1 /* 2 * sha.c: routines to compute SHA-1/224/256/384/512 digests 3 * 4 * Ref: NIST FIPS PUB 180-4 Secure Hash Standard 5 * 6 * Copyright (C) 2003-2014 Mark Shelor, All Rights Reserved 7 * 8 * Version: 5.88 9 * Mon Mar 17 08:46:10 MST 2014 10 * 11 */ 12 13 #include <stdio.h> 14 #include <stdlib.h> 15 #include <stddef.h> 16 #include <string.h> 17 #include <ctype.h> 18 #include "sha.h" 19 #include "sha64bit.h" 20 21 #define W32 SHA32 /* useful abbreviations */ 22 #define C32 SHA32_CONST 23 #define SR32 SHA32_SHR 24 #define SL32 SHA32_SHL 25 #define LO32 SHA_LO32 26 #define UCHR unsigned char 27 #define UINT unsigned int 28 #define ULNG unsigned long 29 #define VP void * 30 31 #define ROTR(x, n) (SR32(x, n) | SL32(x, 32-(n))) 32 #define ROTL(x, n) (SL32(x, n) | SR32(x, 32-(n))) 33 34 #define Ch(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) 35 #define Pa(x, y, z) ((x) ^ (y) ^ (z)) 36 #define Ma(x, y, z) (((x) & (y)) | ((z) & ((x) | (y)))) 37 38 #define SIGMA0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) 39 #define SIGMA1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) 40 #define sigma0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SR32(x, 3)) 41 #define sigma1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SR32(x, 10)) 42 43 #define K1 C32(0x5a827999) /* SHA-1 constants */ 44 #define K2 C32(0x6ed9eba1) 45 #define K3 C32(0x8f1bbcdc) 46 #define K4 C32(0xca62c1d6) 47 48 static W32 K256[64] = /* SHA-224/256 constants */ 49 { 50 C32(0x428a2f98), C32(0x71374491), C32(0xb5c0fbcf), C32(0xe9b5dba5), 51 C32(0x3956c25b), C32(0x59f111f1), C32(0x923f82a4), C32(0xab1c5ed5), 52 C32(0xd807aa98), C32(0x12835b01), C32(0x243185be), C32(0x550c7dc3), 53 C32(0x72be5d74), C32(0x80deb1fe), C32(0x9bdc06a7), C32(0xc19bf174), 54 C32(0xe49b69c1), C32(0xefbe4786), C32(0x0fc19dc6), C32(0x240ca1cc), 55 C32(0x2de92c6f), C32(0x4a7484aa), C32(0x5cb0a9dc), C32(0x76f988da), 56 C32(0x983e5152), C32(0xa831c66d), C32(0xb00327c8), C32(0xbf597fc7), 57 C32(0xc6e00bf3), C32(0xd5a79147), C32(0x06ca6351), C32(0x14292967), 58 C32(0x27b70a85), C32(0x2e1b2138), C32(0x4d2c6dfc), C32(0x53380d13), 59 C32(0x650a7354), C32(0x766a0abb), C32(0x81c2c92e), C32(0x92722c85), 60 C32(0xa2bfe8a1), C32(0xa81a664b), C32(0xc24b8b70), C32(0xc76c51a3), 61 C32(0xd192e819), C32(0xd6990624), C32(0xf40e3585), C32(0x106aa070), 62 C32(0x19a4c116), C32(0x1e376c08), C32(0x2748774c), C32(0x34b0bcb5), 63 C32(0x391c0cb3), C32(0x4ed8aa4a), C32(0x5b9cca4f), C32(0x682e6ff3), 64 C32(0x748f82ee), C32(0x78a5636f), C32(0x84c87814), C32(0x8cc70208), 65 C32(0x90befffa), C32(0xa4506ceb), C32(0xbef9a3f7), C32(0xc67178f2) 66 }; 67 68 static W32 H01[5] = /* SHA-1 initial hash value */ 69 { 70 C32(0x67452301), C32(0xefcdab89), C32(0x98badcfe), 71 C32(0x10325476), C32(0xc3d2e1f0) 72 }; 73 74 static W32 H0224[8] = /* SHA-224 initial hash value */ 75 { 76 C32(0xc1059ed8), C32(0x367cd507), C32(0x3070dd17), C32(0xf70e5939), 77 C32(0xffc00b31), C32(0x68581511), C32(0x64f98fa7), C32(0xbefa4fa4) 78 }; 79 80 static W32 H0256[8] = /* SHA-256 initial hash value */ 81 { 82 C32(0x6a09e667), C32(0xbb67ae85), C32(0x3c6ef372), C32(0xa54ff53a), 83 C32(0x510e527f), C32(0x9b05688c), C32(0x1f83d9ab), C32(0x5be0cd19) 84 }; 85 86 static void sha1(SHA *s, UCHR *block) /* SHA-1 transform */ 87 { 88 W32 a, b, c, d, e; 89 W32 W[16]; 90 W32 *wp = W; 91 W32 *H = (W32 *) s->H; 92 93 SHA32_SCHED(W, block); 94 95 /* 96 * Use SHA-1 alternate method from FIPS PUB 180-4 (ref. 6.1.3) 97 * 98 * To improve performance, unroll the loop and consolidate assignments 99 * by changing the roles of variables "a" through "e" at each step. 100 * Note that the variable "T" is no longer needed. 101 */ 102 103 #define M1(a, b, c, d, e, f, k, w) \ 104 e += ROTL(a, 5) + f(b, c, d) + k + w; \ 105 b = ROTL(b, 30) 106 107 #define M11(f, k, w) M1(a, b, c, d, e, f, k, w); 108 #define M12(f, k, w) M1(e, a, b, c, d, f, k, w); 109 #define M13(f, k, w) M1(d, e, a, b, c, f, k, w); 110 #define M14(f, k, w) M1(c, d, e, a, b, f, k, w); 111 #define M15(f, k, w) M1(b, c, d, e, a, f, k, w); 112 113 #define W11(s) W[(s+ 0) & 0xf] 114 #define W12(s) W[(s+13) & 0xf] 115 #define W13(s) W[(s+ 8) & 0xf] 116 #define W14(s) W[(s+ 2) & 0xf] 117 118 #define A1(s) (W11(s) = ROTL(W11(s) ^ W12(s) ^ W13(s) ^ W14(s), 1)) 119 120 a = H[0]; b = H[1]; c = H[2]; d = H[3]; e = H[4]; 121 122 M11(Ch, K1, *wp++); M12(Ch, K1, *wp++); M13(Ch, K1, *wp++); 123 M14(Ch, K1, *wp++); M15(Ch, K1, *wp++); M11(Ch, K1, *wp++); 124 M12(Ch, K1, *wp++); M13(Ch, K1, *wp++); M14(Ch, K1, *wp++); 125 M15(Ch, K1, *wp++); M11(Ch, K1, *wp++); M12(Ch, K1, *wp++); 126 M13(Ch, K1, *wp++); M14(Ch, K1, *wp++); M15(Ch, K1, *wp++); 127 M11(Ch, K1, *wp ); M12(Ch, K1, A1( 0)); M13(Ch, K1, A1( 1)); 128 M14(Ch, K1, A1( 2)); M15(Ch, K1, A1( 3)); M11(Pa, K2, A1( 4)); 129 M12(Pa, K2, A1( 5)); M13(Pa, K2, A1( 6)); M14(Pa, K2, A1( 7)); 130 M15(Pa, K2, A1( 8)); M11(Pa, K2, A1( 9)); M12(Pa, K2, A1(10)); 131 M13(Pa, K2, A1(11)); M14(Pa, K2, A1(12)); M15(Pa, K2, A1(13)); 132 M11(Pa, K2, A1(14)); M12(Pa, K2, A1(15)); M13(Pa, K2, A1( 0)); 133 M14(Pa, K2, A1( 1)); M15(Pa, K2, A1( 2)); M11(Pa, K2, A1( 3)); 134 M12(Pa, K2, A1( 4)); M13(Pa, K2, A1( 5)); M14(Pa, K2, A1( 6)); 135 M15(Pa, K2, A1( 7)); M11(Ma, K3, A1( 8)); M12(Ma, K3, A1( 9)); 136 M13(Ma, K3, A1(10)); M14(Ma, K3, A1(11)); M15(Ma, K3, A1(12)); 137 M11(Ma, K3, A1(13)); M12(Ma, K3, A1(14)); M13(Ma, K3, A1(15)); 138 M14(Ma, K3, A1( 0)); M15(Ma, K3, A1( 1)); M11(Ma, K3, A1( 2)); 139 M12(Ma, K3, A1( 3)); M13(Ma, K3, A1( 4)); M14(Ma, K3, A1( 5)); 140 M15(Ma, K3, A1( 6)); M11(Ma, K3, A1( 7)); M12(Ma, K3, A1( 8)); 141 M13(Ma, K3, A1( 9)); M14(Ma, K3, A1(10)); M15(Ma, K3, A1(11)); 142 M11(Pa, K4, A1(12)); M12(Pa, K4, A1(13)); M13(Pa, K4, A1(14)); 143 M14(Pa, K4, A1(15)); M15(Pa, K4, A1( 0)); M11(Pa, K4, A1( 1)); 144 M12(Pa, K4, A1( 2)); M13(Pa, K4, A1( 3)); M14(Pa, K4, A1( 4)); 145 M15(Pa, K4, A1( 5)); M11(Pa, K4, A1( 6)); M12(Pa, K4, A1( 7)); 146 M13(Pa, K4, A1( 8)); M14(Pa, K4, A1( 9)); M15(Pa, K4, A1(10)); 147 M11(Pa, K4, A1(11)); M12(Pa, K4, A1(12)); M13(Pa, K4, A1(13)); 148 M14(Pa, K4, A1(14)); M15(Pa, K4, A1(15)); 149 150 H[0] += a; H[1] += b; H[2] += c; H[3] += d; H[4] += e; 151 } 152 153 static void sha256(SHA *s, UCHR *block) /* SHA-224/256 transform */ 154 { 155 W32 a, b, c, d, e, f, g, h, T1; 156 W32 W[16]; 157 W32 *kp = K256; 158 W32 *wp = W; 159 W32 *H = (W32 *) s->H; 160 161 SHA32_SCHED(W, block); 162 163 /* 164 * Use same technique as in sha1() 165 * 166 * To improve performance, unroll the loop and consolidate assignments 167 * by changing the roles of variables "a" through "h" at each step. 168 * Note that the variable "T2" is no longer needed. 169 */ 170 171 #define M2(a, b, c, d, e, f, g, h, w) \ 172 T1 = h + SIGMA1(e) + Ch(e, f, g) + (*kp++) + w; \ 173 h = T1 + SIGMA0(a) + Ma(a, b, c); d += T1; 174 175 #define W21(s) W[(s+ 0) & 0xf] 176 #define W22(s) W[(s+14) & 0xf] 177 #define W23(s) W[(s+ 9) & 0xf] 178 #define W24(s) W[(s+ 1) & 0xf] 179 180 #define A2(s) (W21(s) += sigma1(W22(s)) + W23(s) + sigma0(W24(s))) 181 182 #define M21(w) M2(a, b, c, d, e, f, g, h, w) 183 #define M22(w) M2(h, a, b, c, d, e, f, g, w) 184 #define M23(w) M2(g, h, a, b, c, d, e, f, w) 185 #define M24(w) M2(f, g, h, a, b, c, d, e, w) 186 #define M25(w) M2(e, f, g, h, a, b, c, d, w) 187 #define M26(w) M2(d, e, f, g, h, a, b, c, w) 188 #define M27(w) M2(c, d, e, f, g, h, a, b, w) 189 #define M28(w) M2(b, c, d, e, f, g, h, a, w) 190 191 a = H[0]; b = H[1]; c = H[2]; d = H[3]; 192 e = H[4]; f = H[5]; g = H[6]; h = H[7]; 193 194 M21( *wp++); M22( *wp++); M23( *wp++); M24( *wp++); 195 M25( *wp++); M26( *wp++); M27( *wp++); M28( *wp++); 196 M21( *wp++); M22( *wp++); M23( *wp++); M24( *wp++); 197 M25( *wp++); M26( *wp++); M27( *wp++); M28( *wp ); 198 M21(A2( 0)); M22(A2( 1)); M23(A2( 2)); M24(A2( 3)); 199 M25(A2( 4)); M26(A2( 5)); M27(A2( 6)); M28(A2( 7)); 200 M21(A2( 8)); M22(A2( 9)); M23(A2(10)); M24(A2(11)); 201 M25(A2(12)); M26(A2(13)); M27(A2(14)); M28(A2(15)); 202 M21(A2( 0)); M22(A2( 1)); M23(A2( 2)); M24(A2( 3)); 203 M25(A2( 4)); M26(A2( 5)); M27(A2( 6)); M28(A2( 7)); 204 M21(A2( 8)); M22(A2( 9)); M23(A2(10)); M24(A2(11)); 205 M25(A2(12)); M26(A2(13)); M27(A2(14)); M28(A2(15)); 206 M21(A2( 0)); M22(A2( 1)); M23(A2( 2)); M24(A2( 3)); 207 M25(A2( 4)); M26(A2( 5)); M27(A2( 6)); M28(A2( 7)); 208 M21(A2( 8)); M22(A2( 9)); M23(A2(10)); M24(A2(11)); 209 M25(A2(12)); M26(A2(13)); M27(A2(14)); M28(A2(15)); 210 211 H[0] += a; H[1] += b; H[2] += c; H[3] += d; 212 H[4] += e; H[5] += f; H[6] += g; H[7] += h; 213 } 214 215 #include "sha64bit.c" 216 217 #define SETBIT(s, pos) s[(pos) >> 3] |= (0x01 << (7 - (pos) % 8)) 218 #define CLRBIT(s, pos) s[(pos) >> 3] &= ~(0x01 << (7 - (pos) % 8)) 219 #define NBYTES(nbits) (((nbits) + 7) >> 3) 220 #define HEXLEN(nbytes) ((nbytes) << 1) 221 #define B64LEN(nbytes) (((nbytes) % 3 == 0) ? ((nbytes) / 3) * 4 \ 222 : ((nbytes) / 3) * 4 + ((nbytes) % 3) + 1) 223 224 /* w32mem: writes 32-bit word to memory in big-endian order */ 225 static UCHR *w32mem(UCHR *mem, W32 w32) 226 { 227 int i; 228 229 for (i = 0; i < 4; i++) 230 *mem++ = (UCHR) (SR32(w32, 24-i*8) & 0xff); 231 return(mem); 232 } 233 234 /* memw32: returns 32-bit word from memory written in big-endian order */ 235 static W32 memw32(UCHR *mem) 236 { 237 int i; 238 W32 w = 0; 239 240 for (i = 0; i < 4; i++) 241 w = (w << 8) + *mem++; 242 return(w); 243 } 244 245 /* digcpy: writes current state to digest buffer */ 246 static UCHR *digcpy(SHA *s) 247 { 248 int i; 249 UCHR *d = s->digest; 250 W32 *p32 = (W32 *) s->H; 251 W64 *p64 = (W64 *) s->H; 252 253 if (s->alg <= SHA256) 254 for (i = 0; i < 8; i++, d += 4) 255 w32mem(d, *p32++); 256 else 257 for (i = 0; i < 8; i++, d += 8) { 258 w32mem(d, (W32) ((*p64 >> 16) >> 16)); 259 w32mem(d+4, (W32) (*p64++ & SHA32_MAX)); 260 } 261 return(s->digest); 262 } 263 264 /* statecpy: writes buffer to current state (opposite of digcpy) */ 265 static UCHR *statecpy(SHA *s, UCHR *buf) 266 { 267 int i; 268 W32 *p32 = (W32 *) s->H; 269 W64 *p64 = (W64 *) s->H; 270 271 if (s->alg <= SHA256) 272 for (i = 0; i < 8; i++, buf += 4) 273 *p32++ = memw32(buf); 274 else 275 for (i = 0; i < 8; i++, buf += 8) 276 *p64++ = ((W64) memw32(buf) << 32) + 277 memw32(buf+4); 278 return(buf); 279 } 280 281 #define SHA_INIT(algo, transform) \ 282 do { \ 283 memset(s, 0, sizeof(SHA)); \ 284 s->alg = algo; s->sha = sha ## transform; \ 285 memcpy(s->H, H0 ## algo, sizeof(H0 ## algo)); \ 286 s->blocksize = SHA ## algo ## _BLOCK_BITS; \ 287 s->digestlen = SHA ## algo ## _DIGEST_BITS >> 3; \ 288 } while (0) 289 290 /* sharewind: re-initializes the digest object */ 291 static void sharewind(SHA *s) 292 { 293 if (s->alg == SHA1) SHA_INIT(1, 1); 294 else if (s->alg == SHA224) SHA_INIT(224, 256); 295 else if (s->alg == SHA256) SHA_INIT(256, 256); 296 else if (s->alg == SHA384) SHA_INIT(384, 512); 297 else if (s->alg == SHA512) SHA_INIT(512, 512); 298 else if (s->alg == SHA512224) SHA_INIT(512224, 512); 299 else if (s->alg == SHA512256) SHA_INIT(512256, 512); 300 } 301 302 /* shaopen: creates a new digest object */ 303 static SHA *shaopen(int alg) 304 { 305 SHA *s = NULL; 306 307 if (alg != SHA1 && alg != SHA224 && alg != SHA256 && 308 alg != SHA384 && alg != SHA512 && 309 alg != SHA512224 && alg != SHA512256) 310 return(NULL); 311 if (alg >= SHA384 && !sha_384_512) 312 return(NULL); 313 SHA_newz(0, s, 1, SHA); 314 if (s == NULL) 315 return(NULL); 316 s->alg = alg; 317 sharewind(s); 318 return(s); 319 } 320 321 /* shaclose: de-allocates digest object */ 322 static int shaclose(SHA *s) 323 { 324 if (s != NULL) { 325 memset(s, 0, sizeof(SHA)); 326 SHA_free(s); 327 } 328 return(0); 329 } 330 331 /* shadirect: updates state directly (w/o going through s->block) */ 332 static ULNG shadirect(UCHR *bitstr, ULNG bitcnt, SHA *s) 333 { 334 ULNG savecnt = bitcnt; 335 336 while (bitcnt >= s->blocksize) { 337 s->sha(s, bitstr); 338 bitstr += (s->blocksize >> 3); 339 bitcnt -= s->blocksize; 340 } 341 if (bitcnt > 0) { 342 memcpy(s->block, bitstr, NBYTES(bitcnt)); 343 s->blockcnt = bitcnt; 344 } 345 return(savecnt); 346 } 347 348 /* shabytes: updates state for byte-aligned input data */ 349 static ULNG shabytes(UCHR *bitstr, ULNG bitcnt, SHA *s) 350 { 351 UINT offset; 352 UINT nbits; 353 ULNG savecnt = bitcnt; 354 355 offset = s->blockcnt >> 3; 356 if (s->blockcnt + bitcnt >= s->blocksize) { 357 nbits = s->blocksize - s->blockcnt; 358 memcpy(s->block+offset, bitstr, nbits>>3); 359 bitcnt -= nbits; 360 bitstr += (nbits >> 3); 361 s->sha(s, s->block), s->blockcnt = 0; 362 shadirect(bitstr, bitcnt, s); 363 } 364 else { 365 memcpy(s->block+offset, bitstr, NBYTES(bitcnt)); 366 s->blockcnt += bitcnt; 367 } 368 return(savecnt); 369 } 370 371 /* shabits: updates state for bit-aligned input data */ 372 static ULNG shabits(UCHR *bitstr, ULNG bitcnt, SHA *s) 373 { 374 UINT i; 375 UINT gap; 376 ULNG nbits; 377 UCHR buf[1<<9]; 378 UINT bufsize = sizeof(buf); 379 ULNG bufbits = (ULNG) bufsize << 3; 380 UINT nbytes = NBYTES(bitcnt); 381 ULNG savecnt = bitcnt; 382 383 gap = 8 - s->blockcnt % 8; 384 s->block[s->blockcnt>>3] &= ~0 << gap; 385 s->block[s->blockcnt>>3] |= *bitstr >> (8 - gap); 386 s->blockcnt += bitcnt < gap ? bitcnt : gap; 387 if (bitcnt < gap) 388 return(savecnt); 389 if (s->blockcnt == s->blocksize) 390 s->sha(s, s->block), s->blockcnt = 0; 391 if ((bitcnt -= gap) == 0) 392 return(savecnt); 393 while (nbytes > bufsize) { 394 for (i = 0; i < bufsize; i++) 395 buf[i] = bitstr[i] << gap | bitstr[i+1] >> (8-gap); 396 nbits = bitcnt < bufbits ? bitcnt : bufbits; 397 shabytes(buf, nbits, s); 398 bitcnt -= nbits, bitstr += bufsize, nbytes -= bufsize; 399 } 400 for (i = 0; i < nbytes - 1; i++) 401 buf[i] = bitstr[i] << gap | bitstr[i+1] >> (8-gap); 402 buf[nbytes-1] = bitstr[nbytes-1] << gap; 403 shabytes(buf, bitcnt, s); 404 return(savecnt); 405 } 406 407 /* shawrite: triggers a state update using data in bitstr/bitcnt */ 408 static ULNG shawrite(UCHR *bitstr, ULNG bitcnt, SHA *s) 409 { 410 if (bitcnt < 1) 411 return(0); 412 if (SHA_LO32(s->lenll += bitcnt) < bitcnt) 413 if (SHA_LO32(++s->lenlh) == 0) 414 if (SHA_LO32(++s->lenhl) == 0) 415 s->lenhh++; 416 if (s->blockcnt == 0) 417 return(shadirect(bitstr, bitcnt, s)); 418 else if (s->blockcnt % 8 == 0) 419 return(shabytes(bitstr, bitcnt, s)); 420 else 421 return(shabits(bitstr, bitcnt, s)); 422 } 423 424 /* shafinish: pads remaining block(s) and computes final digest state */ 425 static void shafinish(SHA *s) 426 { 427 UINT lenpos, lhpos, llpos; 428 429 lenpos = s->blocksize == SHA1_BLOCK_BITS ? 448 : 896; 430 lhpos = s->blocksize == SHA1_BLOCK_BITS ? 56 : 120; 431 llpos = s->blocksize == SHA1_BLOCK_BITS ? 60 : 124; 432 SETBIT(s->block, s->blockcnt), s->blockcnt++; 433 while (s->blockcnt > lenpos) 434 if (s->blockcnt < s->blocksize) 435 CLRBIT(s->block, s->blockcnt), s->blockcnt++; 436 else 437 s->sha(s, s->block), s->blockcnt = 0; 438 while (s->blockcnt < lenpos) 439 CLRBIT(s->block, s->blockcnt), s->blockcnt++; 440 if (s->blocksize > SHA1_BLOCK_BITS) { 441 w32mem(s->block + 112, s->lenhh); 442 w32mem(s->block + 116, s->lenhl); 443 } 444 w32mem(s->block + lhpos, s->lenlh); 445 w32mem(s->block + llpos, s->lenll); 446 s->sha(s, s->block); 447 } 448 449 /* xmap: translation map for hexadecimal encoding */ 450 static char xmap[] = 451 "0123456789abcdef"; 452 453 /* shahex: returns pointer to current digest (hexadecimal) */ 454 static char *shahex(SHA *s) 455 { 456 int i; 457 char *h; 458 UCHR *d; 459 460 d = digcpy(s); 461 s->hex[0] = '\0'; 462 if (HEXLEN((size_t) s->digestlen) >= sizeof(s->hex)) 463 return(s->hex); 464 for (i = 0, h = s->hex; i < s->digestlen; i++) { 465 *h++ = xmap[(*d >> 4) & 0x0f]; 466 *h++ = xmap[(*d++ ) & 0x0f]; 467 } 468 *h = '\0'; 469 return(s->hex); 470 } 471 472 /* bmap: translation map for Base 64 encoding */ 473 static char bmap[] = 474 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; 475 476 /* encbase64: encodes input (0 to 3 bytes) into Base 64 */ 477 static void encbase64(UCHR *in, int n, char *out) 478 { 479 UCHR byte[3] = {0, 0, 0}; 480 481 out[0] = '\0'; 482 if (n < 1 || n > 3) 483 return; 484 memcpy(byte, in, n); 485 out[0] = bmap[byte[0] >> 2]; 486 out[1] = bmap[((byte[0] & 0x03) << 4) | (byte[1] >> 4)]; 487 out[2] = bmap[((byte[1] & 0x0f) << 2) | (byte[2] >> 6)]; 488 out[3] = bmap[byte[2] & 0x3f]; 489 out[n+1] = '\0'; 490 } 491 492 /* shabase64: returns pointer to current digest (Base 64) */ 493 static char *shabase64(SHA *s) 494 { 495 int n; 496 UCHR *q; 497 char out[5]; 498 499 q = digcpy(s); 500 s->base64[0] = '\0'; 501 if (B64LEN((size_t) s->digestlen) >= sizeof(s->base64)) 502 return(s->base64); 503 for (n = s->digestlen; n > 3; n -= 3, q += 3) { 504 encbase64(q, 3, out); 505 strcat(s->base64, out); 506 } 507 encbase64(q, n, out); 508 strcat(s->base64, out); 509 return(s->base64); 510 } 511 512 /* shadup: duplicates current digest object */ 513 static SHA *shadup(SHA *s) 514 { 515 SHA *p; 516 517 SHA_new(0, p, 1, SHA); 518 if (p == NULL) 519 return(NULL); 520 memcpy(p, s, sizeof(SHA)); 521 return(p); 522 } 523 524 /* hmacopen: creates a new HMAC-SHA digest object */ 525 static HMAC *hmacopen(int alg, UCHR *key, UINT keylen) 526 { 527 UINT i; 528 HMAC *h; 529 530 SHA_newz(0, h, 1, HMAC); 531 if (h == NULL) 532 return(NULL); 533 if ((h->isha = shaopen(alg)) == NULL) { 534 SHA_free(h); 535 return(NULL); 536 } 537 if ((h->osha = shaopen(alg)) == NULL) { 538 shaclose(h->isha); 539 SHA_free(h); 540 return(NULL); 541 } 542 if (keylen <= h->osha->blocksize / 8) 543 memcpy(h->key, key, keylen); 544 else { 545 if ((h->ksha = shaopen(alg)) == NULL) { 546 shaclose(h->isha); 547 shaclose(h->osha); 548 SHA_free(h); 549 return(NULL); 550 } 551 shawrite(key, keylen * 8, h->ksha); 552 shafinish(h->ksha); 553 memcpy(h->key, digcpy(h->ksha), h->ksha->digestlen); 554 shaclose(h->ksha); 555 } 556 for (i = 0; i < h->osha->blocksize / 8; i++) 557 h->key[i] ^= 0x5c; 558 shawrite(h->key, h->osha->blocksize, h->osha); 559 for (i = 0; i < h->isha->blocksize / 8; i++) 560 h->key[i] ^= (0x5c ^ 0x36); 561 shawrite(h->key, h->isha->blocksize, h->isha); 562 memset(h->key, 0, sizeof(h->key)); 563 return(h); 564 } 565 566 /* hmacwrite: triggers a state update using data in bitstr/bitcnt */ 567 static ULNG hmacwrite(UCHR *bitstr, ULNG bitcnt, HMAC *h) 568 { 569 return(shawrite(bitstr, bitcnt, h->isha)); 570 } 571 572 /* hmacfinish: computes final digest state */ 573 static void hmacfinish(HMAC *h) 574 { 575 shafinish(h->isha); 576 shawrite(digcpy(h->isha), h->isha->digestlen * 8, h->osha); 577 shaclose(h->isha); 578 shafinish(h->osha); 579 } 580 581 /* hmachex: returns pointer to digest (hexadecimal) */ 582 static char *hmachex(HMAC *h) 583 { 584 return(shahex(h->osha)); 585 } 586 587 /* hmacbase64: returns pointer to digest (Base 64) */ 588 static char *hmacbase64(HMAC *h) 589 { 590 return(shabase64(h->osha)); 591 } 592 593 /* hmacclose: de-allocates digest object */ 594 static int hmacclose(HMAC *h) 595 { 596 if (h != NULL) { 597 shaclose(h->osha); 598 memset(h, 0, sizeof(HMAC)); 599 SHA_free(h); 600 } 601 return(0); 602 } 603