xref: /openbsd-src/gnu/usr.bin/perl/cpan/Compress-Raw-Zlib/zlib-src/deflate.c (revision 53555c846a0a6f917dbd0a191f826da995ab1c42)
1 /* deflate.c -- compress data using the deflation algorithm
2  * Copyright (C) 1995-2022 Jean-loup Gailly and Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  */
5 
6 /*
7  *  ALGORITHM
8  *
9  *      The "deflation" process depends on being able to identify portions
10  *      of the input text which are identical to earlier input (within a
11  *      sliding window trailing behind the input currently being processed).
12  *
13  *      The most straightforward technique turns out to be the fastest for
14  *      most input files: try all possible matches and select the longest.
15  *      The key feature of this algorithm is that insertions into the string
16  *      dictionary are very simple and thus fast, and deletions are avoided
17  *      completely. Insertions are performed at each input character, whereas
18  *      string matches are performed only when the previous match ends. So it
19  *      is preferable to spend more time in matches to allow very fast string
20  *      insertions and avoid deletions. The matching algorithm for small
21  *      strings is inspired from that of Rabin & Karp. A brute force approach
22  *      is used to find longer strings when a small match has been found.
23  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24  *      (by Leonid Broukhis).
25  *         A previous version of this file used a more sophisticated algorithm
26  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
27  *      time, but has a larger average cost, uses more memory and is patented.
28  *      However the F&G algorithm may be faster for some highly redundant
29  *      files if the parameter max_chain_length (described below) is too large.
30  *
31  *  ACKNOWLEDGEMENTS
32  *
33  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34  *      I found it in 'freeze' written by Leonid Broukhis.
35  *      Thanks to many people for bug reports and testing.
36  *
37  *  REFERENCES
38  *
39  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40  *      Available in http://tools.ietf.org/html/rfc1951
41  *
42  *      A description of the Rabin and Karp algorithm is given in the book
43  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44  *
45  *      Fiala,E.R., and Greene,D.H.
46  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47  *
48  */
49 
50 /* @(#) $Id$ */
51 
52 #include "deflate.h"
53 
54 const char deflate_copyright[] =
55    " deflate 1.2.13 Copyright 1995-2022 Jean-loup Gailly and Mark Adler ";
56 /*
57   If you use the zlib library in a product, an acknowledgment is welcome
58   in the documentation of your product. If for some reason you cannot
59   include such an acknowledgment, I would appreciate that you keep this
60   copyright string in the executable of your product.
61  */
62 
63 /* ===========================================================================
64  *  Function prototypes.
65  */
66 typedef enum {
67     need_more,      /* block not completed, need more input or more output */
68     block_done,     /* block flush performed */
69     finish_started, /* finish started, need only more output at next deflate */
70     finish_done     /* finish done, accept no more input or output */
71 } block_state;
72 
73 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
74 /* Compression function. Returns the block state after the call. */
75 
76 local int deflateStateCheck      OF((z_streamp strm));
77 local void slide_hash     OF((deflate_state *s));
78 local void fill_window    OF((deflate_state *s));
79 local block_state deflate_stored OF((deflate_state *s, int flush));
80 local block_state deflate_fast   OF((deflate_state *s, int flush));
81 #ifndef FASTEST
82 local block_state deflate_slow   OF((deflate_state *s, int flush));
83 #endif
84 local block_state deflate_rle    OF((deflate_state *s, int flush));
85 local block_state deflate_huff   OF((deflate_state *s, int flush));
86 local void lm_init        OF((deflate_state *s));
87 local void putShortMSB    OF((deflate_state *s, uInt b));
88 local void flush_pending  OF((z_streamp strm));
89 local unsigned read_buf   OF((z_streamp strm, Bytef *buf, unsigned size));
90 local uInt longest_match  OF((deflate_state *s, IPos cur_match));
91 
92 #ifdef ZLIB_DEBUG
93 local  void check_match OF((deflate_state *s, IPos start, IPos match,
94                             int length));
95 #endif
96 
97 /* ===========================================================================
98  * Local data
99  */
100 
101 #define NIL 0
102 /* Tail of hash chains */
103 
104 #ifndef TOO_FAR
105 #  define TOO_FAR 4096
106 #endif
107 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
108 
109 /* Values for max_lazy_match, good_match and max_chain_length, depending on
110  * the desired pack level (0..9). The values given below have been tuned to
111  * exclude worst case performance for pathological files. Better values may be
112  * found for specific files.
113  */
114 typedef struct config_s {
115    ush good_length; /* reduce lazy search above this match length */
116    ush max_lazy;    /* do not perform lazy search above this match length */
117    ush nice_length; /* quit search above this match length */
118    ush max_chain;
119    compress_func func;
120 } config;
121 
122 #ifdef FASTEST
123 local const config configuration_table[2] = {
124 /*      good lazy nice chain */
125 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
126 /* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
127 #else
128 local const config configuration_table[10] = {
129 /*      good lazy nice chain */
130 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
131 /* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
132 /* 2 */ {4,    5, 16,    8, deflate_fast},
133 /* 3 */ {4,    6, 32,   32, deflate_fast},
134 
135 /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
136 /* 5 */ {8,   16, 32,   32, deflate_slow},
137 /* 6 */ {8,   16, 128, 128, deflate_slow},
138 /* 7 */ {8,   32, 128, 256, deflate_slow},
139 /* 8 */ {32, 128, 258, 1024, deflate_slow},
140 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
141 #endif
142 
143 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
144  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
145  * meaning.
146  */
147 
148 /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
149 #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
150 
151 /* ===========================================================================
152  * Update a hash value with the given input byte
153  * IN  assertion: all calls to UPDATE_HASH are made with consecutive input
154  *    characters, so that a running hash key can be computed from the previous
155  *    key instead of complete recalculation each time.
156  */
157 #define UPDATE_HASH(s,h,c) (h = (((h) << s->hash_shift) ^ (c)) & s->hash_mask)
158 
159 
160 /* ===========================================================================
161  * Insert string str in the dictionary and set match_head to the previous head
162  * of the hash chain (the most recent string with same hash key). Return
163  * the previous length of the hash chain.
164  * If this file is compiled with -DFASTEST, the compression level is forced
165  * to 1, and no hash chains are maintained.
166  * IN  assertion: all calls to INSERT_STRING are made with consecutive input
167  *    characters and the first MIN_MATCH bytes of str are valid (except for
168  *    the last MIN_MATCH-1 bytes of the input file).
169  */
170 #ifdef FASTEST
171 #define INSERT_STRING(s, str, match_head) \
172    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
173     match_head = s->head[s->ins_h], \
174     s->head[s->ins_h] = (Pos)(str))
175 #else
176 #define INSERT_STRING(s, str, match_head) \
177    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
178     match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
179     s->head[s->ins_h] = (Pos)(str))
180 #endif
181 
182 /* ===========================================================================
183  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
184  * prev[] will be initialized on the fly.
185  */
186 #define CLEAR_HASH(s) \
187     do { \
188         s->head[s->hash_size - 1] = NIL; \
189         zmemzero((Bytef *)s->head, \
190                  (unsigned)(s->hash_size - 1)*sizeof(*s->head)); \
191     } while (0)
192 
193 /* ===========================================================================
194  * Slide the hash table when sliding the window down (could be avoided with 32
195  * bit values at the expense of memory usage). We slide even when level == 0 to
196  * keep the hash table consistent if we switch back to level > 0 later.
197  */
198 local void slide_hash(
199     deflate_state *s)
200 {
201     unsigned n, m;
202     Posf *p;
203     uInt wsize = s->w_size;
204 
205     n = s->hash_size;
206     p = &s->head[n];
207     do {
208         m = *--p;
209         *p = (Pos)(m >= wsize ? m - wsize : NIL);
210     } while (--n);
211     n = wsize;
212 #ifndef FASTEST
213     p = &s->prev[n];
214     do {
215         m = *--p;
216         *p = (Pos)(m >= wsize ? m - wsize : NIL);
217         /* If n is not on any hash chain, prev[n] is garbage but
218          * its value will never be used.
219          */
220     } while (--n);
221 #endif
222 }
223 
224 /* ========================================================================= */
225 int ZEXPORT deflateInit_(
226     z_streamp strm,
227     int level,
228     const char *version,
229     int stream_size)
230 {
231     return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
232                          Z_DEFAULT_STRATEGY, version, stream_size);
233     /* To do: ignore strm->next_in if we use it as window */
234 }
235 
236 /* ========================================================================= */
237 int ZEXPORT deflateInit2_(
238     z_streamp strm,
239     int  level,
240     int  method,
241     int  windowBits,
242     int  memLevel,
243     int  strategy,
244     const char *version,
245     int stream_size)
246 {
247     deflate_state *s;
248     int wrap = 1;
249     static const char my_version[] = ZLIB_VERSION;
250 
251     if (version == Z_NULL || version[0] != my_version[0] ||
252         stream_size != sizeof(z_stream)) {
253         return Z_VERSION_ERROR;
254     }
255     if (strm == Z_NULL) return Z_STREAM_ERROR;
256 
257     strm->msg = Z_NULL;
258     if (strm->zalloc == (alloc_func)0) {
259 #ifdef Z_SOLO
260         return Z_STREAM_ERROR;
261 #else
262         strm->zalloc = zcalloc;
263         strm->opaque = (voidpf)0;
264 #endif
265     }
266     if (strm->zfree == (free_func)0)
267 #ifdef Z_SOLO
268         return Z_STREAM_ERROR;
269 #else
270         strm->zfree = zcfree;
271 #endif
272 
273 #ifdef FASTEST
274     if (level != 0) level = 1;
275 #else
276     if (level == Z_DEFAULT_COMPRESSION) level = 6;
277 #endif
278 
279     if (windowBits < 0) { /* suppress zlib wrapper */
280         wrap = 0;
281         if (windowBits < -15)
282             return Z_STREAM_ERROR;
283         windowBits = -windowBits;
284     }
285 #ifdef GZIP
286     else if (windowBits > 15) {
287         wrap = 2;       /* write gzip wrapper instead */
288         windowBits -= 16;
289     }
290 #endif
291     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
292         windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
293         strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
294         return Z_STREAM_ERROR;
295     }
296     if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
297     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
298     if (s == Z_NULL) return Z_MEM_ERROR;
299     strm->state = (struct internal_state FAR *)s;
300     s->strm = strm;
301     s->status = INIT_STATE;     /* to pass state test in deflateReset() */
302 
303     s->wrap = wrap;
304     s->gzhead = Z_NULL;
305     s->w_bits = (uInt)windowBits;
306     s->w_size = 1 << s->w_bits;
307     s->w_mask = s->w_size - 1;
308 
309     s->hash_bits = (uInt)memLevel + 7;
310     s->hash_size = 1 << s->hash_bits;
311     s->hash_mask = s->hash_size - 1;
312     s->hash_shift =  ((s->hash_bits + MIN_MATCH-1) / MIN_MATCH);
313 
314     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
315     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
316     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
317 
318     s->high_water = 0;      /* nothing written to s->window yet */
319 
320     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
321 
322     /* We overlay pending_buf and sym_buf. This works since the average size
323      * for length/distance pairs over any compressed block is assured to be 31
324      * bits or less.
325      *
326      * Analysis: The longest fixed codes are a length code of 8 bits plus 5
327      * extra bits, for lengths 131 to 257. The longest fixed distance codes are
328      * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
329      * possible fixed-codes length/distance pair is then 31 bits total.
330      *
331      * sym_buf starts one-fourth of the way into pending_buf. So there are
332      * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
333      * in sym_buf is three bytes -- two for the distance and one for the
334      * literal/length. As each symbol is consumed, the pointer to the next
335      * sym_buf value to read moves forward three bytes. From that symbol, up to
336      * 31 bits are written to pending_buf. The closest the written pending_buf
337      * bits gets to the next sym_buf symbol to read is just before the last
338      * code is written. At that time, 31*(n - 2) bits have been written, just
339      * after 24*(n - 2) bits have been consumed from sym_buf. sym_buf starts at
340      * 8*n bits into pending_buf. (Note that the symbol buffer fills when n - 1
341      * symbols are written.) The closest the writing gets to what is unread is
342      * then n + 14 bits. Here n is lit_bufsize, which is 16384 by default, and
343      * can range from 128 to 32768.
344      *
345      * Therefore, at a minimum, there are 142 bits of space between what is
346      * written and what is read in the overlain buffers, so the symbols cannot
347      * be overwritten by the compressed data. That space is actually 139 bits,
348      * due to the three-bit fixed-code block header.
349      *
350      * That covers the case where either Z_FIXED is specified, forcing fixed
351      * codes, or when the use of fixed codes is chosen, because that choice
352      * results in a smaller compressed block than dynamic codes. That latter
353      * condition then assures that the above analysis also covers all dynamic
354      * blocks. A dynamic-code block will only be chosen to be emitted if it has
355      * fewer bits than a fixed-code block would for the same set of symbols.
356      * Therefore its average symbol length is assured to be less than 31. So
357      * the compressed data for a dynamic block also cannot overwrite the
358      * symbols from which it is being constructed.
359      */
360 
361     s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 4);
362     s->pending_buf_size = (ulg)s->lit_bufsize * 4;
363 
364     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
365         s->pending_buf == Z_NULL) {
366         s->status = FINISH_STATE;
367         strm->msg = ERR_MSG(Z_MEM_ERROR);
368         deflateEnd (strm);
369         return Z_MEM_ERROR;
370     }
371     s->sym_buf = s->pending_buf + s->lit_bufsize;
372     s->sym_end = (s->lit_bufsize - 1) * 3;
373     /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
374      * on 16 bit machines and because stored blocks are restricted to
375      * 64K-1 bytes.
376      */
377 
378     s->level = level;
379     s->strategy = strategy;
380     s->method = (Byte)method;
381 
382     return deflateReset(strm);
383 }
384 
385 /* =========================================================================
386  * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
387  */
388 local int deflateStateCheck (
389     z_streamp strm)
390 {
391     deflate_state *s;
392     if (strm == Z_NULL ||
393         strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
394         return 1;
395     s = strm->state;
396     if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
397 #ifdef GZIP
398                                            s->status != GZIP_STATE &&
399 #endif
400                                            s->status != EXTRA_STATE &&
401                                            s->status != NAME_STATE &&
402                                            s->status != COMMENT_STATE &&
403                                            s->status != HCRC_STATE &&
404                                            s->status != BUSY_STATE &&
405                                            s->status != FINISH_STATE))
406         return 1;
407     return 0;
408 }
409 
410 /* ========================================================================= */
411 int ZEXPORT deflateSetDictionary (
412     z_streamp strm,
413     const Bytef *dictionary,
414     uInt  dictLength)
415 {
416     deflate_state *s;
417     uInt str, n;
418     int wrap;
419     unsigned avail;
420     z_const unsigned char *next;
421 
422     if (deflateStateCheck(strm) || dictionary == Z_NULL)
423         return Z_STREAM_ERROR;
424     s = strm->state;
425     wrap = s->wrap;
426     if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
427         return Z_STREAM_ERROR;
428 
429     /* when using zlib wrappers, compute Adler-32 for provided dictionary */
430     if (wrap == 1)
431         strm->adler = adler32(strm->adler, dictionary, dictLength);
432     s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */
433 
434     /* if dictionary would fill window, just replace the history */
435     if (dictLength >= s->w_size) {
436         if (wrap == 0) {            /* already empty otherwise */
437             CLEAR_HASH(s);
438             s->strstart = 0;
439             s->block_start = 0L;
440             s->insert = 0;
441         }
442         dictionary += dictLength - s->w_size;  /* use the tail */
443         dictLength = s->w_size;
444     }
445 
446     /* insert dictionary into window and hash */
447     avail = strm->avail_in;
448     next = strm->next_in;
449     strm->avail_in = dictLength;
450     strm->next_in = (z_const Bytef *)dictionary;
451     fill_window(s);
452     while (s->lookahead >= MIN_MATCH) {
453         str = s->strstart;
454         n = s->lookahead - (MIN_MATCH-1);
455         do {
456             UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
457 #ifndef FASTEST
458             s->prev[str & s->w_mask] = s->head[s->ins_h];
459 #endif
460             s->head[s->ins_h] = (Pos)str;
461             str++;
462         } while (--n);
463         s->strstart = str;
464         s->lookahead = MIN_MATCH-1;
465         fill_window(s);
466     }
467     s->strstart += s->lookahead;
468     s->block_start = (long)s->strstart;
469     s->insert = s->lookahead;
470     s->lookahead = 0;
471     s->match_length = s->prev_length = MIN_MATCH-1;
472     s->match_available = 0;
473     strm->next_in = next;
474     strm->avail_in = avail;
475     s->wrap = wrap;
476     return Z_OK;
477 }
478 
479 /* ========================================================================= */
480 int ZEXPORT deflateGetDictionary (
481     z_streamp strm,
482     Bytef *dictionary,
483     uInt  *dictLength)
484 {
485     deflate_state *s;
486     uInt len;
487 
488     if (deflateStateCheck(strm))
489         return Z_STREAM_ERROR;
490     s = strm->state;
491     len = s->strstart + s->lookahead;
492     if (len > s->w_size)
493         len = s->w_size;
494     if (dictionary != Z_NULL && len)
495         zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
496     if (dictLength != Z_NULL)
497         *dictLength = len;
498     return Z_OK;
499 }
500 
501 /* ========================================================================= */
502 int ZEXPORT deflateResetKeep (
503     z_streamp strm)
504 {
505     deflate_state *s;
506 
507     if (deflateStateCheck(strm)) {
508         return Z_STREAM_ERROR;
509     }
510 
511     strm->total_in = strm->total_out = 0;
512     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
513     strm->data_type = Z_UNKNOWN;
514 
515     s = (deflate_state *)strm->state;
516     s->pending = 0;
517     s->pending_out = s->pending_buf;
518 
519     if (s->wrap < 0) {
520         s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
521     }
522     s->status =
523 #ifdef GZIP
524         s->wrap == 2 ? GZIP_STATE :
525 #endif
526         INIT_STATE;
527     strm->adler =
528 #ifdef GZIP
529         s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
530 #endif
531         adler32(0L, Z_NULL, 0);
532     s->last_flush = -2;
533 
534     _tr_init(s);
535 
536     return Z_OK;
537 }
538 
539 /* ========================================================================= */
540 int ZEXPORT deflateReset (
541     z_streamp strm)
542 {
543     int ret;
544 
545     ret = deflateResetKeep(strm);
546     if (ret == Z_OK)
547         lm_init(strm->state);
548     return ret;
549 }
550 
551 /* ========================================================================= */
552 int ZEXPORT deflateSetHeader (
553     z_streamp strm,
554     gz_headerp head)
555 {
556     if (deflateStateCheck(strm) || strm->state->wrap != 2)
557         return Z_STREAM_ERROR;
558     strm->state->gzhead = head;
559     return Z_OK;
560 }
561 
562 /* ========================================================================= */
563 int ZEXPORT deflatePending (
564     z_streamp strm,
565     unsigned *pending,
566     int *bits)
567 {
568     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
569     if (pending != Z_NULL)
570         *pending = strm->state->pending;
571     if (bits != Z_NULL)
572         *bits = strm->state->bi_valid;
573     return Z_OK;
574 }
575 
576 /* ========================================================================= */
577 int ZEXPORT deflatePrime (
578     z_streamp strm,
579     int bits,
580     int value)
581 {
582     deflate_state *s;
583     int put;
584 
585     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
586     s = strm->state;
587     if (bits < 0 || bits > 16 ||
588         s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))
589         return Z_BUF_ERROR;
590     do {
591         put = Buf_size - s->bi_valid;
592         if (put > bits)
593             put = bits;
594         s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
595         s->bi_valid += put;
596         _tr_flush_bits(s);
597         value >>= put;
598         bits -= put;
599     } while (bits);
600     return Z_OK;
601 }
602 
603 /* ========================================================================= */
604 int ZEXPORT deflateParams(
605     z_streamp strm,
606     int level,
607     int strategy)
608 {
609     deflate_state *s;
610     compress_func func;
611 
612     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
613     s = strm->state;
614 
615 #ifdef FASTEST
616     if (level != 0) level = 1;
617 #else
618     if (level == Z_DEFAULT_COMPRESSION) level = 6;
619 #endif
620     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
621         return Z_STREAM_ERROR;
622     }
623     func = configuration_table[s->level].func;
624 
625     if ((strategy != s->strategy || func != configuration_table[level].func) &&
626         s->last_flush != -2) {
627         /* Flush the last buffer: */
628         int err = deflate(strm, Z_BLOCK);
629         if (err == Z_STREAM_ERROR)
630             return err;
631         if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead)
632             return Z_BUF_ERROR;
633     }
634     if (s->level != level) {
635         if (s->level == 0 && s->matches != 0) {
636             if (s->matches == 1)
637                 slide_hash(s);
638             else
639                 CLEAR_HASH(s);
640             s->matches = 0;
641         }
642         s->level = level;
643         s->max_lazy_match   = configuration_table[level].max_lazy;
644         s->good_match       = configuration_table[level].good_length;
645         s->nice_match       = configuration_table[level].nice_length;
646         s->max_chain_length = configuration_table[level].max_chain;
647     }
648     s->strategy = strategy;
649     return Z_OK;
650 }
651 
652 /* ========================================================================= */
653 int ZEXPORT deflateTune(
654     z_streamp strm,
655     int good_length,
656     int max_lazy,
657     int nice_length,
658     int max_chain)
659 {
660     deflate_state *s;
661 
662     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
663     s = strm->state;
664     s->good_match = (uInt)good_length;
665     s->max_lazy_match = (uInt)max_lazy;
666     s->nice_match = nice_length;
667     s->max_chain_length = (uInt)max_chain;
668     return Z_OK;
669 }
670 
671 /* =========================================================================
672  * For the default windowBits of 15 and memLevel of 8, this function returns a
673  * close to exact, as well as small, upper bound on the compressed size. This
674  * is an expansion of ~0.03%, plus a small constant.
675  *
676  * For any setting other than those defaults for windowBits and memLevel, one
677  * of two worst case bounds is returned. This is at most an expansion of ~4% or
678  * ~13%, plus a small constant.
679  *
680  * Both the 0.03% and 4% derive from the overhead of stored blocks. The first
681  * one is for stored blocks of 16383 bytes (memLevel == 8), whereas the second
682  * is for stored blocks of 127 bytes (the worst case memLevel == 1). The
683  * expansion results from five bytes of header for each stored block.
684  *
685  * The larger expansion of 13% results from a window size less than or equal to
686  * the symbols buffer size (windowBits <= memLevel + 7). In that case some of
687  * the data being compressed may have slid out of the sliding window, impeding
688  * a stored block from being emitted. Then the only choice is a fixed or
689  * dynamic block, where a fixed block limits the maximum expansion to 9 bits
690  * per 8-bit byte, plus 10 bits for every block. The smallest block size for
691  * which this can occur is 255 (memLevel == 2).
692  *
693  * Shifts are used to approximate divisions, for speed.
694  */
695 uLong ZEXPORT deflateBound(
696     z_streamp strm,
697     uLong sourceLen)
698 {
699     deflate_state *s;
700     uLong fixedlen, storelen, wraplen;
701 
702     /* upper bound for fixed blocks with 9-bit literals and length 255
703        (memLevel == 2, which is the lowest that may not use stored blocks) --
704        ~13% overhead plus a small constant */
705     fixedlen = sourceLen + (sourceLen >> 3) + (sourceLen >> 8) +
706                (sourceLen >> 9) + 4;
707 
708     /* upper bound for stored blocks with length 127 (memLevel == 1) --
709        ~4% overhead plus a small constant */
710     storelen = sourceLen + (sourceLen >> 5) + (sourceLen >> 7) +
711                (sourceLen >> 11) + 7;
712 
713     /* if can't get parameters, return larger bound plus a zlib wrapper */
714     if (deflateStateCheck(strm))
715         return (fixedlen > storelen ? fixedlen : storelen) + 6;
716 
717     /* compute wrapper length */
718     s = strm->state;
719     switch (s->wrap) {
720     case 0:                                 /* raw deflate */
721         wraplen = 0;
722         break;
723     case 1:                                 /* zlib wrapper */
724         wraplen = 6 + (s->strstart ? 4 : 0);
725         break;
726 #ifdef GZIP
727     case 2:                                 /* gzip wrapper */
728         wraplen = 18;
729         if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
730             Bytef *str;
731             if (s->gzhead->extra != Z_NULL)
732                 wraplen += 2 + s->gzhead->extra_len;
733             str = s->gzhead->name;
734             if (str != Z_NULL)
735                 do {
736                     wraplen++;
737                 } while (*str++);
738             str = s->gzhead->comment;
739             if (str != Z_NULL)
740                 do {
741                     wraplen++;
742                 } while (*str++);
743             if (s->gzhead->hcrc)
744                 wraplen += 2;
745         }
746         break;
747 #endif
748     default:                                /* for compiler happiness */
749         wraplen = 6;
750     }
751 
752     /* if not default parameters, return one of the conservative bounds */
753     if (s->w_bits != 15 || s->hash_bits != 8 + 7)
754         return (s->w_bits <= s->hash_bits ? fixedlen : storelen) + wraplen;
755 
756     /* default settings: return tight bound for that case -- ~0.03% overhead
757        plus a small constant */
758     return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
759            (sourceLen >> 25) + 13 - 6 + wraplen;
760 }
761 
762 /* =========================================================================
763  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
764  * IN assertion: the stream state is correct and there is enough room in
765  * pending_buf.
766  */
767 local void putShortMSB (
768     deflate_state *s,
769     uInt b)
770 {
771     put_byte(s, (Byte)(b >> 8));
772     put_byte(s, (Byte)(b & 0xff));
773 }
774 
775 /* =========================================================================
776  * Flush as much pending output as possible. All deflate() output, except for
777  * some deflate_stored() output, goes through this function so some
778  * applications may wish to modify it to avoid allocating a large
779  * strm->next_out buffer and copying into it. (See also read_buf()).
780  */
781 local void flush_pending(
782     z_streamp strm)
783 {
784     unsigned len;
785     deflate_state *s = strm->state;
786 
787     _tr_flush_bits(s);
788     len = s->pending;
789     if (len > strm->avail_out) len = strm->avail_out;
790     if (len == 0) return;
791 
792     zmemcpy(strm->next_out, s->pending_out, len);
793     strm->next_out  += len;
794     s->pending_out  += len;
795     strm->total_out += len;
796     strm->avail_out -= len;
797     s->pending      -= len;
798     if (s->pending == 0) {
799         s->pending_out = s->pending_buf;
800     }
801 }
802 
803 /* ===========================================================================
804  * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
805  */
806 #define HCRC_UPDATE(beg) \
807     do { \
808         if (s->gzhead->hcrc && s->pending > (beg)) \
809             strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
810                                 s->pending - (beg)); \
811     } while (0)
812 
813 /* ========================================================================= */
814 int ZEXPORT deflate (
815     z_streamp strm,
816     int flush)
817 {
818     int old_flush; /* value of flush param for previous deflate call */
819     deflate_state *s;
820 
821     if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
822         return Z_STREAM_ERROR;
823     }
824     s = strm->state;
825 
826     if (strm->next_out == Z_NULL ||
827         (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
828         (s->status == FINISH_STATE && flush != Z_FINISH)) {
829         ERR_RETURN(strm, Z_STREAM_ERROR);
830     }
831     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
832 
833     old_flush = s->last_flush;
834     s->last_flush = flush;
835 
836     /* Flush as much pending output as possible */
837     if (s->pending != 0) {
838         flush_pending(strm);
839         if (strm->avail_out == 0) {
840             /* Since avail_out is 0, deflate will be called again with
841              * more output space, but possibly with both pending and
842              * avail_in equal to zero. There won't be anything to do,
843              * but this is not an error situation so make sure we
844              * return OK instead of BUF_ERROR at next call of deflate:
845              */
846             s->last_flush = -1;
847             return Z_OK;
848         }
849 
850     /* Make sure there is something to do and avoid duplicate consecutive
851      * flushes. For repeated and useless calls with Z_FINISH, we keep
852      * returning Z_STREAM_END instead of Z_BUF_ERROR.
853      */
854     } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
855                flush != Z_FINISH) {
856         ERR_RETURN(strm, Z_BUF_ERROR);
857     }
858 
859     /* User must not provide more input after the first FINISH: */
860     if (s->status == FINISH_STATE && strm->avail_in != 0) {
861         ERR_RETURN(strm, Z_BUF_ERROR);
862     }
863 
864     /* Write the header */
865     if (s->status == INIT_STATE && s->wrap == 0)
866         s->status = BUSY_STATE;
867     if (s->status == INIT_STATE) {
868         /* zlib header */
869         uInt header = (Z_DEFLATED + ((s->w_bits - 8) << 4)) << 8;
870         uInt level_flags;
871 
872         if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
873             level_flags = 0;
874         else if (s->level < 6)
875             level_flags = 1;
876         else if (s->level == 6)
877             level_flags = 2;
878         else
879             level_flags = 3;
880         header |= (level_flags << 6);
881         if (s->strstart != 0) header |= PRESET_DICT;
882         header += 31 - (header % 31);
883 
884         putShortMSB(s, header);
885 
886         /* Save the adler32 of the preset dictionary: */
887         if (s->strstart != 0) {
888             putShortMSB(s, (uInt)(strm->adler >> 16));
889             putShortMSB(s, (uInt)(strm->adler & 0xffff));
890         }
891         strm->adler = adler32(0L, Z_NULL, 0);
892         s->status = BUSY_STATE;
893 
894         /* Compression must start with an empty pending buffer */
895         flush_pending(strm);
896         if (s->pending != 0) {
897             s->last_flush = -1;
898             return Z_OK;
899         }
900     }
901 #ifdef GZIP
902     if (s->status == GZIP_STATE) {
903         /* gzip header */
904         strm->adler = crc32(0L, Z_NULL, 0);
905         put_byte(s, 31);
906         put_byte(s, 139);
907         put_byte(s, 8);
908         if (s->gzhead == Z_NULL) {
909             put_byte(s, 0);
910             put_byte(s, 0);
911             put_byte(s, 0);
912             put_byte(s, 0);
913             put_byte(s, 0);
914             put_byte(s, s->level == 9 ? 2 :
915                      (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
916                       4 : 0));
917             put_byte(s, OS_CODE);
918             s->status = BUSY_STATE;
919 
920             /* Compression must start with an empty pending buffer */
921             flush_pending(strm);
922             if (s->pending != 0) {
923                 s->last_flush = -1;
924                 return Z_OK;
925             }
926         }
927         else {
928             put_byte(s, (s->gzhead->text ? 1 : 0) +
929                      (s->gzhead->hcrc ? 2 : 0) +
930                      (s->gzhead->extra == Z_NULL ? 0 : 4) +
931                      (s->gzhead->name == Z_NULL ? 0 : 8) +
932                      (s->gzhead->comment == Z_NULL ? 0 : 16)
933                      );
934             put_byte(s, (Byte)(s->gzhead->time & 0xff));
935             put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
936             put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
937             put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
938             put_byte(s, s->level == 9 ? 2 :
939                      (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
940                       4 : 0));
941             put_byte(s, s->gzhead->os & 0xff);
942             if (s->gzhead->extra != Z_NULL) {
943                 put_byte(s, s->gzhead->extra_len & 0xff);
944                 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
945             }
946             if (s->gzhead->hcrc)
947                 strm->adler = crc32(strm->adler, s->pending_buf,
948                                     s->pending);
949             s->gzindex = 0;
950             s->status = EXTRA_STATE;
951         }
952     }
953     if (s->status == EXTRA_STATE) {
954         if (s->gzhead->extra != Z_NULL) {
955             ulg beg = s->pending;   /* start of bytes to update crc */
956             uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
957             while (s->pending + left > s->pending_buf_size) {
958                 uInt copy = s->pending_buf_size - s->pending;
959                 zmemcpy(s->pending_buf + s->pending,
960                         s->gzhead->extra + s->gzindex, copy);
961                 s->pending = s->pending_buf_size;
962                 HCRC_UPDATE(beg);
963                 s->gzindex += copy;
964                 flush_pending(strm);
965                 if (s->pending != 0) {
966                     s->last_flush = -1;
967                     return Z_OK;
968                 }
969                 beg = 0;
970                 left -= copy;
971             }
972             zmemcpy(s->pending_buf + s->pending,
973                     s->gzhead->extra + s->gzindex, left);
974             s->pending += left;
975             HCRC_UPDATE(beg);
976             s->gzindex = 0;
977         }
978         s->status = NAME_STATE;
979     }
980     if (s->status == NAME_STATE) {
981         if (s->gzhead->name != Z_NULL) {
982             ulg beg = s->pending;   /* start of bytes to update crc */
983             int val;
984             do {
985                 if (s->pending == s->pending_buf_size) {
986                     HCRC_UPDATE(beg);
987                     flush_pending(strm);
988                     if (s->pending != 0) {
989                         s->last_flush = -1;
990                         return Z_OK;
991                     }
992                     beg = 0;
993                 }
994                 val = s->gzhead->name[s->gzindex++];
995                 put_byte(s, val);
996             } while (val != 0);
997             HCRC_UPDATE(beg);
998             s->gzindex = 0;
999         }
1000         s->status = COMMENT_STATE;
1001     }
1002     if (s->status == COMMENT_STATE) {
1003         if (s->gzhead->comment != Z_NULL) {
1004             ulg beg = s->pending;   /* start of bytes to update crc */
1005             int val;
1006             do {
1007                 if (s->pending == s->pending_buf_size) {
1008                     HCRC_UPDATE(beg);
1009                     flush_pending(strm);
1010                     if (s->pending != 0) {
1011                         s->last_flush = -1;
1012                         return Z_OK;
1013                     }
1014                     beg = 0;
1015                 }
1016                 val = s->gzhead->comment[s->gzindex++];
1017                 put_byte(s, val);
1018             } while (val != 0);
1019             HCRC_UPDATE(beg);
1020         }
1021         s->status = HCRC_STATE;
1022     }
1023     if (s->status == HCRC_STATE) {
1024         if (s->gzhead->hcrc) {
1025             if (s->pending + 2 > s->pending_buf_size) {
1026                 flush_pending(strm);
1027                 if (s->pending != 0) {
1028                     s->last_flush = -1;
1029                     return Z_OK;
1030                 }
1031             }
1032             put_byte(s, (Byte)(strm->adler & 0xff));
1033             put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1034             strm->adler = crc32(0L, Z_NULL, 0);
1035         }
1036         s->status = BUSY_STATE;
1037 
1038         /* Compression must start with an empty pending buffer */
1039         flush_pending(strm);
1040         if (s->pending != 0) {
1041             s->last_flush = -1;
1042             return Z_OK;
1043         }
1044     }
1045 #endif
1046 
1047     /* Start a new block or continue the current one.
1048      */
1049     if (strm->avail_in != 0 || s->lookahead != 0 ||
1050         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1051         block_state bstate;
1052 
1053         bstate = s->level == 0 ? deflate_stored(s, flush) :
1054                  s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1055                  s->strategy == Z_RLE ? deflate_rle(s, flush) :
1056                  (*(configuration_table[s->level].func))(s, flush);
1057 
1058         if (bstate == finish_started || bstate == finish_done) {
1059             s->status = FINISH_STATE;
1060         }
1061         if (bstate == need_more || bstate == finish_started) {
1062             if (strm->avail_out == 0) {
1063                 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1064             }
1065             return Z_OK;
1066             /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1067              * of deflate should use the same flush parameter to make sure
1068              * that the flush is complete. So we don't have to output an
1069              * empty block here, this will be done at next call. This also
1070              * ensures that for a very small output buffer, we emit at most
1071              * one empty block.
1072              */
1073         }
1074         if (bstate == block_done) {
1075             if (flush == Z_PARTIAL_FLUSH) {
1076                 _tr_align(s);
1077             } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1078                 _tr_stored_block(s, (char*)0, 0L, 0);
1079                 /* For a full flush, this empty block will be recognized
1080                  * as a special marker by inflate_sync().
1081                  */
1082                 if (flush == Z_FULL_FLUSH) {
1083                     CLEAR_HASH(s);             /* forget history */
1084                     if (s->lookahead == 0) {
1085                         s->strstart = 0;
1086                         s->block_start = 0L;
1087                         s->insert = 0;
1088                     }
1089                 }
1090             }
1091             flush_pending(strm);
1092             if (strm->avail_out == 0) {
1093               s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1094               return Z_OK;
1095             }
1096         }
1097     }
1098 
1099     if (flush != Z_FINISH) return Z_OK;
1100     if (s->wrap <= 0) return Z_STREAM_END;
1101 
1102     /* Write the trailer */
1103 #ifdef GZIP
1104     if (s->wrap == 2) {
1105         put_byte(s, (Byte)(strm->adler & 0xff));
1106         put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1107         put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1108         put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1109         put_byte(s, (Byte)(strm->total_in & 0xff));
1110         put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1111         put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1112         put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1113     }
1114     else
1115 #endif
1116     {
1117         putShortMSB(s, (uInt)(strm->adler >> 16));
1118         putShortMSB(s, (uInt)(strm->adler & 0xffff));
1119     }
1120     flush_pending(strm);
1121     /* If avail_out is zero, the application will call deflate again
1122      * to flush the rest.
1123      */
1124     if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1125     return s->pending != 0 ? Z_OK : Z_STREAM_END;
1126 }
1127 
1128 /* ========================================================================= */
1129 int ZEXPORT deflateEnd (
1130     z_streamp strm)
1131 {
1132     int status;
1133 
1134     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1135 
1136     status = strm->state->status;
1137 
1138     /* Deallocate in reverse order of allocations: */
1139     TRY_FREE(strm, strm->state->pending_buf);
1140     TRY_FREE(strm, strm->state->head);
1141     TRY_FREE(strm, strm->state->prev);
1142     TRY_FREE(strm, strm->state->window);
1143 
1144     ZFREE(strm, strm->state);
1145     strm->state = Z_NULL;
1146 
1147     return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1148 }
1149 
1150 /* =========================================================================
1151  * Copy the source state to the destination state.
1152  * To simplify the source, this is not supported for 16-bit MSDOS (which
1153  * doesn't have enough memory anyway to duplicate compression states).
1154  */
1155 int ZEXPORT deflateCopy (
1156     z_streamp dest,
1157     z_streamp source)
1158 {
1159 #ifdef MAXSEG_64K
1160     return Z_STREAM_ERROR;
1161 #else
1162     deflate_state *ds;
1163     deflate_state *ss;
1164 
1165 
1166     if (deflateStateCheck(source) || dest == Z_NULL) {
1167         return Z_STREAM_ERROR;
1168     }
1169 
1170     ss = source->state;
1171 
1172     zmemcpy((Bytef*)dest, (Bytef*)source, sizeof(z_stream));
1173 
1174     ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1175     if (ds == Z_NULL) return Z_MEM_ERROR;
1176     dest->state = (struct internal_state FAR *) ds;
1177     zmemcpy((Bytef*)ds, (Bytef*)ss, sizeof(deflate_state));
1178     ds->strm = dest;
1179 
1180     ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1181     ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1182     ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1183     ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, 4);
1184 
1185     if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1186         ds->pending_buf == Z_NULL) {
1187         deflateEnd (dest);
1188         return Z_MEM_ERROR;
1189     }
1190     /* following zmemcpy do not work for 16-bit MSDOS */
1191     zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1192     zmemcpy((Bytef*)ds->prev, (Bytef*)ss->prev, ds->w_size * sizeof(Pos));
1193     zmemcpy((Bytef*)ds->head, (Bytef*)ss->head, ds->hash_size * sizeof(Pos));
1194     zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1195 
1196     ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1197     ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
1198 
1199     ds->l_desc.dyn_tree = ds->dyn_ltree;
1200     ds->d_desc.dyn_tree = ds->dyn_dtree;
1201     ds->bl_desc.dyn_tree = ds->bl_tree;
1202 
1203     return Z_OK;
1204 #endif /* MAXSEG_64K */
1205 }
1206 
1207 /* ===========================================================================
1208  * Read a new buffer from the current input stream, update the adler32
1209  * and total number of bytes read.  All deflate() input goes through
1210  * this function so some applications may wish to modify it to avoid
1211  * allocating a large strm->next_in buffer and copying from it.
1212  * (See also flush_pending()).
1213  */
1214 local unsigned read_buf(
1215     z_streamp strm,
1216     Bytef *buf,
1217     unsigned size)
1218 {
1219     unsigned len = strm->avail_in;
1220 
1221     if (len > size) len = size;
1222     if (len == 0) return 0;
1223 
1224     strm->avail_in  -= len;
1225 
1226     zmemcpy(buf, strm->next_in, len);
1227     if (strm->state->wrap == 1) {
1228         strm->adler = adler32(strm->adler, buf, len);
1229     }
1230 #ifdef GZIP
1231     else if (strm->state->wrap == 2) {
1232         strm->adler = crc32(strm->adler, buf, len);
1233     }
1234 #endif
1235     strm->next_in  += len;
1236     strm->total_in += len;
1237 
1238     return len;
1239 }
1240 
1241 /* ===========================================================================
1242  * Initialize the "longest match" routines for a new zlib stream
1243  */
1244 local void lm_init (
1245     deflate_state *s)
1246 {
1247     s->window_size = (ulg)2L*s->w_size;
1248 
1249     CLEAR_HASH(s);
1250 
1251     /* Set the default configuration parameters:
1252      */
1253     s->max_lazy_match   = configuration_table[s->level].max_lazy;
1254     s->good_match       = configuration_table[s->level].good_length;
1255     s->nice_match       = configuration_table[s->level].nice_length;
1256     s->max_chain_length = configuration_table[s->level].max_chain;
1257 
1258     s->strstart = 0;
1259     s->block_start = 0L;
1260     s->lookahead = 0;
1261     s->insert = 0;
1262     s->match_length = s->prev_length = MIN_MATCH-1;
1263     s->match_available = 0;
1264     s->ins_h = 0;
1265 }
1266 
1267 #ifndef FASTEST
1268 /* ===========================================================================
1269  * Set match_start to the longest match starting at the given string and
1270  * return its length. Matches shorter or equal to prev_length are discarded,
1271  * in which case the result is equal to prev_length and match_start is
1272  * garbage.
1273  * IN assertions: cur_match is the head of the hash chain for the current
1274  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1275  * OUT assertion: the match length is not greater than s->lookahead.
1276  */
1277 local uInt longest_match(
1278     deflate_state *s,
1279     IPos cur_match)
1280 {
1281     unsigned chain_length = s->max_chain_length;/* max hash chain length */
1282     Bytef *scan = s->window + s->strstart; /* current string */
1283     Bytef *match;                      /* matched string */
1284     int len;                           /* length of current match */
1285     int best_len = (int)s->prev_length;         /* best match length so far */
1286     int nice_match = s->nice_match;             /* stop if match long enough */
1287     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1288         s->strstart - (IPos)MAX_DIST(s) : NIL;
1289     /* Stop when cur_match becomes <= limit. To simplify the code,
1290      * we prevent matches with the string of window index 0.
1291      */
1292     Posf *prev = s->prev;
1293     uInt wmask = s->w_mask;
1294 
1295 #ifdef UNALIGNED_OK
1296     /* Compare two bytes at a time. Note: this is not always beneficial.
1297      * Try with and without -DUNALIGNED_OK to check.
1298      */
1299     Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1300     ush scan_start = *(ushf*)scan;
1301     ush scan_end   = *(ushf*)(scan + best_len - 1);
1302 #else
1303     Bytef *strend = s->window + s->strstart + MAX_MATCH;
1304     Byte scan_end1  = scan[best_len - 1];
1305     Byte scan_end   = scan[best_len];
1306 #endif
1307 
1308     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1309      * It is easy to get rid of this optimization if necessary.
1310      */
1311     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1312 
1313     /* Do not waste too much time if we already have a good match: */
1314     if (s->prev_length >= s->good_match) {
1315         chain_length >>= 2;
1316     }
1317     /* Do not look for matches beyond the end of the input. This is necessary
1318      * to make deflate deterministic.
1319      */
1320     if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1321 
1322     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1323            "need lookahead");
1324 
1325     do {
1326         Assert(cur_match < s->strstart, "no future");
1327         match = s->window + cur_match;
1328 
1329         /* Skip to next match if the match length cannot increase
1330          * or if the match length is less than 2.  Note that the checks below
1331          * for insufficient lookahead only occur occasionally for performance
1332          * reasons.  Therefore uninitialized memory will be accessed, and
1333          * conditional jumps will be made that depend on those values.
1334          * However the length of the match is limited to the lookahead, so
1335          * the output of deflate is not affected by the uninitialized values.
1336          */
1337 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1338         /* This code assumes sizeof(unsigned short) == 2. Do not use
1339          * UNALIGNED_OK if your compiler uses a different size.
1340          */
1341         if (*(ushf*)(match + best_len - 1) != scan_end ||
1342             *(ushf*)match != scan_start) continue;
1343 
1344         /* It is not necessary to compare scan[2] and match[2] since they are
1345          * always equal when the other bytes match, given that the hash keys
1346          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1347          * strstart + 3, + 5, up to strstart + 257. We check for insufficient
1348          * lookahead only every 4th comparison; the 128th check will be made
1349          * at strstart + 257. If MAX_MATCH-2 is not a multiple of 8, it is
1350          * necessary to put more guard bytes at the end of the window, or
1351          * to check more often for insufficient lookahead.
1352          */
1353         Assert(scan[2] == match[2], "scan[2]?");
1354         scan++, match++;
1355         do {
1356         } while (*(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1357                  *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1358                  *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1359                  *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1360                  scan < strend);
1361         /* The funny "do {}" generates better code on most compilers */
1362 
1363         /* Here, scan <= window + strstart + 257 */
1364         Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1365                "wild scan");
1366         if (*scan == *match) scan++;
1367 
1368         len = (MAX_MATCH - 1) - (int)(strend - scan);
1369         scan = strend - (MAX_MATCH-1);
1370 
1371 #else /* UNALIGNED_OK */
1372 
1373         if (match[best_len]     != scan_end  ||
1374             match[best_len - 1] != scan_end1 ||
1375             *match              != *scan     ||
1376             *++match            != scan[1])      continue;
1377 
1378         /* The check at best_len - 1 can be removed because it will be made
1379          * again later. (This heuristic is not always a win.)
1380          * It is not necessary to compare scan[2] and match[2] since they
1381          * are always equal when the other bytes match, given that
1382          * the hash keys are equal and that HASH_BITS >= 8.
1383          */
1384         scan += 2, match++;
1385         Assert(*scan == *match, "match[2]?");
1386 
1387         /* We check for insufficient lookahead only every 8th comparison;
1388          * the 256th check will be made at strstart + 258.
1389          */
1390         do {
1391         } while (*++scan == *++match && *++scan == *++match &&
1392                  *++scan == *++match && *++scan == *++match &&
1393                  *++scan == *++match && *++scan == *++match &&
1394                  *++scan == *++match && *++scan == *++match &&
1395                  scan < strend);
1396 
1397         Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1398                "wild scan");
1399 
1400         len = MAX_MATCH - (int)(strend - scan);
1401         scan = strend - MAX_MATCH;
1402 
1403 #endif /* UNALIGNED_OK */
1404 
1405         if (len > best_len) {
1406             s->match_start = cur_match;
1407             best_len = len;
1408             if (len >= nice_match) break;
1409 #ifdef UNALIGNED_OK
1410             scan_end = *(ushf*)(scan + best_len - 1);
1411 #else
1412             scan_end1  = scan[best_len - 1];
1413             scan_end   = scan[best_len];
1414 #endif
1415         }
1416     } while ((cur_match = prev[cur_match & wmask]) > limit
1417              && --chain_length != 0);
1418 
1419     if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1420     return s->lookahead;
1421 }
1422 
1423 #else /* FASTEST */
1424 
1425 /* ---------------------------------------------------------------------------
1426  * Optimized version for FASTEST only
1427  */
1428 local uInt longest_match(
1429     deflate_state *s,
1430     IPos cur_match)
1431 {
1432     Bytef *scan = s->window + s->strstart; /* current string */
1433     Bytef *match;                       /* matched string */
1434     int len;                           /* length of current match */
1435     Bytef *strend = s->window + s->strstart + MAX_MATCH;
1436 
1437     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1438      * It is easy to get rid of this optimization if necessary.
1439      */
1440     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1441 
1442     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1443            "need lookahead");
1444 
1445     Assert(cur_match < s->strstart, "no future");
1446 
1447     match = s->window + cur_match;
1448 
1449     /* Return failure if the match length is less than 2:
1450      */
1451     if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1452 
1453     /* The check at best_len - 1 can be removed because it will be made
1454      * again later. (This heuristic is not always a win.)
1455      * It is not necessary to compare scan[2] and match[2] since they
1456      * are always equal when the other bytes match, given that
1457      * the hash keys are equal and that HASH_BITS >= 8.
1458      */
1459     scan += 2, match += 2;
1460     Assert(*scan == *match, "match[2]?");
1461 
1462     /* We check for insufficient lookahead only every 8th comparison;
1463      * the 256th check will be made at strstart + 258.
1464      */
1465     do {
1466     } while (*++scan == *++match && *++scan == *++match &&
1467              *++scan == *++match && *++scan == *++match &&
1468              *++scan == *++match && *++scan == *++match &&
1469              *++scan == *++match && *++scan == *++match &&
1470              scan < strend);
1471 
1472     Assert(scan <= s->window + (unsigned)(s->window_size - 1), "wild scan");
1473 
1474     len = MAX_MATCH - (int)(strend - scan);
1475 
1476     if (len < MIN_MATCH) return MIN_MATCH - 1;
1477 
1478     s->match_start = cur_match;
1479     return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1480 }
1481 
1482 #endif /* FASTEST */
1483 
1484 #ifdef ZLIB_DEBUG
1485 
1486 #define EQUAL 0
1487 /* result of memcmp for equal strings */
1488 
1489 /* ===========================================================================
1490  * Check that the match at match_start is indeed a match.
1491  */
1492 local void check_match(
1493     deflate_state *s,
1494     IPos start,
1495     IPos match,
1496     int length)
1497 {
1498     /* check that the match is indeed a match */
1499     if (zmemcmp(s->window + match,
1500                 s->window + start, length) != EQUAL) {
1501         fprintf(stderr, " start %u, match %u, length %d\n",
1502                 start, match, length);
1503         do {
1504             fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1505         } while (--length != 0);
1506         z_error("invalid match");
1507     }
1508     if (z_verbose > 1) {
1509         fprintf(stderr,"\\[%d,%d]", start - match, length);
1510         do { putc(s->window[start++], stderr); } while (--length != 0);
1511     }
1512 }
1513 #else
1514 #  define check_match(s, start, match, length)
1515 #endif /* ZLIB_DEBUG */
1516 
1517 /* ===========================================================================
1518  * Fill the window when the lookahead becomes insufficient.
1519  * Updates strstart and lookahead.
1520  *
1521  * IN assertion: lookahead < MIN_LOOKAHEAD
1522  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1523  *    At least one byte has been read, or avail_in == 0; reads are
1524  *    performed for at least two bytes (required for the zip translate_eol
1525  *    option -- not supported here).
1526  */
1527 local void fill_window(
1528     deflate_state *s)
1529 {
1530     unsigned n;
1531     unsigned more;    /* Amount of free space at the end of the window. */
1532     uInt wsize = s->w_size;
1533 
1534     Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
1535 
1536     do {
1537         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1538 
1539         /* Deal with !@#$% 64K limit: */
1540         if (sizeof(int) <= 2) {
1541             if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1542                 more = wsize;
1543 
1544             } else if (more == (unsigned)(-1)) {
1545                 /* Very unlikely, but possible on 16 bit machine if
1546                  * strstart == 0 && lookahead == 1 (input done a byte at time)
1547                  */
1548                 more--;
1549             }
1550         }
1551 
1552         /* If the window is almost full and there is insufficient lookahead,
1553          * move the upper half to the lower one to make room in the upper half.
1554          */
1555         if (s->strstart >= wsize + MAX_DIST(s)) {
1556 
1557             zmemcpy(s->window, s->window + wsize, (unsigned)wsize - more);
1558             s->match_start -= wsize;
1559             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1560             s->block_start -= (long) wsize;
1561             if (s->insert > s->strstart)
1562                 s->insert = s->strstart;
1563             slide_hash(s);
1564             more += wsize;
1565         }
1566         if (s->strm->avail_in == 0) break;
1567 
1568         /* If there was no sliding:
1569          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1570          *    more == window_size - lookahead - strstart
1571          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1572          * => more >= window_size - 2*WSIZE + 2
1573          * In the BIG_MEM or MMAP case (not yet supported),
1574          *   window_size == input_size + MIN_LOOKAHEAD  &&
1575          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1576          * Otherwise, window_size == 2*WSIZE so more >= 2.
1577          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1578          */
1579         Assert(more >= 2, "more < 2");
1580 
1581         n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1582         s->lookahead += n;
1583 
1584         /* Initialize the hash value now that we have some input: */
1585         if (s->lookahead + s->insert >= MIN_MATCH) {
1586             uInt str = s->strstart - s->insert;
1587             s->ins_h = s->window[str];
1588             UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
1589 #if MIN_MATCH != 3
1590             Call UPDATE_HASH() MIN_MATCH-3 more times
1591 #endif
1592             while (s->insert) {
1593                 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
1594 #ifndef FASTEST
1595                 s->prev[str & s->w_mask] = s->head[s->ins_h];
1596 #endif
1597                 s->head[s->ins_h] = (Pos)str;
1598                 str++;
1599                 s->insert--;
1600                 if (s->lookahead + s->insert < MIN_MATCH)
1601                     break;
1602             }
1603         }
1604         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1605          * but this is not important since only literal bytes will be emitted.
1606          */
1607 
1608     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1609 
1610     /* If the WIN_INIT bytes after the end of the current data have never been
1611      * written, then zero those bytes in order to avoid memory check reports of
1612      * the use of uninitialized (or uninitialised as Julian writes) bytes by
1613      * the longest match routines.  Update the high water mark for the next
1614      * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
1615      * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1616      */
1617     if (s->high_water < s->window_size) {
1618         ulg curr = s->strstart + (ulg)(s->lookahead);
1619         ulg init;
1620 
1621         if (s->high_water < curr) {
1622             /* Previous high water mark below current data -- zero WIN_INIT
1623              * bytes or up to end of window, whichever is less.
1624              */
1625             init = s->window_size - curr;
1626             if (init > WIN_INIT)
1627                 init = WIN_INIT;
1628             zmemzero(s->window + curr, (unsigned)init);
1629             s->high_water = curr + init;
1630         }
1631         else if (s->high_water < (ulg)curr + WIN_INIT) {
1632             /* High water mark at or above current data, but below current data
1633              * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1634              * to end of window, whichever is less.
1635              */
1636             init = (ulg)curr + WIN_INIT - s->high_water;
1637             if (init > s->window_size - s->high_water)
1638                 init = s->window_size - s->high_water;
1639             zmemzero(s->window + s->high_water, (unsigned)init);
1640             s->high_water += init;
1641         }
1642     }
1643 
1644     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1645            "not enough room for search");
1646 }
1647 
1648 /* ===========================================================================
1649  * Flush the current block, with given end-of-file flag.
1650  * IN assertion: strstart is set to the end of the current match.
1651  */
1652 #define FLUSH_BLOCK_ONLY(s, last) { \
1653    _tr_flush_block(s, (s->block_start >= 0L ? \
1654                    (charf *)&s->window[(unsigned)s->block_start] : \
1655                    (charf *)Z_NULL), \
1656                 (ulg)((long)s->strstart - s->block_start), \
1657                 (last)); \
1658    s->block_start = s->strstart; \
1659    flush_pending(s->strm); \
1660    Tracev((stderr,"[FLUSH]")); \
1661 }
1662 
1663 /* Same but force premature exit if necessary. */
1664 #define FLUSH_BLOCK(s, last) { \
1665    FLUSH_BLOCK_ONLY(s, last); \
1666    if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1667 }
1668 
1669 /* Maximum stored block length in deflate format (not including header). */
1670 #define MAX_STORED 65535
1671 
1672 /* Minimum of a and b. */
1673 #define MIN(a, b) ((a) > (b) ? (b) : (a))
1674 
1675 /* ===========================================================================
1676  * Copy without compression as much as possible from the input stream, return
1677  * the current block state.
1678  *
1679  * In case deflateParams() is used to later switch to a non-zero compression
1680  * level, s->matches (otherwise unused when storing) keeps track of the number
1681  * of hash table slides to perform. If s->matches is 1, then one hash table
1682  * slide will be done when switching. If s->matches is 2, the maximum value
1683  * allowed here, then the hash table will be cleared, since two or more slides
1684  * is the same as a clear.
1685  *
1686  * deflate_stored() is written to minimize the number of times an input byte is
1687  * copied. It is most efficient with large input and output buffers, which
1688  * maximizes the opportunities to have a single copy from next_in to next_out.
1689  */
1690 local block_state deflate_stored(
1691     deflate_state *s,
1692     int flush)
1693 {
1694     /* Smallest worthy block size when not flushing or finishing. By default
1695      * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1696      * large input and output buffers, the stored block size will be larger.
1697      */
1698     unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1699 
1700     /* Copy as many min_block or larger stored blocks directly to next_out as
1701      * possible. If flushing, copy the remaining available input to next_out as
1702      * stored blocks, if there is enough space.
1703      */
1704     unsigned len, left, have, last = 0;
1705     unsigned used = s->strm->avail_in;
1706     do {
1707         /* Set len to the maximum size block that we can copy directly with the
1708          * available input data and output space. Set left to how much of that
1709          * would be copied from what's left in the window.
1710          */
1711         len = MAX_STORED;       /* maximum deflate stored block length */
1712         have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1713         if (s->strm->avail_out < have)          /* need room for header */
1714             break;
1715             /* maximum stored block length that will fit in avail_out: */
1716         have = s->strm->avail_out - have;
1717         left = s->strstart - s->block_start;    /* bytes left in window */
1718         if (len > (ulg)left + s->strm->avail_in)
1719             len = left + s->strm->avail_in;     /* limit len to the input */
1720         if (len > have)
1721             len = have;                         /* limit len to the output */
1722 
1723         /* If the stored block would be less than min_block in length, or if
1724          * unable to copy all of the available input when flushing, then try
1725          * copying to the window and the pending buffer instead. Also don't
1726          * write an empty block when flushing -- deflate() does that.
1727          */
1728         if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1729                                 flush == Z_NO_FLUSH ||
1730                                 len != left + s->strm->avail_in))
1731             break;
1732 
1733         /* Make a dummy stored block in pending to get the header bytes,
1734          * including any pending bits. This also updates the debugging counts.
1735          */
1736         last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1737         _tr_stored_block(s, (char *)0, 0L, last);
1738 
1739         /* Replace the lengths in the dummy stored block with len. */
1740         s->pending_buf[s->pending - 4] = len;
1741         s->pending_buf[s->pending - 3] = len >> 8;
1742         s->pending_buf[s->pending - 2] = ~len;
1743         s->pending_buf[s->pending - 1] = ~len >> 8;
1744 
1745         /* Write the stored block header bytes. */
1746         flush_pending(s->strm);
1747 
1748 #ifdef ZLIB_DEBUG
1749         /* Update debugging counts for the data about to be copied. */
1750         s->compressed_len += len << 3;
1751         s->bits_sent += len << 3;
1752 #endif
1753 
1754         /* Copy uncompressed bytes from the window to next_out. */
1755         if (left) {
1756             if (left > len)
1757                 left = len;
1758             zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1759             s->strm->next_out += left;
1760             s->strm->avail_out -= left;
1761             s->strm->total_out += left;
1762             s->block_start += left;
1763             len -= left;
1764         }
1765 
1766         /* Copy uncompressed bytes directly from next_in to next_out, updating
1767          * the check value.
1768          */
1769         if (len) {
1770             read_buf(s->strm, s->strm->next_out, len);
1771             s->strm->next_out += len;
1772             s->strm->avail_out -= len;
1773             s->strm->total_out += len;
1774         }
1775     } while (last == 0);
1776 
1777     /* Update the sliding window with the last s->w_size bytes of the copied
1778      * data, or append all of the copied data to the existing window if less
1779      * than s->w_size bytes were copied. Also update the number of bytes to
1780      * insert in the hash tables, in the event that deflateParams() switches to
1781      * a non-zero compression level.
1782      */
1783     used -= s->strm->avail_in;      /* number of input bytes directly copied */
1784     if (used) {
1785         /* If any input was used, then no unused input remains in the window,
1786          * therefore s->block_start == s->strstart.
1787          */
1788         if (used >= s->w_size) {    /* supplant the previous history */
1789             s->matches = 2;         /* clear hash */
1790             zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1791             s->strstart = s->w_size;
1792             s->insert = s->strstart;
1793         }
1794         else {
1795             if (s->window_size - s->strstart <= used) {
1796                 /* Slide the window down. */
1797                 s->strstart -= s->w_size;
1798                 zmemcpy(s->window, s->window + s->w_size, s->strstart);
1799                 if (s->matches < 2)
1800                     s->matches++;   /* add a pending slide_hash() */
1801                 if (s->insert > s->strstart)
1802                     s->insert = s->strstart;
1803             }
1804             zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1805             s->strstart += used;
1806             s->insert += MIN(used, s->w_size - s->insert);
1807         }
1808         s->block_start = s->strstart;
1809     }
1810     if (s->high_water < s->strstart)
1811         s->high_water = s->strstart;
1812 
1813     /* If the last block was written to next_out, then done. */
1814     if (last)
1815         return finish_done;
1816 
1817     /* If flushing and all input has been consumed, then done. */
1818     if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1819         s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1820         return block_done;
1821 
1822     /* Fill the window with any remaining input. */
1823     have = s->window_size - s->strstart;
1824     if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1825         /* Slide the window down. */
1826         s->block_start -= s->w_size;
1827         s->strstart -= s->w_size;
1828         zmemcpy(s->window, s->window + s->w_size, s->strstart);
1829         if (s->matches < 2)
1830             s->matches++;           /* add a pending slide_hash() */
1831         have += s->w_size;          /* more space now */
1832         if (s->insert > s->strstart)
1833             s->insert = s->strstart;
1834     }
1835     if (have > s->strm->avail_in)
1836         have = s->strm->avail_in;
1837     if (have) {
1838         read_buf(s->strm, s->window + s->strstart, have);
1839         s->strstart += have;
1840         s->insert += MIN(have, s->w_size - s->insert);
1841     }
1842     if (s->high_water < s->strstart)
1843         s->high_water = s->strstart;
1844 
1845     /* There was not enough avail_out to write a complete worthy or flushed
1846      * stored block to next_out. Write a stored block to pending instead, if we
1847      * have enough input for a worthy block, or if flushing and there is enough
1848      * room for the remaining input as a stored block in the pending buffer.
1849      */
1850     have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1851         /* maximum stored block length that will fit in pending: */
1852     have = MIN(s->pending_buf_size - have, MAX_STORED);
1853     min_block = MIN(have, s->w_size);
1854     left = s->strstart - s->block_start;
1855     if (left >= min_block ||
1856         ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1857          s->strm->avail_in == 0 && left <= have)) {
1858         len = MIN(left, have);
1859         last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1860                len == left ? 1 : 0;
1861         _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1862         s->block_start += len;
1863         flush_pending(s->strm);
1864     }
1865 
1866     /* We've done all we can with the available input and output. */
1867     return last ? finish_started : need_more;
1868 }
1869 
1870 /* ===========================================================================
1871  * Compress as much as possible from the input stream, return the current
1872  * block state.
1873  * This function does not perform lazy evaluation of matches and inserts
1874  * new strings in the dictionary only for unmatched strings or for short
1875  * matches. It is used only for the fast compression options.
1876  */
1877 local block_state deflate_fast(
1878     deflate_state *s,
1879     int flush)
1880 {
1881     IPos hash_head;       /* head of the hash chain */
1882     int bflush;           /* set if current block must be flushed */
1883 
1884     for (;;) {
1885         /* Make sure that we always have enough lookahead, except
1886          * at the end of the input file. We need MAX_MATCH bytes
1887          * for the next match, plus MIN_MATCH bytes to insert the
1888          * string following the next match.
1889          */
1890         if (s->lookahead < MIN_LOOKAHEAD) {
1891             fill_window(s);
1892             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1893                 return need_more;
1894             }
1895             if (s->lookahead == 0) break; /* flush the current block */
1896         }
1897 
1898         /* Insert the string window[strstart .. strstart + 2] in the
1899          * dictionary, and set hash_head to the head of the hash chain:
1900          */
1901         hash_head = NIL;
1902         if (s->lookahead >= MIN_MATCH) {
1903             INSERT_STRING(s, s->strstart, hash_head);
1904         }
1905 
1906         /* Find the longest match, discarding those <= prev_length.
1907          * At this point we have always match_length < MIN_MATCH
1908          */
1909         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1910             /* To simplify the code, we prevent matches with the string
1911              * of window index 0 (in particular we have to avoid a match
1912              * of the string with itself at the start of the input file).
1913              */
1914             s->match_length = longest_match (s, hash_head);
1915             /* longest_match() sets match_start */
1916         }
1917         if (s->match_length >= MIN_MATCH) {
1918             check_match(s, s->strstart, s->match_start, s->match_length);
1919 
1920             _tr_tally_dist(s, s->strstart - s->match_start,
1921                            s->match_length - MIN_MATCH, bflush);
1922 
1923             s->lookahead -= s->match_length;
1924 
1925             /* Insert new strings in the hash table only if the match length
1926              * is not too large. This saves time but degrades compression.
1927              */
1928 #ifndef FASTEST
1929             if (s->match_length <= s->max_insert_length &&
1930                 s->lookahead >= MIN_MATCH) {
1931                 s->match_length--; /* string at strstart already in table */
1932                 do {
1933                     s->strstart++;
1934                     INSERT_STRING(s, s->strstart, hash_head);
1935                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1936                      * always MIN_MATCH bytes ahead.
1937                      */
1938                 } while (--s->match_length != 0);
1939                 s->strstart++;
1940             } else
1941 #endif
1942             {
1943                 s->strstart += s->match_length;
1944                 s->match_length = 0;
1945                 s->ins_h = s->window[s->strstart];
1946                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart + 1]);
1947 #if MIN_MATCH != 3
1948                 Call UPDATE_HASH() MIN_MATCH-3 more times
1949 #endif
1950                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1951                  * matter since it will be recomputed at next deflate call.
1952                  */
1953             }
1954         } else {
1955             /* No match, output a literal byte */
1956             Tracevv((stderr,"%c", s->window[s->strstart]));
1957             _tr_tally_lit(s, s->window[s->strstart], bflush);
1958             s->lookahead--;
1959             s->strstart++;
1960         }
1961         if (bflush) FLUSH_BLOCK(s, 0);
1962     }
1963     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1964     if (flush == Z_FINISH) {
1965         FLUSH_BLOCK(s, 1);
1966         return finish_done;
1967     }
1968     if (s->sym_next)
1969         FLUSH_BLOCK(s, 0);
1970     return block_done;
1971 }
1972 
1973 #ifndef FASTEST
1974 /* ===========================================================================
1975  * Same as above, but achieves better compression. We use a lazy
1976  * evaluation for matches: a match is finally adopted only if there is
1977  * no better match at the next window position.
1978  */
1979 local block_state deflate_slow(
1980     deflate_state *s,
1981     int flush)
1982 {
1983     IPos hash_head;          /* head of hash chain */
1984     int bflush;              /* set if current block must be flushed */
1985 
1986     /* Process the input block. */
1987     for (;;) {
1988         /* Make sure that we always have enough lookahead, except
1989          * at the end of the input file. We need MAX_MATCH bytes
1990          * for the next match, plus MIN_MATCH bytes to insert the
1991          * string following the next match.
1992          */
1993         if (s->lookahead < MIN_LOOKAHEAD) {
1994             fill_window(s);
1995             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1996                 return need_more;
1997             }
1998             if (s->lookahead == 0) break; /* flush the current block */
1999         }
2000 
2001         /* Insert the string window[strstart .. strstart + 2] in the
2002          * dictionary, and set hash_head to the head of the hash chain:
2003          */
2004         hash_head = NIL;
2005         if (s->lookahead >= MIN_MATCH) {
2006             INSERT_STRING(s, s->strstart, hash_head);
2007         }
2008 
2009         /* Find the longest match, discarding those <= prev_length.
2010          */
2011         s->prev_length = s->match_length, s->prev_match = s->match_start;
2012         s->match_length = MIN_MATCH-1;
2013 
2014         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
2015             s->strstart - hash_head <= MAX_DIST(s)) {
2016             /* To simplify the code, we prevent matches with the string
2017              * of window index 0 (in particular we have to avoid a match
2018              * of the string with itself at the start of the input file).
2019              */
2020             s->match_length = longest_match (s, hash_head);
2021             /* longest_match() sets match_start */
2022 
2023             if (s->match_length <= 5 && (s->strategy == Z_FILTERED
2024 #if TOO_FAR <= 32767
2025                 || (s->match_length == MIN_MATCH &&
2026                     s->strstart - s->match_start > TOO_FAR)
2027 #endif
2028                 )) {
2029 
2030                 /* If prev_match is also MIN_MATCH, match_start is garbage
2031                  * but we will ignore the current match anyway.
2032                  */
2033                 s->match_length = MIN_MATCH-1;
2034             }
2035         }
2036         /* If there was a match at the previous step and the current
2037          * match is not better, output the previous match:
2038          */
2039         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
2040             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
2041             /* Do not insert strings in hash table beyond this. */
2042 
2043             check_match(s, s->strstart - 1, s->prev_match, s->prev_length);
2044 
2045             _tr_tally_dist(s, s->strstart - 1 - s->prev_match,
2046                            s->prev_length - MIN_MATCH, bflush);
2047 
2048             /* Insert in hash table all strings up to the end of the match.
2049              * strstart - 1 and strstart are already inserted. If there is not
2050              * enough lookahead, the last two strings are not inserted in
2051              * the hash table.
2052              */
2053             s->lookahead -= s->prev_length - 1;
2054             s->prev_length -= 2;
2055             do {
2056                 if (++s->strstart <= max_insert) {
2057                     INSERT_STRING(s, s->strstart, hash_head);
2058                 }
2059             } while (--s->prev_length != 0);
2060             s->match_available = 0;
2061             s->match_length = MIN_MATCH-1;
2062             s->strstart++;
2063 
2064             if (bflush) FLUSH_BLOCK(s, 0);
2065 
2066         } else if (s->match_available) {
2067             /* If there was no match at the previous position, output a
2068              * single literal. If there was a match but the current match
2069              * is longer, truncate the previous match to a single literal.
2070              */
2071             Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2072             _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2073             if (bflush) {
2074                 FLUSH_BLOCK_ONLY(s, 0);
2075             }
2076             s->strstart++;
2077             s->lookahead--;
2078             if (s->strm->avail_out == 0) return need_more;
2079         } else {
2080             /* There is no previous match to compare with, wait for
2081              * the next step to decide.
2082              */
2083             s->match_available = 1;
2084             s->strstart++;
2085             s->lookahead--;
2086         }
2087     }
2088     Assert (flush != Z_NO_FLUSH, "no flush?");
2089     if (s->match_available) {
2090         Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2091         _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2092         s->match_available = 0;
2093     }
2094     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2095     if (flush == Z_FINISH) {
2096         FLUSH_BLOCK(s, 1);
2097         return finish_done;
2098     }
2099     if (s->sym_next)
2100         FLUSH_BLOCK(s, 0);
2101     return block_done;
2102 }
2103 #endif /* FASTEST */
2104 
2105 /* ===========================================================================
2106  * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2107  * one.  Do not maintain a hash table.  (It will be regenerated if this run of
2108  * deflate switches away from Z_RLE.)
2109  */
2110 local block_state deflate_rle(
2111     deflate_state *s,
2112     int flush)
2113 {
2114     int bflush;             /* set if current block must be flushed */
2115     uInt prev;              /* byte at distance one to match */
2116     Bytef *scan, *strend;   /* scan goes up to strend for length of run */
2117 
2118     for (;;) {
2119         /* Make sure that we always have enough lookahead, except
2120          * at the end of the input file. We need MAX_MATCH bytes
2121          * for the longest run, plus one for the unrolled loop.
2122          */
2123         if (s->lookahead <= MAX_MATCH) {
2124             fill_window(s);
2125             if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2126                 return need_more;
2127             }
2128             if (s->lookahead == 0) break; /* flush the current block */
2129         }
2130 
2131         /* See how many times the previous byte repeats */
2132         s->match_length = 0;
2133         if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2134             scan = s->window + s->strstart - 1;
2135             prev = *scan;
2136             if (prev == *++scan && prev == *++scan && prev == *++scan) {
2137                 strend = s->window + s->strstart + MAX_MATCH;
2138                 do {
2139                 } while (prev == *++scan && prev == *++scan &&
2140                          prev == *++scan && prev == *++scan &&
2141                          prev == *++scan && prev == *++scan &&
2142                          prev == *++scan && prev == *++scan &&
2143                          scan < strend);
2144                 s->match_length = MAX_MATCH - (uInt)(strend - scan);
2145                 if (s->match_length > s->lookahead)
2146                     s->match_length = s->lookahead;
2147             }
2148             Assert(scan <= s->window + (uInt)(s->window_size - 1),
2149                    "wild scan");
2150         }
2151 
2152         /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2153         if (s->match_length >= MIN_MATCH) {
2154             check_match(s, s->strstart, s->strstart - 1, s->match_length);
2155 
2156             _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2157 
2158             s->lookahead -= s->match_length;
2159             s->strstart += s->match_length;
2160             s->match_length = 0;
2161         } else {
2162             /* No match, output a literal byte */
2163             Tracevv((stderr,"%c", s->window[s->strstart]));
2164             _tr_tally_lit(s, s->window[s->strstart], bflush);
2165             s->lookahead--;
2166             s->strstart++;
2167         }
2168         if (bflush) FLUSH_BLOCK(s, 0);
2169     }
2170     s->insert = 0;
2171     if (flush == Z_FINISH) {
2172         FLUSH_BLOCK(s, 1);
2173         return finish_done;
2174     }
2175     if (s->sym_next)
2176         FLUSH_BLOCK(s, 0);
2177     return block_done;
2178 }
2179 
2180 /* ===========================================================================
2181  * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
2182  * (It will be regenerated if this run of deflate switches away from Huffman.)
2183  */
2184 local block_state deflate_huff(
2185     deflate_state *s,
2186     int flush)
2187 {
2188     int bflush;             /* set if current block must be flushed */
2189 
2190     for (;;) {
2191         /* Make sure that we have a literal to write. */
2192         if (s->lookahead == 0) {
2193             fill_window(s);
2194             if (s->lookahead == 0) {
2195                 if (flush == Z_NO_FLUSH)
2196                     return need_more;
2197                 break;      /* flush the current block */
2198             }
2199         }
2200 
2201         /* Output a literal byte */
2202         s->match_length = 0;
2203         Tracevv((stderr,"%c", s->window[s->strstart]));
2204         _tr_tally_lit(s, s->window[s->strstart], bflush);
2205         s->lookahead--;
2206         s->strstart++;
2207         if (bflush) FLUSH_BLOCK(s, 0);
2208     }
2209     s->insert = 0;
2210     if (flush == Z_FINISH) {
2211         FLUSH_BLOCK(s, 1);
2212         return finish_done;
2213     }
2214     if (s->sym_next)
2215         FLUSH_BLOCK(s, 0);
2216     return block_done;
2217 }
2218