1 /* trees.c -- output deflated data using Huffman coding 2 * Copyright (C) 1995-2005 Jean-loup Gailly 3 * For conditions of distribution and use, see copyright notice in zlib.h 4 */ 5 6 /* 7 * ALGORITHM 8 * 9 * The "deflation" process uses several Huffman trees. The more 10 * common source values are represented by shorter bit sequences. 11 * 12 * Each code tree is stored in a compressed form which is itself 13 * a Huffman encoding of the lengths of all the code strings (in 14 * ascending order by source values). The actual code strings are 15 * reconstructed from the lengths in the inflate process, as described 16 * in the deflate specification. 17 * 18 * REFERENCES 19 * 20 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". 21 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc 22 * 23 * Storer, James A. 24 * Data Compression: Methods and Theory, pp. 49-50. 25 * Computer Science Press, 1988. ISBN 0-7167-8156-5. 26 * 27 * Sedgewick, R. 28 * Algorithms, p290. 29 * Addison-Wesley, 1983. ISBN 0-201-06672-6. 30 */ 31 32 /* @(#) $Id$ */ 33 34 /* #define GEN_TREES_H */ 35 36 #include "deflate.h" 37 38 #ifdef DEBUG 39 # include <ctype.h> 40 #endif 41 42 /* =========================================================================== 43 * Constants 44 */ 45 46 #define MAX_BL_BITS 7 47 /* Bit length codes must not exceed MAX_BL_BITS bits */ 48 49 #define END_BLOCK 256 50 /* end of block literal code */ 51 52 #define REP_3_6 16 53 /* repeat previous bit length 3-6 times (2 bits of repeat count) */ 54 55 #define REPZ_3_10 17 56 /* repeat a zero length 3-10 times (3 bits of repeat count) */ 57 58 #define REPZ_11_138 18 59 /* repeat a zero length 11-138 times (7 bits of repeat count) */ 60 61 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ 62 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; 63 64 local const int extra_dbits[D_CODES] /* extra bits for each distance code */ 65 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; 66 67 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */ 68 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; 69 70 local const uch bl_order[BL_CODES] 71 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; 72 /* The lengths of the bit length codes are sent in order of decreasing 73 * probability, to avoid transmitting the lengths for unused bit length codes. 74 */ 75 76 #define Buf_size (8 * 2*sizeof(char)) 77 /* Number of bits used within bi_buf. (bi_buf might be implemented on 78 * more than 16 bits on some systems.) 79 */ 80 81 /* =========================================================================== 82 * Local data. These are initialized only once. 83 */ 84 85 #define DIST_CODE_LEN 512 /* see definition of array dist_code below */ 86 87 #if defined(GEN_TREES_H) || !defined(STDC) 88 /* non ANSI compilers may not accept trees.h */ 89 90 local ct_data static_ltree[L_CODES+2]; 91 /* The static literal tree. Since the bit lengths are imposed, there is no 92 * need for the L_CODES extra codes used during heap construction. However 93 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init 94 * below). 95 */ 96 97 local ct_data static_dtree[D_CODES]; 98 /* The static distance tree. (Actually a trivial tree since all codes use 99 * 5 bits.) 100 */ 101 102 uch _dist_code[DIST_CODE_LEN]; 103 /* Distance codes. The first 256 values correspond to the distances 104 * 3 .. 258, the last 256 values correspond to the top 8 bits of 105 * the 15 bit distances. 106 */ 107 108 uch _length_code[MAX_MATCH-MIN_MATCH+1]; 109 /* length code for each normalized match length (0 == MIN_MATCH) */ 110 111 local int base_length[LENGTH_CODES]; 112 /* First normalized length for each code (0 = MIN_MATCH) */ 113 114 local int base_dist[D_CODES]; 115 /* First normalized distance for each code (0 = distance of 1) */ 116 117 #else 118 # include "trees.h" 119 #endif /* GEN_TREES_H */ 120 121 struct static_tree_desc_s { 122 const ct_data *static_tree; /* static tree or NULL */ 123 const intf *extra_bits; /* extra bits for each code or NULL */ 124 int extra_base; /* base index for extra_bits */ 125 int elems; /* max number of elements in the tree */ 126 int max_length; /* max bit length for the codes */ 127 }; 128 129 #if defined(__SYMBIAN32__) 130 # define NO_WRITEABLE_DATA 131 #endif 132 133 #ifdef NO_WRITEABLE_DATA 134 # define DEFINE_LOCAL_STATIC const local 135 #else /* #ifdef NO_WRITEABLE_DATA */ 136 # define DEFINE_LOCAL_STATIC local 137 #endif /* #ifdef NO_WRITEABLE_DATA */ 138 139 DEFINE_LOCAL_STATIC static_tree_desc static_l_desc = 140 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; 141 142 DEFINE_LOCAL_STATIC static_tree_desc static_d_desc = 143 {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; 144 145 DEFINE_LOCAL_STATIC static_tree_desc static_bl_desc = 146 {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; 147 148 /* =========================================================================== 149 * Local (static) routines in this file. 150 */ 151 152 local void tr_static_init OF((void)); 153 local void init_block OF((deflate_state *s)); 154 local void pqdownheap OF((deflate_state *s, ct_data *tree, int k)); 155 local void gen_bitlen OF((deflate_state *s, tree_desc *desc)); 156 local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count)); 157 local void build_tree OF((deflate_state *s, tree_desc *desc)); 158 local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code)); 159 local void send_tree OF((deflate_state *s, ct_data *tree, int max_code)); 160 local int build_bl_tree OF((deflate_state *s)); 161 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes, 162 int blcodes)); 163 local void compress_block OF((deflate_state *s, ct_data *ltree, 164 ct_data *dtree)); 165 local void set_data_type OF((deflate_state *s)); 166 local unsigned bi_reverse OF((unsigned value, int length)); 167 local void bi_windup OF((deflate_state *s)); 168 local void bi_flush OF((deflate_state *s)); 169 local void copy_block OF((deflate_state *s, charf *buf, unsigned len, 170 int header)); 171 172 #ifdef GEN_TREES_H 173 local void gen_trees_header OF((void)); 174 #endif 175 176 #ifndef DEBUG 177 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) 178 /* Send a code of the given tree. c and tree must not have side effects */ 179 180 #else /* DEBUG */ 181 # define send_code(s, c, tree) \ 182 { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ 183 send_bits(s, tree[c].Code, tree[c].Len); } 184 #endif 185 186 /* =========================================================================== 187 * Output a short LSB first on the stream. 188 * IN assertion: there is enough room in pendingBuf. 189 */ 190 #define put_short(s, w) { \ 191 put_byte(s, (uch)((w) & 0xff)); \ 192 put_byte(s, (uch)((ush)(w) >> 8)); \ 193 } 194 195 /* =========================================================================== 196 * Send a value on a given number of bits. 197 * IN assertion: length <= 16 and value fits in length bits. 198 */ 199 #ifdef DEBUG 200 local void send_bits OF((deflate_state *s, int value, int length)); 201 202 local void send_bits( 203 deflate_state *s, 204 int value, 205 int length) 206 { 207 Tracevv((stderr," l %2d v %4x ", length, value)); 208 Assert(length > 0 && length <= 15, "invalid length"); 209 s->bits_sent += (ulg)length; 210 211 /* If not enough room in bi_buf, use (valid) bits from bi_buf and 212 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) 213 * unused bits in value. 214 */ 215 if (s->bi_valid > (int)Buf_size - length) { 216 s->bi_buf |= (value << s->bi_valid); 217 put_short(s, s->bi_buf); 218 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); 219 s->bi_valid += length - Buf_size; 220 } else { 221 s->bi_buf |= value << s->bi_valid; 222 s->bi_valid += length; 223 } 224 } 225 #else /* !DEBUG */ 226 227 #define send_bits(s, value, length) \ 228 { int len = length;\ 229 if (s->bi_valid > (int)Buf_size - len) {\ 230 int val = value;\ 231 s->bi_buf |= (val << s->bi_valid);\ 232 put_short(s, s->bi_buf);\ 233 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ 234 s->bi_valid += len - Buf_size;\ 235 } else {\ 236 s->bi_buf |= (value) << s->bi_valid;\ 237 s->bi_valid += len;\ 238 }\ 239 } 240 #endif /* DEBUG */ 241 242 243 /* the arguments must not have side effects */ 244 245 /* =========================================================================== 246 * Initialize the various 'constant' tables. 247 */ 248 local void tr_static_init() 249 { 250 #if defined(GEN_TREES_H) || !defined(STDC) 251 static int static_init_done = 0; 252 int n; /* iterates over tree elements */ 253 int bits; /* bit counter */ 254 int length; /* length value */ 255 int code; /* code value */ 256 int dist; /* distance index */ 257 ush bl_count[MAX_BITS+1]; 258 /* number of codes at each bit length for an optimal tree */ 259 260 if (static_init_done) return; 261 262 #ifndef NO_WRITEABLE_DATA 263 /* For some embedded targets, global variables are not initialized: */ 264 static_l_desc.static_tree = static_ltree; 265 static_l_desc.extra_bits = extra_lbits; 266 static_d_desc.static_tree = static_dtree; 267 static_d_desc.extra_bits = extra_dbits; 268 static_bl_desc.extra_bits = extra_blbits; 269 #endif /* #ifndef NO_WRITEABLE_DATA */ 270 271 /* Initialize the mapping length (0..255) -> length code (0..28) */ 272 length = 0; 273 for (code = 0; code < LENGTH_CODES-1; code++) { 274 base_length[code] = length; 275 for (n = 0; n < (1<<extra_lbits[code]); n++) { 276 _length_code[length++] = (uch)code; 277 } 278 } 279 Assert (length == 256, "tr_static_init: length != 256"); 280 /* Note that the length 255 (match length 258) can be represented 281 * in two different ways: code 284 + 5 bits or code 285, so we 282 * overwrite length_code[255] to use the best encoding: 283 */ 284 _length_code[length-1] = (uch)code; 285 286 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ 287 dist = 0; 288 for (code = 0 ; code < 16; code++) { 289 base_dist[code] = dist; 290 for (n = 0; n < (1<<extra_dbits[code]); n++) { 291 _dist_code[dist++] = (uch)code; 292 } 293 } 294 Assert (dist == 256, "tr_static_init: dist != 256"); 295 dist >>= 7; /* from now on, all distances are divided by 128 */ 296 for ( ; code < D_CODES; code++) { 297 base_dist[code] = dist << 7; 298 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { 299 _dist_code[256 + dist++] = (uch)code; 300 } 301 } 302 Assert (dist == 256, "tr_static_init: 256+dist != 512"); 303 304 /* Construct the codes of the static literal tree */ 305 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; 306 n = 0; 307 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; 308 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; 309 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; 310 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; 311 /* Codes 286 and 287 do not exist, but we must include them in the 312 * tree construction to get a canonical Huffman tree (longest code 313 * all ones) 314 */ 315 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); 316 317 /* The static distance tree is trivial: */ 318 for (n = 0; n < D_CODES; n++) { 319 static_dtree[n].Len = 5; 320 static_dtree[n].Code = bi_reverse((unsigned)n, 5); 321 } 322 static_init_done = 1; 323 324 # ifdef GEN_TREES_H 325 gen_trees_header(); 326 # endif 327 #endif /* defined(GEN_TREES_H) || !defined(STDC) */ 328 } 329 330 /* =========================================================================== 331 * Genererate the file trees.h describing the static trees. 332 */ 333 #ifdef GEN_TREES_H 334 # ifndef DEBUG 335 # include <stdio.h> 336 # endif 337 338 # define SEPARATOR(i, last, width) \ 339 ((i) == (last)? "\n};\n\n" : \ 340 ((i) % (width) == (width)-1 ? ",\n" : ", ")) 341 342 void gen_trees_header() 343 { 344 FILE *header = fopen("trees.h", "w"); 345 int i; 346 347 Assert (header != NULL, "Can't open trees.h"); 348 fprintf(header, 349 "/* header created automatically with -DGEN_TREES_H */\n\n"); 350 351 fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n"); 352 for (i = 0; i < L_CODES+2; i++) { 353 fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code, 354 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5)); 355 } 356 357 fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n"); 358 for (i = 0; i < D_CODES; i++) { 359 fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code, 360 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5)); 361 } 362 363 fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n"); 364 for (i = 0; i < DIST_CODE_LEN; i++) { 365 fprintf(header, "%2u%s", _dist_code[i], 366 SEPARATOR(i, DIST_CODE_LEN-1, 20)); 367 } 368 369 fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n"); 370 for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) { 371 fprintf(header, "%2u%s", _length_code[i], 372 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20)); 373 } 374 375 fprintf(header, "local const int base_length[LENGTH_CODES] = {\n"); 376 for (i = 0; i < LENGTH_CODES; i++) { 377 fprintf(header, "%1u%s", base_length[i], 378 SEPARATOR(i, LENGTH_CODES-1, 20)); 379 } 380 381 fprintf(header, "local const int base_dist[D_CODES] = {\n"); 382 for (i = 0; i < D_CODES; i++) { 383 fprintf(header, "%5u%s", base_dist[i], 384 SEPARATOR(i, D_CODES-1, 10)); 385 } 386 387 fclose(header); 388 } 389 #endif /* GEN_TREES_H */ 390 391 /* =========================================================================== 392 * Initialize the tree data structures for a new zlib stream. 393 */ 394 void _tr_init( 395 deflate_state *s) 396 { 397 tr_static_init(); 398 399 s->l_desc.dyn_tree = s->dyn_ltree; 400 s->l_desc.stat_desc = &static_l_desc; 401 402 s->d_desc.dyn_tree = s->dyn_dtree; 403 s->d_desc.stat_desc = &static_d_desc; 404 405 s->bl_desc.dyn_tree = s->bl_tree; 406 s->bl_desc.stat_desc = &static_bl_desc; 407 408 s->bi_buf = 0; 409 s->bi_valid = 0; 410 s->last_eob_len = 8; /* enough lookahead for inflate */ 411 #ifdef DEBUG 412 s->compressed_len = 0L; 413 s->bits_sent = 0L; 414 #endif 415 416 /* Initialize the first block of the first file: */ 417 init_block(s); 418 } 419 420 /* =========================================================================== 421 * Initialize a new block. 422 */ 423 local void init_block( 424 deflate_state *s) 425 { 426 int n; /* iterates over tree elements */ 427 428 /* Initialize the trees. */ 429 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; 430 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; 431 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; 432 433 s->dyn_ltree[END_BLOCK].Freq = 1; 434 s->opt_len = s->static_len = 0L; 435 s->last_lit = s->matches = 0; 436 } 437 438 #define SMALLEST 1 439 /* Index within the heap array of least frequent node in the Huffman tree */ 440 441 442 /* =========================================================================== 443 * Remove the smallest element from the heap and recreate the heap with 444 * one less element. Updates heap and heap_len. 445 */ 446 #define pqremove(s, tree, top) \ 447 {\ 448 top = s->heap[SMALLEST]; \ 449 s->heap[SMALLEST] = s->heap[s->heap_len--]; \ 450 pqdownheap(s, tree, SMALLEST); \ 451 } 452 453 /* =========================================================================== 454 * Compares to subtrees, using the tree depth as tie breaker when 455 * the subtrees have equal frequency. This minimizes the worst case length. 456 */ 457 #define smaller(tree, n, m, depth) \ 458 (tree[n].Freq < tree[m].Freq || \ 459 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) 460 461 /* =========================================================================== 462 * Restore the heap property by moving down the tree starting at node k, 463 * exchanging a node with the smallest of its two sons if necessary, stopping 464 * when the heap property is re-established (each father smaller than its 465 * two sons). 466 */ 467 local void pqdownheap( 468 deflate_state *s, 469 ct_data *tree, 470 int k) 471 { 472 int v = s->heap[k]; 473 int j = k << 1; /* left son of k */ 474 while (j <= s->heap_len) { 475 /* Set j to the smallest of the two sons: */ 476 if (j < s->heap_len && 477 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { 478 j++; 479 } 480 /* Exit if v is smaller than both sons */ 481 if (smaller(tree, v, s->heap[j], s->depth)) break; 482 483 /* Exchange v with the smallest son */ 484 s->heap[k] = s->heap[j]; k = j; 485 486 /* And continue down the tree, setting j to the left son of k */ 487 j <<= 1; 488 } 489 s->heap[k] = v; 490 } 491 492 /* =========================================================================== 493 * Compute the optimal bit lengths for a tree and update the total bit length 494 * for the current block. 495 * IN assertion: the fields freq and dad are set, heap[heap_max] and 496 * above are the tree nodes sorted by increasing frequency. 497 * OUT assertions: the field len is set to the optimal bit length, the 498 * array bl_count contains the frequencies for each bit length. 499 * The length opt_len is updated; static_len is also updated if stree is 500 * not null. 501 */ 502 local void gen_bitlen( 503 deflate_state *s, 504 tree_desc *desc) 505 { 506 ct_data *tree = desc->dyn_tree; 507 int max_code = desc->max_code; 508 const ct_data *stree = desc->stat_desc->static_tree; 509 const intf *extra = desc->stat_desc->extra_bits; 510 int base = desc->stat_desc->extra_base; 511 int max_length = desc->stat_desc->max_length; 512 int h; /* heap index */ 513 int n, m; /* iterate over the tree elements */ 514 int bits; /* bit length */ 515 int xbits; /* extra bits */ 516 ush f; /* frequency */ 517 int overflow = 0; /* number of elements with bit length too large */ 518 519 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; 520 521 /* In a first pass, compute the optimal bit lengths (which may 522 * overflow in the case of the bit length tree). 523 */ 524 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ 525 526 for (h = s->heap_max+1; h < HEAP_SIZE; h++) { 527 n = s->heap[h]; 528 bits = tree[tree[n].Dad].Len + 1; 529 if (bits > max_length) bits = max_length, overflow++; 530 tree[n].Len = (ush)bits; 531 /* We overwrite tree[n].Dad which is no longer needed */ 532 533 if (n > max_code) continue; /* not a leaf node */ 534 535 s->bl_count[bits]++; 536 xbits = 0; 537 if (n >= base) xbits = extra[n-base]; 538 f = tree[n].Freq; 539 s->opt_len += (ulg)f * (bits + xbits); 540 if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); 541 } 542 if (overflow == 0) return; 543 544 Trace((stderr,"\nbit length overflow\n")); 545 /* This happens for example on obj2 and pic of the Calgary corpus */ 546 547 /* Find the first bit length which could increase: */ 548 do { 549 bits = max_length-1; 550 while (s->bl_count[bits] == 0) bits--; 551 s->bl_count[bits]--; /* move one leaf down the tree */ 552 s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ 553 s->bl_count[max_length]--; 554 /* The brother of the overflow item also moves one step up, 555 * but this does not affect bl_count[max_length] 556 */ 557 overflow -= 2; 558 } while (overflow > 0); 559 560 /* Now recompute all bit lengths, scanning in increasing frequency. 561 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all 562 * lengths instead of fixing only the wrong ones. This idea is taken 563 * from 'ar' written by Haruhiko Okumura.) 564 */ 565 for (bits = max_length; bits != 0; bits--) { 566 n = s->bl_count[bits]; 567 while (n != 0) { 568 m = s->heap[--h]; 569 if (m > max_code) continue; 570 if ((unsigned) tree[m].Len != (unsigned) bits) { 571 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); 572 s->opt_len += ((long)bits - (long)tree[m].Len) 573 *(long)tree[m].Freq; 574 tree[m].Len = (ush)bits; 575 } 576 n--; 577 } 578 } 579 } 580 581 /* =========================================================================== 582 * Generate the codes for a given tree and bit counts (which need not be 583 * optimal). 584 * IN assertion: the array bl_count contains the bit length statistics for 585 * the given tree and the field len is set for all tree elements. 586 * OUT assertion: the field code is set for all tree elements of non 587 * zero code length. 588 */ 589 local void gen_codes ( 590 ct_data *tree, 591 int max_code, 592 ushf *bl_count) 593 { 594 ush next_code[MAX_BITS+1]; /* next code value for each bit length */ 595 ush code = 0; /* running code value */ 596 int bits; /* bit index */ 597 int n; /* code index */ 598 599 /* The distribution counts are first used to generate the code values 600 * without bit reversal. 601 */ 602 for (bits = 1; bits <= MAX_BITS; bits++) { 603 next_code[bits] = code = (code + bl_count[bits-1]) << 1; 604 } 605 /* Check that the bit counts in bl_count are consistent. The last code 606 * must be all ones. 607 */ 608 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, 609 "inconsistent bit counts"); 610 Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); 611 612 for (n = 0; n <= max_code; n++) { 613 int len = tree[n].Len; 614 if (len == 0) continue; 615 /* Now reverse the bits */ 616 tree[n].Code = bi_reverse(next_code[len]++, len); 617 618 Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", 619 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); 620 } 621 } 622 623 /* =========================================================================== 624 * Construct one Huffman tree and assigns the code bit strings and lengths. 625 * Update the total bit length for the current block. 626 * IN assertion: the field freq is set for all tree elements. 627 * OUT assertions: the fields len and code are set to the optimal bit length 628 * and corresponding code. The length opt_len is updated; static_len is 629 * also updated if stree is not null. The field max_code is set. 630 */ 631 local void build_tree( 632 deflate_state *s, 633 tree_desc *desc) 634 { 635 ct_data *tree = desc->dyn_tree; 636 const ct_data *stree = desc->stat_desc->static_tree; 637 int elems = desc->stat_desc->elems; 638 int n, m; /* iterate over heap elements */ 639 int max_code = -1; /* largest code with non zero frequency */ 640 int node; /* new node being created */ 641 642 /* Construct the initial heap, with least frequent element in 643 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. 644 * heap[0] is not used. 645 */ 646 s->heap_len = 0, s->heap_max = HEAP_SIZE; 647 648 for (n = 0; n < elems; n++) { 649 if (tree[n].Freq != 0) { 650 s->heap[++(s->heap_len)] = max_code = n; 651 s->depth[n] = 0; 652 } else { 653 tree[n].Len = 0; 654 } 655 } 656 657 /* The pkzip format requires that at least one distance code exists, 658 * and that at least one bit should be sent even if there is only one 659 * possible code. So to avoid special checks later on we force at least 660 * two codes of non zero frequency. 661 */ 662 while (s->heap_len < 2) { 663 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); 664 tree[node].Freq = 1; 665 s->depth[node] = 0; 666 s->opt_len--; if (stree) s->static_len -= stree[node].Len; 667 /* node is 0 or 1 so it does not have extra bits */ 668 } 669 desc->max_code = max_code; 670 671 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, 672 * establish sub-heaps of increasing lengths: 673 */ 674 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); 675 676 /* Construct the Huffman tree by repeatedly combining the least two 677 * frequent nodes. 678 */ 679 node = elems; /* next internal node of the tree */ 680 do { 681 pqremove(s, tree, n); /* n = node of least frequency */ 682 m = s->heap[SMALLEST]; /* m = node of next least frequency */ 683 684 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ 685 s->heap[--(s->heap_max)] = m; 686 687 /* Create a new node father of n and m */ 688 tree[node].Freq = tree[n].Freq + tree[m].Freq; 689 s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ? 690 s->depth[n] : s->depth[m]) + 1); 691 tree[n].Dad = tree[m].Dad = (ush)node; 692 #ifdef DUMP_BL_TREE 693 if (tree == s->bl_tree) { 694 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", 695 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); 696 } 697 #endif 698 /* and insert the new node in the heap */ 699 s->heap[SMALLEST] = node++; 700 pqdownheap(s, tree, SMALLEST); 701 702 } while (s->heap_len >= 2); 703 704 s->heap[--(s->heap_max)] = s->heap[SMALLEST]; 705 706 /* At this point, the fields freq and dad are set. We can now 707 * generate the bit lengths. 708 */ 709 gen_bitlen(s, (tree_desc *)desc); 710 711 /* The field len is now set, we can generate the bit codes */ 712 gen_codes ((ct_data *)tree, max_code, s->bl_count); 713 } 714 715 /* =========================================================================== 716 * Scan a literal or distance tree to determine the frequencies of the codes 717 * in the bit length tree. 718 */ 719 local void scan_tree ( 720 deflate_state *s, 721 ct_data *tree, 722 int max_code) 723 { 724 int n; /* iterates over all tree elements */ 725 int prevlen = -1; /* last emitted length */ 726 int curlen; /* length of current code */ 727 int nextlen = tree[0].Len; /* length of next code */ 728 int count = 0; /* repeat count of the current code */ 729 int max_count = 7; /* max repeat count */ 730 int min_count = 4; /* min repeat count */ 731 732 if (nextlen == 0) max_count = 138, min_count = 3; 733 tree[max_code+1].Len = (ush)0xffff; /* guard */ 734 735 for (n = 0; n <= max_code; n++) { 736 curlen = nextlen; nextlen = tree[n+1].Len; 737 if (++count < max_count && curlen == nextlen) { 738 continue; 739 } else if (count < min_count) { 740 s->bl_tree[curlen].Freq += count; 741 } else if (curlen != 0) { 742 if (curlen != prevlen) s->bl_tree[curlen].Freq++; 743 s->bl_tree[REP_3_6].Freq++; 744 } else if (count <= 10) { 745 s->bl_tree[REPZ_3_10].Freq++; 746 } else { 747 s->bl_tree[REPZ_11_138].Freq++; 748 } 749 count = 0; prevlen = curlen; 750 if (nextlen == 0) { 751 max_count = 138, min_count = 3; 752 } else if (curlen == nextlen) { 753 max_count = 6, min_count = 3; 754 } else { 755 max_count = 7, min_count = 4; 756 } 757 } 758 } 759 760 /* =========================================================================== 761 * Send a literal or distance tree in compressed form, using the codes in 762 * bl_tree. 763 */ 764 local void send_tree ( 765 deflate_state *s, 766 ct_data *tree, 767 int max_code) 768 { 769 int n; /* iterates over all tree elements */ 770 int prevlen = -1; /* last emitted length */ 771 int curlen; /* length of current code */ 772 int nextlen = tree[0].Len; /* length of next code */ 773 int count = 0; /* repeat count of the current code */ 774 int max_count = 7; /* max repeat count */ 775 int min_count = 4; /* min repeat count */ 776 777 /* tree[max_code+1].Len = -1; */ /* guard already set */ 778 if (nextlen == 0) max_count = 138, min_count = 3; 779 780 for (n = 0; n <= max_code; n++) { 781 curlen = nextlen; nextlen = tree[n+1].Len; 782 if (++count < max_count && curlen == nextlen) { 783 continue; 784 } else if (count < min_count) { 785 do { send_code(s, curlen, s->bl_tree); } while (--count != 0); 786 787 } else if (curlen != 0) { 788 if (curlen != prevlen) { 789 send_code(s, curlen, s->bl_tree); count--; 790 } 791 Assert(count >= 3 && count <= 6, " 3_6?"); 792 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); 793 794 } else if (count <= 10) { 795 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); 796 797 } else { 798 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); 799 } 800 count = 0; prevlen = curlen; 801 if (nextlen == 0) { 802 max_count = 138, min_count = 3; 803 } else if (curlen == nextlen) { 804 max_count = 6, min_count = 3; 805 } else { 806 max_count = 7, min_count = 4; 807 } 808 } 809 } 810 811 /* =========================================================================== 812 * Construct the Huffman tree for the bit lengths and return the index in 813 * bl_order of the last bit length code to send. 814 */ 815 local int build_bl_tree( 816 deflate_state *s) 817 { 818 int max_blindex; /* index of last bit length code of non zero freq */ 819 820 /* Determine the bit length frequencies for literal and distance trees */ 821 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); 822 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); 823 824 /* Build the bit length tree: */ 825 build_tree(s, (tree_desc *)(&(s->bl_desc))); 826 /* opt_len now includes the length of the tree representations, except 827 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. 828 */ 829 830 /* Determine the number of bit length codes to send. The pkzip format 831 * requires that at least 4 bit length codes be sent. (appnote.txt says 832 * 3 but the actual value used is 4.) 833 */ 834 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { 835 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; 836 } 837 /* Update opt_len to include the bit length tree and counts */ 838 s->opt_len += 3*(max_blindex+1) + 5+5+4; 839 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", 840 s->opt_len, s->static_len)); 841 842 return max_blindex; 843 } 844 845 /* =========================================================================== 846 * Send the header for a block using dynamic Huffman trees: the counts, the 847 * lengths of the bit length codes, the literal tree and the distance tree. 848 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. 849 */ 850 local void send_all_trees( 851 deflate_state *s, 852 int lcodes, 853 int dcodes, 854 int blcodes) 855 { 856 int rank; /* index in bl_order */ 857 858 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); 859 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, 860 "too many codes"); 861 Tracev((stderr, "\nbl counts: ")); 862 send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ 863 send_bits(s, dcodes-1, 5); 864 send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */ 865 for (rank = 0; rank < blcodes; rank++) { 866 Tracev((stderr, "\nbl code %2d ", bl_order[rank])); 867 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); 868 } 869 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); 870 871 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ 872 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); 873 874 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ 875 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); 876 } 877 878 /* =========================================================================== 879 * Send a stored block 880 */ 881 void _tr_stored_block( 882 deflate_state *s, 883 charf *buf, 884 ulg stored_len, 885 int eof) 886 { 887 send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */ 888 #ifdef DEBUG 889 s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; 890 s->compressed_len += (stored_len + 4) << 3; 891 #endif 892 copy_block(s, buf, (unsigned)stored_len, 1); /* with header */ 893 } 894 895 /* =========================================================================== 896 * Send one empty static block to give enough lookahead for inflate. 897 * This takes 10 bits, of which 7 may remain in the bit buffer. 898 * The current inflate code requires 9 bits of lookahead. If the 899 * last two codes for the previous block (real code plus EOB) were coded 900 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode 901 * the last real code. In this case we send two empty static blocks instead 902 * of one. (There are no problems if the previous block is stored or fixed.) 903 * To simplify the code, we assume the worst case of last real code encoded 904 * on one bit only. 905 */ 906 void _tr_align( 907 deflate_state *s) 908 { 909 send_bits(s, STATIC_TREES<<1, 3); 910 send_code(s, END_BLOCK, static_ltree); 911 #ifdef DEBUG 912 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ 913 #endif 914 bi_flush(s); 915 /* Of the 10 bits for the empty block, we have already sent 916 * (10 - bi_valid) bits. The lookahead for the last real code (before 917 * the EOB of the previous block) was thus at least one plus the length 918 * of the EOB plus what we have just sent of the empty static block. 919 */ 920 if (1 + s->last_eob_len + 10 - s->bi_valid < 9) { 921 send_bits(s, STATIC_TREES<<1, 3); 922 send_code(s, END_BLOCK, static_ltree); 923 #ifdef DEBUG 924 s->compressed_len += 10L; 925 #endif 926 bi_flush(s); 927 } 928 s->last_eob_len = 7; 929 } 930 931 /* =========================================================================== 932 * Determine the best encoding for the current block: dynamic trees, static 933 * trees or store, and output the encoded block to the zip file. 934 */ 935 void _tr_flush_block( 936 deflate_state *s, 937 charf *buf, 938 ulg stored_len, 939 int eof) 940 { 941 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ 942 int max_blindex = 0; /* index of last bit length code of non zero freq */ 943 944 /* Build the Huffman trees unless a stored block is forced */ 945 if (s->level > 0) { 946 947 /* Check if the file is binary or text */ 948 if (stored_len > 0 && s->strm->data_type == Z_UNKNOWN) 949 set_data_type(s); 950 951 /* Construct the literal and distance trees */ 952 build_tree(s, (tree_desc *)(&(s->l_desc))); 953 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, 954 s->static_len)); 955 956 build_tree(s, (tree_desc *)(&(s->d_desc))); 957 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, 958 s->static_len)); 959 /* At this point, opt_len and static_len are the total bit lengths of 960 * the compressed block data, excluding the tree representations. 961 */ 962 963 /* Build the bit length tree for the above two trees, and get the index 964 * in bl_order of the last bit length code to send. 965 */ 966 max_blindex = build_bl_tree(s); 967 968 /* Determine the best encoding. Compute the block lengths in bytes. */ 969 opt_lenb = (s->opt_len+3+7)>>3; 970 static_lenb = (s->static_len+3+7)>>3; 971 972 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", 973 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, 974 s->last_lit)); 975 976 if (static_lenb <= opt_lenb) opt_lenb = static_lenb; 977 978 } else { 979 Assert(buf != (char*)0, "lost buf"); 980 opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ 981 } 982 983 #ifdef FORCE_STORED 984 if (buf != (char*)0) { /* force stored block */ 985 #else 986 if (stored_len+4 <= opt_lenb && buf != (char*)0) { 987 /* 4: two words for the lengths */ 988 #endif 989 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. 990 * Otherwise we can't have processed more than WSIZE input bytes since 991 * the last block flush, because compression would have been 992 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to 993 * transform a block into a stored block. 994 */ 995 _tr_stored_block(s, buf, stored_len, eof); 996 997 #ifdef FORCE_STATIC 998 } else if (static_lenb >= 0) { /* force static trees */ 999 #else 1000 } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) { 1001 #endif 1002 send_bits(s, (STATIC_TREES<<1)+eof, 3); 1003 compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree); 1004 #ifdef DEBUG 1005 s->compressed_len += 3 + s->static_len; 1006 #endif 1007 } else { 1008 send_bits(s, (DYN_TREES<<1)+eof, 3); 1009 send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, 1010 max_blindex+1); 1011 compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree); 1012 #ifdef DEBUG 1013 s->compressed_len += 3 + s->opt_len; 1014 #endif 1015 } 1016 Assert (s->compressed_len == s->bits_sent, "bad compressed size"); 1017 /* The above check is made mod 2^32, for files larger than 512 MB 1018 * and uLong implemented on 32 bits. 1019 */ 1020 init_block(s); 1021 1022 if (eof) { 1023 bi_windup(s); 1024 #ifdef DEBUG 1025 s->compressed_len += 7; /* align on byte boundary */ 1026 #endif 1027 } 1028 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, 1029 s->compressed_len-7*eof)); 1030 } 1031 1032 /* =========================================================================== 1033 * Save the match info and tally the frequency counts. Return true if 1034 * the current block must be flushed. 1035 */ 1036 int _tr_tally ( 1037 deflate_state *s, 1038 unsigned dist, 1039 unsigned lc) 1040 { 1041 s->d_buf[s->last_lit] = (ush)dist; 1042 s->l_buf[s->last_lit++] = (uch)lc; 1043 if (dist == 0) { 1044 /* lc is the unmatched char */ 1045 s->dyn_ltree[lc].Freq++; 1046 } else { 1047 s->matches++; 1048 /* Here, lc is the match length - MIN_MATCH */ 1049 dist--; /* dist = match distance - 1 */ 1050 Assert((ush)dist < (ush)MAX_DIST(s) && 1051 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && 1052 (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match"); 1053 1054 s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++; 1055 s->dyn_dtree[d_code(dist)].Freq++; 1056 } 1057 1058 #ifdef TRUNCATE_BLOCK 1059 /* Try to guess if it is profitable to stop the current block here */ 1060 if ((s->last_lit & 0x1fff) == 0 && s->level > 2) { 1061 /* Compute an upper bound for the compressed length */ 1062 ulg out_length = (ulg)s->last_lit*8L; 1063 ulg in_length = (ulg)((long)s->strstart - s->block_start); 1064 int dcode; 1065 for (dcode = 0; dcode < D_CODES; dcode++) { 1066 out_length += (ulg)s->dyn_dtree[dcode].Freq * 1067 (5L+extra_dbits[dcode]); 1068 } 1069 out_length >>= 3; 1070 Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", 1071 s->last_lit, in_length, out_length, 1072 100L - out_length*100L/in_length)); 1073 if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; 1074 } 1075 #endif 1076 return (s->last_lit == s->lit_bufsize-1); 1077 /* We avoid equality with lit_bufsize because of wraparound at 64K 1078 * on 16 bit machines and because stored blocks are restricted to 1079 * 64K-1 bytes. 1080 */ 1081 } 1082 1083 /* =========================================================================== 1084 * Send the block data compressed using the given Huffman trees 1085 */ 1086 local void compress_block( 1087 deflate_state *s, 1088 ct_data *ltree, 1089 ct_data *dtree) 1090 { 1091 unsigned dist; /* distance of matched string */ 1092 int lc; /* match length or unmatched char (if dist == 0) */ 1093 unsigned lx = 0; /* running index in l_buf */ 1094 unsigned code; /* the code to send */ 1095 int extra; /* number of extra bits to send */ 1096 1097 if (s->last_lit != 0) do { 1098 dist = s->d_buf[lx]; 1099 lc = s->l_buf[lx++]; 1100 if (dist == 0) { 1101 send_code(s, lc, ltree); /* send a literal byte */ 1102 Tracecv(isgraph(lc), (stderr," '%c' ", lc)); 1103 } else { 1104 /* Here, lc is the match length - MIN_MATCH */ 1105 code = _length_code[lc]; 1106 send_code(s, code+LITERALS+1, ltree); /* send the length code */ 1107 extra = extra_lbits[code]; 1108 if (extra != 0) { 1109 lc -= base_length[code]; 1110 send_bits(s, lc, extra); /* send the extra length bits */ 1111 } 1112 dist--; /* dist is now the match distance - 1 */ 1113 code = d_code(dist); 1114 Assert (code < D_CODES, "bad d_code"); 1115 1116 send_code(s, code, dtree); /* send the distance code */ 1117 extra = extra_dbits[code]; 1118 if (extra != 0) { 1119 dist -= base_dist[code]; 1120 send_bits(s, dist, extra); /* send the extra distance bits */ 1121 } 1122 } /* literal or match pair ? */ 1123 1124 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ 1125 Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx, 1126 "pendingBuf overflow"); 1127 1128 } while (lx < s->last_lit); 1129 1130 send_code(s, END_BLOCK, ltree); 1131 s->last_eob_len = ltree[END_BLOCK].Len; 1132 } 1133 1134 /* =========================================================================== 1135 * Set the data type to BINARY or TEXT, using a crude approximation: 1136 * set it to Z_TEXT if all symbols are either printable characters (33 to 255) 1137 * or white spaces (9 to 13, or 32); or set it to Z_BINARY otherwise. 1138 * IN assertion: the fields Freq of dyn_ltree are set. 1139 */ 1140 local void set_data_type( 1141 deflate_state *s) 1142 { 1143 int n; 1144 1145 for (n = 0; n < 9; n++) 1146 if (s->dyn_ltree[n].Freq != 0) 1147 break; 1148 if (n == 9) 1149 for (n = 14; n < 32; n++) 1150 if (s->dyn_ltree[n].Freq != 0) 1151 break; 1152 s->strm->data_type = (n == 32) ? Z_TEXT : Z_BINARY; 1153 } 1154 1155 /* =========================================================================== 1156 * Reverse the first len bits of a code, using straightforward code (a faster 1157 * method would use a table) 1158 * IN assertion: 1 <= len <= 15 1159 */ 1160 local unsigned bi_reverse( 1161 unsigned code, 1162 int len) 1163 { 1164 register unsigned res = 0; 1165 do { 1166 res |= code & 1; 1167 code >>= 1, res <<= 1; 1168 } while (--len > 0); 1169 return res >> 1; 1170 } 1171 1172 /* =========================================================================== 1173 * Flush the bit buffer, keeping at most 7 bits in it. 1174 */ 1175 local void bi_flush( 1176 deflate_state *s) 1177 { 1178 if (s->bi_valid == 16) { 1179 put_short(s, s->bi_buf); 1180 s->bi_buf = 0; 1181 s->bi_valid = 0; 1182 } else if (s->bi_valid >= 8) { 1183 put_byte(s, (Byte)s->bi_buf); 1184 s->bi_buf >>= 8; 1185 s->bi_valid -= 8; 1186 } 1187 } 1188 1189 /* =========================================================================== 1190 * Flush the bit buffer and align the output on a byte boundary 1191 */ 1192 local void bi_windup( 1193 deflate_state *s) 1194 { 1195 if (s->bi_valid > 8) { 1196 put_short(s, s->bi_buf); 1197 } else if (s->bi_valid > 0) { 1198 put_byte(s, (Byte)s->bi_buf); 1199 } 1200 s->bi_buf = 0; 1201 s->bi_valid = 0; 1202 #ifdef DEBUG 1203 s->bits_sent = (s->bits_sent+7) & ~7; 1204 #endif 1205 } 1206 1207 /* =========================================================================== 1208 * Copy a stored block, storing first the length and its 1209 * one's complement if requested. 1210 */ 1211 local void copy_block( 1212 deflate_state *s, 1213 charf *buf, 1214 unsigned len, 1215 int header) 1216 { 1217 bi_windup(s); /* align on byte boundary */ 1218 s->last_eob_len = 8; /* enough lookahead for inflate */ 1219 1220 if (header) { 1221 put_short(s, (ush)len); 1222 put_short(s, (ush)~len); 1223 #ifdef DEBUG 1224 s->bits_sent += 2*16; 1225 #endif 1226 } 1227 #ifdef DEBUG 1228 s->bits_sent += (ulg)len<<3; 1229 #endif 1230 while (len--) { 1231 put_byte(s, *buf++); 1232 } 1233 } 1234