1 2 /* trees.c -- output deflated data using Huffman coding 3 * Copyright (C) 1995-2021 Jean-loup Gailly 4 * detect_data_type() function provided freely by Cosmin Truta, 2006 5 * For conditions of distribution and use, see copyright notice in zlib.h 6 */ 7 8 /* 9 * ALGORITHM 10 * 11 * The "deflation" process uses several Huffman trees. The more 12 * common source values are represented by shorter bit sequences. 13 * 14 * Each code tree is stored in a compressed form which is itself 15 * a Huffman encoding of the lengths of all the code strings (in 16 * ascending order by source values). The actual code strings are 17 * reconstructed from the lengths in the inflate process, as described 18 * in the deflate specification. 19 * 20 * REFERENCES 21 * 22 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". 23 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc 24 * 25 * Storer, James A. 26 * Data Compression: Methods and Theory, pp. 49-50. 27 * Computer Science Press, 1988. ISBN 0-7167-8156-5. 28 * 29 * Sedgewick, R. 30 * Algorithms, p290. 31 * Addison-Wesley, 1983. ISBN 0-201-06672-6. 32 */ 33 34 /* @(#) $Id$ */ 35 36 /* #define GEN_TREES_H */ 37 38 #include "deflate.h" 39 40 #ifdef ZLIB_DEBUG 41 # include <ctype.h> 42 #endif 43 44 /* =========================================================================== 45 * Constants 46 */ 47 48 #define MAX_BL_BITS 7 49 /* Bit length codes must not exceed MAX_BL_BITS bits */ 50 51 #define END_BLOCK 256 52 /* end of block literal code */ 53 54 #define REP_3_6 16 55 /* repeat previous bit length 3-6 times (2 bits of repeat count) */ 56 57 #define REPZ_3_10 17 58 /* repeat a zero length 3-10 times (3 bits of repeat count) */ 59 60 #define REPZ_11_138 18 61 /* repeat a zero length 11-138 times (7 bits of repeat count) */ 62 63 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ 64 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; 65 66 local const int extra_dbits[D_CODES] /* extra bits for each distance code */ 67 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; 68 69 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */ 70 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; 71 72 local const uch bl_order[BL_CODES] 73 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; 74 /* The lengths of the bit length codes are sent in order of decreasing 75 * probability, to avoid transmitting the lengths for unused bit length codes. 76 */ 77 78 /* =========================================================================== 79 * Local data. These are initialized only once. 80 */ 81 82 #define DIST_CODE_LEN 512 /* see definition of array dist_code below */ 83 84 #if defined(GEN_TREES_H) || !defined(STDC) 85 /* non ANSI compilers may not accept trees.h */ 86 87 local ct_data static_ltree[L_CODES+2]; 88 /* The static literal tree. Since the bit lengths are imposed, there is no 89 * need for the L_CODES extra codes used during heap construction. However 90 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init 91 * below). 92 */ 93 94 local ct_data static_dtree[D_CODES]; 95 /* The static distance tree. (Actually a trivial tree since all codes use 96 * 5 bits.) 97 */ 98 99 uch _dist_code[DIST_CODE_LEN]; 100 /* Distance codes. The first 256 values correspond to the distances 101 * 3 .. 258, the last 256 values correspond to the top 8 bits of 102 * the 15 bit distances. 103 */ 104 105 uch _length_code[MAX_MATCH-MIN_MATCH+1]; 106 /* length code for each normalized match length (0 == MIN_MATCH) */ 107 108 local int base_length[LENGTH_CODES]; 109 /* First normalized length for each code (0 = MIN_MATCH) */ 110 111 local int base_dist[D_CODES]; 112 /* First normalized distance for each code (0 = distance of 1) */ 113 114 #else 115 # include "trees.h" 116 #endif /* GEN_TREES_H */ 117 118 struct static_tree_desc_s { 119 const ct_data *static_tree; /* static tree or NULL */ 120 const intf *extra_bits; /* extra bits for each code or NULL */ 121 int extra_base; /* base index for extra_bits */ 122 int elems; /* max number of elements in the tree */ 123 int max_length; /* max bit length for the codes */ 124 }; 125 126 local const static_tree_desc static_l_desc = 127 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; 128 129 local const static_tree_desc static_d_desc = 130 {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; 131 132 local const static_tree_desc static_bl_desc = 133 {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; 134 135 /* =========================================================================== 136 * Local (static) routines in this file. 137 */ 138 139 local void tr_static_init OF((void)); 140 local void init_block OF((deflate_state *s)); 141 local void pqdownheap OF((deflate_state *s, ct_data *tree, int k)); 142 local void gen_bitlen OF((deflate_state *s, tree_desc *desc)); 143 local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count)); 144 local void build_tree OF((deflate_state *s, tree_desc *desc)); 145 local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code)); 146 local void send_tree OF((deflate_state *s, ct_data *tree, int max_code)); 147 local int build_bl_tree OF((deflate_state *s)); 148 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes, 149 int blcodes)); 150 local void compress_block OF((deflate_state *s, const ct_data *ltree, 151 const ct_data *dtree)); 152 local int detect_data_type OF((deflate_state *s)); 153 local unsigned bi_reverse OF((unsigned code, int len)); 154 local void bi_windup OF((deflate_state *s)); 155 local void bi_flush OF((deflate_state *s)); 156 157 #ifdef GEN_TREES_H 158 local void gen_trees_header OF((void)); 159 #endif 160 161 #ifndef ZLIB_DEBUG 162 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) 163 /* Send a code of the given tree. c and tree must not have side effects */ 164 165 #else /* !ZLIB_DEBUG */ 166 # define send_code(s, c, tree) \ 167 { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ 168 send_bits(s, tree[c].Code, tree[c].Len); } 169 #endif 170 171 /* =========================================================================== 172 * Output a short LSB first on the stream. 173 * IN assertion: there is enough room in pendingBuf. 174 */ 175 #define put_short(s, w) { \ 176 put_byte(s, (uch)((w) & 0xff)); \ 177 put_byte(s, (uch)((ush)(w) >> 8)); \ 178 } 179 180 /* =========================================================================== 181 * Send a value on a given number of bits. 182 * IN assertion: length <= 16 and value fits in length bits. 183 */ 184 #ifdef ZLIB_DEBUG 185 local void send_bits OF((deflate_state *s, int value, int length)); 186 187 local void send_bits( 188 deflate_state *s, 189 int value, 190 int length) 191 { 192 Tracevv((stderr," l %2d v %4x ", length, value)); 193 Assert(length > 0 && length <= 15, "invalid length"); 194 s->bits_sent += (ulg)length; 195 196 /* If not enough room in bi_buf, use (valid) bits from bi_buf and 197 * (16 - bi_valid) bits from value, leaving (width - (16 - bi_valid)) 198 * unused bits in value. 199 */ 200 if (s->bi_valid > (int)Buf_size - length) { 201 s->bi_buf |= (ush)value << s->bi_valid; 202 put_short(s, s->bi_buf); 203 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); 204 s->bi_valid += length - Buf_size; 205 } else { 206 s->bi_buf |= (ush)value << s->bi_valid; 207 s->bi_valid += length; 208 } 209 } 210 #else /* !ZLIB_DEBUG */ 211 212 #define send_bits(s, value, length) \ 213 { int len = length;\ 214 if (s->bi_valid > (int)Buf_size - len) {\ 215 int val = (int)value;\ 216 s->bi_buf |= (ush)val << s->bi_valid;\ 217 put_short(s, s->bi_buf);\ 218 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ 219 s->bi_valid += len - Buf_size;\ 220 } else {\ 221 s->bi_buf |= (ush)(value) << s->bi_valid;\ 222 s->bi_valid += len;\ 223 }\ 224 } 225 #endif /* ZLIB_DEBUG */ 226 227 228 /* the arguments must not have side effects */ 229 230 /* =========================================================================== 231 * Initialize the various 'constant' tables. 232 */ 233 local void tr_static_init() 234 { 235 #if defined(GEN_TREES_H) || !defined(STDC) 236 static int static_init_done = 0; 237 int n; /* iterates over tree elements */ 238 int bits; /* bit counter */ 239 int length; /* length value */ 240 int code; /* code value */ 241 int dist; /* distance index */ 242 ush bl_count[MAX_BITS+1]; 243 /* number of codes at each bit length for an optimal tree */ 244 245 if (static_init_done) return; 246 247 /* For some embedded targets, global variables are not initialized: */ 248 #ifdef NO_INIT_GLOBAL_POINTERS 249 static_l_desc.static_tree = static_ltree; 250 static_l_desc.extra_bits = extra_lbits; 251 static_d_desc.static_tree = static_dtree; 252 static_d_desc.extra_bits = extra_dbits; 253 static_bl_desc.extra_bits = extra_blbits; 254 #endif 255 256 /* Initialize the mapping length (0..255) -> length code (0..28) */ 257 length = 0; 258 for (code = 0; code < LENGTH_CODES-1; code++) { 259 base_length[code] = length; 260 for (n = 0; n < (1 << extra_lbits[code]); n++) { 261 _length_code[length++] = (uch)code; 262 } 263 } 264 Assert (length == 256, "tr_static_init: length != 256"); 265 /* Note that the length 255 (match length 258) can be represented 266 * in two different ways: code 284 + 5 bits or code 285, so we 267 * overwrite length_code[255] to use the best encoding: 268 */ 269 _length_code[length - 1] = (uch)code; 270 271 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ 272 dist = 0; 273 for (code = 0 ; code < 16; code++) { 274 base_dist[code] = dist; 275 for (n = 0; n < (1 << extra_dbits[code]); n++) { 276 _dist_code[dist++] = (uch)code; 277 } 278 } 279 Assert (dist == 256, "tr_static_init: dist != 256"); 280 dist >>= 7; /* from now on, all distances are divided by 128 */ 281 for ( ; code < D_CODES; code++) { 282 base_dist[code] = dist << 7; 283 for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) { 284 _dist_code[256 + dist++] = (uch)code; 285 } 286 } 287 Assert (dist == 256, "tr_static_init: 256 + dist != 512"); 288 289 /* Construct the codes of the static literal tree */ 290 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; 291 n = 0; 292 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; 293 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; 294 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; 295 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; 296 /* Codes 286 and 287 do not exist, but we must include them in the 297 * tree construction to get a canonical Huffman tree (longest code 298 * all ones) 299 */ 300 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); 301 302 /* The static distance tree is trivial: */ 303 for (n = 0; n < D_CODES; n++) { 304 static_dtree[n].Len = 5; 305 static_dtree[n].Code = bi_reverse((unsigned)n, 5); 306 } 307 static_init_done = 1; 308 309 # ifdef GEN_TREES_H 310 gen_trees_header(); 311 # endif 312 #endif /* defined(GEN_TREES_H) || !defined(STDC) */ 313 } 314 315 /* =========================================================================== 316 * Generate the file trees.h describing the static trees. 317 */ 318 #ifdef GEN_TREES_H 319 # ifndef ZLIB_DEBUG 320 # include <stdio.h> 321 # endif 322 323 # define SEPARATOR(i, last, width) \ 324 ((i) == (last)? "\n};\n\n" : \ 325 ((i) % (width) == (width) - 1 ? ",\n" : ", ")) 326 327 void gen_trees_header() 328 { 329 FILE *header = fopen("trees.h", "w"); 330 int i; 331 332 Assert (header != NULL, "Can't open trees.h"); 333 fprintf(header, 334 "/* header created automatically with -DGEN_TREES_H */\n\n"); 335 336 fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n"); 337 for (i = 0; i < L_CODES+2; i++) { 338 fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code, 339 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5)); 340 } 341 342 fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n"); 343 for (i = 0; i < D_CODES; i++) { 344 fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code, 345 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5)); 346 } 347 348 fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n"); 349 for (i = 0; i < DIST_CODE_LEN; i++) { 350 fprintf(header, "%2u%s", _dist_code[i], 351 SEPARATOR(i, DIST_CODE_LEN-1, 20)); 352 } 353 354 fprintf(header, 355 "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n"); 356 for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) { 357 fprintf(header, "%2u%s", _length_code[i], 358 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20)); 359 } 360 361 fprintf(header, "local const int base_length[LENGTH_CODES] = {\n"); 362 for (i = 0; i < LENGTH_CODES; i++) { 363 fprintf(header, "%1u%s", base_length[i], 364 SEPARATOR(i, LENGTH_CODES-1, 20)); 365 } 366 367 fprintf(header, "local const int base_dist[D_CODES] = {\n"); 368 for (i = 0; i < D_CODES; i++) { 369 fprintf(header, "%5u%s", base_dist[i], 370 SEPARATOR(i, D_CODES-1, 10)); 371 } 372 373 fclose(header); 374 } 375 #endif /* GEN_TREES_H */ 376 377 /* =========================================================================== 378 * Initialize the tree data structures for a new zlib stream. 379 */ 380 void ZLIB_INTERNAL _tr_init( 381 deflate_state *s) 382 { 383 tr_static_init(); 384 385 s->l_desc.dyn_tree = s->dyn_ltree; 386 s->l_desc.stat_desc = &static_l_desc; 387 388 s->d_desc.dyn_tree = s->dyn_dtree; 389 s->d_desc.stat_desc = &static_d_desc; 390 391 s->bl_desc.dyn_tree = s->bl_tree; 392 s->bl_desc.stat_desc = &static_bl_desc; 393 394 s->bi_buf = 0; 395 s->bi_valid = 0; 396 #ifdef ZLIB_DEBUG 397 s->compressed_len = 0L; 398 s->bits_sent = 0L; 399 #endif 400 401 /* Initialize the first block of the first file: */ 402 init_block(s); 403 } 404 405 /* =========================================================================== 406 * Initialize a new block. 407 */ 408 local void init_block( 409 deflate_state *s) 410 { 411 int n; /* iterates over tree elements */ 412 413 /* Initialize the trees. */ 414 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; 415 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; 416 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; 417 418 s->dyn_ltree[END_BLOCK].Freq = 1; 419 s->opt_len = s->static_len = 0L; 420 s->sym_next = s->matches = 0; 421 } 422 423 #define SMALLEST 1 424 /* Index within the heap array of least frequent node in the Huffman tree */ 425 426 427 /* =========================================================================== 428 * Remove the smallest element from the heap and recreate the heap with 429 * one less element. Updates heap and heap_len. 430 */ 431 #define pqremove(s, tree, top) \ 432 {\ 433 top = s->heap[SMALLEST]; \ 434 s->heap[SMALLEST] = s->heap[s->heap_len--]; \ 435 pqdownheap(s, tree, SMALLEST); \ 436 } 437 438 /* =========================================================================== 439 * Compares to subtrees, using the tree depth as tie breaker when 440 * the subtrees have equal frequency. This minimizes the worst case length. 441 */ 442 #define smaller(tree, n, m, depth) \ 443 (tree[n].Freq < tree[m].Freq || \ 444 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) 445 446 /* =========================================================================== 447 * Restore the heap property by moving down the tree starting at node k, 448 * exchanging a node with the smallest of its two sons if necessary, stopping 449 * when the heap property is re-established (each father smaller than its 450 * two sons). 451 */ 452 local void pqdownheap( 453 deflate_state *s, 454 ct_data *tree, 455 int k) 456 { 457 int v = s->heap[k]; 458 int j = k << 1; /* left son of k */ 459 while (j <= s->heap_len) { 460 /* Set j to the smallest of the two sons: */ 461 if (j < s->heap_len && 462 smaller(tree, s->heap[j + 1], s->heap[j], s->depth)) { 463 j++; 464 } 465 /* Exit if v is smaller than both sons */ 466 if (smaller(tree, v, s->heap[j], s->depth)) break; 467 468 /* Exchange v with the smallest son */ 469 s->heap[k] = s->heap[j]; k = j; 470 471 /* And continue down the tree, setting j to the left son of k */ 472 j <<= 1; 473 } 474 s->heap[k] = v; 475 } 476 477 /* =========================================================================== 478 * Compute the optimal bit lengths for a tree and update the total bit length 479 * for the current block. 480 * IN assertion: the fields freq and dad are set, heap[heap_max] and 481 * above are the tree nodes sorted by increasing frequency. 482 * OUT assertions: the field len is set to the optimal bit length, the 483 * array bl_count contains the frequencies for each bit length. 484 * The length opt_len is updated; static_len is also updated if stree is 485 * not null. 486 */ 487 local void gen_bitlen( 488 deflate_state *s, 489 tree_desc *desc) 490 { 491 ct_data *tree = desc->dyn_tree; 492 int max_code = desc->max_code; 493 const ct_data *stree = desc->stat_desc->static_tree; 494 const intf *extra = desc->stat_desc->extra_bits; 495 int base = desc->stat_desc->extra_base; 496 int max_length = desc->stat_desc->max_length; 497 int h; /* heap index */ 498 int n, m; /* iterate over the tree elements */ 499 int bits; /* bit length */ 500 int xbits; /* extra bits */ 501 ush f; /* frequency */ 502 int overflow = 0; /* number of elements with bit length too large */ 503 504 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; 505 506 /* In a first pass, compute the optimal bit lengths (which may 507 * overflow in the case of the bit length tree). 508 */ 509 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ 510 511 for (h = s->heap_max + 1; h < HEAP_SIZE; h++) { 512 n = s->heap[h]; 513 bits = tree[tree[n].Dad].Len + 1; 514 if (bits > max_length) bits = max_length, overflow++; 515 tree[n].Len = (ush)bits; 516 /* We overwrite tree[n].Dad which is no longer needed */ 517 518 if (n > max_code) continue; /* not a leaf node */ 519 520 s->bl_count[bits]++; 521 xbits = 0; 522 if (n >= base) xbits = extra[n - base]; 523 f = tree[n].Freq; 524 s->opt_len += (ulg)f * (unsigned)(bits + xbits); 525 if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits); 526 } 527 if (overflow == 0) return; 528 529 Tracev((stderr,"\nbit length overflow\n")); 530 /* This happens for example on obj2 and pic of the Calgary corpus */ 531 532 /* Find the first bit length which could increase: */ 533 do { 534 bits = max_length - 1; 535 while (s->bl_count[bits] == 0) bits--; 536 s->bl_count[bits]--; /* move one leaf down the tree */ 537 s->bl_count[bits + 1] += 2; /* move one overflow item as its brother */ 538 s->bl_count[max_length]--; 539 /* The brother of the overflow item also moves one step up, 540 * but this does not affect bl_count[max_length] 541 */ 542 overflow -= 2; 543 } while (overflow > 0); 544 545 /* Now recompute all bit lengths, scanning in increasing frequency. 546 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all 547 * lengths instead of fixing only the wrong ones. This idea is taken 548 * from 'ar' written by Haruhiko Okumura.) 549 */ 550 for (bits = max_length; bits != 0; bits--) { 551 n = s->bl_count[bits]; 552 while (n != 0) { 553 m = s->heap[--h]; 554 if (m > max_code) continue; 555 if ((unsigned) tree[m].Len != (unsigned) bits) { 556 Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); 557 s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq; 558 tree[m].Len = (ush)bits; 559 } 560 n--; 561 } 562 } 563 } 564 565 /* =========================================================================== 566 * Generate the codes for a given tree and bit counts (which need not be 567 * optimal). 568 * IN assertion: the array bl_count contains the bit length statistics for 569 * the given tree and the field len is set for all tree elements. 570 * OUT assertion: the field code is set for all tree elements of non 571 * zero code length. 572 */ 573 local void gen_codes ( 574 ct_data *tree, 575 int max_code, 576 ushf *bl_count) 577 { 578 ush next_code[MAX_BITS+1]; /* next code value for each bit length */ 579 unsigned code = 0; /* running code value */ 580 int bits; /* bit index */ 581 int n; /* code index */ 582 583 /* The distribution counts are first used to generate the code values 584 * without bit reversal. 585 */ 586 for (bits = 1; bits <= MAX_BITS; bits++) { 587 code = (code + bl_count[bits - 1]) << 1; 588 next_code[bits] = (ush)code; 589 } 590 /* Check that the bit counts in bl_count are consistent. The last code 591 * must be all ones. 592 */ 593 Assert (code + bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1, 594 "inconsistent bit counts"); 595 Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); 596 597 for (n = 0; n <= max_code; n++) { 598 int len = tree[n].Len; 599 if (len == 0) continue; 600 /* Now reverse the bits */ 601 tree[n].Code = (ush)bi_reverse(next_code[len]++, len); 602 603 Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", 604 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len] - 1)); 605 } 606 } 607 608 /* =========================================================================== 609 * Construct one Huffman tree and assigns the code bit strings and lengths. 610 * Update the total bit length for the current block. 611 * IN assertion: the field freq is set for all tree elements. 612 * OUT assertions: the fields len and code are set to the optimal bit length 613 * and corresponding code. The length opt_len is updated; static_len is 614 * also updated if stree is not null. The field max_code is set. 615 */ 616 local void build_tree( 617 deflate_state *s, 618 tree_desc *desc) 619 { 620 ct_data *tree = desc->dyn_tree; 621 const ct_data *stree = desc->stat_desc->static_tree; 622 int elems = desc->stat_desc->elems; 623 int n, m; /* iterate over heap elements */ 624 int max_code = -1; /* largest code with non zero frequency */ 625 int node; /* new node being created */ 626 627 /* Construct the initial heap, with least frequent element in 628 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n + 1]. 629 * heap[0] is not used. 630 */ 631 s->heap_len = 0, s->heap_max = HEAP_SIZE; 632 633 for (n = 0; n < elems; n++) { 634 if (tree[n].Freq != 0) { 635 s->heap[++(s->heap_len)] = max_code = n; 636 s->depth[n] = 0; 637 } else { 638 tree[n].Len = 0; 639 } 640 } 641 642 /* The pkzip format requires that at least one distance code exists, 643 * and that at least one bit should be sent even if there is only one 644 * possible code. So to avoid special checks later on we force at least 645 * two codes of non zero frequency. 646 */ 647 while (s->heap_len < 2) { 648 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); 649 tree[node].Freq = 1; 650 s->depth[node] = 0; 651 s->opt_len--; if (stree) s->static_len -= stree[node].Len; 652 /* node is 0 or 1 so it does not have extra bits */ 653 } 654 desc->max_code = max_code; 655 656 /* The elements heap[heap_len/2 + 1 .. heap_len] are leaves of the tree, 657 * establish sub-heaps of increasing lengths: 658 */ 659 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); 660 661 /* Construct the Huffman tree by repeatedly combining the least two 662 * frequent nodes. 663 */ 664 node = elems; /* next internal node of the tree */ 665 do { 666 pqremove(s, tree, n); /* n = node of least frequency */ 667 m = s->heap[SMALLEST]; /* m = node of next least frequency */ 668 669 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ 670 s->heap[--(s->heap_max)] = m; 671 672 /* Create a new node father of n and m */ 673 tree[node].Freq = tree[n].Freq + tree[m].Freq; 674 s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ? 675 s->depth[n] : s->depth[m]) + 1); 676 tree[n].Dad = tree[m].Dad = (ush)node; 677 #ifdef DUMP_BL_TREE 678 if (tree == s->bl_tree) { 679 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", 680 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); 681 } 682 #endif 683 /* and insert the new node in the heap */ 684 s->heap[SMALLEST] = node++; 685 pqdownheap(s, tree, SMALLEST); 686 687 } while (s->heap_len >= 2); 688 689 s->heap[--(s->heap_max)] = s->heap[SMALLEST]; 690 691 /* At this point, the fields freq and dad are set. We can now 692 * generate the bit lengths. 693 */ 694 gen_bitlen(s, (tree_desc *)desc); 695 696 /* The field len is now set, we can generate the bit codes */ 697 gen_codes ((ct_data *)tree, max_code, s->bl_count); 698 } 699 700 /* =========================================================================== 701 * Scan a literal or distance tree to determine the frequencies of the codes 702 * in the bit length tree. 703 */ 704 local void scan_tree ( 705 deflate_state *s, 706 ct_data *tree, 707 int max_code) 708 { 709 int n; /* iterates over all tree elements */ 710 int prevlen = -1; /* last emitted length */ 711 int curlen; /* length of current code */ 712 int nextlen = tree[0].Len; /* length of next code */ 713 int count = 0; /* repeat count of the current code */ 714 int max_count = 7; /* max repeat count */ 715 int min_count = 4; /* min repeat count */ 716 717 if (nextlen == 0) max_count = 138, min_count = 3; 718 tree[max_code + 1].Len = (ush)0xffff; /* guard */ 719 720 for (n = 0; n <= max_code; n++) { 721 curlen = nextlen; nextlen = tree[n + 1].Len; 722 if (++count < max_count && curlen == nextlen) { 723 continue; 724 } else if (count < min_count) { 725 s->bl_tree[curlen].Freq += count; 726 } else if (curlen != 0) { 727 if (curlen != prevlen) s->bl_tree[curlen].Freq++; 728 s->bl_tree[REP_3_6].Freq++; 729 } else if (count <= 10) { 730 s->bl_tree[REPZ_3_10].Freq++; 731 } else { 732 s->bl_tree[REPZ_11_138].Freq++; 733 } 734 count = 0; prevlen = curlen; 735 if (nextlen == 0) { 736 max_count = 138, min_count = 3; 737 } else if (curlen == nextlen) { 738 max_count = 6, min_count = 3; 739 } else { 740 max_count = 7, min_count = 4; 741 } 742 } 743 } 744 745 /* =========================================================================== 746 * Send a literal or distance tree in compressed form, using the codes in 747 * bl_tree. 748 */ 749 local void send_tree ( 750 deflate_state *s, 751 ct_data *tree, 752 int max_code) 753 { 754 int n; /* iterates over all tree elements */ 755 int prevlen = -1; /* last emitted length */ 756 int curlen; /* length of current code */ 757 int nextlen = tree[0].Len; /* length of next code */ 758 int count = 0; /* repeat count of the current code */ 759 int max_count = 7; /* max repeat count */ 760 int min_count = 4; /* min repeat count */ 761 762 /* tree[max_code + 1].Len = -1; */ /* guard already set */ 763 if (nextlen == 0) max_count = 138, min_count = 3; 764 765 for (n = 0; n <= max_code; n++) { 766 curlen = nextlen; nextlen = tree[n + 1].Len; 767 if (++count < max_count && curlen == nextlen) { 768 continue; 769 } else if (count < min_count) { 770 do { send_code(s, curlen, s->bl_tree); } while (--count != 0); 771 772 } else if (curlen != 0) { 773 if (curlen != prevlen) { 774 send_code(s, curlen, s->bl_tree); count--; 775 } 776 Assert(count >= 3 && count <= 6, " 3_6?"); 777 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count - 3, 2); 778 779 } else if (count <= 10) { 780 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count - 3, 3); 781 782 } else { 783 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count - 11, 7); 784 } 785 count = 0; prevlen = curlen; 786 if (nextlen == 0) { 787 max_count = 138, min_count = 3; 788 } else if (curlen == nextlen) { 789 max_count = 6, min_count = 3; 790 } else { 791 max_count = 7, min_count = 4; 792 } 793 } 794 } 795 796 /* =========================================================================== 797 * Construct the Huffman tree for the bit lengths and return the index in 798 * bl_order of the last bit length code to send. 799 */ 800 local int build_bl_tree( 801 deflate_state *s) 802 { 803 int max_blindex; /* index of last bit length code of non zero freq */ 804 805 /* Determine the bit length frequencies for literal and distance trees */ 806 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); 807 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); 808 809 /* Build the bit length tree: */ 810 build_tree(s, (tree_desc *)(&(s->bl_desc))); 811 /* opt_len now includes the length of the tree representations, except the 812 * lengths of the bit lengths codes and the 5 + 5 + 4 bits for the counts. 813 */ 814 815 /* Determine the number of bit length codes to send. The pkzip format 816 * requires that at least 4 bit length codes be sent. (appnote.txt says 817 * 3 but the actual value used is 4.) 818 */ 819 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { 820 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; 821 } 822 /* Update opt_len to include the bit length tree and counts */ 823 s->opt_len += 3*((ulg)max_blindex + 1) + 5 + 5 + 4; 824 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", 825 s->opt_len, s->static_len)); 826 827 return max_blindex; 828 } 829 830 /* =========================================================================== 831 * Send the header for a block using dynamic Huffman trees: the counts, the 832 * lengths of the bit length codes, the literal tree and the distance tree. 833 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. 834 */ 835 local void send_all_trees( 836 deflate_state *s, 837 int lcodes, 838 int dcodes, 839 int blcodes) 840 { 841 int rank; /* index in bl_order */ 842 843 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); 844 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, 845 "too many codes"); 846 Tracev((stderr, "\nbl counts: ")); 847 send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */ 848 send_bits(s, dcodes - 1, 5); 849 send_bits(s, blcodes - 4, 4); /* not -3 as stated in appnote.txt */ 850 for (rank = 0; rank < blcodes; rank++) { 851 Tracev((stderr, "\nbl code %2d ", bl_order[rank])); 852 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); 853 } 854 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); 855 856 send_tree(s, (ct_data *)s->dyn_ltree, lcodes - 1); /* literal tree */ 857 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); 858 859 send_tree(s, (ct_data *)s->dyn_dtree, dcodes - 1); /* distance tree */ 860 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); 861 } 862 863 /* =========================================================================== 864 * Send a stored block 865 */ 866 void ZLIB_INTERNAL _tr_stored_block( 867 deflate_state *s, 868 charf *buf, 869 ulg stored_len, 870 int last) 871 { 872 send_bits(s, (STORED_BLOCK<<1) + last, 3); /* send block type */ 873 bi_windup(s); /* align on byte boundary */ 874 put_short(s, (ush)stored_len); 875 put_short(s, (ush)~stored_len); 876 if (stored_len) 877 zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len); 878 s->pending += stored_len; 879 #ifdef ZLIB_DEBUG 880 s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; 881 s->compressed_len += (stored_len + 4) << 3; 882 s->bits_sent += 2*16; 883 s->bits_sent += stored_len << 3; 884 #endif 885 } 886 887 /* =========================================================================== 888 * Flush the bits in the bit buffer to pending output (leaves at most 7 bits) 889 */ 890 void ZLIB_INTERNAL _tr_flush_bits( 891 deflate_state *s) 892 { 893 bi_flush(s); 894 } 895 896 /* =========================================================================== 897 * Send one empty static block to give enough lookahead for inflate. 898 * This takes 10 bits, of which 7 may remain in the bit buffer. 899 */ 900 void ZLIB_INTERNAL _tr_align( 901 deflate_state *s) 902 { 903 send_bits(s, STATIC_TREES<<1, 3); 904 send_code(s, END_BLOCK, static_ltree); 905 #ifdef ZLIB_DEBUG 906 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ 907 #endif 908 bi_flush(s); 909 } 910 911 /* =========================================================================== 912 * Determine the best encoding for the current block: dynamic trees, static 913 * trees or store, and write out the encoded block. 914 */ 915 void ZLIB_INTERNAL _tr_flush_block( 916 deflate_state *s, 917 charf *buf, 918 ulg stored_len, 919 int last) 920 { 921 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ 922 int max_blindex = 0; /* index of last bit length code of non zero freq */ 923 924 /* Build the Huffman trees unless a stored block is forced */ 925 if (s->level > 0) { 926 927 /* Check if the file is binary or text */ 928 if (s->strm->data_type == Z_UNKNOWN) 929 s->strm->data_type = detect_data_type(s); 930 931 /* Construct the literal and distance trees */ 932 build_tree(s, (tree_desc *)(&(s->l_desc))); 933 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, 934 s->static_len)); 935 936 build_tree(s, (tree_desc *)(&(s->d_desc))); 937 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, 938 s->static_len)); 939 /* At this point, opt_len and static_len are the total bit lengths of 940 * the compressed block data, excluding the tree representations. 941 */ 942 943 /* Build the bit length tree for the above two trees, and get the index 944 * in bl_order of the last bit length code to send. 945 */ 946 max_blindex = build_bl_tree(s); 947 948 /* Determine the best encoding. Compute the block lengths in bytes. */ 949 opt_lenb = (s->opt_len + 3 + 7) >> 3; 950 static_lenb = (s->static_len + 3 + 7) >> 3; 951 952 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", 953 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, 954 s->sym_next / 3)); 955 956 #ifndef FORCE_STATIC 957 if (static_lenb <= opt_lenb || s->strategy == Z_FIXED) 958 #endif 959 opt_lenb = static_lenb; 960 961 } else { 962 Assert(buf != (char*)0, "lost buf"); 963 opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ 964 } 965 966 #ifdef FORCE_STORED 967 if (buf != (char*)0) { /* force stored block */ 968 #else 969 if (stored_len + 4 <= opt_lenb && buf != (char*)0) { 970 /* 4: two words for the lengths */ 971 #endif 972 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. 973 * Otherwise we can't have processed more than WSIZE input bytes since 974 * the last block flush, because compression would have been 975 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to 976 * transform a block into a stored block. 977 */ 978 _tr_stored_block(s, buf, stored_len, last); 979 980 } else if (static_lenb == opt_lenb) { 981 send_bits(s, (STATIC_TREES<<1) + last, 3); 982 compress_block(s, (const ct_data *)static_ltree, 983 (const ct_data *)static_dtree); 984 #ifdef ZLIB_DEBUG 985 s->compressed_len += 3 + s->static_len; 986 #endif 987 } else { 988 send_bits(s, (DYN_TREES<<1) + last, 3); 989 send_all_trees(s, s->l_desc.max_code + 1, s->d_desc.max_code + 1, 990 max_blindex + 1); 991 compress_block(s, (const ct_data *)s->dyn_ltree, 992 (const ct_data *)s->dyn_dtree); 993 #ifdef ZLIB_DEBUG 994 s->compressed_len += 3 + s->opt_len; 995 #endif 996 } 997 Assert (s->compressed_len == s->bits_sent, "bad compressed size"); 998 /* The above check is made mod 2^32, for files larger than 512 MB 999 * and uLong implemented on 32 bits. 1000 */ 1001 init_block(s); 1002 1003 if (last) { 1004 bi_windup(s); 1005 #ifdef ZLIB_DEBUG 1006 s->compressed_len += 7; /* align on byte boundary */ 1007 #endif 1008 } 1009 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len >> 3, 1010 s->compressed_len - 7*last)); 1011 } 1012 1013 /* =========================================================================== 1014 * Save the match info and tally the frequency counts. Return true if 1015 * the current block must be flushed. 1016 */ 1017 int ZLIB_INTERNAL _tr_tally ( 1018 deflate_state *s, 1019 unsigned dist, 1020 unsigned lc) 1021 { 1022 s->sym_buf[s->sym_next++] = (uch)dist; 1023 s->sym_buf[s->sym_next++] = (uch)(dist >> 8); 1024 s->sym_buf[s->sym_next++] = (uch)lc; 1025 if (dist == 0) { 1026 /* lc is the unmatched char */ 1027 s->dyn_ltree[lc].Freq++; 1028 } else { 1029 s->matches++; 1030 /* Here, lc is the match length - MIN_MATCH */ 1031 dist--; /* dist = match distance - 1 */ 1032 Assert((ush)dist < (ush)MAX_DIST(s) && 1033 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && 1034 (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match"); 1035 1036 s->dyn_ltree[_length_code[lc] + LITERALS + 1].Freq++; 1037 s->dyn_dtree[d_code(dist)].Freq++; 1038 } 1039 return (s->sym_next == s->sym_end); 1040 } 1041 1042 /* =========================================================================== 1043 * Send the block data compressed using the given Huffman trees 1044 */ 1045 local void compress_block( 1046 deflate_state *s, 1047 const ct_data *ltree, 1048 const ct_data *dtree) 1049 { 1050 unsigned dist; /* distance of matched string */ 1051 int lc; /* match length or unmatched char (if dist == 0) */ 1052 unsigned sx = 0; /* running index in sym_buf */ 1053 unsigned code; /* the code to send */ 1054 int extra; /* number of extra bits to send */ 1055 1056 if (s->sym_next != 0) do { 1057 dist = s->sym_buf[sx++] & 0xff; 1058 dist += (unsigned)(s->sym_buf[sx++] & 0xff) << 8; 1059 lc = s->sym_buf[sx++]; 1060 if (dist == 0) { 1061 send_code(s, lc, ltree); /* send a literal byte */ 1062 Tracecv(isgraph(lc), (stderr," '%c' ", lc)); 1063 } else { 1064 /* Here, lc is the match length - MIN_MATCH */ 1065 code = _length_code[lc]; 1066 send_code(s, code + LITERALS + 1, ltree); /* send length code */ 1067 extra = extra_lbits[code]; 1068 if (extra != 0) { 1069 lc -= base_length[code]; 1070 send_bits(s, lc, extra); /* send the extra length bits */ 1071 } 1072 dist--; /* dist is now the match distance - 1 */ 1073 code = d_code(dist); 1074 Assert (code < D_CODES, "bad d_code"); 1075 1076 send_code(s, code, dtree); /* send the distance code */ 1077 extra = extra_dbits[code]; 1078 if (extra != 0) { 1079 dist -= (unsigned)base_dist[code]; 1080 send_bits(s, dist, extra); /* send the extra distance bits */ 1081 } 1082 } /* literal or match pair ? */ 1083 1084 /* Check that the overlay between pending_buf and sym_buf is ok: */ 1085 Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow"); 1086 1087 } while (sx < s->sym_next); 1088 1089 send_code(s, END_BLOCK, ltree); 1090 } 1091 1092 /* =========================================================================== 1093 * Check if the data type is TEXT or BINARY, using the following algorithm: 1094 * - TEXT if the two conditions below are satisfied: 1095 * a) There are no non-portable control characters belonging to the 1096 * "block list" (0..6, 14..25, 28..31). 1097 * b) There is at least one printable character belonging to the 1098 * "allow list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). 1099 * - BINARY otherwise. 1100 * - The following partially-portable control characters form a 1101 * "gray list" that is ignored in this detection algorithm: 1102 * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). 1103 * IN assertion: the fields Freq of dyn_ltree are set. 1104 */ 1105 local int detect_data_type( 1106 deflate_state *s) 1107 { 1108 /* block_mask is the bit mask of block-listed bytes 1109 * set bits 0..6, 14..25, and 28..31 1110 * 0xf3ffc07f = binary 11110011111111111100000001111111 1111 */ 1112 unsigned long block_mask = 0xf3ffc07fUL; 1113 int n; 1114 1115 /* Check for non-textual ("block-listed") bytes. */ 1116 for (n = 0; n <= 31; n++, block_mask >>= 1) 1117 if ((block_mask & 1) && (s->dyn_ltree[n].Freq != 0)) 1118 return Z_BINARY; 1119 1120 /* Check for textual ("allow-listed") bytes. */ 1121 if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0 1122 || s->dyn_ltree[13].Freq != 0) 1123 return Z_TEXT; 1124 for (n = 32; n < LITERALS; n++) 1125 if (s->dyn_ltree[n].Freq != 0) 1126 return Z_TEXT; 1127 1128 /* There are no "block-listed" or "allow-listed" bytes: 1129 * this stream either is empty or has tolerated ("gray-listed") bytes only. 1130 */ 1131 return Z_BINARY; 1132 } 1133 1134 /* =========================================================================== 1135 * Reverse the first len bits of a code, using straightforward code (a faster 1136 * method would use a table) 1137 * IN assertion: 1 <= len <= 15 1138 */ 1139 local unsigned bi_reverse( 1140 unsigned code, 1141 int len) 1142 { 1143 unsigned res = 0; 1144 do { 1145 res |= code & 1; 1146 code >>= 1, res <<= 1; 1147 } while (--len > 0); 1148 return res >> 1; 1149 } 1150 1151 /* =========================================================================== 1152 * Flush the bit buffer, keeping at most 7 bits in it. 1153 */ 1154 local void bi_flush( 1155 deflate_state *s) 1156 { 1157 if (s->bi_valid == 16) { 1158 put_short(s, s->bi_buf); 1159 s->bi_buf = 0; 1160 s->bi_valid = 0; 1161 } else if (s->bi_valid >= 8) { 1162 put_byte(s, (Byte)s->bi_buf); 1163 s->bi_buf >>= 8; 1164 s->bi_valid -= 8; 1165 } 1166 } 1167 1168 /* =========================================================================== 1169 * Flush the bit buffer and align the output on a byte boundary 1170 */ 1171 local void bi_windup( 1172 deflate_state *s) 1173 { 1174 if (s->bi_valid > 8) { 1175 put_short(s, s->bi_buf); 1176 } else if (s->bi_valid > 0) { 1177 put_byte(s, (Byte)s->bi_buf); 1178 } 1179 s->bi_buf = 0; 1180 s->bi_valid = 0; 1181 #ifdef ZLIB_DEBUG 1182 s->bits_sent = (s->bits_sent + 7) & ~7; 1183 #endif 1184 } 1185