /* log(2) (i.e., log base 10 of 2) is pretty close to 0.30103, just in case 241 * anyone is grepping for it */ 242 #define BIT_DIGITS(N) (((N)*146)/485 + 1) /* log10(2) =~ 146/485 */ 243 #define TYPE_DIGITS(T) BIT_DIGITS(sizeof(T) * 8) 244 #define TYPE_CHARS(T) (TYPE_DIGITS(T) + 2) /* sign, NUL */ 245 246 /* Unused by core; should be deprecated */ 247 #define Ctl(ch) ((ch) & 037) 248 249 #if defined(PERL_CORE) || defined(PERL_EXT) 250 # ifndef MIN 251 # define MIN(a,b) ((a) < (b) ? (a) : (b)) 252 # endif 253 # ifndef MAX 254 # define MAX(a,b) ((a) > (b) ? (a) : (b)) 255 # endif 256 #endif 257 258 /* Returns a boolean as to whether the input unsigned number is a power of 2 259 * (2**0, 2**1, etc). In other words if it has just a single bit set. 260 * If not, subtracting 1 would leave the uppermost bit set, so the & would 261 * yield non-zero */ 262 #if defined(PERL_CORE) || defined(PERL_EXT) 263 # define isPOWER_OF_2(n) ((n) && ((n) & ((n)-1)) == 0) 264 #endif 265 266 /* This is a helper macro to avoid preprocessor issues, replaced by nothing 267 * unless under DEBUGGING, where it expands to an assert of its argument, 268 * followed by a comma (hence the comma operator). If we just used a straight 269 * assert(), we would get a comma with nothing before it when not DEBUGGING. 270 * 271 * We also use empty definition under Coverity since the __ASSERT__ 272 * checks often check for things that Really Cannot Happen, and Coverity 273 * detects that and gets all excited. */ 274 275 #if defined(DEBUGGING) && !defined(__COVERITY__) 276 # define __ASSERT_(statement) assert(statement), 277 #else 278 # define __ASSERT_(statement) 279 #endif 280 281 /* 282 =head1 SV Manipulation Functions 283 284 =for apidoc Ama|SV*|newSVpvs|"literal string" s 285 Like C<newSVpvn>, but takes a literal string instead of a 286 string/length pair. 287 288 =for apidoc Ama|SV*|newSVpvs_flags|"literal string" s|U32 flags 289 Like C<newSVpvn_flags>, but takes a literal string instead of 290 a string/length pair. 291 292 =for apidoc Ama|SV*|newSVpvs_share|"literal string" s 293 Like C<newSVpvn_share>, but takes a literal string instead of 294 a string/length pair and omits the hash parameter. 295 296 =for apidoc Am|void|sv_catpvs_flags|SV* sv|"literal string" s|I32 flags 297 Like C<sv_catpvn_flags>, but takes a literal string instead 298 of a string/length pair. 299 300 =for apidoc Am|void|sv_catpvs_nomg|SV* sv|"literal string" s 301 Like C<sv_catpvn_nomg>, but takes a literal string instead of 302 a string/length pair. 303 304 =for apidoc Am|void|sv_catpvs|SV* sv|"literal string" s 305 Like C<sv_catpvn>, but takes a literal string instead of a 306 string/length pair. 307 308 =for apidoc Am|void|sv_catpvs_mg|SV* sv|"literal string" s 309 Like C<sv_catpvn_mg>, but takes a literal string instead of a 310 string/length pair. 311 312 =for apidoc Am|void|sv_setpvs|SV* sv|"literal string" s 313 Like C<sv_setpvn>, but takes a literal string instead of a 314 string/length pair. 315 316 =for apidoc Am|void|sv_setpvs_mg|SV* sv|"literal string" s 317 Like C<sv_setpvn_mg>, but takes a literal string instead of a 318 string/length pair. 319 320 =for apidoc Am|SV *|sv_setref_pvs|"literal string" s 321 Like C<sv_setref_pvn>, but takes a literal string instead of 322 a string/length pair. 323 324 =head1 Memory Management 325 326 =for apidoc Ama|char*|savepvs|"literal string" s 327 Like C<savepvn>, but takes a literal string instead of a 328 string/length pair. 329 330 =for apidoc Ama|char*|savesharedpvs|"literal string" s 331 A version of C<savepvs()> which allocates the duplicate string in memory 332 which is shared between threads. 333 334 =head1 GV Functions 335 336 =for apidoc Am|HV*|gv_stashpvs|"literal string" name|I32 create 337 Like C<gv_stashpvn>, but takes a literal string instead of a 338 string/length pair. 339 340 =head1 Hash Manipulation Functions 341 342 =for apidoc Am|SV**|hv_fetchs|HV* tb|"literal string" key|I32 lval 343 Like C<hv_fetch>, but takes a literal string instead of a 344 string/length pair. 345 346 =for apidoc Am|SV**|hv_stores|HV* tb|"literal string" key|SV* val 347 Like C<hv_store>, but takes a literal string instead of a 348 string/length pair 349 and omits the hash parameter. 350 351 =head1 Lexer interface 352 353 =for apidoc Amx|void|lex_stuff_pvs|"literal string" pv|U32 flags 354 355 Like L</lex_stuff_pvn>, but takes a literal string instead of 356 a string/length pair. 357 358 =cut 359 */ 360 361 /* concatenating with "" ensures that only literal strings are accepted as 362 * argument */ 363 #define STR_WITH_LEN(s) ("" s ""), (sizeof(s)-1) 364 365 /* note that STR_WITH_LEN() can't be used as argument to macros or functions 366 * that under some configurations might be macros, which means that it requires 367 * the full Perl_xxx(aTHX_ ...) form for any API calls where it's used. 368 */ 369 370 /* STR_WITH_LEN() shortcuts */ 371 #define newSVpvs(str) Perl_newSVpvn(aTHX_ STR_WITH_LEN(str)) 372 #define newSVpvs_flags(str,flags) \ 373 Perl_newSVpvn_flags(aTHX_ STR_WITH_LEN(str), flags) 374 #define newSVpvs_share(str) Perl_newSVpvn_share(aTHX_ STR_WITH_LEN(str), 0) 375 #define sv_catpvs_flags(sv, str, flags) \ 376 Perl_sv_catpvn_flags(aTHX_ sv, STR_WITH_LEN(str), flags) 377 #define sv_catpvs_nomg(sv, str) \ 378 Perl_sv_catpvn_flags(aTHX_ sv, STR_WITH_LEN(str), 0) 379 #define sv_catpvs(sv, str) \ 380 Perl_sv_catpvn_flags(aTHX_ sv, STR_WITH_LEN(str), SV_GMAGIC) 381 #define sv_catpvs_mg(sv, str) \ 382 Perl_sv_catpvn_flags(aTHX_ sv, STR_WITH_LEN(str), SV_GMAGIC|SV_SMAGIC) 383 #define sv_setpvs(sv, str) Perl_sv_setpvn(aTHX_ sv, STR_WITH_LEN(str)) 384 #define sv_setpvs_mg(sv, str) Perl_sv_setpvn_mg(aTHX_ sv, STR_WITH_LEN(str)) 385 #define sv_setref_pvs(rv, classname, str) \ 386 Perl_sv_setref_pvn(aTHX_ rv, classname, STR_WITH_LEN(str)) 387 #define savepvs(str) Perl_savepvn(aTHX_ STR_WITH_LEN(str)) 388 #define savesharedpvs(str) Perl_savesharedpvn(aTHX_ STR_WITH_LEN(str)) 389 #define gv_stashpvs(str, create) \ 390 Perl_gv_stashpvn(aTHX_ STR_WITH_LEN(str), create) 391 #define gv_fetchpvs(namebeg, add, sv_type) \ 392 Perl_gv_fetchpvn_flags(aTHX_ STR_WITH_LEN(namebeg), add, sv_type) 393 #define gv_fetchpvn(namebeg, len, add, sv_type) \ 394 Perl_gv_fetchpvn_flags(aTHX_ namebeg, len, add, sv_type) 395 #define sv_catxmlpvs(dsv, str, utf8) \ 396 Perl_sv_catxmlpvn(aTHX_ dsv, STR_WITH_LEN(str), utf8) 397 398 399 #define lex_stuff_pvs(pv,flags) Perl_lex_stuff_pvn(aTHX_ STR_WITH_LEN(pv), flags) 400 401 #define get_cvs(str, flags) \ 402 Perl_get_cvn_flags(aTHX_ STR_WITH_LEN(str), (flags)) 403 404 /* 405 =head1 Miscellaneous Functions 406 407 =for apidoc Am|bool|strNE|char* s1|char* s2 408 Test two C<NUL>-terminated strings to see if they are different. Returns true 409 or false. 410 411 =for apidoc Am|bool|strEQ|char* s1|char* s2 412 Test two C<NUL>-terminated strings to see if they are equal. Returns true or 413 false. 414 415 =for apidoc Am|bool|strLT|char* s1|char* s2 416 Test two C<NUL>-terminated strings to see if the first, C<s1>, is less than the 417 second, C<s2>. Returns true or false. 418 419 =for apidoc Am|bool|strLE|char* s1|char* s2 420 Test two C<NUL>-terminated strings to see if the first, C<s1>, is less than or 421 equal to the second, C<s2>. Returns true or false. 422 423 =for apidoc Am|bool|strGT|char* s1|char* s2 424 Test two C<NUL>-terminated strings to see if the first, C<s1>, is greater than 425 the second, C<s2>. Returns true or false. 426 427 =for apidoc Am|bool|strGE|char* s1|char* s2 428 Test two C<NUL>-terminated strings to see if the first, C<s1>, is greater than 429 or equal to the second, C<s2>. Returns true or false. 430 431 =for apidoc Am|bool|strnNE|char* s1|char* s2|STRLEN len 432 Test two C<NUL>-terminated strings to see if they are different. The C<len> 433 parameter indicates the number of bytes to compare. Returns true or false. (A 434 wrapper for C<strncmp>). 435 436 =for apidoc Am|bool|strnEQ|char* s1|char* s2|STRLEN len 437 Test two C<NUL>-terminated strings to see if they are equal. The C<len> 438 parameter indicates the number of bytes to compare. Returns true or false. (A 439 wrapper for C<strncmp>). 440 441 =for apidoc Am|bool|memEQ|char* s1|char* s2|STRLEN len 442 Test two buffers (which may contain embedded C<NUL> characters, to see if they 443 are equal. The C<len> parameter indicates the number of bytes to compare. 444 Returns zero if equal, or non-zero if non-equal. 445 446 =for apidoc Am|bool|memNE|char* s1|char* s2|STRLEN len 447 Test two buffers (which may contain embedded C<NUL> characters, to see if they 448 are not equal. The C<len> parameter indicates the number of bytes to compare. 449 Returns zero if non-equal, or non-zero if equal. 450 451 =cut 452 453 New macros should use the following conventions for their names (which are 454 based on the underlying C library functions): 455 456 (mem | str n? ) (EQ | NE | LT | GT | GE | (( BEGIN | END ) P? )) l? s? 457 458 Each has two main parameters, string-like operands that are compared 459 against each other, as specified by the macro name. Some macros may 460 additionally have one or potentially even two length parameters. If a length 461 parameter applies to both string parameters, it will be positioned third; 462 otherwise any length parameter immediately follows the string parameter it 463 applies to. 464 465 If the prefix to the name is 'str', the string parameter is a pointer to a C 466 language string. Such a string does not contain embedded NUL bytes; its 467 length may be unknown, but can be calculated by C<strlen()>, since it is 468 terminated by a NUL, which isn't included in its length. 469 470 The optional 'n' following 'str' means that that there is a third parameter, 471 giving the maximum number of bytes to look at in each string. Even if both 472 strings are longer than the length parameter, those extra bytes will be 473 unexamined. 474 475 The 's' suffix means that the 2nd byte string parameter is a literal C 476 double-quoted string. Its length will automatically be calculated by the 477 macro, so no length parameter will ever be needed for it. 478 479 If the prefix is 'mem', the string parameters don't have to be C strings; 480 they may contain embedded NUL bytes, do not necessarily have a terminating 481 NUL, and their lengths can be known only through other means, which in 482 practice are additional parameter(s) passed to the function. All 'mem' 483 functions have at least one length parameter. Barring any 'l' or 's' suffix, 484 there is a single length parameter, in position 3, which applies to both 485 string parameters. The 's' suffix means, as described above, that the 2nd 486 string is a literal double-quoted C string (hence its length is calculated by 487 the macro, and the length parameter to the function applies just to the first 488 string parameter, and hence is positioned just after it). An 'l' suffix 489 means that the 2nd string parameter has its own length parameter, and the 490 signature will look like memFOOl(s1, l1, s2, l2). 491 492 BEGIN (and END) are for testing if the 2nd string is an initial (or final) 493 substring of the 1st string. 'P' if present indicates that the substring 494 must be a "proper" one in tha mathematical sense that the first one must be 495 strictly larger than the 2nd. 496 497 */ 498 499 500 #define strNE(s1,s2) (strcmp(s1,s2) != 0) 501 #define strEQ(s1,s2) (strcmp(s1,s2) == 0) 502 #define strLT(s1,s2) (strcmp(s1,s2) < 0) 503 #define strLE(s1,s2) (strcmp(s1,s2) <= 0) 504 #define strGT(s1,s2) (strcmp(s1,s2) > 0) 505 #define strGE(s1,s2) (strcmp(s1,s2) >= 0) 506 507 #define strnNE(s1,s2,l) (strncmp(s1,s2,l) != 0) 508 #define strnEQ(s1,s2,l) (strncmp(s1,s2,l) == 0) 509 510 #define memEQ(s1,s2,l) (memcmp(((const void *) (s1)), ((const void *) (s2)), l) == 0) 511 #define memNE(s1,s2,l) (! memEQ(s1,s2,l)) 512 513 /* memEQ and memNE where second comparand is a string constant */ 514 #define memEQs(s1, l, s2) \ 515 (((sizeof(s2)-1) == (l)) && memEQ((s1), ("" s2 ""), (sizeof(s2)-1))) 516 #define memNEs(s1, l, s2) (! memEQs(s1, l, s2)) 517 518 /* Keep these private until we decide it was a good idea */ 519 #if defined(PERL_CORE) || defined(PERL_EXT) || defined(PERL_EXT_POSIX) 520 521 #define strBEGINs(s1,s2) (strncmp(s1,"" s2 "", sizeof(s2)-1) == 0) 522 523 #define memBEGINs(s1, l, s2) \ 524 ( (Ptrdiff_t) (l) >= (Ptrdiff_t) sizeof(s2) - 1 \ 525 && memEQ(s1, "" s2 "", sizeof(s2)-1)) 526 #define memBEGINPs(s1, l, s2) \ 527 ( (Ptrdiff_t) (l) > (Ptrdiff_t) sizeof(s2) - 1 \ 528 && memEQ(s1, "" s2 "", sizeof(s2)-1)) 529 #define memENDs(s1, l, s2) \ 530 ( (Ptrdiff_t) (l) >= (Ptrdiff_t) sizeof(s2) - 1 \ 531 && memEQ(s1 + (l) - (sizeof(s2) - 1), "" s2 "", sizeof(s2)-1)) 532 #define memENDPs(s1, l, s2) \ 533 ( (Ptrdiff_t) (l) > (Ptrdiff_t) sizeof(s2) \ 534 && memEQ(s1 + (l) - (sizeof(s2) - 1), "" s2 "", sizeof(s2)-1)) 535 #endif /* End of making macros private */ 536 537 #define memLT(s1,s2,l) (memcmp(s1,s2,l) < 0) 538 #define memLE(s1,s2,l) (memcmp(s1,s2,l) <= 0) 539 #define memGT(s1,s2,l) (memcmp(s1,s2,l) > 0) 540 #define memGE(s1,s2,l) (memcmp(s1,s2,l) >= 0) 541 542 /* 543 * Character classes. 544 * 545 * Unfortunately, the introduction of locales means that we 546 * can't trust isupper(), etc. to tell the truth. And when 547 * it comes to /\w+/ with tainting enabled, we *must* be able 548 * to trust our character classes. 549 * 550 * Therefore, the default tests in the text of Perl will be 551 * independent of locale. Any code that wants to depend on 552 * the current locale will use the tests that begin with "lc". 553 */ 554 555 #ifdef HAS_SETLOCALE /* XXX Is there a better test for this? */ 556 # ifndef CTYPE256 557 # define CTYPE256 558 # endif 559 #endif 560 561 /* 562 563 =head1 Character classification 564 This section is about functions (really macros) that classify characters 565 into types, such as punctuation versus alphabetic, etc. Most of these are 566 analogous to regular expression character classes. (See 567 L<perlrecharclass/POSIX Character Classes>.) There are several variants for 568 each class. (Not all macros have all variants; each item below lists the 569 ones valid for it.) None are affected by C<use bytes>, and only the ones 570 with C<LC> in the name are affected by the current locale. 571 572 The base function, e.g., C<isALPHA()>, takes an octet (either a C<char> or a 573 C<U8>) as input and returns a boolean as to whether or not the character 574 represented by that octet is (or on non-ASCII platforms, corresponds to) an 575 ASCII character in the named class based on platform, Unicode, and Perl rules. 576 If the input is a number that doesn't fit in an octet, FALSE is returned. 577 578 Variant C<isI<FOO>_A> (e.g., C<isALPHA_A()>) is identical to the base function 579 with no suffix C<"_A">. This variant is used to emphasize by its name that 580 only ASCII-range characters can return TRUE. 581 582 Variant C<isI<FOO>_L1> imposes the Latin-1 (or EBCDIC equivalent) character set 583 onto the platform. That is, the code points that are ASCII are unaffected, 584 since ASCII is a subset of Latin-1. But the non-ASCII code points are treated 585 as if they are Latin-1 characters. For example, C<isWORDCHAR_L1()> will return 586 true when called with the code point 0xDF, which is a word character in both 587 ASCII and EBCDIC (though it represents different characters in each). 588 589 Variant C<isI<FOO>_uvchr> is like the C<isI<FOO>_L1> variant, but accepts any UV code 590 point as input. If the code point is larger than 255, Unicode rules are used 591 to determine if it is in the character class. For example, 592 C<isWORDCHAR_uvchr(0x100)> returns TRUE, since 0x100 is LATIN CAPITAL LETTER A 593 WITH MACRON in Unicode, and is a word character. 594 595 Variant C<isI<FOO>_utf8_safe> is like C<isI<FOO>_uvchr>, but is used for UTF-8 596 encoded strings. Each call classifies one character, even if the string 597 contains many. This variant takes two parameters. The first, C<p>, is a 598 pointer to the first byte of the character to be classified. (Recall that it 599 may take more than one byte to represent a character in UTF-8 strings.) The 600 second parameter, C<e>, points to anywhere in the string beyond the first 601 character, up to one byte past the end of the entire string. The suffix 602 C<_safe> in the function's name indicates that it will not attempt to read 603 beyond S<C<e - 1>>, provided that the constraint S<C<s E<lt> e>> is true (this 604 is asserted for in C<-DDEBUGGING> builds). If the UTF-8 for the input 605 character is malformed in some way, the program may croak, or the function may 606 return FALSE, at the discretion of the implementation, and subject to change in 607 future releases. 608 609 Variant C<isI<FOO>_utf8> is like C<isI<FOO>_utf8_safe>, but takes just a single 610 parameter, C<p>, which has the same meaning as the corresponding parameter does 611 in C<isI<FOO>_utf8_safe>. The function therefore can't check if it is reading 612 beyond the end of the string. Starting in Perl v5.30, it will take a second 613 parameter, becoming a synonym for C<isI<FOO>_utf8_safe>. At that time every 614 program that uses it will have to be changed to successfully compile. In the 615 meantime, the first runtime call to C<isI<FOO>_utf8> from each call point in the 616 program will raise a deprecation warning, enabled by default. You can convert 617 your program now to use C<isI<FOO>_utf8_safe>, and avoid the warnings, and get an 618 extra measure of protection, or you can wait until v5.30, when you'll be forced 619 to add the C<e> parameter. 620 621 Variant C<isI<FOO>_LC> is like the C<isI<FOO>_A> and C<isI<FOO>_L1> variants, but the 622 result is based on the current locale, which is what C<LC> in the name stands 623 for. If Perl can determine that the current locale is a UTF-8 locale, it uses 624 the published Unicode rules; otherwise, it uses the C library function that 625 gives the named classification. For example, C<isDIGIT_LC()> when not in a 626 UTF-8 locale returns the result of calling C<isdigit()>. FALSE is always 627 returned if the input won't fit into an octet. On some platforms where the C 628 library function is known to be defective, Perl changes its result to follow 629 the POSIX standard's rules. 630 631 Variant C<isI<FOO>_LC_uvchr> is like C<isI<FOO>_LC>, but is defined on any UV. It 632 returns the same as C<isI<FOO>_LC> for input code points less than 256, and 633 returns the hard-coded, not-affected-by-locale, Unicode results for larger ones. 634 635 Variant C<isI<FOO>_LC_utf8_safe> is like C<isI<FOO>_LC_uvchr>, but is used for UTF-8 636 encoded strings. Each call classifies one character, even if the string 637 contains many. This variant takes two parameters. The first, C<p>, is a 638 pointer to the first byte of the character to be classified. (Recall that it 639 may take more than one byte to represent a character in UTF-8 strings.) The 640 second parameter, C<e>, points to anywhere in the string beyond the first 641 character, up to one byte past the end of the entire string. The suffix 642 C<_safe> in the function's name indicates that it will not attempt to read 643 beyond S<C<e - 1>>, provided that the constraint S<C<s E<lt> e>> is true (this 644 is asserted for in C<-DDEBUGGING> builds). If the UTF-8 for the input 645 character is malformed in some way, the program may croak, or the function may 646 return FALSE, at the discretion of the implementation, and subject to change in 647 future releases. 648 649 Variant C<isI<FOO>_LC_utf8> is like C<isI<FOO>_LC_utf8_safe>, but takes just a single 650 parameter, C<p>, which has the same meaning as the corresponding parameter does 651 in C<isI<FOO>_LC_utf8_safe>. The function therefore can't check if it is reading 652 beyond the end of the string. Starting in Perl v5.30, it will take a second 653 parameter, becoming a synonym for C<isI<FOO>_LC_utf8_safe>. At that time every 654 program that uses it will have to be changed to successfully compile. In the 655 meantime, the first runtime call to C<isI<FOO>_LC_utf8> from each call point in 656 the program will raise a deprecation warning, enabled by default. You can 657 convert your program now to use C<isI<FOO>_LC_utf8_safe>, and avoid the warnings, 658 and get an extra measure of protection, or you can wait until v5.30, when 659 you'll be forced to add the C<e> parameter. 660 661 =for apidoc Am|bool|isALPHA|char ch 662 Returns a boolean indicating whether the specified character is an 663 alphabetic character, analogous to C<m/[[:alpha:]]/>. 664 See the L<top of this section|/Character classification> for an explanation of 665 variants 666 C<isALPHA_A>, C<isALPHA_L1>, C<isALPHA_uvchr>, C<isALPHA_utf8_safe>, 667 C<isALPHA_LC>, C<isALPHA_LC_uvchr>, and C<isALPHA_LC_utf8_safe>. 668 669 =for apidoc Am|bool|isALPHANUMERIC|char ch 670 Returns a boolean indicating whether the specified character is a either an 671 alphabetic character or decimal digit, analogous to C<m/[[:alnum:]]/>. 672 See the L<top of this section|/Character classification> for an explanation of 673 variants 674 C<isALPHANUMERIC_A>, C<isALPHANUMERIC_L1>, C<isALPHANUMERIC_uvchr>, 675 C<isALPHANUMERIC_utf8_safe>, C<isALPHANUMERIC_LC>, C<isALPHANUMERIC_LC_uvchr>, 676 and C<isALPHANUMERIC_LC_utf8_safe>. 677 678 =for apidoc Am|bool|isASCII|char ch 679 Returns a boolean indicating whether the specified character is one of the 128 680 characters in the ASCII character set, analogous to C<m/[[:ascii:]]/>. 681 On non-ASCII platforms, it returns TRUE iff this 682 character corresponds to an ASCII character. Variants C<isASCII_A()> and 683 C<isASCII_L1()> are identical to C<isASCII()>. 684 See the L<top of this section|/Character classification> for an explanation of 685 variants 686 C<isASCII_uvchr>, C<isASCII_utf8_safe>, C<isASCII_LC>, C<isASCII_LC_uvchr>, and 687 C<isASCII_LC_utf8_safe>. Note, however, that some platforms do not have the C 688 library routine C<isascii()>. In these cases, the variants whose names contain 689 C<LC> are the same as the corresponding ones without. 690 691 Also note, that because all ASCII characters are UTF-8 invariant (meaning they 692 have the exact same representation (always a single byte) whether encoded in 693 UTF-8 or not), C<isASCII> will give the correct results when called with any 694 byte in any string encoded or not in UTF-8. And similarly C<isASCII_utf8_safe> 695 will work properly on any string encoded or not in UTF-8. 696 697 =for apidoc Am|bool|isBLANK|char ch 698 Returns a boolean indicating whether the specified character is a 699 character considered to be a blank, analogous to C<m/[[:blank:]]/>. 700 See the L<top of this section|/Character classification> for an explanation of 701 variants 702 C<isBLANK_A>, C<isBLANK_L1>, C<isBLANK_uvchr>, C<isBLANK_utf8_safe>, 703 C<isBLANK_LC>, C<isBLANK_LC_uvchr>, and C<isBLANK_LC_utf8_safe>. Note, 704 however, that some platforms do not have the C library routine 705 C<isblank()>. In these cases, the variants whose names contain C<LC> are 706 the same as the corresponding ones without. 707 708 =for apidoc Am|bool|isCNTRL|char ch 709 Returns a boolean indicating whether the specified character is a 710 control character, analogous to C<m/[[:cntrl:]]/>. 711 See the L<top of this section|/Character classification> for an explanation of 712 variants 713 C<isCNTRL_A>, C<isCNTRL_L1>, C<isCNTRL_uvchr>, C<isCNTRL_utf8_safe>, 714 C<isCNTRL_LC>, C<isCNTRL_LC_uvchr>, and C<isCNTRL_LC_utf8_safe> On EBCDIC 715 platforms, you almost always want to use the C<isCNTRL_L1> variant. 716 717 =for apidoc Am|bool|isDIGIT|char ch 718 Returns a boolean indicating whether the specified character is a 719 digit, analogous to C<m/[[:digit:]]/>. 720 Variants C<isDIGIT_A> and C<isDIGIT_L1> are identical to C<isDIGIT>. 721 See the L<top of this section|/Character classification> for an explanation of 722 variants 723 C<isDIGIT_uvchr>, C<isDIGIT_utf8_safe>, C<isDIGIT_LC>, C<isDIGIT_LC_uvchr>, and 724 C<isDIGIT_LC_utf8_safe>. 725 726 =for apidoc Am|bool|isGRAPH|char ch 727 Returns a boolean indicating whether the specified character is a 728 graphic character, analogous to C<m/[[:graph:]]/>. 729 See the L<top of this section|/Character classification> for an explanation of 730 variants C<isGRAPH_A>, C<isGRAPH_L1>, C<isGRAPH_uvchr>, C<isGRAPH_utf8_safe>, 731 C<isGRAPH_LC>, C<isGRAPH_LC_uvchr>, and C<isGRAPH_LC_utf8_safe>. 732 733 =for apidoc Am|bool|isLOWER|char ch 734 Returns a boolean indicating whether the specified character is a 735 lowercase character, analogous to C<m/[[:lower:]]/>. 736 See the L<top of this section|/Character classification> for an explanation of 737 variants 738 C<isLOWER_A>, C<isLOWER_L1>, C<isLOWER_uvchr>, C<isLOWER_utf8_safe>, 739 C<isLOWER_LC>, C<isLOWER_LC_uvchr>, and C<isLOWER_LC_utf8_safe>. 740 741 =for apidoc Am|bool|isOCTAL|char ch 742 Returns a boolean indicating whether the specified character is an 743 octal digit, [0-7]. 744 The only two variants are C<isOCTAL_A> and C<isOCTAL_L1>; each is identical to 745 C<isOCTAL>. 746 747 =for apidoc Am|bool|isPUNCT|char ch 748 Returns a boolean indicating whether the specified character is a 749 punctuation character, analogous to C<m/[[:punct:]]/>. 750 Note that the definition of what is punctuation isn't as 751 straightforward as one might desire. See L<perlrecharclass/POSIX Character 752 Classes> for details. 753 See the L<top of this section|/Character classification> for an explanation of 754 variants C<isPUNCT_A>, C<isPUNCT_L1>, C<isPUNCT_uvchr>, C<isPUNCT_utf8_safe>, 755 C<isPUNCT_LC>, C<isPUNCT_LC_uvchr>, and C<isPUNCT_LC_utf8_safe>. 756 757 =for apidoc Am|bool|isSPACE|char ch 758 Returns a boolean indicating whether the specified character is a 759 whitespace character. This is analogous 760 to what C<m/\s/> matches in a regular expression. Starting in Perl 5.18 761 this also matches what C<m/[[:space:]]/> does. Prior to 5.18, only the 762 locale forms of this macro (the ones with C<LC> in their names) matched 763 precisely what C<m/[[:space:]]/> does. In those releases, the only difference, 764 in the non-locale variants, was that C<isSPACE()> did not match a vertical tab. 765 (See L</isPSXSPC> for a macro that matches a vertical tab in all releases.) 766 See the L<top of this section|/Character classification> for an explanation of 767 variants 768 C<isSPACE_A>, C<isSPACE_L1>, C<isSPACE_uvchr>, C<isSPACE_utf8_safe>, 769 C<isSPACE_LC>, C<isSPACE_LC_uvchr>, and C<isSPACE_LC_utf8_safe>. 770 771 =for apidoc Am|bool|isPSXSPC|char ch 772 (short for Posix Space) 773 Starting in 5.18, this is identical in all its forms to the 774 corresponding C<isSPACE()> macros. 775 The locale forms of this macro are identical to their corresponding 776 C<isSPACE()> forms in all Perl releases. In releases prior to 5.18, the 777 non-locale forms differ from their C<isSPACE()> forms only in that the 778 C<isSPACE()> forms don't match a Vertical Tab, and the C<isPSXSPC()> forms do. 779 Otherwise they are identical. Thus this macro is analogous to what 780 C<m/[[:space:]]/> matches in a regular expression. 781 See the L<top of this section|/Character classification> for an explanation of 782 variants C<isPSXSPC_A>, C<isPSXSPC_L1>, C<isPSXSPC_uvchr>, C<isPSXSPC_utf8_safe>, 783 C<isPSXSPC_LC>, C<isPSXSPC_LC_uvchr>, and C<isPSXSPC_LC_utf8_safe>. 784 785 =for apidoc Am|bool|isUPPER|char ch 786 Returns a boolean indicating whether the specified character is an 787 uppercase character, analogous to C<m/[[:upper:]]/>. 788 See the L<top of this section|/Character classification> for an explanation of 789 variants C<isUPPER_A>, C<isUPPER_L1>, C<isUPPER_uvchr>, C<isUPPER_utf8_safe>, 790 C<isUPPER_LC>, C<isUPPER_LC_uvchr>, and C<isUPPER_LC_utf8_safe>. 791 792 =for apidoc Am|bool|isPRINT|char ch 793 Returns a boolean indicating whether the specified character is a 794 printable character, analogous to C<m/[[:print:]]/>. 795 See the L<top of this section|/Character classification> for an explanation of 796 variants 797 C<isPRINT_A>, C<isPRINT_L1>, C<isPRINT_uvchr>, C<isPRINT_utf8_safe>, 798 C<isPRINT_LC>, C<isPRINT_LC_uvchr>, and C<isPRINT_LC_utf8_safe>. 799 800 =for apidoc Am|bool|isWORDCHAR|char ch 801 Returns a boolean indicating whether the specified character is a character 802 that is a word character, analogous to what C<m/\w/> and C<m/[[:word:]]/> match 803 in a regular expression. A word character is an alphabetic character, a 804 decimal digit, a connecting punctuation character (such as an underscore), or 805 a "mark" character that attaches to one of those (like some sort of accent). 806 C<isALNUM()> is a synonym provided for backward compatibility, even though a 807 word character includes more than the standard C language meaning of 808 alphanumeric. 809 See the L<top of this section|/Character classification> for an explanation of 810 variants C<isWORDCHAR_A>, C<isWORDCHAR_L1>, C<isWORDCHAR_uvchr>, and 811 C<isWORDCHAR_utf8_safe>. C<isWORDCHAR_LC>, C<isWORDCHAR_LC_uvchr>, and 812 C<isWORDCHAR_LC_utf8_safe> are also as described there, but additionally 813 include the platform's native underscore. 814 815 =for apidoc Am|bool|isXDIGIT|char ch 816 Returns a boolean indicating whether the specified character is a hexadecimal 817 digit. In the ASCII range these are C<[0-9A-Fa-f]>. Variants C<isXDIGIT_A()> 818 and C<isXDIGIT_L1()> are identical to C<isXDIGIT()>. 819 See the L<top of this section|/Character classification> for an explanation of 820 variants 821 C<isXDIGIT_uvchr>, C<isXDIGIT_utf8_safe>, C<isXDIGIT_LC>, C<isXDIGIT_LC_uvchr>, 822 and C<isXDIGIT_LC_utf8_safe>. 823 824 =for apidoc Am|bool|isIDFIRST|char ch 825 Returns a boolean indicating whether the specified character can be the first 826 character of an identifier. This is very close to, but not quite the same as 827 the official Unicode property C<XID_Start>. The difference is that this 828 returns true only if the input character also matches L</isWORDCHAR>. 829 See the L<top of this section|/Character classification> for an explanation of 830 variants 831 C<isIDFIRST_A>, C<isIDFIRST_L1>, C<isIDFIRST_uvchr>, C<isIDFIRST_utf8_safe>, 832 C<isIDFIRST_LC>, C<isIDFIRST_LC_uvchr>, and C<isIDFIRST_LC_utf8_safe>. 833 834 =for apidoc Am|bool|isIDCONT|char ch 835 Returns a boolean indicating whether the specified character can be the 836 second or succeeding character of an identifier. This is very close to, but 837 not quite the same as the official Unicode property C<XID_Continue>. The 838 difference is that this returns true only if the input character also matches 839 L</isWORDCHAR>. See the L<top of this section|/Character classification> for 840 an 841 explanation of variants C<isIDCONT_A>, C<isIDCONT_L1>, C<isIDCONT_uvchr>, 842 C<isIDCONT_utf8_safe>, C<isIDCONT_LC>, C<isIDCONT_LC_uvchr>, and 843 C<isIDCONT_LC_utf8_safe>. 844 845 =head1 Miscellaneous Functions 846 847 =for apidoc Am|U8|READ_XDIGIT|char str* 848 Returns the value of an ASCII-range hex digit and advances the string pointer. 849 Behaviour is only well defined when isXDIGIT(*str) is true. 850 851 =head1 Character case changing 852 Perl uses "full" Unicode case mappings. This means that converting a single 853 character to another case may result in a sequence of more than one character. 854 For example, the uppercase of C<E<223>> (LATIN SMALL LETTER SHARP S) is the two 855 character sequence C<SS>. This presents some complications The lowercase of 856 all characters in the range 0..255 is a single character, and thus 857 C<L</toLOWER_L1>> is furnished. But, C<toUPPER_L1> can't exist, as it couldn't 858 return a valid result for all legal inputs. Instead C<L</toUPPER_uvchr>> has 859 an API that does allow every possible legal result to be returned.) Likewise 860 no other function that is crippled by not being able to give the correct 861 results for the full range of possible inputs has been implemented here. 862 863 =for apidoc Am|U8|toUPPER|U8 ch 864 Converts the specified character to uppercase. If the input is anything but an 865 ASCII lowercase character, that input character itself is returned. Variant 866 C<toUPPER_A> is equivalent. 867 868 =for apidoc Am|UV|toUPPER_uvchr|UV cp|U8* s|STRLEN* lenp 869 Converts the code point C<cp> to its uppercase version, and 870 stores that in UTF-8 in C<s>, and its length in bytes in C<lenp>. The code 871 point is interpreted as native if less than 256; otherwise as Unicode. Note 872 that the buffer pointed to by C<s> needs to be at least C<UTF8_MAXBYTES_CASE+1> 873 bytes since the uppercase version may be longer than the original character. 874 875 The first code point of the uppercased version is returned 876 (but note, as explained at L<the top of this section|/Character case 877 changing>, that there may be more.) 878 879 =for apidoc Am|UV|toUPPER_utf8_safe|U8* p|U8* e|U8* s|STRLEN* lenp 880 Converts the first UTF-8 encoded character in the sequence starting at C<p> and 881 extending no further than S<C<e - 1>> to its uppercase version, and 882 stores that in UTF-8 in C<s>, and its length in bytes in C<lenp>. Note 883 that the buffer pointed to by C<s> needs to be at least C<UTF8_MAXBYTES_CASE+1> 884 bytes since the uppercase version may be longer than the original character. 885 886 The first code point of the uppercased version is returned 887 (but note, as explained at L<the top of this section|/Character case 888 changing>, that there may be more). 889 890 The suffix C<_safe> in the function's name indicates that it will not attempt 891 to read beyond S<C<e - 1>>, provided that the constraint S<C<s E<lt> e>> is 892 true (this is asserted for in C<-DDEBUGGING> builds). If the UTF-8 for the 893 input character is malformed in some way, the program may croak, or the 894 function may return the REPLACEMENT CHARACTER, at the discretion of the 895 implementation, and subject to change in future releases. 896 897 =for apidoc Am|UV|toUPPER_utf8|U8* p|U8* s|STRLEN* lenp 898 This is like C<L</toUPPER_utf8_safe>>, but doesn't have the C<e> 899 parameter The function therefore can't check if it is reading 900 beyond the end of the string. Starting in Perl v5.30, it will take the C<e> 901 parameter, becoming a synonym for C<toUPPER_utf8_safe>. At that time every 902 program that uses it will have to be changed to successfully compile. In the 903 meantime, the first runtime call to C<toUPPER_utf8> from each call point in the 904 program will raise a deprecation warning, enabled by default. You can convert 905 your program now to use C<toUPPER_utf8_safe>, and avoid the warnings, and get an 906 extra measure of protection, or you can wait until v5.30, when you'll be forced 907 to add the C<e> parameter. 908 909 =for apidoc Am|U8|toFOLD|U8 ch 910 Converts the specified character to foldcase. If the input is anything but an 911 ASCII uppercase character, that input character itself is returned. Variant 912 C<toFOLD_A> is equivalent. (There is no equivalent C<to_FOLD_L1> for the full 913 Latin1 range, as the full generality of L</toFOLD_uvchr> is needed there.) 914 915 =for apidoc Am|UV|toFOLD_uvchr|UV cp|U8* s|STRLEN* lenp 916 Converts the code point C<cp> to its foldcase version, and 917 stores that in UTF-8 in C<s>, and its length in bytes in C<lenp>. The code 918 point is interpreted as native if less than 256; otherwise as Unicode. Note 919 that the buffer pointed to by C<s> needs to be at least C<UTF8_MAXBYTES_CASE+1> 920 bytes since the foldcase version may be longer than the original character. 921 922 The first code point of the foldcased version is returned 923 (but note, as explained at L<the top of this section|/Character case 924 changing>, that there may be more). 925 926 =for apidoc Am|UV|toFOLD_utf8_safe|U8* p|U8* e|U8* s|STRLEN* lenp 927 Converts the first UTF-8 encoded character in the sequence starting at C<p> and 928 extending no further than S<C<e - 1>> to its foldcase version, and 929 stores that in UTF-8 in C<s>, and its length in bytes in C<lenp>. Note 930 that the buffer pointed to by C<s> needs to be at least C<UTF8_MAXBYTES_CASE+1> 931 bytes since the foldcase version may be longer than the original character. 932 933 The first code point of the foldcased version is returned 934 (but note, as explained at L<the top of this section|/Character case 935 changing>, that there may be more). 936 937 The suffix C<_safe> in the function's name indicates that it will not attempt 938 to read beyond S<C<e - 1>>, provided that the constraint S<C<s E<lt> e>> is 939 true (this is asserted for in C<-DDEBUGGING> builds). If the UTF-8 for the 940 input character is malformed in some way, the program may croak, or the 941 function may return the REPLACEMENT CHARACTER, at the discretion of the 942 implementation, and subject to change in future releases. 943 944 =for apidoc Am|UV|toFOLD_utf8|U8* p|U8* s|STRLEN* lenp 945 This is like C<L</toFOLD_utf8_safe>>, but doesn't have the C<e> 946 parameter The function therefore can't check if it is reading 947 beyond the end of the string. Starting in Perl v5.30, it will take the C<e> 948 parameter, becoming a synonym for C<toFOLD_utf8_safe>. At that time every 949 program that uses it will have to be changed to successfully compile. In the 950 meantime, the first runtime call to C<toFOLD_utf8> from each call point in the 951 program will raise a deprecation warning, enabled by default. You can convert 952 your program now to use C<toFOLD_utf8_safe>, and avoid the warnings, and get an 953 extra measure of protection, or you can wait until v5.30, when you'll be forced 954 to add the C<e> parameter. 955 956 =for apidoc Am|U8|toLOWER|U8 ch 957 Converts the specified character to lowercase. If the input is anything but an 958 ASCII uppercase character, that input character itself is returned. Variant 959 C<toLOWER_A> is equivalent. 960 961 =for apidoc Am|U8|toLOWER_L1|U8 ch 962 Converts the specified Latin1 character to lowercase. The results are 963 undefined if the input doesn't fit in a byte. 964 965 =for apidoc Am|U8|toLOWER_LC|U8 ch 966 Converts the specified character to lowercase using the current locale's rules, 967 if possible; otherwise returns the input character itself. 968 969 =for apidoc Am|UV|toLOWER_uvchr|UV cp|U8* s|STRLEN* lenp 970 Converts the code point C<cp> to its lowercase version, and 971 stores that in UTF-8 in C<s>, and its length in bytes in C<lenp>. The code 972 point is interpreted as native if less than 256; otherwise as Unicode. Note 973 that the buffer pointed to by C<s> needs to be at least C<UTF8_MAXBYTES_CASE+1> 974 bytes since the lowercase version may be longer than the original character. 975 976 The first code point of the lowercased version is returned 977 (but note, as explained at L<the top of this section|/Character case 978 changing>, that there may be more). 979 980 981 =for apidoc Am|UV|toLOWER_utf8_safe|U8* p|U8* e|U8* s|STRLEN* lenp 982 Converts the first UTF-8 encoded character in the sequence starting at C<p> and 983 extending no further than S<C<e - 1>> to its lowercase version, and 984 stores that in UTF-8 in C<s>, and its length in bytes in C<lenp>. Note 985 that the buffer pointed to by C<s> needs to be at least C<UTF8_MAXBYTES_CASE+1> 986 bytes since the lowercase version may be longer than the original character. 987 988 The first code point of the lowercased version is returned 989 (but note, as explained at L<the top of this section|/Character case 990 changing>, that there may be more). 991 992 The suffix C<_safe> in the function's name indicates that it will not attempt 993 to read beyond S<C<e - 1>>, provided that the constraint S<C<s E<lt> e>> is 994 true (this is asserted for in C<-DDEBUGGING> builds). If the UTF-8 for the 995 input character is malformed in some way, the program may croak, or the 996 function may return the REPLACEMENT CHARACTER, at the discretion of the 997 implementation, and subject to change in future releases. 998 999 =for apidoc Am|UV|toLOWER_utf8|U8* p|U8* s|STRLEN* lenp 1000 This is like C<L</toLOWER_utf8_safe>>, but doesn't have the C<e> 1001 parameter The function therefore can't check if it is reading 1002 beyond the end of the string. Starting in Perl v5.30, it will take the C<e> 1003 parameter, becoming a synonym for C<toLOWER_utf8_safe>. At that time every 1004 program that uses it will have to be changed to successfully compile. In the 1005 meantime, the first runtime call to C<toLOWER_utf8> from each call point in the 1006 program will raise a deprecation warning, enabled by default. You can convert 1007 your program now to use C<toLOWER_utf8_safe>, and avoid the warnings, and get an 1008 extra measure of protection, or you can wait until v5.30, when you'll be forced 1009 to add the C<e> parameter. 1010 1011 =for apidoc Am|U8|toTITLE|U8 ch 1012 Converts the specified character to titlecase. If the input is anything but an 1013 ASCII lowercase character, that input character itself is returned. Variant 1014 C<toTITLE_A> is equivalent. (There is no C<toTITLE_L1> for the full Latin1 1015 range, as the full generality of L</toTITLE_uvchr> is needed there. Titlecase is 1016 not a concept used in locale handling, so there is no functionality for that.) 1017 1018 =for apidoc Am|UV|toTITLE_uvchr|UV cp|U8* s|STRLEN* lenp 1019 Converts the code point C<cp> to its titlecase version, and 1020 stores that in UTF-8 in C<s>, and its length in bytes in C<lenp>. The code 1021 point is interpreted as native if less than 256; otherwise as Unicode. Note 1022 that the buffer pointed to by C<s> needs to be at least C<UTF8_MAXBYTES_CASE+1> 1023 bytes since the titlecase version may be longer than the original character. 1024 1025 The first code point of the titlecased version is returned 1026 (but note, as explained at L<the top of this section|/Character case 1027 changing>, that there may be more). 1028 1029 =for apidoc Am|UV|toTITLE_utf8_safe|U8* p|U8* e|U8* s|STRLEN* lenp 1030 Converts the first UTF-8 encoded character in the sequence starting at C<p> and 1031 extending no further than S<C<e - 1>> to its titlecase version, and 1032 stores that in UTF-8 in C<s>, and its length in bytes in C<lenp>. Note 1033 that the buffer pointed to by C<s> needs to be at least C<UTF8_MAXBYTES_CASE+1> 1034 bytes since the titlecase version may be longer than the original character. 1035 1036 The first code point of the titlecased version is returned 1037 (but note, as explained at L<the top of this section|/Character case 1038 changing>, that there may be more). 1039 1040 The suffix C<_safe> in the function's name indicates that it will not attempt 1041 to read beyond S<C<e - 1>>, provided that the constraint S<C<s E<lt> e>> is 1042 true (this is asserted for in C<-DDEBUGGING> builds). If the UTF-8 for the 1043 input character is malformed in some way, the program may croak, or the 1044 function may return the REPLACEMENT CHARACTER, at the discretion of the 1045 implementation, and subject to change in future releases. 1046 1047 =for apidoc Am|UV|toTITLE_utf8|U8* p|U8* s|STRLEN* lenp 1048 This is like C<L</toLOWER_utf8_safe>>, but doesn't have the C<e> 1049 parameter The function therefore can't check if it is reading 1050 beyond the end of the string. Starting in Perl v5.30, it will take the C<e> 1051 parameter, becoming a synonym for C<toTITLE_utf8_safe>. At that time every 1052 program that uses it will have to be changed to successfully compile. In the 1053 meantime, the first runtime call to C<toTITLE_utf8> from each call point in the 1054 program will raise a deprecation warning, enabled by default. You can convert 1055 your program now to use C<toTITLE_utf8_safe>, and avoid the warnings, and get an 1056 extra measure of protection, or you can wait until v5.30, when you'll be forced 1057 to add the C<e> parameter. 1058 1059 =cut 1060 1061 XXX Still undocumented isVERTWS_uvchr and _utf8; it's unclear what their names 1062 really should be. Also toUPPER_LC and toFOLD_LC, which are subject to change, 1063 and aren't general purpose as they don't work on U+DF, and assert against that. 1064 1065 Note that these macros are repeated in Devel::PPPort, so should also be 1066 patched there. The file as of this writing is cpan/Devel-PPPort/parts/inc/misc 1067 1068 */ 1069 1070 /* Specify the widest unsigned type on the platform. */ 1071 #ifdef QUADKIND 1072 # define WIDEST_UTYPE U64 1073 #else 1074 # define WIDEST_UTYPE U32 1075 #endif 1076 1077 /* FITS_IN_8_BITS(c) returns true if c doesn't have a bit set other than in 1078 * the lower 8. It is designed to be hopefully bomb-proof, making sure that no 1079 * bits of information are lost even on a 64-bit machine, but to get the 1080 * compiler to optimize it out if possible. This is because Configure makes 1081 * sure that the machine has an 8-bit byte, so if c is stored in a byte, the 1082 * sizeof() guarantees that this evaluates to a constant true at compile time. 1083 * 1084 * For Coverity, be always true, because otherwise Coverity thinks 1085 * it finds several expressions that are always true, independent 1086 * of operands. Well, they are, but that is kind of the point. 1087 */ 1088 #ifndef __COVERITY__ 1089 /* The '| 0' part ensures a compiler error if c is not integer (like e.g., a 1090 * pointer) */ 1091 #define FITS_IN_8_BITS(c) ( (sizeof(c) == 1) \ 1092 || !(((WIDEST_UTYPE)((c) | 0)) & ~0xFF)) 1093 #else 1094 #define FITS_IN_8_BITS(c) (1) 1095 #endif 1096 1097 /* Returns true if c is in the range l..u, where 'l' is non-negative 1098 * Written this way so that after optimization, only one conditional test is 1099 * needed. 1100 * 1101 * This isn't fully general, except for the special cased 'signed char' (which 1102 * should be resolved at compile time): It won't work if 'c' is negative, and 1103 * 'l' is larger than the max for that signed type. Thus if 'c' is a negative 1104 * int, and 'l' is larger than INT_MAX, it will fail. To protect agains this 1105 * happening, there is an assert that will generate a warning if c is larger 1106 * than e.g. INT_MAX if it is an 'unsigned int'. This could be a false 1107 * positive, but khw couldn't figure out a way to make it better. It's good 1108 * enough so far */ 1109 #define inRANGE(c, l, u) (__ASSERT_((l) >= 0) __ASSERT_((u) >= (l)) \ 1110 ((sizeof(c) == 1) \ 1111 ? (((WIDEST_UTYPE) ((((U8) (c))|0) - (l))) <= ((WIDEST_UTYPE) ((u) - (l)))) \ 1112 : (__ASSERT_( (((WIDEST_UTYPE) 1) << (CHARBITS * sizeof(c) - 1) & (c)) \ 1113 /* sign bit of c is 0 */ == 0 \ 1114 || (((~ ((WIDEST_UTYPE) 1) << ((CHARBITS * sizeof(c) - 1) - 1))\ 1115 /* l not larger than largest value in c's signed type */ \ 1116 & ~ ((WIDEST_UTYPE) 0)) & (l)) == 0) \ 1117 ((WIDEST_UTYPE) (((c) - (l)) | 0) <= ((WIDEST_UTYPE) ((u) - (l))))))) 1118 1119 #ifdef EBCDIC 1120 # ifndef _ALL_SOURCE 1121 /* The native libc isascii() et.al. functions return the wrong results 1122 * on at least z/OS unless this is defined. */ 1123 # error _ALL_SOURCE should probably be defined 1124 # endif 1125 #else 1126 /* There is a simple definition of ASCII for ASCII platforms. But the 1127 * EBCDIC one isn't so simple, so is defined using table look-up like the 1128 * other macros below. 1129 * 1130 * The cast here is used instead of '(c) >= 0', because some compilers emit 1131 * a warning that that test is always true when the parameter is an 1132 * unsigned type. khw supposes that it could be written as 1133 * && ((c) == '\0' || (c) > 0) 1134 * to avoid the message, but the cast will likely avoid extra branches even 1135 * with stupid compilers. 1136 * 1137 * The '| 0' part ensures a compiler error if c is not integer (like e.g., 1138 * a pointer) */ 1139 # define isASCII(c) ((WIDEST_UTYPE)((c) | 0) < 128) 1140 #endif 1141 1142 /* Take the eight possible bit patterns of the lower 3 bits and you get the 1143 * lower 3 bits of the 8 octal digits, in both ASCII and EBCDIC, so those bits 1144 * can be ignored. If the rest match '0', we have an octal */ 1145 #define isOCTAL_A(c) (((WIDEST_UTYPE)((c) | 0) & ~7) == '0') 1146 1147 #ifdef H_PERL /* If have access to perl.h, lookup in its table */ 1148 1149 /* Character class numbers. For internal core Perl use only. The ones less 1150 * than 32 are used in PL_charclass[] and the ones up through the one that 1151 * corresponds to <_HIGHEST_REGCOMP_DOT_H_SYNC> are used by regcomp.h and 1152 * related files. PL_charclass ones use names used in l1_char_class_tab.h but 1153 * their actual definitions are here. If that file has a name not used here, 1154 * it won't compile. 1155 * 1156 * The first group of these is ordered in what I (khw) estimate to be the 1157 * frequency of their use. This gives a slight edge to exiting a loop earlier 1158 * (in reginclass() in regexec.c). Except \v should be last, as it isn't a 1159 * real Posix character class, and some (small) inefficiencies in regular 1160 * expression handling would be introduced by putting it in the middle of those 1161 * that are. Also, cntrl and ascii come after the others as it may be useful 1162 * to group these which have no members that match above Latin1, (or above 1163 * ASCII in the latter case) */ 1164 1165 # define _CC_WORDCHAR 0 /* \w and [:word:] */ 1166 # define _CC_DIGIT 1 /* \d and [:digit:] */ 1167 # define _CC_ALPHA 2 /* [:alpha:] */ 1168 # define _CC_LOWER 3 /* [:lower:] */ 1169 # define _CC_UPPER 4 /* [:upper:] */ 1170 # define _CC_PUNCT 5 /* [:punct:] */ 1171 # define _CC_PRINT 6 /* [:print:] */ 1172 # define _CC_ALPHANUMERIC 7 /* [:alnum:] */ 1173 # define _CC_GRAPH 8 /* [:graph:] */ 1174 # define _CC_CASED 9 /* [:lower:] or [:upper:] under /i */ 1175 # define _CC_SPACE 10 /* \s, [:space:] */ 1176 # define _CC_PSXSPC _CC_SPACE /* XXX Temporary, can be removed 1177 when the deprecated isFOO_utf8() 1178 functions are removed */ 1179 # define _CC_BLANK 11 /* [:blank:] */ 1180 # define _CC_XDIGIT 12 /* [:xdigit:] */ 1181 # define _CC_CNTRL 13 /* [:cntrl:] */ 1182 # define _CC_ASCII 14 /* [:ascii:] */ 1183 # define _CC_VERTSPACE 15 /* \v */ 1184 1185 # define _HIGHEST_REGCOMP_DOT_H_SYNC _CC_VERTSPACE 1186 1187 /* The members of the third group below do not need to be coordinated with data 1188 * structures in regcomp.[ch] and regexec.c. */ 1189 # define _CC_IDFIRST 16 1190 # define _CC_CHARNAME_CONT 17 1191 # define _CC_NONLATIN1_FOLD 18 1192 # define _CC_NONLATIN1_SIMPLE_FOLD 19 1193 # define _CC_QUOTEMETA 20 1194 # define _CC_NON_FINAL_FOLD 21 1195 # define _CC_IS_IN_SOME_FOLD 22 1196 # define _CC_MNEMONIC_CNTRL 23 1197 1198 # define _CC_IDCONT 24 /* XXX Temporary, can be removed when the deprecated 1199 isFOO_utf8() functions are removed */ 1200 1201 /* This next group is only used on EBCDIC platforms, so theoretically could be 1202 * shared with something entirely different that's only on ASCII platforms */ 1203 # define _CC_UTF8_START_BYTE_IS_FOR_AT_LEAST_SURROGATE 28 1204 # define _CC_UTF8_IS_START 29 1205 # define _CC_UTF8_IS_DOWNGRADEABLE_START 30 1206 # define _CC_UTF8_IS_CONTINUATION 31 1207 /* Unused: 24-27 1208 * If more bits are needed, one could add a second word for non-64bit 1209 * QUAD_IS_INT systems, using some #ifdefs to distinguish between having a 2nd 1210 * word or not. The IS_IN_SOME_FOLD bit is the most easily expendable, as it 1211 * is used only for optimization (as of this writing), and differs in the 1212 * Latin1 range from the ALPHA bit only in two relatively unimportant 1213 * characters: the masculine and feminine ordinal indicators, so removing it 1214 * would just cause /i regexes which match them to run less efficiently. 1215 * Similarly the EBCDIC-only bits are used just for speed, and could be 1216 * replaced by other means */ 1217 1218 #if defined(PERL_CORE) || defined(PERL_EXT) 1219 /* An enum version of the character class numbers, to help compilers 1220 * optimize */ 1221 typedef enum { 1222 _CC_ENUM_ALPHA = _CC_ALPHA, 1223 _CC_ENUM_ALPHANUMERIC = _CC_ALPHANUMERIC, 1224 _CC_ENUM_ASCII = _CC_ASCII, 1225 _CC_ENUM_BLANK = _CC_BLANK, 1226 _CC_ENUM_CASED = _CC_CASED, 1227 _CC_ENUM_CNTRL = _CC_CNTRL, 1228 _CC_ENUM_DIGIT = _CC_DIGIT, 1229 _CC_ENUM_GRAPH = _CC_GRAPH, 1230 _CC_ENUM_LOWER = _CC_LOWER, 1231 _CC_ENUM_PRINT = _CC_PRINT, 1232 _CC_ENUM_PUNCT = _CC_PUNCT, 1233 _CC_ENUM_SPACE = _CC_SPACE, 1234 _CC_ENUM_UPPER = _CC_UPPER, 1235 _CC_ENUM_VERTSPACE = _CC_VERTSPACE, 1236 _CC_ENUM_WORDCHAR = _CC_WORDCHAR, 1237 _CC_ENUM_XDIGIT = _CC_XDIGIT 1238 } _char_class_number; 1239 #endif 1240 1241 #define POSIX_CC_COUNT (_HIGHEST_REGCOMP_DOT_H_SYNC + 1) 1242 1243 START_EXTERN_C 1244 # ifdef DOINIT 1245 EXTCONST U32 PL_charclass[] = { 1246 # include "l1_char_class_tab.h" 1247 }; 1248 1249 # else /* ! DOINIT */ 1250 EXTCONST U32 PL_charclass[]; 1251 # endif 1252 END_EXTERN_C 1253 1254 /* The 1U keeps Solaris from griping when shifting sets the uppermost bit */ 1255 # define _CC_mask(classnum) (1U << (classnum)) 1256 1257 /* For internal core Perl use only: the base macro for defining macros like 1258 * isALPHA */ 1259 # define _generic_isCC(c, classnum) cBOOL(FITS_IN_8_BITS(c) \ 1260 && (PL_charclass[(U8) (c)] & _CC_mask(classnum))) 1261 1262 /* The mask for the _A versions of the macros; it just adds in the bit for 1263 * ASCII. */ 1264 # define _CC_mask_A(classnum) (_CC_mask(classnum) | _CC_mask(_CC_ASCII)) 1265 1266 /* For internal core Perl use only: the base macro for defining macros like 1267 * isALPHA_A. The foo_A version makes sure that both the desired bit and 1268 * the ASCII bit are present */ 1269 # define _generic_isCC_A(c, classnum) (FITS_IN_8_BITS(c) \ 1270 && ((PL_charclass[(U8) (c)] & _CC_mask_A(classnum)) \ 1271 == _CC_mask_A(classnum))) 1272 1273 /* On ASCII platforms certain classes form a single range. It's faster to 1274 * special case these. isDIGIT is a single range on all platforms */ 1275 # ifdef EBCDIC 1276 # define isALPHA_A(c) _generic_isCC_A(c, _CC_ALPHA) 1277 # define isGRAPH_A(c) _generic_isCC_A(c, _CC_GRAPH) 1278 # define isLOWER_A(c) _generic_isCC_A(c, _CC_LOWER) 1279 # define isPRINT_A(c) _generic_isCC_A(c, _CC_PRINT) 1280 # define isUPPER_A(c) _generic_isCC_A(c, _CC_UPPER) 1281 # else 1282 /* By folding the upper and lowercase, we can use a single range */ 1283 # define isALPHA_A(c) inRANGE((~('A' ^ 'a') & (c)), 'A', 'Z') 1284 # define isGRAPH_A(c) inRANGE(c, ' ' + 1, 0x7e) 1285 # define isLOWER_A(c) inRANGE(c, 'a', 'z') 1286 # define isPRINT_A(c) inRANGE(c, ' ', 0x7e) 1287 # define isUPPER_A(c) inRANGE(c, 'A', 'Z') 1288 # endif 1289 # define isALPHANUMERIC_A(c) _generic_isCC_A(c, _CC_ALPHANUMERIC) 1290 # define isBLANK_A(c) _generic_isCC_A(c, _CC_BLANK) 1291 # define isCNTRL_A(c) _generic_isCC_A(c, _CC_CNTRL) 1292 # define isDIGIT_A(c) inRANGE(c, '0', '9') 1293 # define isPUNCT_A(c) _generic_isCC_A(c, _CC_PUNCT) 1294 # define isSPACE_A(c) _generic_isCC_A(c, _CC_SPACE) 1295 # define isWORDCHAR_A(c) _generic_isCC_A(c, _CC_WORDCHAR) 1296 # define isXDIGIT_A(c) _generic_isCC(c, _CC_XDIGIT) /* No non-ASCII xdigits 1297 */ 1298 # define isIDFIRST_A(c) _generic_isCC_A(c, _CC_IDFIRST) 1299 # define isALPHA_L1(c) _generic_isCC(c, _CC_ALPHA) 1300 # define isALPHANUMERIC_L1(c) _generic_isCC(c, _CC_ALPHANUMERIC) 1301 # define isBLANK_L1(c) _generic_isCC(c, _CC_BLANK) 1302 1303 /* continuation character for legal NAME in \N{NAME} */ 1304 # define isCHARNAME_CONT(c) _generic_isCC(c, _CC_CHARNAME_CONT) 1305 1306 # define isCNTRL_L1(c) _generic_isCC(c, _CC_CNTRL) 1307 # define isGRAPH_L1(c) _generic_isCC(c, _CC_GRAPH) 1308 # define isLOWER_L1(c) _generic_isCC(c, _CC_LOWER) 1309 # define isPRINT_L1(c) _generic_isCC(c, _CC_PRINT) 1310 # define isPSXSPC_L1(c) isSPACE_L1(c) 1311 # define isPUNCT_L1(c) _generic_isCC(c, _CC_PUNCT) 1312 # define isSPACE_L1(c) _generic_isCC(c, _CC_SPACE) 1313 # define isUPPER_L1(c) _generic_isCC(c, _CC_UPPER) 1314 # define isWORDCHAR_L1(c) _generic_isCC(c, _CC_WORDCHAR) 1315 # define isIDFIRST_L1(c) _generic_isCC(c, _CC_IDFIRST) 1316 1317 # ifdef EBCDIC 1318 # define isASCII(c) _generic_isCC(c, _CC_ASCII) 1319 # endif 1320 1321 /* Participates in a single-character fold with a character above 255 */ 1322 # define _HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(c) ((! cBOOL(FITS_IN_8_BITS(c))) || (PL_charclass[(U8) (c)] & _CC_mask(_CC_NONLATIN1_SIMPLE_FOLD))) 1323 1324 /* Like the above, but also can be part of a multi-char fold */ 1325 # define _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(c) ((! cBOOL(FITS_IN_8_BITS(c))) || (PL_charclass[(U8) (c)] & _CC_mask(_CC_NONLATIN1_FOLD))) 1326 1327 # define _isQUOTEMETA(c) _generic_isCC(c, _CC_QUOTEMETA) 1328 # define _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c) \ 1329 _generic_isCC(c, _CC_NON_FINAL_FOLD) 1330 # define _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c) \ 1331 _generic_isCC(c, _CC_IS_IN_SOME_FOLD) 1332 # define _IS_MNEMONIC_CNTRL_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c) \ 1333 _generic_isCC(c, _CC_MNEMONIC_CNTRL) 1334 #else /* else we don't have perl.h H_PERL */ 1335 1336 /* If we don't have perl.h, we are compiling a utility program. Below we 1337 * hard-code various macro definitions that wouldn't otherwise be available 1338 * to it. Most are coded based on first principles. These are written to 1339 * avoid EBCDIC vs. ASCII #ifdef's as much as possible. */ 1340 # define isDIGIT_A(c) inRANGE(c, '0', '9') 1341 # define isBLANK_A(c) ((c) == ' ' || (c) == '\t') 1342 # define isSPACE_A(c) (isBLANK_A(c) \ 1343 || (c) == '\n' \ 1344 || (c) == '\r' \ 1345 || (c) == '\v' \ 1346 || (c) == '\f') 1347 /* On EBCDIC, there are gaps between 'i' and 'j'; 'r' and 's'. Same for 1348 * uppercase. The tests for those aren't necessary on ASCII, but hurt only 1349 * performance (if optimization isn't on), and allow the same code to be 1350 * used for both platform types */ 1351 # define isLOWER_A(c) inRANGE((c), 'a', 'i') \ 1352 || inRANGE((c), 'j', 'r') \ 1353 || inRANGE((c), 's', 'z') 1354 # define isUPPER_A(c) inRANGE((c), 'A', 'I') \ 1355 || inRANGE((c), 'J', 'R') \ 1356 || inRANGE((c), 'S', 'Z') 1357 # define isALPHA_A(c) (isUPPER_A(c) || isLOWER_A(c)) 1358 # define isALPHANUMERIC_A(c) (isALPHA_A(c) || isDIGIT_A(c)) 1359 # define isWORDCHAR_A(c) (isALPHANUMERIC_A(c) || (c) == '_') 1360 # define isIDFIRST_A(c) (isALPHA_A(c) || (c) == '_') 1361 # define isXDIGIT_A(c) ( isDIGIT_A(c) \ 1362 || inRANGE((c), 'a', 'f') \ 1363 || inRANGE((c), 'A', 'F') 1364 # define isPUNCT_A(c) ((c) == '-' || (c) == '!' || (c) == '"' \ 1365 || (c) == '#' || (c) == '$' || (c) == '%' \ 1366 || (c) == '&' || (c) == '\'' || (c) == '(' \ 1367 || (c) == ')' || (c) == '*' || (c) == '+' \ 1368 || (c) == ',' || (c) == '.' || (c) == '/' \ 1369 || (c) == ':' || (c) == ';' || (c) == '<' \ 1370 || (c) == '=' || (c) == '>' || (c) == '?' \ 1371 || (c) == '@' || (c) == '[' || (c) == '\\' \ 1372 || (c) == ']' || (c) == '^' || (c) == '_' \ 1373 || (c) == '`' || (c) == '{' || (c) == '|' \ 1374 || (c) == '}' || (c) == '~') 1375 # define isGRAPH_A(c) (isALPHANUMERIC_A(c) || isPUNCT_A(c)) 1376 # define isPRINT_A(c) (isGRAPH_A(c) || (c) == ' ') 1377 1378 # ifdef EBCDIC 1379 /* The below is accurate for the 3 EBCDIC code pages traditionally 1380 * supported by perl. The only difference between them in the controls 1381 * is the position of \n, and that is represented symbolically below */ 1382 # define isCNTRL_A(c) ((c) == '\0' || (c) == '\a' || (c) == '\b' \ 1383 || (c) == '\f' || (c) == '\n' || (c) == '\r' \ 1384 || (c) == '\t' || (c) == '\v' \ 1385 || inRANGE((c), 1, 3) /* SOH, STX, ETX */ \ 1386 || (c) == 7 /* U+7F DEL */ \ 1387 || inRANGE((c), 0x0E, 0x13) /* SO SI DLE \ 1388 DC[1-3] */ \ 1389 || (c) == 0x18 /* U+18 CAN */ \ 1390 || (c) == 0x19 /* U+19 EOM */ \ 1391 || inRANGE((c), 0x1C, 0x1F) /* [FGRU]S */ \ 1392 || (c) == 0x26 /* U+17 ETB */ \ 1393 || (c) == 0x27 /* U+1B ESC */ \ 1394 || (c) == 0x2D /* U+05 ENQ */ \ 1395 || (c) == 0x2E /* U+06 ACK */ \ 1396 || (c) == 0x32 /* U+16 SYN */ \ 1397 || (c) == 0x37 /* U+04 EOT */ \ 1398 || (c) == 0x3C /* U+14 DC4 */ \ 1399 || (c) == 0x3D /* U+15 NAK */ \ 1400 || (c) == 0x3F)/* U+1A SUB */ 1401 # define isASCII(c) (isCNTRL_A(c) || isPRINT_A(c)) 1402 # else /* isASCII is already defined for ASCII platforms, so can use that to 1403 define isCNTRL */ 1404 # define isCNTRL_A(c) (isASCII(c) && ! isPRINT_A(c)) 1405 # endif 1406 1407 /* The _L1 macros may be unnecessary for the utilities; I (khw) added them 1408 * during debugging, and it seems best to keep them. We may be called 1409 * without NATIVE_TO_LATIN1 being defined. On ASCII platforms, it doesn't 1410 * do anything anyway, so make it not a problem */ 1411 # if ! defined(EBCDIC) && ! defined(NATIVE_TO_LATIN1) 1412 # define NATIVE_TO_LATIN1(ch) (ch) 1413 # endif 1414 # define isALPHA_L1(c) (isUPPER_L1(c) || isLOWER_L1(c)) 1415 # define isALPHANUMERIC_L1(c) (isALPHA_L1(c) || isDIGIT_A(c)) 1416 # define isBLANK_L1(c) (isBLANK_A(c) \ 1417 || (FITS_IN_8_BITS(c) \ 1418 && NATIVE_TO_LATIN1((U8) c) == 0xA0)) 1419 # define isCNTRL_L1(c) (FITS_IN_8_BITS(c) && (! isPRINT_L1(c))) 1420 # define isGRAPH_L1(c) (isPRINT_L1(c) && (! isBLANK_L1(c))) 1421 # define isLOWER_L1(c) (isLOWER_A(c) \ 1422 || (FITS_IN_8_BITS(c) \ 1423 && (( NATIVE_TO_LATIN1((U8) c) >= 0xDF \ 1424 && NATIVE_TO_LATIN1((U8) c) != 0xF7) \ 1425 || NATIVE_TO_LATIN1((U8) c) == 0xAA \ 1426 || NATIVE_TO_LATIN1((U8) c) == 0xBA \ 1427 || NATIVE_TO_LATIN1((U8) c) == 0xB5))) 1428 # define isPRINT_L1(c) (isPRINT_A(c) \ 1429 || (FITS_IN_8_BITS(c) \ 1430 && NATIVE_TO_LATIN1((U8) c) >= 0xA0)) 1431 # define isPUNCT_L1(c) (isPUNCT_A(c) \ 1432 || (FITS_IN_8_BITS(c) \ 1433 && ( NATIVE_TO_LATIN1((U8) c) == 0xA1 \ 1434 || NATIVE_TO_LATIN1((U8) c) == 0xA7 \ 1435 || NATIVE_TO_LATIN1((U8) c) == 0xAB \ 1436 || NATIVE_TO_LATIN1((U8) c) == 0xB6 \ 1437 || NATIVE_TO_LATIN1((U8) c) == 0xB7 \ 1438 || NATIVE_TO_LATIN1((U8) c) == 0xBB \ 1439 || NATIVE_TO_LATIN1((U8) c) == 0xBF))) 1440 # define isSPACE_L1(c) (isSPACE_A(c) \ 1441 || (FITS_IN_8_BITS(c) \ 1442 && ( NATIVE_TO_LATIN1((U8) c) == 0x85 \ 1443 || NATIVE_TO_LATIN1((U8) c) == 0xA0))) 1444 # define isUPPER_L1(c) (isUPPER_A(c) \ 1445 || (FITS_IN_8_BITS(c) \ 1446 && ( IN_RANGE(NATIVE_TO_LATIN1((U8) c), \ 1447 0xC0, 0xDE) \ 1448 && NATIVE_TO_LATIN1((U8) c) != 0xD7))) 1449 # define isWORDCHAR_L1(c) (isIDFIRST_L1(c) || isDIGIT_A(c)) 1450 # define isIDFIRST_L1(c) (isALPHA_L1(c) || NATIVE_TO_LATIN1(c) == '_') 1451 # define isCHARNAME_CONT(c) (isWORDCHAR_L1(c) \ 1452 || isBLANK_L1(c) \ 1453 || (c) == '-' \ 1454 || (c) == '(' \ 1455 || (c) == ')') 1456 /* The following are not fully accurate in the above-ASCII range. I (khw) 1457 * don't think it's necessary to be so for the purposes where this gets 1458 * compiled */ 1459 # define _isQUOTEMETA(c) (FITS_IN_8_BITS(c) && ! isWORDCHAR_L1(c)) 1460 # define _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c) isALPHA_L1(c) 1461 1462 /* And these aren't accurate at all. They are useful only for above 1463 * Latin1, which utilities and bootstrapping don't deal with */ 1464 # define _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c) 0 1465 # define _HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(c) 0 1466 # define _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(c) 0 1467 1468 /* Many of the macros later in this file are defined in terms of these. By 1469 * implementing them with a function, which converts the class number into 1470 * a call to the desired macro, all of the later ones work. However, that 1471 * function won't be actually defined when building a utility program (no 1472 * perl.h), and so a compiler error will be generated if one is attempted 1473 * to be used. And the above-Latin1 code points require Unicode tables to 1474 * be present, something unlikely to be the case when bootstrapping */ 1475 # define _generic_isCC(c, classnum) \ 1476 (FITS_IN_8_BITS(c) && S_bootstrap_ctype((U8) (c), (classnum), TRUE)) 1477 # define _generic_isCC_A(c, classnum) \ 1478 (FITS_IN_8_BITS(c) && S_bootstrap_ctype((U8) (c), (classnum), FALSE)) 1479 #endif /* End of no perl.h H_PERL */ 1480 1481 #define isALPHANUMERIC(c) isALPHANUMERIC_A(c) 1482 #define isALPHA(c) isALPHA_A(c) 1483 #define isASCII_A(c) isASCII(c) 1484 #define isASCII_L1(c) isASCII(c) 1485 #define isBLANK(c) isBLANK_A(c) 1486 #define isCNTRL(c) isCNTRL_A(c) 1487 #define isDIGIT(c) isDIGIT_A(c) 1488 #define isGRAPH(c) isGRAPH_A(c) 1489 #define isIDFIRST(c) isIDFIRST_A(c) 1490 #define isLOWER(c) isLOWER_A(c) 1491 #define isPRINT(c) isPRINT_A(c) 1492 #define isPSXSPC_A(c) isSPACE_A(c) 1493 #define isPSXSPC(c) isPSXSPC_A(c) 1494 #define isPSXSPC_L1(c) isSPACE_L1(c) 1495 #define isPUNCT(c) isPUNCT_A(c) 1496 #define isSPACE(c) isSPACE_A(c) 1497 #define isUPPER(c) isUPPER_A(c) 1498 #define isWORDCHAR(c) isWORDCHAR_A(c) 1499 #define isXDIGIT(c) isXDIGIT_A(c) 1500 1501 /* ASCII casing. These could also be written as 1502 #define toLOWER(c) (isASCII(c) ? toLOWER_LATIN1(c) : (c)) 1503 #define toUPPER(c) (isASCII(c) ? toUPPER_LATIN1_MOD(c) : (c)) 1504 which uses table lookup and mask instead of subtraction. (This would 1505 work because the _MOD does not apply in the ASCII range). 1506 1507 These actually are UTF-8 invariant casing, not just ASCII, as any non-ASCII 1508 UTF-8 invariants are neither upper nor lower. (Only on EBCDIC platforms are 1509 there non-ASCII invariants, and all of them are controls.) */ 1510 #define toLOWER(c) (isUPPER(c) ? (U8)((c) + ('a' - 'A')) : (c)) 1511 #define toUPPER(c) (isLOWER(c) ? (U8)((c) - ('a' - 'A')) : (c)) 1512 1513 /* In the ASCII range, these are equivalent to what they're here defined to be. 1514 * But by creating these definitions, other code doesn't have to be aware of 1515 * this detail. Actually this works for all UTF-8 invariants, not just the 1516 * ASCII range. (EBCDIC platforms can have non-ASCII invariants.) */ 1517 #define toFOLD(c) toLOWER(c) 1518 #define toTITLE(c) toUPPER(c) 1519 1520 #define toLOWER_A(c) toLOWER(c) 1521 #define toUPPER_A(c) toUPPER(c) 1522 #define toFOLD_A(c) toFOLD(c) 1523 #define toTITLE_A(c) toTITLE(c) 1524 1525 /* Use table lookup for speed; returns the input itself if is out-of-range */ 1526 #define toLOWER_LATIN1(c) ((! FITS_IN_8_BITS(c)) \ 1527 ? (c) \ 1528 : PL_latin1_lc[ (U8) (c) ]) 1529 #define toLOWER_L1(c) toLOWER_LATIN1(c) /* Synonym for consistency */ 1530 1531 /* Modified uc. Is correct uc except for three non-ascii chars which are 1532 * all mapped to one of them, and these need special handling; returns the 1533 * input itself if is out-of-range */ 1534 #define toUPPER_LATIN1_MOD(c) ((! FITS_IN_8_BITS(c)) \ 1535 ? (c) \ 1536 : PL_mod_latin1_uc[ (U8) (c) ]) 1537 #define IN_UTF8_CTYPE_LOCALE PL_in_utf8_CTYPE_locale 1538 1539 /* Use foo_LC_uvchr() instead of these for beyond the Latin1 range */ 1540 1541 /* For internal core Perl use only: the base macro for defining macros like 1542 * isALPHA_LC, which uses the current LC_CTYPE locale. 'c' is the code point 1543 * (0-255) to check. In a UTF-8 locale, the result is the same as calling 1544 * isFOO_L1(); the 'utf8_locale_classnum' parameter is something like 1545 * _CC_UPPER, which gives the class number for doing this. For non-UTF-8 1546 * locales, the code to actually do the test this is passed in 'non_utf8'. If 1547 * 'c' is above 255, 0 is returned. For accessing the full range of possible 1548 * code points under locale rules, use the macros based on _generic_LC_uvchr 1549 * instead of this. */ 1550 #define _generic_LC_base(c, utf8_locale_classnum, non_utf8) \ 1551 (! FITS_IN_8_BITS(c) \ 1552 ? 0 \ 1553 : IN_UTF8_CTYPE_LOCALE \ 1554 ? cBOOL(PL_charclass[(U8) (c)] & _CC_mask(utf8_locale_classnum)) \ 1555 : cBOOL(non_utf8)) 1556 1557 /* For internal core Perl use only: a helper macro for defining macros like 1558 * isALPHA_LC. 'c' is the code point (0-255) to check. The function name to 1559 * actually do this test is passed in 'non_utf8_func', which is called on 'c', 1560 * casting 'c' to the macro _LC_CAST, which should not be parenthesized. See 1561 * _generic_LC_base for more info */ 1562 #define _generic_LC(c, utf8_locale_classnum, non_utf8_func) \ 1563 _generic_LC_base(c,utf8_locale_classnum, \ 1564 non_utf8_func( (_LC_CAST) (c))) 1565 1566 /* For internal core Perl use only: like _generic_LC, but also returns TRUE if 1567 * 'c' is the platform's native underscore character */ 1568 #define _generic_LC_underscore(c,utf8_locale_classnum,non_utf8_func) \ 1569 _generic_LC_base(c, utf8_locale_classnum, \ 1570 (non_utf8_func( (_LC_CAST) (c)) \ 1571 || (char)(c) == '_')) 1572 1573 /* These next three are also for internal core Perl use only: case-change 1574 * helper macros. The reason for using the PL_latin arrays is in case the 1575 * system function is defective; it ensures uniform results that conform to the 1576 * Unicod standard. It does not handle the anomalies in UTF-8 Turkic locales */ 1577 #define _generic_toLOWER_LC(c, function, cast) (! FITS_IN_8_BITS(c) \ 1578 ? (c) \ 1579 : (IN_UTF8_CTYPE_LOCALE) \ 1580 ? PL_latin1_lc[ (U8) (c) ] \ 1581 : (cast)function((cast)(c))) 1582 1583 /* Note that the result can be larger than a byte in a UTF-8 locale. It 1584 * returns a single value, so can't adequately return the upper case of LATIN 1585 * SMALL LETTER SHARP S in a UTF-8 locale (which should be a string of two 1586 * values "SS"); instead it asserts against that under DEBUGGING, and 1587 * otherwise returns its input. It does not handle the anomalies in UTF-8 1588 * Turkic locales. */ 1589 #define _generic_toUPPER_LC(c, function, cast) \ 1590 (! FITS_IN_8_BITS(c) \ 1591 ? (c) \ 1592 : ((! IN_UTF8_CTYPE_LOCALE) \ 1593 ? (cast)function((cast)(c)) \ 1594 : ((((U8)(c)) == MICRO_SIGN) \ 1595 ? GREEK_CAPITAL_LETTER_MU \ 1596 : ((((U8)(c)) == LATIN_SMALL_LETTER_Y_WITH_DIAERESIS) \ 1597 ? LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS \ 1598 : ((((U8)(c)) == LATIN_SMALL_LETTER_SHARP_S) \ 1599 ? (__ASSERT_(0) (c)) \ 1600 : PL_mod_latin1_uc[ (U8) (c) ]))))) 1601 1602 /* Note that the result can be larger than a byte in a UTF-8 locale. It 1603 * returns a single value, so can't adequately return the fold case of LATIN 1604 * SMALL LETTER SHARP S in a UTF-8 locale (which should be a string of two 1605 * values "ss"); instead it asserts against that under DEBUGGING, and 1606 * otherwise returns its input. It does not handle the anomalies in UTF-8 1607 * Turkic locales */ 1608 #define _generic_toFOLD_LC(c, function, cast) \ 1609 ((UNLIKELY((c) == MICRO_SIGN) && IN_UTF8_CTYPE_LOCALE) \ 1610 ? GREEK_SMALL_LETTER_MU \ 1611 : (__ASSERT_(! IN_UTF8_CTYPE_LOCALE \ 1612 || (c) != LATIN_SMALL_LETTER_SHARP_S) \ 1613 _generic_toLOWER_LC(c, function, cast))) 1614 1615 /* Use the libc versions for these if available. */ 1616 #if defined(HAS_ISASCII) 1617 # define isASCII_LC(c) (FITS_IN_8_BITS(c) && isascii( (U8) (c))) 1618 #else 1619 # define isASCII_LC(c) isASCII(c) 1620 #endif 1621 1622 #if defined(HAS_ISBLANK) 1623 # define isBLANK_LC(c) _generic_LC(c, _CC_BLANK, isblank) 1624 #else /* Unlike isASCII, varies if in a UTF-8 locale */ 1625 # define isBLANK_LC(c) ((IN_UTF8_CTYPE_LOCALE) ? isBLANK_L1(c) : isBLANK(c)) 1626 #endif 1627 1628 #define _LC_CAST U8 1629 1630 #ifdef WIN32 1631 /* The Windows functions don't bother to follow the POSIX standard, which 1632 * for example says that something can't both be a printable and a control. 1633 * But Windows treats the \t control as a printable, and does such things 1634 * as making superscripts into both digits and punctuation. This tames 1635 * these flaws by assuming that the definitions of both controls and space 1636 * are correct, and then making sure that other definitions don't have 1637 * weirdnesses, by making sure that isalnum() isn't also ispunct(), etc. 1638 * Not all possible weirdnesses are checked for, just the ones that were 1639 * detected on actual Microsoft code pages */ 1640 1641 # define isCNTRL_LC(c) _generic_LC(c, _CC_CNTRL, iscntrl) 1642 # define isSPACE_LC(c) _generic_LC(c, _CC_SPACE, isspace) 1643 1644 # define isALPHA_LC(c) (_generic_LC(c, _CC_ALPHA, isalpha) \ 1645 && isALPHANUMERIC_LC(c)) 1646 # define isALPHANUMERIC_LC(c) (_generic_LC(c, _CC_ALPHANUMERIC, isalnum) && \ 1647 ! isPUNCT_LC(c)) 1648 # define isDIGIT_LC(c) (_generic_LC(c, _CC_DIGIT, isdigit) && \ 1649 isALPHANUMERIC_LC(c)) 1650 # define isGRAPH_LC(c) (_generic_LC(c, _CC_GRAPH, isgraph) && isPRINT_LC(c)) 1651 # define isIDFIRST_LC(c) (((c) == '_') \ 1652 || (_generic_LC(c, _CC_IDFIRST, isalpha) && ! isPUNCT_LC(c))) 1653 # define isLOWER_LC(c) (_generic_LC(c, _CC_LOWER, islower) && isALPHA_LC(c)) 1654 # define isPRINT_LC(c) (_generic_LC(c, _CC_PRINT, isprint) && ! isCNTRL_LC(c)) 1655 # define isPUNCT_LC(c) (_generic_LC(c, _CC_PUNCT, ispunct) && ! isCNTRL_LC(c)) 1656 # define isUPPER_LC(c) (_generic_LC(c, _CC_UPPER, isupper) && isALPHA_LC(c)) 1657 # define isWORDCHAR_LC(c) (((c) == '_') || isALPHANUMERIC_LC(c)) 1658 # define isXDIGIT_LC(c) (_generic_LC(c, _CC_XDIGIT, isxdigit) \ 1659 && isALPHANUMERIC_LC(c)) 1660 1661 # define toLOWER_LC(c) _generic_toLOWER_LC((c), tolower, U8) 1662 # define toUPPER_LC(c) _generic_toUPPER_LC((c), toupper, U8) 1663 # define toFOLD_LC(c) _generic_toFOLD_LC((c), tolower, U8) 1664 1665 #elif defined(CTYPE256) || (!defined(isascii) && !defined(HAS_ISASCII)) 1666 /* For most other platforms */ 1667 1668 # define isALPHA_LC(c) _generic_LC(c, _CC_ALPHA, isalpha) 1669 # define isALPHANUMERIC_LC(c) _generic_LC(c, _CC_ALPHANUMERIC, isalnum) 1670 # define isCNTRL_LC(c) _generic_LC(c, _CC_CNTRL, iscntrl) 1671 # define isDIGIT_LC(c) _generic_LC(c, _CC_DIGIT, isdigit) 1672 # define isGRAPH_LC(c) _generic_LC(c, _CC_GRAPH, isgraph) 1673 # define isIDFIRST_LC(c) _generic_LC_underscore(c, _CC_IDFIRST, isalpha) 1674 # define isLOWER_LC(c) _generic_LC(c, _CC_LOWER, islower) 1675 # define isPRINT_LC(c) _generic_LC(c, _CC_PRINT, isprint) 1676 # define isPUNCT_LC(c) _generic_LC(c, _CC_PUNCT, ispunct) 1677 # define isSPACE_LC(c) _generic_LC(c, _CC_SPACE, isspace) 1678 # define isUPPER_LC(c) _generic_LC(c, _CC_UPPER, isupper) 1679 # define isWORDCHAR_LC(c) _generic_LC_underscore(c, _CC_WORDCHAR, isalnum) 1680 # define isXDIGIT_LC(c) _generic_LC(c, _CC_XDIGIT, isxdigit) 1681 1682 1683 # define toLOWER_LC(c) _generic_toLOWER_LC((c), tolower, U8) 1684 # define toUPPER_LC(c) _generic_toUPPER_LC((c), toupper, U8) 1685 # define toFOLD_LC(c) _generic_toFOLD_LC((c), tolower, U8) 1686 1687 #else /* The final fallback position */ 1688 1689 # define isALPHA_LC(c) (isascii(c) && isalpha(c)) 1690 # define isALPHANUMERIC_LC(c) (isascii(c) && isalnum(c)) 1691 # define isCNTRL_LC(c) (isascii(c) && iscntrl(c)) 1692 # define isDIGIT_LC(c) (isascii(c) && isdigit(c)) 1693 # define isGRAPH_LC(c) (isascii(c) && isgraph(c)) 1694 # define isIDFIRST_LC(c) (isascii(c) && (isalpha(c) || (c) == '_')) 1695 # define isLOWER_LC(c) (isascii(c) && islower(c)) 1696 # define isPRINT_LC(c) (isascii(c) && isprint(c)) 1697 # define isPUNCT_LC(c) (isascii(c) && ispunct(c)) 1698 # define isSPACE_LC(c) (isascii(c) && isspace(c)) 1699 # define isUPPER_LC(c) (isascii(c) && isupper(c)) 1700 # define isWORDCHAR_LC(c) (isascii(c) && (isalnum(c) || (c) == '_')) 1701 # define isXDIGIT_LC(c) (isascii(c) && isxdigit(c)) 1702 1703 # define toLOWER_LC(c) (isascii(c) ? tolower(c) : (c)) 1704 # define toUPPER_LC(c) (isascii(c) ? toupper(c) : (c)) 1705 # define toFOLD_LC(c) (isascii(c) ? tolower(c) : (c)) 1706 1707 #endif 1708 1709 #define isIDCONT(c) isWORDCHAR(c) 1710 #define isIDCONT_A(c) isWORDCHAR_A(c) 1711 #define isIDCONT_L1(c) isWORDCHAR_L1(c) 1712 #define isIDCONT_LC(c) isWORDCHAR_LC(c) 1713 #define isPSXSPC_LC(c) isSPACE_LC(c) 1714 1715 /* For internal core Perl use only: the base macros for defining macros like 1716 * isALPHA_uvchr. 'c' is the code point to check. 'classnum' is the POSIX class 1717 * number defined earlier in this file. _generic_uvchr() is used for POSIX 1718 * classes where there is a macro or function 'above_latin1' that takes the 1719 * single argument 'c' and returns the desired value. These exist for those 1720 * classes which have simple definitions, avoiding the overhead of a hash 1721 * lookup or inversion list binary search. _generic_swash_uvchr() can be used 1722 * for classes where that overhead is faster than a direct lookup. 1723 * _generic_uvchr() won't compile if 'c' isn't unsigned, as it won't match the 1724 * 'above_latin1' prototype. _generic_isCC() macro does bounds checking, so 1725 * have duplicate checks here, so could create versions of the macros that 1726 * don't, but experiments show that gcc optimizes them out anyway. */ 1727 1728 /* Note that all ignore 'use bytes' */ 1729 #define _generic_uvchr(classnum, above_latin1, c) ((c) < 256 \ 1730 ? _generic_isCC(c, classnum) \ 1731 : above_latin1(c)) 1732 #define _generic_swash_uvchr(classnum, c) ((c) < 256 \ 1733 ? _generic_isCC(c, classnum) \ 1734 : _is_uni_FOO(classnum, c)) 1735 #define isALPHA_uvchr(c) _generic_swash_uvchr(_CC_ALPHA, c) 1736 #define isALPHANUMERIC_uvchr(c) _generic_swash_uvchr(_CC_ALPHANUMERIC, c) 1737 #define isASCII_uvchr(c) isASCII(c) 1738 #define isBLANK_uvchr(c) _generic_uvchr(_CC_BLANK, is_HORIZWS_cp_high, c) 1739 #define isCNTRL_uvchr(c) isCNTRL_L1(c) /* All controls are in Latin1 */ 1740 #define isDIGIT_uvchr(c) _generic_swash_uvchr(_CC_DIGIT, c) 1741 #define isGRAPH_uvchr(c) _generic_swash_uvchr(_CC_GRAPH, c) 1742 #define isIDCONT_uvchr(c) \ 1743 _generic_uvchr(_CC_WORDCHAR, _is_uni_perl_idcont, c) 1744 #define isIDFIRST_uvchr(c) \ 1745 _generic_uvchr(_CC_IDFIRST, _is_uni_perl_idstart, c) 1746 #define isLOWER_uvchr(c) _generic_swash_uvchr(_CC_LOWER, c) 1747 #define isPRINT_uvchr(c) _generic_swash_uvchr(_CC_PRINT, c) 1748 1749 #define isPUNCT_uvchr(c) _generic_swash_uvchr(_CC_PUNCT, c) 1750 #define isSPACE_uvchr(c) _generic_uvchr(_CC_SPACE, is_XPERLSPACE_cp_high, c) 1751 #define isPSXSPC_uvchr(c) isSPACE_uvchr(c) 1752 1753 #define isUPPER_uvchr(c) _generic_swash_uvchr(_CC_UPPER, c) 1754 #define isVERTWS_uvchr(c) _generic_uvchr(_CC_VERTSPACE, is_VERTWS_cp_high, c) 1755 #define isWORDCHAR_uvchr(c) _generic_swash_uvchr(_CC_WORDCHAR, c) 1756 #define isXDIGIT_uvchr(c) _generic_uvchr(_CC_XDIGIT, is_XDIGIT_cp_high, c) 1757 1758 #define toFOLD_uvchr(c,s,l) to_uni_fold(c,s,l) 1759 #define toLOWER_uvchr(c,s,l) to_uni_lower(c,s,l) 1760 #define toTITLE_uvchr(c,s,l) to_uni_title(c,s,l) 1761 #define toUPPER_uvchr(c,s,l) to_uni_upper(c,s,l) 1762 1763 /* For backwards compatibility, even though '_uni' should mean official Unicode 1764 * code points, in Perl it means native for those below 256 */ 1765 #define isALPHA_uni(c) isALPHA_uvchr(c) 1766 #define isALPHANUMERIC_uni(c) isALPHANUMERIC_uvchr(c) 1767 #define isASCII_uni(c) isASCII_uvchr(c) 1768 #define isBLANK_uni(c) isBLANK_uvchr(c) 1769 #define isCNTRL_uni(c) isCNTRL_uvchr(c) 1770 #define isDIGIT_uni(c) isDIGIT_uvchr(c) 1771 #define isGRAPH_uni(c) isGRAPH_uvchr(c) 1772 #define isIDCONT_uni(c) isIDCONT_uvchr(c) 1773 #define isIDFIRST_uni(c) isIDFIRST_uvchr(c) 1774 #define isLOWER_uni(c) isLOWER_uvchr(c) 1775 #define isPRINT_uni(c) isPRINT_uvchr(c) 1776 #define isPUNCT_uni(c) isPUNCT_uvchr(c) 1777 #define isSPACE_uni(c) isSPACE_uvchr(c) 1778 #define isPSXSPC_uni(c) isPSXSPC_uvchr(c) 1779 #define isUPPER_uni(c) isUPPER_uvchr(c) 1780 #define isVERTWS_uni(c) isVERTWS_uvchr(c) 1781 #define isWORDCHAR_uni(c) isWORDCHAR_uvchr(c) 1782 #define isXDIGIT_uni(c) isXDIGIT_uvchr(c) 1783 #define toFOLD_uni(c,s,l) toFOLD_uvchr(c,s,l) 1784 #define toLOWER_uni(c,s,l) toLOWER_uvchr(c,s,l) 1785 #define toTITLE_uni(c,s,l) toTITLE_uvchr(c,s,l) 1786 #define toUPPER_uni(c,s,l) toUPPER_uvchr(c,s,l) 1787 1788 /* For internal core Perl use only: the base macros for defining macros like 1789 * isALPHA_LC_uvchr. These are like isALPHA_LC, but the input can be any code 1790 * point, not just 0-255. Like _generic_uvchr, there are two versions, one for 1791 * simple class definitions; the other for more complex. These are like 1792 * _generic_uvchr, so see it for more info. */ 1793 #define _generic_LC_uvchr(latin1, above_latin1, c) \ 1794 (c < 256 ? latin1(c) : above_latin1(c)) 1795 #define _generic_LC_swash_uvchr(latin1, classnum, c) \ 1796 (c < 256 ? latin1(c) : _is_uni_FOO(classnum, c)) 1797 1798 #define isALPHA_LC_uvchr(c) _generic_LC_swash_uvchr(isALPHA_LC, _CC_ALPHA, c) 1799 #define isALPHANUMERIC_LC_uvchr(c) _generic_LC_swash_uvchr(isALPHANUMERIC_LC, \ 1800 _CC_ALPHANUMERIC, c) 1801 #define isASCII_LC_uvchr(c) isASCII_LC(c) 1802 #define isBLANK_LC_uvchr(c) _generic_LC_uvchr(isBLANK_LC, \ 1803 is_HORIZWS_cp_high, c) 1804 #define isCNTRL_LC_uvchr(c) (c < 256 ? isCNTRL_LC(c) : 0) 1805 #define isDIGIT_LC_uvchr(c) _generic_LC_swash_uvchr(isDIGIT_LC, _CC_DIGIT, c) 1806 #define isGRAPH_LC_uvchr(c) _generic_LC_swash_uvchr(isGRAPH_LC, _CC_GRAPH, c) 1807 #define isIDCONT_LC_uvchr(c) _generic_LC_uvchr(isIDCONT_LC, \ 1808 _is_uni_perl_idcont, c) 1809 #define isIDFIRST_LC_uvchr(c) _generic_LC_uvchr(isIDFIRST_LC, \ 1810 _is_uni_perl_idstart, c) 1811 #define isLOWER_LC_uvchr(c) _generic_LC_swash_uvchr(isLOWER_LC, _CC_LOWER, c) 1812 #define isPRINT_LC_uvchr(c) _generic_LC_swash_uvchr(isPRINT_LC, _CC_PRINT, c) 1813 #define isPSXSPC_LC_uvchr(c) isSPACE_LC_uvchr(c) 1814 #define isPUNCT_LC_uvchr(c) _generic_LC_swash_uvchr(isPUNCT_LC, _CC_PUNCT, c) 1815 #define isSPACE_LC_uvchr(c) _generic_LC_uvchr(isSPACE_LC, \ 1816 is_XPERLSPACE_cp_high, c) 1817 #define isUPPER_LC_uvchr(c) _generic_LC_swash_uvchr(isUPPER_LC, _CC_UPPER, c) 1818 #define isWORDCHAR_LC_uvchr(c) _generic_LC_swash_uvchr(isWORDCHAR_LC, \ 1819 _CC_WORDCHAR, c) 1820 #define isXDIGIT_LC_uvchr(c) _generic_LC_uvchr(isXDIGIT_LC, \ 1821 is_XDIGIT_cp_high, c) 1822 1823 #define isBLANK_LC_uni(c) isBLANK_LC_uvchr(UNI_TO_NATIVE(c)) 1824 1825 /* For internal core Perl use only: the base macros for defining macros like 1826 * isALPHA_utf8. These are like the earlier defined macros, but take an input 1827 * UTF-8 encoded string 'p'. If the input is in the Latin1 range, use 1828 * the Latin1 macro 'classnum' on 'p'. Otherwise use the value given by the 1829 * 'utf8' parameter. This relies on the fact that ASCII characters have the 1830 * same representation whether utf8 or not. Note that it assumes that the utf8 1831 * has been validated, and ignores 'use bytes' */ 1832 #define _base_generic_utf8(enum_name, name, p, use_locale ) \ 1833 _is_utf8_FOO(CAT2(_CC_, enum_name), \ 1834 (const U8 *) p, \ 1835 "is" STRINGIFY(name) "_utf8", \ 1836 "is" STRINGIFY(name) "_utf8_safe", \ 1837 1, use_locale, __FILE__,__LINE__) 1838 1839 #define _generic_utf8(name, p) _base_generic_utf8(name, name, p, 0) 1840 1841 /* The "_safe" macros make sure that we don't attempt to read beyond 'e', but 1842 * they don't otherwise go out of their way to look for malformed UTF-8. If 1843 * they can return accurate results without knowing if the input is otherwise 1844 * malformed, they do so. For example isASCII is accurate in spite of any 1845 * non-length malformations because it looks only at a single byte. Likewise 1846 * isDIGIT looks just at the first byte for code points 0-255, as all UTF-8 1847 * variant ones return FALSE. But, if the input has to be well-formed in order 1848 * for the results to be accurate, the macros will test and if malformed will 1849 * call a routine to die 1850 * 1851 * Except for toke.c, the macros do assume that e > p, asserting that on 1852 * DEBUGGING builds. Much code that calls these depends on this being true, 1853 * for other reasons. toke.c is treated specially as using the regular 1854 * assertion breaks it in many ways. All strings that these operate on there 1855 * are supposed to have an extra NUL character at the end, so that *e = \0. A 1856 * bunch of code in toke.c assumes that this is true, so the assertion allows 1857 * for that */ 1858 #ifdef PERL_IN_TOKE_C 1859 # define _utf8_safe_assert(p,e) ((e) > (p) || ((e) == (p) && *(p) == '\0')) 1860 #else 1861 # define _utf8_safe_assert(p,e) ((e) > (p)) 1862 #endif 1863 1864 #define _generic_utf8_safe(classnum, p, e, above_latin1) \ 1865 (__ASSERT_(_utf8_safe_assert(p, e)) \ 1866 (UTF8_IS_INVARIANT(*(p))) \ 1867 ? _generic_isCC(*(p), classnum) \ 1868 : (UTF8_IS_DOWNGRADEABLE_START(*(p)) \ 1869 ? ((LIKELY((e) - (p) > 1 && UTF8_IS_CONTINUATION(*((p)+1)))) \ 1870 ? _generic_isCC(EIGHT_BIT_UTF8_TO_NATIVE(*(p), *((p)+1 )), \ 1871 classnum) \ 1872 : (_force_out_malformed_utf8_message( \ 1873 (U8 *) (p), (U8 *) (e), 0, 1), 0)) \ 1874 : above_latin1)) 1875 /* Like the above, but calls 'above_latin1(p)' to get the utf8 value. 1876 * 'above_latin1' can be a macro */ 1877 #define _generic_func_utf8_safe(classnum, above_latin1, p, e) \ 1878 _generic_utf8_safe(classnum, p, e, above_latin1(p, e)) 1879 #define _generic_non_swash_utf8_safe(classnum, above_latin1, p, e) \ 1880 _generic_utf8_safe(classnum, p, e, \ 1881 (UNLIKELY((e) - (p) < UTF8SKIP(p)) \ 1882 ? (_force_out_malformed_utf8_message( \ 1883 (U8 *) (p), (U8 *) (e), 0, 1), 0) \ 1884 : above_latin1(p))) 1885 /* Like the above, but passes classnum to _isFOO_utf8(), instead of having an 1886 * 'above_latin1' parameter */ 1887 #define _generic_swash_utf8_safe(classnum, p, e) \ 1888 _generic_utf8_safe(classnum, p, e, _is_utf8_FOO_with_len(classnum, p, e)) 1889 1890 /* Like the above, but should be used only when it is known that there are no 1891 * characters in the upper-Latin1 range (128-255 on ASCII platforms) which the 1892 * class is TRUE for. Hence it can skip the tests for this range. 1893 * 'above_latin1' should include its arguments */ 1894 #define _generic_utf8_safe_no_upper_latin1(classnum, p, e, above_latin1) \ 1895 (__ASSERT_(_utf8_safe_assert(p, e)) \ 1896 (UTF8_IS_INVARIANT(*(p))) \ 1897 ? _generic_isCC(*(p), classnum) \ 1898 : (UTF8_IS_DOWNGRADEABLE_START(*(p))) \ 1899 ? 0 /* Note that doesn't check validity for latin1 */ \ 1900 : above_latin1) 1901 1902 1903 #define isALPHA_utf8(p) _generic_utf8(ALPHA, p) 1904 #define isALPHANUMERIC_utf8(p) _generic_utf8(ALPHANUMERIC, p) 1905 #define isASCII_utf8(p) _generic_utf8(ASCII, p) 1906 #define isBLANK_utf8(p) _generic_utf8(BLANK, p) 1907 #define isCNTRL_utf8(p) _generic_utf8(CNTRL, p) 1908 #define isDIGIT_utf8(p) _generic_utf8(DIGIT, p) 1909 #define isGRAPH_utf8(p) _generic_utf8(GRAPH, p) 1910 #define isIDCONT_utf8(p) _generic_utf8(IDCONT, p) 1911 #define isIDFIRST_utf8(p) _generic_utf8(IDFIRST, p) 1912 #define isLOWER_utf8(p) _generic_utf8(LOWER, p) 1913 #define isPRINT_utf8(p) _generic_utf8(PRINT, p) 1914 #define isPSXSPC_utf8(p) _generic_utf8(PSXSPC, p) 1915 #define isPUNCT_utf8(p) _generic_utf8(PUNCT, p) 1916 #define isSPACE_utf8(p) _generic_utf8(SPACE, p) 1917 #define isUPPER_utf8(p) _generic_utf8(UPPER, p) 1918 #define isVERTWS_utf8(p) _generic_utf8(VERTSPACE, p) 1919 #define isWORDCHAR_utf8(p) _generic_utf8(WORDCHAR, p) 1920 #define isXDIGIT_utf8(p) _generic_utf8(XDIGIT, p) 1921 1922 #define isALPHA_utf8_safe(p, e) _generic_swash_utf8_safe(_CC_ALPHA, p, e) 1923 #define isALPHANUMERIC_utf8_safe(p, e) \ 1924 _generic_swash_utf8_safe(_CC_ALPHANUMERIC, p, e) 1925 #define isASCII_utf8_safe(p, e) \ 1926 /* Because ASCII is invariant under utf8, the non-utf8 macro \ 1927 * works */ \ 1928 (__ASSERT_(_utf8_safe_assert(p, e)) isASCII(*(p))) 1929 #define isBLANK_utf8_safe(p, e) \ 1930 _generic_non_swash_utf8_safe(_CC_BLANK, is_HORIZWS_high, p, e) 1931 1932 #ifdef EBCDIC 1933 /* Because all controls are UTF-8 invariants in EBCDIC, we can use this 1934 * more efficient macro instead of the more general one */ 1935 # define isCNTRL_utf8_safe(p, e) \ 1936 (__ASSERT_(_utf8_safe_assert(p, e)) isCNTRL_L1(*(p))) 1937 #else 1938 # define isCNTRL_utf8_safe(p, e) _generic_utf8_safe(_CC_CNTRL, p, e, 0) 1939 #endif 1940 1941 #define isDIGIT_utf8_safe(p, e) \ 1942 _generic_utf8_safe_no_upper_latin1(_CC_DIGIT, p, e, \ 1943 _is_utf8_FOO_with_len(_CC_DIGIT, p, e)) 1944 #define isGRAPH_utf8_safe(p, e) _generic_swash_utf8_safe(_CC_GRAPH, p, e) 1945 #define isIDCONT_utf8_safe(p, e) _generic_func_utf8_safe(_CC_WORDCHAR, \ 1946 _is_utf8_perl_idcont_with_len, p, e) 1947 1948 /* To prevent S_scan_word in toke.c from hanging, we have to make sure that 1949 * IDFIRST is an alnum. See 1950 * http://rt.perl.org/rt3/Ticket/Display.html?id=74022 for more detail than you 1951 * ever wanted to know about. (In the ASCII range, there isn't a difference.) 1952 * This used to be not the XID version, but we decided to go with the more 1953 * modern Unicode definition */ 1954 #define isIDFIRST_utf8_safe(p, e) \ 1955 _generic_func_utf8_safe(_CC_IDFIRST, \ 1956 _is_utf8_perl_idstart_with_len, (U8 *) (p), (U8 *) (e)) 1957 1958 #define isLOWER_utf8_safe(p, e) _generic_swash_utf8_safe(_CC_LOWER, p, e) 1959 #define isPRINT_utf8_safe(p, e) _generic_swash_utf8_safe(_CC_PRINT, p, e) 1960 #define isPSXSPC_utf8_safe(p, e) isSPACE_utf8_safe(p, e) 1961 #define isPUNCT_utf8_safe(p, e) _generic_swash_utf8_safe(_CC_PUNCT, p, e) 1962 #define isSPACE_utf8_safe(p, e) \ 1963 _generic_non_swash_utf8_safe(_CC_SPACE, is_XPERLSPACE_high, p, e) 1964 #define isUPPER_utf8_safe(p, e) _generic_swash_utf8_safe(_CC_UPPER, p, e) 1965 #define isVERTWS_utf8_safe(p, e) \ 1966 _generic_non_swash_utf8_safe(_CC_VERTSPACE, is_VERTWS_high, p, e) 1967 #define isWORDCHAR_utf8_safe(p, e) \ 1968 _generic_swash_utf8_safe(_CC_WORDCHAR, p, e) 1969 #define isXDIGIT_utf8_safe(p, e) \ 1970 _generic_utf8_safe_no_upper_latin1(_CC_XDIGIT, p, e, \ 1971 (UNLIKELY((e) - (p) < UTF8SKIP(p)) \ 1972 ? (_force_out_malformed_utf8_message( \ 1973 (U8 *) (p), (U8 *) (e), 0, 1), 0) \ 1974 : is_XDIGIT_high(p))) 1975 1976 #define toFOLD_utf8(p,s,l) to_utf8_fold(p,s,l) 1977 #define toLOWER_utf8(p,s,l) to_utf8_lower(p,s,l) 1978 #define toTITLE_utf8(p,s,l) to_utf8_title(p,s,l) 1979 #define toUPPER_utf8(p,s,l) to_utf8_upper(p,s,l) 1980 1981 /* For internal core use only, subject to change */ 1982 #define _toFOLD_utf8_flags(p,e,s,l,f) _to_utf8_fold_flags (p,e,s,l,f, "", 0) 1983 #define _toLOWER_utf8_flags(p,e,s,l,f) _to_utf8_lower_flags(p,e,s,l,f, "", 0) 1984 #define _toTITLE_utf8_flags(p,e,s,l,f) _to_utf8_title_flags(p,e,s,l,f, "", 0) 1985 #define _toUPPER_utf8_flags(p,e,s,l,f) _to_utf8_upper_flags(p,e,s,l,f, "", 0) 1986 1987 #define toFOLD_utf8_safe(p,e,s,l) _toFOLD_utf8_flags(p,e,s,l, FOLD_FLAGS_FULL) 1988 #define toLOWER_utf8_safe(p,e,s,l) _toLOWER_utf8_flags(p,e,s,l, 0) 1989 #define toTITLE_utf8_safe(p,e,s,l) _toTITLE_utf8_flags(p,e,s,l, 0) 1990 #define toUPPER_utf8_safe(p,e,s,l) _toUPPER_utf8_flags(p,e,s,l, 0) 1991 1992 /* For internal core Perl use only: the base macros for defining macros like 1993 * isALPHA_LC_utf8. These are like _generic_utf8, but if the first code point 1994 * in 'p' is within the 0-255 range, it uses locale rules from the passed-in 1995 * 'macro' parameter */ 1996 #define _generic_LC_utf8(name, p) _base_generic_utf8(name, name, p, 1) 1997 1998 #define isALPHA_LC_utf8(p) _generic_LC_utf8(ALPHA, p) 1999 #define isALPHANUMERIC_LC_utf8(p) _generic_LC_utf8(ALPHANUMERIC, p) 2000 #define isASCII_LC_utf8(p) _generic_LC_utf8(ASCII, p) 2001 #define isBLANK_LC_utf8(p) _generic_LC_utf8(BLANK, p) 2002 #define isCNTRL_LC_utf8(p) _generic_LC_utf8(CNTRL, p) 2003 #define isDIGIT_LC_utf8(p) _generic_LC_utf8(DIGIT, p) 2004 #define isGRAPH_LC_utf8(p) _generic_LC_utf8(GRAPH, p) 2005 #define isIDCONT_LC_utf8(p) _generic_LC_utf8(IDCONT, p) 2006 #define isIDFIRST_LC_utf8(p) _generic_LC_utf8(IDFIRST, p) 2007 #define isLOWER_LC_utf8(p) _generic_LC_utf8(LOWER, p) 2008 #define isPRINT_LC_utf8(p) _generic_LC_utf8(PRINT, p) 2009 #define isPSXSPC_LC_utf8(p) _generic_LC_utf8(PSXSPC, p) 2010 #define isPUNCT_LC_utf8(p) _generic_LC_utf8(PUNCT, p) 2011 #define isSPACE_LC_utf8(p) _generic_LC_utf8(SPACE, p) 2012 #define isUPPER_LC_utf8(p) _generic_LC_utf8(UPPER, p) 2013 #define isWORDCHAR_LC_utf8(p) _generic_LC_utf8(WORDCHAR, p) 2014 #define isXDIGIT_LC_utf8(p) _generic_LC_utf8(XDIGIT, p) 2015 2016 /* For internal core Perl use only: the base macros for defining macros like 2017 * isALPHA_LC_utf8_safe. These are like _generic_utf8, but if the first code 2018 * point in 'p' is within the 0-255 range, it uses locale rules from the 2019 * passed-in 'macro' parameter */ 2020 #define _generic_LC_utf8_safe(macro, p, e, above_latin1) \ 2021 (__ASSERT_(_utf8_safe_assert(p, e)) \ 2022 (UTF8_IS_INVARIANT(*(p))) \ 2023 ? macro(*(p)) \ 2024 : (UTF8_IS_DOWNGRADEABLE_START(*(p)) \ 2025 ? ((LIKELY((e) - (p) > 1 && UTF8_IS_CONTINUATION(*((p)+1)))) \ 2026 ? macro(EIGHT_BIT_UTF8_TO_NATIVE(*(p), *((p)+1))) \ 2027 : (_force_out_malformed_utf8_message( \ 2028 (U8 *) (p), (U8 *) (e), 0, 1), 0)) \ 2029 : above_latin1)) 2030 2031 #define _generic_LC_swash_utf8_safe(macro, classnum, p, e) \ 2032 _generic_LC_utf8_safe(macro, p, e, \ 2033 _is_utf8_FOO_with_len(classnum, p, e)) 2034 2035 #define _generic_LC_func_utf8_safe(macro, above_latin1, p, e) \ 2036 _generic_LC_utf8_safe(macro, p, e, above_latin1(p, e)) 2037 2038 #define _generic_LC_non_swash_utf8_safe(classnum, above_latin1, p, e) \ 2039 _generic_LC_utf8_safe(classnum, p, e, \ 2040 (UNLIKELY((e) - (p) < UTF8SKIP(p)) \ 2041 ? (_force_out_malformed_utf8_message( \ 2042 (U8 *) (p), (U8 *) (e), 0, 1), 0) \ 2043 : above_latin1(p))) 2044 2045 #define isALPHANUMERIC_LC_utf8_safe(p, e) \ 2046 _generic_LC_swash_utf8_safe(isALPHANUMERIC_LC, \ 2047 _CC_ALPHANUMERIC, p, e) 2048 #define isALPHA_LC_utf8_safe(p, e) \ 2049 _generic_LC_swash_utf8_safe(isALPHA_LC, _CC_ALPHA, p, e) 2050 #define isASCII_LC_utf8_safe(p, e) \ 2051 (__ASSERT_(_utf8_safe_assert(p, e)) isASCII_LC(*(p))) 2052 #define isBLANK_LC_utf8_safe(p, e) \ 2053 _generic_LC_non_swash_utf8_safe(isBLANK_LC, is_HORIZWS_high, p, e) 2054 #define isCNTRL_LC_utf8_safe(p, e) \ 2055 _generic_LC_utf8_safe(isCNTRL_LC, p, e, 0) 2056 #define isDIGIT_LC_utf8_safe(p, e) \ 2057 _generic_LC_swash_utf8_safe(isDIGIT_LC, _CC_DIGIT, p, e) 2058 #define isGRAPH_LC_utf8_safe(p, e) \ 2059 _generic_LC_swash_utf8_safe(isGRAPH_LC, _CC_GRAPH, p, e) 2060 #define isIDCONT_LC_utf8_safe(p, e) \ 2061 _generic_LC_func_utf8_safe(isIDCONT_LC, \ 2062 _is_utf8_perl_idcont_with_len, p, e) 2063 #define isIDFIRST_LC_utf8_safe(p, e) \ 2064 _generic_LC_func_utf8_safe(isIDFIRST_LC, \ 2065 _is_utf8_perl_idstart_with_len, p, e) 2066 #define isLOWER_LC_utf8_safe(p, e) \ 2067 _generic_LC_swash_utf8_safe(isLOWER_LC, _CC_LOWER, p, e) 2068 #define isPRINT_LC_utf8_safe(p, e) \ 2069 _generic_LC_swash_utf8_safe(isPRINT_LC, _CC_PRINT, p, e) 2070 #define isPSXSPC_LC_utf8_safe(p, e) isSPACE_LC_utf8_safe(p, e) 2071 #define isPUNCT_LC_utf8_safe(p, e) \ 2072 _generic_LC_swash_utf8_safe(isPUNCT_LC, _CC_PUNCT, p, e) 2073 #define isSPACE_LC_utf8_safe(p, e) \ 2074 _generic_LC_non_swash_utf8_safe(isSPACE_LC, is_XPERLSPACE_high, p, e) 2075 #define isUPPER_LC_utf8_safe(p, e) \ 2076 _generic_LC_swash_utf8_safe(isUPPER_LC, _CC_UPPER, p, e) 2077 #define isWORDCHAR_LC_utf8_safe(p, e) \ 2078 _generic_LC_swash_utf8_safe(isWORDCHAR_LC, _CC_WORDCHAR, p, e) 2079 #define isXDIGIT_LC_utf8_safe(p, e) \ 2080 _generic_LC_non_swash_utf8_safe(isXDIGIT_LC, is_XDIGIT_high, p, e) 2081 2082 /* Macros for backwards compatibility and for completeness when the ASCII and 2083 * Latin1 values are identical */ 2084 #define isALPHAU(c) isALPHA_L1(c) 2085 #define isDIGIT_L1(c) isDIGIT_A(c) 2086 #define isOCTAL(c) isOCTAL_A(c) 2087 #define isOCTAL_L1(c) isOCTAL_A(c) 2088 #define isXDIGIT_L1(c) isXDIGIT_A(c) 2089 #define isALNUM(c) isWORDCHAR(c) 2090 #define isALNUMU(c) isWORDCHAR_L1(c) 2091 #define isALNUM_LC(c) isWORDCHAR_LC(c) 2092 #define isALNUM_uni(c) isWORDCHAR_uni(c) 2093 #define isALNUM_LC_uvchr(c) isWORDCHAR_LC_uvchr(c) 2094 #define isALNUM_utf8(p) isWORDCHAR_utf8(p) 2095 #define isALNUM_LC_utf8(p) isWORDCHAR_LC_utf8(p) 2096 #define isALNUMC_A(c) isALPHANUMERIC_A(c) /* Mnemonic: "C's alnum" */ 2097 #define isALNUMC_L1(c) isALPHANUMERIC_L1(c) 2098 #define isALNUMC(c) isALPHANUMERIC(c) 2099 #define isALNUMC_LC(c) isALPHANUMERIC_LC(c) 2100 #define isALNUMC_uni(c) isALPHANUMERIC_uni(c) 2101 #define isALNUMC_LC_uvchr(c) isALPHANUMERIC_LC_uvchr(c) 2102 #define isALNUMC_utf8(p) isALPHANUMERIC_utf8(p) 2103 #define isALNUMC_LC_utf8(p) isALPHANUMERIC_LC_utf8(p) 2104 2105 /* On EBCDIC platforms, CTRL-@ is 0, CTRL-A is 1, etc, just like on ASCII, 2106 * except that they don't necessarily mean the same characters, e.g. CTRL-D is 2107 * 4 on both systems, but that is EOT on ASCII; ST on EBCDIC. 2108 * '?' is special-cased on EBCDIC to APC, which is the control there that is 2109 * the outlier from the block that contains the other controls, just like 2110 * toCTRL('?') on ASCII yields DEL, the control that is the outlier from the C0 2111 * block. If it weren't special cased, it would yield a non-control. 2112 * The conversion works both ways, so toCTRL('D') is 4, and toCTRL(4) is D, 2113 * etc. */ 2114 #ifndef EBCDIC 2115 # define toCTRL(c) (__ASSERT_(FITS_IN_8_BITS(c)) toUPPER(((U8)(c))) ^ 64) 2116 #else 2117 # define toCTRL(c) (__ASSERT_(FITS_IN_8_BITS(c)) \ 2118 ((isPRINT_A(c)) \ 2119 ? (UNLIKELY((c) == '?') \ 2120 ? QUESTION_MARK_CTRL \ 2121 : (NATIVE_TO_LATIN1(toUPPER((U8) (c))) ^ 64)) \ 2122 : (UNLIKELY((c) == QUESTION_MARK_CTRL) \ 2123 ? '?' \ 2124 : (LATIN1_TO_NATIVE(((U8) (c)) ^ 64))))) 2125 #endif 2126 2127 /* Line numbers are unsigned, 32 bits. */ 2128 typedef U32 line_t; 2129 #define NOLINE ((line_t) 4294967295UL) /* = FFFFFFFF */ 2130 2131 /* Helpful alias for version prescan */ 2132 #define is_LAX_VERSION(a,b) \ 2133 (a != Perl_prescan_version(aTHX_ a, FALSE, b, NULL, NULL, NULL, NULL)) 2134 2135 #define is_STRICT_VERSION(a,b) \ 2136 (a != Perl_prescan_version(aTHX_ a, TRUE, b, NULL, NULL, NULL, NULL)) 2137 2138 #define BADVERSION(a,b,c) \ 2139 if (b) { \ 2140 *b = c; \ 2141 } \ 2142 return a; 2143 2144 /* Converts a character known to represent a hexadecimal digit (0-9, A-F, or 2145 * a-f) to its numeric value. READ_XDIGIT's argument is a string pointer, 2146 * which is advanced. The input is validated only by an assert() in DEBUGGING 2147 * builds. In both ASCII and EBCDIC the last 4 bits of the digits are 0-9; and 2148 * the last 4 bits of A-F and a-f are 1-6, so adding 9 yields 10-15 */ 2149 #define XDIGIT_VALUE(c) (__ASSERT_(isXDIGIT(c)) (0xf & (isDIGIT(c) \ 2150 ? (c) \ 2151 : ((c) + 9)))) 2152 #define READ_XDIGIT(s) (__ASSERT_(isXDIGIT(*s)) (0xf & (isDIGIT(*(s)) \ 2153 ? (*(s)++) \ 2154 : (*(s)++ + 9)))) 2155 2156 /* Converts a character known to represent an octal digit (0-7) to its numeric 2157 * value. The input is validated only by an assert() in DEBUGGING builds. In 2158 * both ASCII and EBCDIC the last 3 bits of the octal digits range from 0-7. */ 2159 #define OCTAL_VALUE(c) (__ASSERT_(isOCTAL(c)) (7 & (c))) 2160 2161 /* Efficiently returns a boolean as to if two native characters are equivalent 2162 * case-insenstively. At least one of the characters must be one of [A-Za-z]; 2163 * the ALPHA in the name is to remind you of that. This is asserted() in 2164 * DEBUGGING builds. Because [A-Za-z] are invariant under UTF-8, this macro 2165 * works (on valid input) for both non- and UTF-8-encoded bytes. 2166 * 2167 * When one of the inputs is a compile-time constant and gets folded by the 2168 * compiler, this reduces to an AND and a TEST. On both EBCDIC and ASCII 2169 * machines, 'A' and 'a' differ by a single bit; the same with the upper and 2170 * lower case of all other ASCII-range alphabetics. On ASCII platforms, they 2171 * are 32 apart; on EBCDIC, they are 64. At compile time, this uses an 2172 * exclusive 'or' to find that bit and then inverts it to form a mask, with 2173 * just a single 0, in the bit position where the upper- and lowercase differ. 2174 * */ 2175 #define isALPHA_FOLD_EQ(c1, c2) \ 2176 (__ASSERT_(isALPHA_A(c1) || isALPHA_A(c2)) \ 2177 ((c1) & ~('A' ^ 'a')) == ((c2) & ~('A' ^ 'a'))) 2178 #define isALPHA_FOLD_NE(c1, c2) (! isALPHA_FOLD_EQ((c1), (c2))) 2179 2180 /* 2181 =head1 Memory Management 2182 2183 =for apidoc Am|void|Newx|void* ptr|int nitems|type 2184 The XSUB-writer's interface to the C C<malloc> function. 2185 2186 Memory obtained by this should B<ONLY> be freed with L</"Safefree">. 2187 2188 In 5.9.3, Newx() and friends replace the older New() API, and drops 2189 the first parameter, I<x>, a debug aid which allowed callers to identify 2190 themselves. This aid has been superseded by a new build option, 2191 PERL_MEM_LOG (see L<perlhacktips/PERL_MEM_LOG>). The older API is still 2192 there for use in XS modules supporting older perls. 2193 2194 =for apidoc Am|void|Newxc|void* ptr|int nitems|type|cast 2195 The XSUB-writer's interface to the C C<malloc> function, with 2196 cast. See also C<L</Newx>>. 2197 2198 Memory obtained by this should B<ONLY> be freed with L</"Safefree">. 2199 2200 =for apidoc Am|void|Newxz|void* ptr|int nitems|type 2201 The XSUB-writer's interface to the C C<malloc> function. The allocated 2202 memory is zeroed with C<memzero>. See also C<L</Newx>>. 2203 2204 Memory obtained by this should B<ONLY> be freed with L</"Safefree">. 2205 2206 =for apidoc Am|void|Renew|void* ptr|int nitems|type 2207 The XSUB-writer's interface to the C C<realloc> function. 2208 2209 Memory obtained by this should B<ONLY> be freed with L</"Safefree">. 2210 2211 =for apidoc Am|void|Renewc|void* ptr|int nitems|type|cast 2212 The XSUB-writer's interface to the C C<realloc> function, with 2213 cast. 2214 2215 Memory obtained by this should B<ONLY> be freed with L</"Safefree">. 2216 2217 =for apidoc Am|void|Safefree|void* ptr 2218 The XSUB-writer's interface to the C C<free> function. 2219 2220 This should B<ONLY> be used on memory obtained using L</"Newx"> and friends. 2221 2222 =for apidoc Am|void|Move|void* src|void* dest|int nitems|type 2223 The XSUB-writer's interface to the C C<memmove> function. The C<src> is the 2224 source, C<dest> is the destination, C<nitems> is the number of items, and 2225 C<type> is the type. Can do overlapping moves. See also C<L</Copy>>. 2226 2227 =for apidoc Am|void *|MoveD|void* src|void* dest|int nitems|type 2228 Like C<Move> but returns C<dest>. Useful 2229 for encouraging compilers to tail-call 2230 optimise. 2231 2232 =for apidoc Am|void|Copy|void* src|void* dest|int nitems|type 2233 The XSUB-writer's interface to the C C<memcpy> function. The C<src> is the 2234 source, C<dest> is the destination, C<nitems> is the number of items, and 2235 C<type> is the type. May fail on overlapping copies. See also C<L</Move>>. 2236 2237 =for apidoc Am|void *|CopyD|void* src|void* dest|int nitems|type 2238 2239 Like C<Copy> but returns C<dest>. Useful 2240 for encouraging compilers to tail-call 2241 optimise. 2242 2243 =for apidoc Am|void|Zero|void* dest|int nitems|type 2244 2245 The XSUB-writer's interface to the C C<memzero> function. The C<dest> is the 2246 destination, C<nitems> is the number of items, and C<type> is the type. 2247 2248 =for apidoc Am|void *|ZeroD|void* dest|int nitems|type 2249 2250 Like C<Zero> but returns dest. Useful 2251 for encouraging compilers to tail-call 2252 optimise. 2253 2254 =for apidoc Am|void|StructCopy|type *src|type *dest|type 2255 This is an architecture-independent macro to copy one structure to another. 2256 2257 =for apidoc Am|void|PoisonWith|void* dest|int nitems|type|U8 byte 2258 2259 Fill up memory with a byte pattern (a byte repeated over and over 2260 again) that hopefully catches attempts to access uninitialized memory. 2261 2262 =for apidoc Am|void|PoisonNew|void* dest|int nitems|type 2263 2264 PoisonWith(0xAB) for catching access to allocated but uninitialized memory. 2265 2266 =for apidoc Am|void|PoisonFree|void* dest|int nitems|type 2267 2268 PoisonWith(0xEF) for catching access to freed memory. 2269 2270 =for apidoc Am|void|Poison|void* dest|int nitems|type 2271 2272 PoisonWith(0xEF) for catching access to freed memory. 2273 2274 =cut */ 2275 2276 /* Maintained for backwards-compatibility only. Use newSV() instead. */ 2277 #ifndef PERL_CORE 2278 #define NEWSV(x,len) newSV(len) 2279 #endif 2280 2281 #define MEM_SIZE_MAX ((MEM_SIZE)-1) 2282 2283 #define _PERL_STRLEN_ROUNDUP_UNCHECKED(n) (((n) - 1 + PERL_STRLEN_ROUNDUP_QUANTUM) & ~((MEM_SIZE)PERL_STRLEN_ROUNDUP_QUANTUM - 1)) 2284 2285 #ifdef PERL_MALLOC_WRAP 2286 2287 /* This expression will be constant-folded at compile time. It checks 2288 * whether or not the type of the count n is so small (e.g. U8 or U16, or 2289 * U32 on 64-bit systems) that there's no way a wrap-around could occur. 2290 * As well as avoiding the need for a run-time check in some cases, it's 2291 * designed to avoid compiler warnings like: 2292 * comparison is always false due to limited range of data type 2293 * It's mathematically equivalent to 2294 * max(n) * sizeof(t) > MEM_SIZE_MAX 2295 */ 2296 2297 # define _MEM_WRAP_NEEDS_RUNTIME_CHECK(n,t) \ 2298 ( sizeof(MEM_SIZE) < sizeof(n) \ 2299 || sizeof(t) > ((MEM_SIZE)1 << 8*(sizeof(MEM_SIZE) - sizeof(n)))) 2300 2301 /* This is written in a slightly odd way to avoid various spurious 2302 * compiler warnings. We *want* to write the expression as 2303 * _MEM_WRAP_NEEDS_RUNTIME_CHECK(n,t) && (n > C) 2304 * (for some compile-time constant C), but even when the LHS 2305 * constant-folds to false at compile-time, g++ insists on emitting 2306 * warnings about the RHS (e.g. "comparison is always false"), so instead 2307 * we write it as 2308 * 2309 * (cond ? n : X) > C 2310 * 2311 * where X is a constant with X > C always false. Choosing a value for X 2312 * is tricky. If 0, some compilers will complain about 0 > C always being 2313 * false; if 1, Coverity complains when n happens to be the constant value 2314 * '1', that cond ? 1 : 1 has the same value on both branches; so use C 2315 * for X and hope that nothing else whines. 2316 */ 2317 2318 # define _MEM_WRAP_WILL_WRAP(n,t) \ 2319 ((_MEM_WRAP_NEEDS_RUNTIME_CHECK(n,t) ? (MEM_SIZE)(n) : \ 2320 MEM_SIZE_MAX/sizeof(t)) > MEM_SIZE_MAX/sizeof(t)) 2321 2322 # define MEM_WRAP_CHECK(n,t) \ 2323 (void)(UNLIKELY(_MEM_WRAP_WILL_WRAP(n,t)) \ 2324 && (croak_memory_wrap(),0)) 2325 2326 # define MEM_WRAP_CHECK_1(n,t,a) \ 2327 (void)(UNLIKELY(_MEM_WRAP_WILL_WRAP(n,t)) \ 2328 && (Perl_croak_nocontext("%s",(a)),0)) 2329 2330 /* "a" arg must be a string literal */ 2331 # define MEM_WRAP_CHECK_s(n,t,a) \ 2332 (void)(UNLIKELY(_MEM_WRAP_WILL_WRAP(n,t)) \ 2333 && (Perl_croak_nocontext("" a ""),0)) 2334 2335 #define MEM_WRAP_CHECK_(n,t) MEM_WRAP_CHECK(n,t), 2336 2337 #define PERL_STRLEN_ROUNDUP(n) ((void)(((n) > MEM_SIZE_MAX - 2 * PERL_STRLEN_ROUNDUP_QUANTUM) ? (croak_memory_wrap(),0) : 0), _PERL_STRLEN_ROUNDUP_UNCHECKED(n)) 2338 #else 2339 2340 #define MEM_WRAP_CHECK(n,t) 2341 #define MEM_WRAP_CHECK_1(n,t,a) 2342 #define MEM_WRAP_CHECK_s(n,t,a) 2343 #define MEM_WRAP_CHECK_(n,t) 2344 2345 #define PERL_STRLEN_ROUNDUP(n) _PERL_STRLEN_ROUNDUP_UNCHECKED(n) 2346 2347 #endif 2348 2349 #ifdef PERL_MEM_LOG 2350 /* 2351 * If PERL_MEM_LOG is defined, all Newx()s, Renew()s, and Safefree()s 2352 * go through functions, which are handy for debugging breakpoints, but 2353 * which more importantly get the immediate calling environment (file and 2354 * line number, and C function name if available) passed in. This info can 2355 * then be used for logging the calls, for which one gets a sample 2356 * implementation unless -DPERL_MEM_LOG_NOIMPL is also defined. 2357 * 2358 * Known problems: 2359 * - not all memory allocs get logged, only those 2360 * that go through Newx() and derivatives (while all 2361 * Safefrees do get logged) 2362 * - __FILE__ and __LINE__ do not work everywhere 2363 * - __func__ or __FUNCTION__ even less so 2364 * - I think more goes on after the perlio frees but 2365 * the thing is that STDERR gets closed (as do all 2366 * the file descriptors) 2367 * - no deeper calling stack than the caller of the Newx() 2368 * or the kind, but do I look like a C reflection/introspection 2369 * utility to you? 2370 * - the function prototypes for the logging functions 2371 * probably should maybe be somewhere else than handy.h 2372 * - one could consider inlining (macrofying) the logging 2373 * for speed, but I am too lazy 2374 * - one could imagine recording the allocations in a hash, 2375 * (keyed by the allocation address?), and maintain that 2376 * through reallocs and frees, but how to do that without 2377 * any News() happening...? 2378 * - lots of -Ddefines to get useful/controllable output 2379 * - lots of ENV reads 2380 */ 2381 2382 # ifdef PERL_CORE 2383 # ifndef PERL_MEM_LOG_NOIMPL 2384 enum mem_log_type { 2385 MLT_ALLOC, 2386 MLT_REALLOC, 2387 MLT_FREE, 2388 MLT_NEW_SV, 2389 MLT_DEL_SV 2390 }; 2391 # endif 2392 # if defined(PERL_IN_SV_C) /* those are only used in sv.c */ 2393 void Perl_mem_log_new_sv(const SV *sv, const char *filename, const int linenumber, const char *funcname); 2394 void Perl_mem_log_del_sv(const SV *sv, const char *filename, const int linenumber, const char *funcname); 2395 # endif 2396 # endif 2397 2398 #endif 2399 2400 #ifdef PERL_MEM_LOG 2401 #define MEM_LOG_ALLOC(n,t,a) Perl_mem_log_alloc(n,sizeof(t),STRINGIFY(t),a,__FILE__,__LINE__,FUNCTION__) 2402 #define MEM_LOG_REALLOC(n,t,v,a) Perl_mem_log_realloc(n,sizeof(t),STRINGIFY(t),v,a,__FILE__,__LINE__,FUNCTION__) 2403 #define MEM_LOG_FREE(a) Perl_mem_log_free(a,__FILE__,__LINE__,FUNCTION__) 2404 #endif 2405 2406 #ifndef MEM_LOG_ALLOC 2407 #define MEM_LOG_ALLOC(n,t,a) (a) 2408 #endif 2409 #ifndef MEM_LOG_REALLOC 2410 #define MEM_LOG_REALLOC(n,t,v,a) (a) 2411 #endif 2412 #ifndef MEM_LOG_FREE 2413 #define MEM_LOG_FREE(a) (a) 2414 #endif 2415 2416 #define Newx(v,n,t) (v = (MEM_WRAP_CHECK_(n,t) (t*)MEM_LOG_ALLOC(n,t,safemalloc((MEM_SIZE)((n)*sizeof(t)))))) 2417 #define Newxc(v,n,t,c) (v = (MEM_WRAP_CHECK_(n,t) (c*)MEM_LOG_ALLOC(n,t,safemalloc((MEM_SIZE)((n)*sizeof(t)))))) 2418 #define Newxz(v,n,t) (v = (MEM_WRAP_CHECK_(n,t) (t*)MEM_LOG_ALLOC(n,t,safecalloc((n),sizeof(t))))) 2419 2420 #ifndef PERL_CORE 2421 /* pre 5.9.x compatibility */ 2422 #define New(x,v,n,t) Newx(v,n,t) 2423 #define Newc(x,v,n,t,c) Newxc(v,n,t,c) 2424 #define Newz(x,v,n,t) Newxz(v,n,t) 2425 #endif 2426 2427 #define Renew(v,n,t) \ 2428 (v = (MEM_WRAP_CHECK_(n,t) (t*)MEM_LOG_REALLOC(n,t,v,saferealloc((Malloc_t)(v),(MEM_SIZE)((n)*sizeof(t)))))) 2429 #define Renewc(v,n,t,c) \ 2430 (v = (MEM_WRAP_CHECK_(n,t) (c*)MEM_LOG_REALLOC(n,t,v,saferealloc((Malloc_t)(v),(MEM_SIZE)((n)*sizeof(t)))))) 2431 2432 #ifdef PERL_POISON 2433 #define Safefree(d) \ 2434 ((d) ? (void)(safefree(MEM_LOG_FREE((Malloc_t)(d))), Poison(&(d), 1, Malloc_t)) : (void) 0) 2435 #else 2436 #define Safefree(d) safefree(MEM_LOG_FREE((Malloc_t)(d))) 2437 #endif 2438 2439 /* assert that a valid ptr has been supplied - use this instead of assert(ptr) * 2440 * as it handles cases like constant string arguments without throwing warnings * 2441 * the cast is required, as is the inequality check, to avoid warnings */ 2442 #define perl_assert_ptr(p) assert( ((void*)(p)) != 0 ) 2443 2444 2445 #define Move(s,d,n,t) (MEM_WRAP_CHECK_(n,t) perl_assert_ptr(d), perl_assert_ptr(s), (void)memmove((char*)(d),(const char*)(s), (n) * sizeof(t))) 2446 #define Copy(s,d,n,t) (MEM_WRAP_CHECK_(n,t) perl_assert_ptr(d), perl_assert_ptr(s), (void)memcpy((char*)(d),(const char*)(s), (n) * sizeof(t))) 2447 #define Zero(d,n,t) (MEM_WRAP_CHECK_(n,t) perl_assert_ptr(d), (void)memzero((char*)(d), (n) * sizeof(t))) 2448 2449 /* Like above, but returns a pointer to 'd' */ 2450 #define MoveD(s,d,n,t) (MEM_WRAP_CHECK_(n,t) perl_assert_ptr(d), perl_assert_ptr(s), memmove((char*)(d),(const char*)(s), (n) * sizeof(t))) 2451 #define CopyD(s,d,n,t) (MEM_WRAP_CHECK_(n,t) perl_assert_ptr(d), perl_assert_ptr(s), memcpy((char*)(d),(const char*)(s), (n) * sizeof(t))) 2452 #define ZeroD(d,n,t) (MEM_WRAP_CHECK_(n,t) perl_assert_ptr(d), memzero((char*)(d), (n) * sizeof(t))) 2453 2454 #define PoisonWith(d,n,t,b) (MEM_WRAP_CHECK_(n,t) (void)memset((char*)(d), (U8)(b), (n) * sizeof(t))) 2455 #define PoisonNew(d,n,t) PoisonWith(d,n,t,0xAB) 2456 #define PoisonFree(d,n,t) PoisonWith(d,n,t,0xEF) 2457 #define Poison(d,n,t) PoisonFree(d,n,t) 2458 2459 #ifdef PERL_POISON 2460 # define PERL_POISON_EXPR(x) x 2461 #else 2462 # define PERL_POISON_EXPR(x) 2463 #endif 2464 2465 #define StructCopy(s,d,t) (*((t*)(d)) = *((t*)(s))) 2466 2467 /* C_ARRAY_LENGTH is the number of elements in the C array (so you 2468 * want your zero-based indices to be less than but not equal to). 2469 * 2470 * C_ARRAY_END is one past the last: half-open/half-closed range, 2471 * not last-inclusive range. */ 2472 #define C_ARRAY_LENGTH(a) (sizeof(a)/sizeof((a)[0])) 2473 #define C_ARRAY_END(a) ((a) + C_ARRAY_LENGTH(a)) 2474 2475 #ifdef NEED_VA_COPY 2476 # ifdef va_copy 2477 # define Perl_va_copy(s, d) va_copy(d, s) 2478 # elif defined(__va_copy) 2479 # define Perl_va_copy(s, d) __va_copy(d, s) 2480 # else 2481 # define Perl_va_copy(s, d) Copy(s, d, 1, va_list) 2482 # endif 2483 #endif 2484 2485 /* convenience debug macros */ 2486 #ifdef USE_ITHREADS 2487 #define pTHX_FORMAT "Perl interpreter: 0x%p" 2488 #define pTHX__FORMAT ", Perl interpreter: 0x%p" 2489 #define pTHX_VALUE_ (void *)my_perl, 2490 #define pTHX_VALUE (void *)my_perl 2491 #define pTHX__VALUE_ ,(void *)my_perl, 2492 #define pTHX__VALUE ,(void *)my_perl 2493 #else 2494 #define pTHX_FORMAT 2495 #define pTHX__FORMAT 2496 #define pTHX_VALUE_ 2497 #define pTHX_VALUE 2498 #define pTHX__VALUE_ 2499 #define pTHX__VALUE 2500 #endif /* USE_ITHREADS */ 2501 2502 /* Perl_deprecate was not part of the public API, and did not have a deprecate() 2503 shortcut macro defined without -DPERL_CORE. Neither codesearch.google.com nor 2504 CPAN::Unpack show any users outside the core. */ 2505 #ifdef PERL_CORE 2506 # define deprecate(s) Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED), \ 2507 "Use of " s " is deprecated") 2508 # define deprecate_disappears_in(when,message) \ 2509 Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED), \ 2510 message ", and will disappear in Perl " when) 2511 # define deprecate_fatal_in(when,message) \ 2512 Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED), \ 2513 message ". Its use will be fatal in Perl " when) 2514 #endif 2515 2516 /* Internal macros to deal with gids and uids */ 2517 #ifdef PERL_CORE 2518 2519 # if Uid_t_size > IVSIZE 2520 # define sv_setuid(sv, uid) sv_setnv((sv), (NV)(uid)) 2521 # define SvUID(sv) SvNV(sv) 2522 # elif Uid_t_sign <= 0 2523 # define sv_setuid(sv, uid) sv_setiv((sv), (IV)(uid)) 2524 # define SvUID(sv) SvIV(sv) 2525 # else 2526 # define sv_setuid(sv, uid) sv_setuv((sv), (UV)(uid)) 2527 # define SvUID(sv) SvUV(sv) 2528 # endif /* Uid_t_size */ 2529 2530 # if Gid_t_size > IVSIZE 2531 # define sv_setgid(sv, gid) sv_setnv((sv), (NV)(gid)) 2532 # define SvGID(sv) SvNV(sv) 2533 # elif Gid_t_sign <= 0 2534 # define sv_setgid(sv, gid) sv_setiv((sv), (IV)(gid)) 2535 # define SvGID(sv) SvIV(sv) 2536 # else 2537 # define sv_setgid(sv, gid) sv_setuv((sv), (UV)(gid)) 2538 # define SvGID(sv) SvUV(sv) 2539 # endif /* Gid_t_size */ 2540 2541 #endif 2542 2543 #endif /* PERL_HANDY_H_ */ 2544 2545 /* 2546 * ex: set ts=8 sts=4 sw=4 et: 2547 */ 2548