xref: /openbsd-src/gnu/usr.bin/binutils/gdb/utils.c (revision c074d1c999f3e07019cd5e9a2f190b057ef3b935)
1 /* General utility routines for GDB, the GNU debugger.
2    Copyright 1986, 89, 90, 91, 92, 95, 1996 Free Software Foundation, Inc.
3 
4 This file is part of GDB.
5 
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10 
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 GNU General Public License for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
19 
20 #include "defs.h"
21 #ifdef ANSI_PROTOTYPES
22 #include <stdarg.h>
23 #else
24 #include <varargs.h>
25 #endif
26 #include <ctype.h>
27 #include "gdb_string.h"
28 #ifdef HAVE_UNISTD_H
29 #include <unistd.h>
30 #endif
31 
32 #include "signals.h"
33 #include "gdbcmd.h"
34 #include "serial.h"
35 #include "bfd.h"
36 #include "target.h"
37 #include "demangle.h"
38 #include "expression.h"
39 #include "language.h"
40 #include "annotate.h"
41 
42 #include "readline.h"
43 
44 /* readline defines this.  */
45 #undef savestring
46 
47 /* Prototypes for local functions */
48 
49 static void vfprintf_maybe_filtered PARAMS ((FILE *, const char *, va_list, int));
50 
51 static void fputs_maybe_filtered PARAMS ((const char *, FILE *, int));
52 
53 #if !defined (NO_MMALLOC) && !defined (NO_MMCHECK)
54 static void malloc_botch PARAMS ((void));
55 #endif
56 
57 static void
58 fatal_dump_core PARAMS((char *, ...));
59 
60 static void
61 prompt_for_continue PARAMS ((void));
62 
63 static void
64 set_width_command PARAMS ((char *, int, struct cmd_list_element *));
65 
66 /* If this definition isn't overridden by the header files, assume
67    that isatty and fileno exist on this system.  */
68 #ifndef ISATTY
69 #define ISATTY(FP)	(isatty (fileno (FP)))
70 #endif
71 
72 /* Chain of cleanup actions established with make_cleanup,
73    to be executed if an error happens.  */
74 
75 static struct cleanup *cleanup_chain;
76 
77 /* Nonzero if we have job control. */
78 
79 int job_control;
80 
81 /* Nonzero means a quit has been requested.  */
82 
83 int quit_flag;
84 
85 /* Nonzero means quit immediately if Control-C is typed now, rather
86    than waiting until QUIT is executed.  Be careful in setting this;
87    code which executes with immediate_quit set has to be very careful
88    about being able to deal with being interrupted at any time.  It is
89    almost always better to use QUIT; the only exception I can think of
90    is being able to quit out of a system call (using EINTR loses if
91    the SIGINT happens between the previous QUIT and the system call).
92    To immediately quit in the case in which a SIGINT happens between
93    the previous QUIT and setting immediate_quit (desirable anytime we
94    expect to block), call QUIT after setting immediate_quit.  */
95 
96 int immediate_quit;
97 
98 /* Nonzero means that encoded C++ names should be printed out in their
99    C++ form rather than raw.  */
100 
101 int demangle = 1;
102 
103 /* Nonzero means that encoded C++ names should be printed out in their
104    C++ form even in assembler language displays.  If this is set, but
105    DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls.  */
106 
107 int asm_demangle = 0;
108 
109 /* Nonzero means that strings with character values >0x7F should be printed
110    as octal escapes.  Zero means just print the value (e.g. it's an
111    international character, and the terminal or window can cope.)  */
112 
113 int sevenbit_strings = 0;
114 
115 /* String to be printed before error messages, if any.  */
116 
117 char *error_pre_print;
118 
119 /* String to be printed before quit messages, if any.  */
120 
121 char *quit_pre_print;
122 
123 /* String to be printed before warning messages, if any.  */
124 
125 char *warning_pre_print = "\nwarning: ";
126 
127 /* Add a new cleanup to the cleanup_chain,
128    and return the previous chain pointer
129    to be passed later to do_cleanups or discard_cleanups.
130    Args are FUNCTION to clean up with, and ARG to pass to it.  */
131 
132 struct cleanup *
133 make_cleanup (function, arg)
134      void (*function) PARAMS ((PTR));
135      PTR arg;
136 {
137   register struct cleanup *new
138     = (struct cleanup *) xmalloc (sizeof (struct cleanup));
139   register struct cleanup *old_chain = cleanup_chain;
140 
141   new->next = cleanup_chain;
142   new->function = function;
143   new->arg = arg;
144   cleanup_chain = new;
145 
146   return old_chain;
147 }
148 
149 /* Discard cleanups and do the actions they describe
150    until we get back to the point OLD_CHAIN in the cleanup_chain.  */
151 
152 void
153 do_cleanups (old_chain)
154      register struct cleanup *old_chain;
155 {
156   register struct cleanup *ptr;
157   while ((ptr = cleanup_chain) != old_chain)
158     {
159       cleanup_chain = ptr->next;	/* Do this first incase recursion */
160       (*ptr->function) (ptr->arg);
161       free (ptr);
162     }
163 }
164 
165 /* Discard cleanups, not doing the actions they describe,
166    until we get back to the point OLD_CHAIN in the cleanup_chain.  */
167 
168 void
169 discard_cleanups (old_chain)
170      register struct cleanup *old_chain;
171 {
172   register struct cleanup *ptr;
173   while ((ptr = cleanup_chain) != old_chain)
174     {
175       cleanup_chain = ptr->next;
176       free ((PTR)ptr);
177     }
178 }
179 
180 /* Set the cleanup_chain to 0, and return the old cleanup chain.  */
181 struct cleanup *
182 save_cleanups ()
183 {
184   struct cleanup *old_chain = cleanup_chain;
185 
186   cleanup_chain = 0;
187   return old_chain;
188 }
189 
190 /* Restore the cleanup chain from a previously saved chain.  */
191 void
192 restore_cleanups (chain)
193      struct cleanup *chain;
194 {
195   cleanup_chain = chain;
196 }
197 
198 /* This function is useful for cleanups.
199    Do
200 
201      foo = xmalloc (...);
202      old_chain = make_cleanup (free_current_contents, &foo);
203 
204    to arrange to free the object thus allocated.  */
205 
206 void
207 free_current_contents (location)
208      char **location;
209 {
210   free (*location);
211 }
212 
213 /* Provide a known function that does nothing, to use as a base for
214    for a possibly long chain of cleanups.  This is useful where we
215    use the cleanup chain for handling normal cleanups as well as dealing
216    with cleanups that need to be done as a result of a call to error().
217    In such cases, we may not be certain where the first cleanup is, unless
218    we have a do-nothing one to always use as the base. */
219 
220 /* ARGSUSED */
221 void
222 null_cleanup (arg)
223     PTR arg;
224 {
225 }
226 
227 
228 /* Print a warning message.  Way to use this is to call warning_begin,
229    output the warning message (use unfiltered output to gdb_stderr),
230    ending in a newline.  There is not currently a warning_end that you
231    call afterwards, but such a thing might be added if it is useful
232    for a GUI to separate warning messages from other output.
233 
234    FIXME: Why do warnings use unfiltered output and errors filtered?
235    Is this anything other than a historical accident?  */
236 
237 void
238 warning_begin ()
239 {
240   target_terminal_ours ();
241   wrap_here("");			/* Force out any buffered output */
242   gdb_flush (gdb_stdout);
243   if (warning_pre_print)
244     fprintf_unfiltered (gdb_stderr, warning_pre_print);
245 }
246 
247 /* Print a warning message.
248    The first argument STRING is the warning message, used as a fprintf string,
249    and the remaining args are passed as arguments to it.
250    The primary difference between warnings and errors is that a warning
251    does not force the return to command level.  */
252 
253 /* VARARGS */
254 void
255 #ifdef ANSI_PROTOTYPES
256 warning (char *string, ...)
257 #else
258 warning (va_alist)
259      va_dcl
260 #endif
261 {
262   va_list args;
263 #ifdef ANSI_PROTOTYPES
264   va_start (args, string);
265 #else
266   char *string;
267 
268   va_start (args);
269   string = va_arg (args, char *);
270 #endif
271   warning_begin ();
272   vfprintf_unfiltered (gdb_stderr, string, args);
273   fprintf_unfiltered (gdb_stderr, "\n");
274   va_end (args);
275 }
276 
277 /* Start the printing of an error message.  Way to use this is to call
278    this, output the error message (use filtered output to gdb_stderr
279    (FIXME: Some callers, like memory_error, use gdb_stdout)), ending
280    in a newline, and then call return_to_top_level (RETURN_ERROR).
281    error() provides a convenient way to do this for the special case
282    that the error message can be formatted with a single printf call,
283    but this is more general.  */
284 void
285 error_begin ()
286 {
287   target_terminal_ours ();
288   wrap_here ("");			/* Force out any buffered output */
289   gdb_flush (gdb_stdout);
290 
291   annotate_error_begin ();
292 
293   if (error_pre_print)
294     fprintf_filtered (gdb_stderr, error_pre_print);
295 }
296 
297 /* Print an error message and return to command level.
298    The first argument STRING is the error message, used as a fprintf string,
299    and the remaining args are passed as arguments to it.  */
300 
301 #ifdef ANSI_PROTOTYPES
302 NORETURN void
303 error (char *string, ...)
304 #else
305 void
306 error (va_alist)
307      va_dcl
308 #endif
309 {
310   va_list args;
311 #ifdef ANSI_PROTOTYPES
312   va_start (args, string);
313 #else
314   va_start (args);
315 #endif
316   if (error_hook)
317     (*error_hook) ();
318   else
319     {
320       error_begin ();
321 #ifdef ANSI_PROTOTYPES
322       vfprintf_filtered (gdb_stderr, string, args);
323 #else
324       {
325 	char *string1;
326 
327 	string1 = va_arg (args, char *);
328 	vfprintf_filtered (gdb_stderr, string1, args);
329       }
330 #endif
331       fprintf_filtered (gdb_stderr, "\n");
332       va_end (args);
333       return_to_top_level (RETURN_ERROR);
334     }
335 }
336 
337 
338 /* Print an error message and exit reporting failure.
339    This is for a error that we cannot continue from.
340    The arguments are printed a la printf.
341 
342    This function cannot be declared volatile (NORETURN) in an
343    ANSI environment because exit() is not declared volatile. */
344 
345 /* VARARGS */
346 NORETURN void
347 #ifdef ANSI_PROTOTYPES
348 fatal (char *string, ...)
349 #else
350 fatal (va_alist)
351      va_dcl
352 #endif
353 {
354   va_list args;
355 #ifdef ANSI_PROTOTYPES
356   va_start (args, string);
357 #else
358   char *string;
359   va_start (args);
360   string = va_arg (args, char *);
361 #endif
362   fprintf_unfiltered (gdb_stderr, "\ngdb: ");
363   vfprintf_unfiltered (gdb_stderr, string, args);
364   fprintf_unfiltered (gdb_stderr, "\n");
365   va_end (args);
366   exit (1);
367 }
368 
369 /* Print an error message and exit, dumping core.
370    The arguments are printed a la printf ().  */
371 
372 /* VARARGS */
373 static void
374 #ifdef ANSI_PROTOTYPES
375 fatal_dump_core (char *string, ...)
376 #else
377 fatal_dump_core (va_alist)
378      va_dcl
379 #endif
380 {
381   va_list args;
382 #ifdef ANSI_PROTOTYPES
383   va_start (args, string);
384 #else
385   char *string;
386 
387   va_start (args);
388   string = va_arg (args, char *);
389 #endif
390   /* "internal error" is always correct, since GDB should never dump
391      core, no matter what the input.  */
392   fprintf_unfiltered (gdb_stderr, "\ngdb internal error: ");
393   vfprintf_unfiltered (gdb_stderr, string, args);
394   fprintf_unfiltered (gdb_stderr, "\n");
395   va_end (args);
396 
397 #ifndef _WIN32
398   signal (SIGQUIT, SIG_DFL);
399   kill (getpid (), SIGQUIT);
400 #endif
401   /* We should never get here, but just in case...  */
402   exit (1);
403 }
404 
405 /* The strerror() function can return NULL for errno values that are
406    out of range.  Provide a "safe" version that always returns a
407    printable string. */
408 
409 char *
410 safe_strerror (errnum)
411      int errnum;
412 {
413   char *msg;
414   static char buf[32];
415 
416   if ((msg = strerror (errnum)) == NULL)
417     {
418       sprintf (buf, "(undocumented errno %d)", errnum);
419       msg = buf;
420     }
421   return (msg);
422 }
423 
424 /* The strsignal() function can return NULL for signal values that are
425    out of range.  Provide a "safe" version that always returns a
426    printable string. */
427 
428 char *
429 safe_strsignal (signo)
430      int signo;
431 {
432   char *msg;
433   static char buf[32];
434 
435   if ((msg = strsignal (signo)) == NULL)
436     {
437       sprintf (buf, "(undocumented signal %d)", signo);
438       msg = buf;
439     }
440   return (msg);
441 }
442 
443 
444 /* Print the system error message for errno, and also mention STRING
445    as the file name for which the error was encountered.
446    Then return to command level.  */
447 
448 void
449 perror_with_name (string)
450      char *string;
451 {
452   char *err;
453   char *combined;
454 
455   err = safe_strerror (errno);
456   combined = (char *) alloca (strlen (err) + strlen (string) + 3);
457   strcpy (combined, string);
458   strcat (combined, ": ");
459   strcat (combined, err);
460 
461   /* I understand setting these is a matter of taste.  Still, some people
462      may clear errno but not know about bfd_error.  Doing this here is not
463      unreasonable. */
464   bfd_set_error (bfd_error_no_error);
465   errno = 0;
466 
467   error ("%s.", combined);
468 }
469 
470 /* Print the system error message for ERRCODE, and also mention STRING
471    as the file name for which the error was encountered.  */
472 
473 void
474 print_sys_errmsg (string, errcode)
475      char *string;
476      int errcode;
477 {
478   char *err;
479   char *combined;
480 
481   err = safe_strerror (errcode);
482   combined = (char *) alloca (strlen (err) + strlen (string) + 3);
483   strcpy (combined, string);
484   strcat (combined, ": ");
485   strcat (combined, err);
486 
487   /* We want anything which was printed on stdout to come out first, before
488      this message.  */
489   gdb_flush (gdb_stdout);
490   fprintf_unfiltered (gdb_stderr, "%s.\n", combined);
491 }
492 
493 /* Control C eventually causes this to be called, at a convenient time.  */
494 
495 void
496 quit ()
497 {
498   serial_t gdb_stdout_serial = serial_fdopen (1);
499 
500   target_terminal_ours ();
501 
502   /* We want all output to appear now, before we print "Quit".  We
503      have 3 levels of buffering we have to flush (it's possible that
504      some of these should be changed to flush the lower-level ones
505      too):  */
506 
507   /* 1.  The _filtered buffer.  */
508   wrap_here ((char *)0);
509 
510   /* 2.  The stdio buffer.  */
511   gdb_flush (gdb_stdout);
512   gdb_flush (gdb_stderr);
513 
514   /* 3.  The system-level buffer.  */
515   SERIAL_FLUSH_OUTPUT (gdb_stdout_serial);
516   SERIAL_UN_FDOPEN (gdb_stdout_serial);
517 
518   annotate_error_begin ();
519 
520   /* Don't use *_filtered; we don't want to prompt the user to continue.  */
521   if (quit_pre_print)
522     fprintf_unfiltered (gdb_stderr, quit_pre_print);
523 
524   if (job_control
525       /* If there is no terminal switching for this target, then we can't
526 	 possibly get screwed by the lack of job control.  */
527       || current_target.to_terminal_ours == NULL)
528     fprintf_unfiltered (gdb_stderr, "Quit\n");
529   else
530     fprintf_unfiltered (gdb_stderr,
531 	     "Quit (expect signal SIGINT when the program is resumed)\n");
532   return_to_top_level (RETURN_QUIT);
533 }
534 
535 
536 #if defined(__GO32__) || defined(_WIN32)
537 
538 /* In the absence of signals, poll keyboard for a quit.
539    Called from #define QUIT pollquit() in xm-go32.h. */
540 
541 void
542 pollquit()
543 {
544   if (kbhit ())
545     {
546 #ifndef _WIN32
547       int k = getkey ();
548       if (k == 1) {
549 	quit_flag = 1;
550 	quit();
551       }
552       else if (k == 2) {
553 	immediate_quit = 1;
554 	quit ();
555       }
556       else
557 	{
558 	  /* We just ignore it */
559 	  fprintf_unfiltered (gdb_stderr, "CTRL-A to quit, CTRL-B to quit harder\n");
560 	}
561 #else
562       abort ();
563 #endif
564     }
565 }
566 
567 
568 #endif
569 #if defined(__GO32__) || defined(_WIN32)
570 void notice_quit()
571 {
572   if (kbhit ())
573     {
574 #ifndef _WIN32
575       int k = getkey ();
576       if (k == 1) {
577 	quit_flag = 1;
578       }
579       else if (k == 2)
580 	{
581 	  immediate_quit = 1;
582 	}
583       else
584 	{
585 	  fprintf_unfiltered (gdb_stderr, "CTRL-A to quit, CTRL-B to quit harder\n");
586 	}
587 #else
588       abort ();
589 #endif
590     }
591 }
592 #else
593 void notice_quit()
594 {
595   /* Done by signals */
596 }
597 #endif
598 /* Control C comes here */
599 
600 void
601 request_quit (signo)
602      int signo;
603 {
604   quit_flag = 1;
605   /* Restore the signal handler.  Harmless with BSD-style signals, needed
606      for System V-style signals.  So just always do it, rather than worrying
607      about USG defines and stuff like that.  */
608   signal (signo, request_quit);
609 
610 
611 #ifdef REQUEST_QUIT
612   REQUEST_QUIT;
613 #else
614   if (immediate_quit)
615     quit ();
616 #endif
617 }
618 
619 
620 /* Memory management stuff (malloc friends).  */
621 
622 /* Make a substitute size_t for non-ANSI compilers. */
623 
624 #ifndef HAVE_STDDEF_H
625 #ifndef size_t
626 #define size_t unsigned int
627 #endif
628 #endif
629 
630 #if defined (NO_MMALLOC)
631 
632 PTR
633 mmalloc (md, size)
634      PTR md;
635      size_t size;
636 {
637   return malloc (size);
638 }
639 
640 PTR
641 mrealloc (md, ptr, size)
642      PTR md;
643      PTR ptr;
644      size_t size;
645 {
646   if (ptr == 0)		/* Guard against old realloc's */
647     return malloc (size);
648   else
649     return realloc (ptr, size);
650 }
651 
652 void
653 mfree (md, ptr)
654      PTR md;
655      PTR ptr;
656 {
657   free (ptr);
658 }
659 
660 #endif	/* NO_MMALLOC */
661 
662 #if defined (NO_MMALLOC) || defined (NO_MMCHECK)
663 
664 void
665 init_malloc (md)
666      PTR md;
667 {
668 }
669 
670 #else /* Have mmalloc and want corruption checking */
671 
672 static void
673 malloc_botch ()
674 {
675   fatal_dump_core ("Memory corruption");
676 }
677 
678 /* Attempt to install hooks in mmalloc/mrealloc/mfree for the heap specified
679    by MD, to detect memory corruption.  Note that MD may be NULL to specify
680    the default heap that grows via sbrk.
681 
682    Note that for freshly created regions, we must call mmcheckf prior to any
683    mallocs in the region.  Otherwise, any region which was allocated prior to
684    installing the checking hooks, which is later reallocated or freed, will
685    fail the checks!  The mmcheck function only allows initial hooks to be
686    installed before the first mmalloc.  However, anytime after we have called
687    mmcheck the first time to install the checking hooks, we can call it again
688    to update the function pointer to the memory corruption handler.
689 
690    Returns zero on failure, non-zero on success. */
691 
692 #ifndef MMCHECK_FORCE
693 #define MMCHECK_FORCE 0
694 #endif
695 
696 void
697 init_malloc (md)
698      PTR md;
699 {
700   if (!mmcheckf (md, malloc_botch, MMCHECK_FORCE))
701     {
702       /* Don't use warning(), which relies on current_target being set
703 	 to something other than dummy_target, until after
704 	 initialize_all_files(). */
705 
706       fprintf_unfiltered
707 	(gdb_stderr, "warning: failed to install memory consistency checks; ");
708       fprintf_unfiltered
709 	(gdb_stderr, "configuration should define NO_MMCHECK or MMCHECK_FORCE\n");
710     }
711 
712   mmtrace ();
713 }
714 
715 #endif /* Have mmalloc and want corruption checking  */
716 
717 /* Called when a memory allocation fails, with the number of bytes of
718    memory requested in SIZE. */
719 
720 NORETURN void
721 nomem (size)
722      long size;
723 {
724   if (size > 0)
725     {
726       fatal ("virtual memory exhausted: can't allocate %ld bytes.", size);
727     }
728   else
729     {
730       fatal ("virtual memory exhausted.");
731     }
732 }
733 
734 /* Like mmalloc but get error if no storage available, and protect against
735    the caller wanting to allocate zero bytes.  Whether to return NULL for
736    a zero byte request, or translate the request into a request for one
737    byte of zero'd storage, is a religious issue. */
738 
739 PTR
740 xmmalloc (md, size)
741      PTR md;
742      long size;
743 {
744   register PTR val;
745 
746   if (size == 0)
747     {
748       val = NULL;
749     }
750   else if ((val = mmalloc (md, size)) == NULL)
751     {
752       nomem (size);
753     }
754   return (val);
755 }
756 
757 /* Like mrealloc but get error if no storage available.  */
758 
759 PTR
760 xmrealloc (md, ptr, size)
761      PTR md;
762      PTR ptr;
763      long size;
764 {
765   register PTR val;
766 
767   if (ptr != NULL)
768     {
769       val = mrealloc (md, ptr, size);
770     }
771   else
772     {
773       val = mmalloc (md, size);
774     }
775   if (val == NULL)
776     {
777       nomem (size);
778     }
779   return (val);
780 }
781 
782 /* Like malloc but get error if no storage available, and protect against
783    the caller wanting to allocate zero bytes.  */
784 
785 #ifndef NO_XMALLOC
786 PTR
787 xmalloc (size)
788      size_t size;
789 {
790   return (xmmalloc ((PTR) NULL, size));
791 }
792 
793 PTR
794 xcalloc (nelem, elsize)
795   size_t nelem, elsize;
796 {
797   PTR newmem;
798 
799   if (nelem == 0 || elsize == 0)
800     nelem = elsize = 1;
801 
802   newmem = xmmalloc((PTR) NULL, nelem * elsize);
803   memset(newmem, 0,  nelem * elsize);
804 
805   return (newmem);
806 }
807 
808 /* Like mrealloc but get error if no storage available.  */
809 
810 PTR
811 xrealloc (ptr, size)
812      PTR ptr;
813      size_t size;
814 {
815   return (xmrealloc ((PTR) NULL, ptr, size));
816 }
817 #endif
818 
819 
820 /* My replacement for the read system call.
821    Used like `read' but keeps going if `read' returns too soon.  */
822 
823 int
824 myread (desc, addr, len)
825      int desc;
826      char *addr;
827      int len;
828 {
829   register int val;
830   int orglen = len;
831 
832   while (len > 0)
833     {
834       val = read (desc, addr, len);
835       if (val < 0)
836 	return val;
837       if (val == 0)
838 	return orglen - len;
839       len -= val;
840       addr += val;
841     }
842   return orglen;
843 }
844 
845 /* Make a copy of the string at PTR with SIZE characters
846    (and add a null character at the end in the copy).
847    Uses malloc to get the space.  Returns the address of the copy.  */
848 
849 char *
850 savestring (ptr, size)
851      const char *ptr;
852      int size;
853 {
854   register char *p = (char *) xmalloc (size + 1);
855   memcpy (p, ptr, size);
856   p[size] = 0;
857   return p;
858 }
859 
860 char *
861 msavestring (md, ptr, size)
862      PTR md;
863      const char *ptr;
864      int size;
865 {
866   register char *p = (char *) xmmalloc (md, size + 1);
867   memcpy (p, ptr, size);
868   p[size] = 0;
869   return p;
870 }
871 
872 /* The "const" is so it compiles under DGUX (which prototypes strsave
873    in <string.h>.  FIXME: This should be named "xstrsave", shouldn't it?
874    Doesn't real strsave return NULL if out of memory?  */
875 char *
876 strsave (ptr)
877      const char *ptr;
878 {
879   return savestring (ptr, strlen (ptr));
880 }
881 
882 char *
883 mstrsave (md, ptr)
884      PTR md;
885      const char *ptr;
886 {
887   return (msavestring (md, ptr, strlen (ptr)));
888 }
889 
890 void
891 print_spaces (n, file)
892      register int n;
893      register FILE *file;
894 {
895   while (n-- > 0)
896     fputc (' ', file);
897 }
898 
899 /* Print a host address.  */
900 
901 void
902 gdb_print_address (addr, stream)
903      PTR addr;
904      GDB_FILE *stream;
905 {
906 
907   /* We could use the %p conversion specifier to fprintf if we had any
908      way of knowing whether this host supports it.  But the following
909      should work on the Alpha and on 32 bit machines.  */
910 
911   fprintf_filtered (stream, "0x%lx", (unsigned long)addr);
912 }
913 
914 /* Ask user a y-or-n question and return 1 iff answer is yes.
915    Takes three args which are given to printf to print the question.
916    The first, a control string, should end in "? ".
917    It should not say how to answer, because we do that.  */
918 
919 /* VARARGS */
920 int
921 #ifdef ANSI_PROTOTYPES
922 query (char *ctlstr, ...)
923 #else
924 query (va_alist)
925      va_dcl
926 #endif
927 {
928   va_list args;
929   register int answer;
930   register int ans2;
931   int retval;
932 
933 #ifdef ANSI_PROTOTYPES
934   va_start (args, ctlstr);
935 #else
936   char *ctlstr;
937   va_start (args);
938   ctlstr = va_arg (args, char *);
939 #endif
940 
941   if (query_hook)
942     {
943       return query_hook (ctlstr, args);
944     }
945 
946   /* Automatically answer "yes" if input is not from a terminal.  */
947   if (!input_from_terminal_p ())
948     return 1;
949 #ifdef MPW
950   /* FIXME Automatically answer "yes" if called from MacGDB.  */
951   if (mac_app)
952     return 1;
953 #endif /* MPW */
954 
955   while (1)
956     {
957       wrap_here ("");		/* Flush any buffered output */
958       gdb_flush (gdb_stdout);
959 
960       if (annotation_level > 1)
961 	printf_filtered ("\n\032\032pre-query\n");
962 
963       vfprintf_filtered (gdb_stdout, ctlstr, args);
964       printf_filtered ("(y or n) ");
965 
966       if (annotation_level > 1)
967 	printf_filtered ("\n\032\032query\n");
968 
969 #ifdef MPW
970       /* If not in MacGDB, move to a new line so the entered line doesn't
971 	 have a prompt on the front of it. */
972       if (!mac_app)
973 	fputs_unfiltered ("\n", gdb_stdout);
974 #endif /* MPW */
975 
976       gdb_flush (gdb_stdout);
977       answer = fgetc (stdin);
978       clearerr (stdin);		/* in case of C-d */
979       if (answer == EOF)	/* C-d */
980         {
981 	  retval = 1;
982 	  break;
983 	}
984       if (answer != '\n')	/* Eat rest of input line, to EOF or newline */
985 	do
986 	  {
987 	    ans2 = fgetc (stdin);
988 	    clearerr (stdin);
989 	  }
990         while (ans2 != EOF && ans2 != '\n');
991       if (answer >= 'a')
992 	answer -= 040;
993       if (answer == 'Y')
994 	{
995 	  retval = 1;
996 	  break;
997 	}
998       if (answer == 'N')
999 	{
1000 	  retval = 0;
1001 	  break;
1002 	}
1003       printf_filtered ("Please answer y or n.\n");
1004     }
1005 
1006   if (annotation_level > 1)
1007     printf_filtered ("\n\032\032post-query\n");
1008   return retval;
1009 }
1010 
1011 
1012 /* Parse a C escape sequence.  STRING_PTR points to a variable
1013    containing a pointer to the string to parse.  That pointer
1014    should point to the character after the \.  That pointer
1015    is updated past the characters we use.  The value of the
1016    escape sequence is returned.
1017 
1018    A negative value means the sequence \ newline was seen,
1019    which is supposed to be equivalent to nothing at all.
1020 
1021    If \ is followed by a null character, we return a negative
1022    value and leave the string pointer pointing at the null character.
1023 
1024    If \ is followed by 000, we return 0 and leave the string pointer
1025    after the zeros.  A value of 0 does not mean end of string.  */
1026 
1027 int
1028 parse_escape (string_ptr)
1029      char **string_ptr;
1030 {
1031   register int c = *(*string_ptr)++;
1032   switch (c)
1033     {
1034     case 'a':
1035       return 007;		/* Bell (alert) char */
1036     case 'b':
1037       return '\b';
1038     case 'e':			/* Escape character */
1039       return 033;
1040     case 'f':
1041       return '\f';
1042     case 'n':
1043       return '\n';
1044     case 'r':
1045       return '\r';
1046     case 't':
1047       return '\t';
1048     case 'v':
1049       return '\v';
1050     case '\n':
1051       return -2;
1052     case 0:
1053       (*string_ptr)--;
1054       return 0;
1055     case '^':
1056       c = *(*string_ptr)++;
1057       if (c == '\\')
1058 	c = parse_escape (string_ptr);
1059       if (c == '?')
1060 	return 0177;
1061       return (c & 0200) | (c & 037);
1062 
1063     case '0':
1064     case '1':
1065     case '2':
1066     case '3':
1067     case '4':
1068     case '5':
1069     case '6':
1070     case '7':
1071       {
1072 	register int i = c - '0';
1073 	register int count = 0;
1074 	while (++count < 3)
1075 	  {
1076 	    if ((c = *(*string_ptr)++) >= '0' && c <= '7')
1077 	      {
1078 		i *= 8;
1079 		i += c - '0';
1080 	      }
1081 	    else
1082 	      {
1083 		(*string_ptr)--;
1084 		break;
1085 	      }
1086 	  }
1087 	return i;
1088       }
1089     default:
1090       return c;
1091     }
1092 }
1093 
1094 /* Print the character C on STREAM as part of the contents of a literal
1095    string whose delimiter is QUOTER.  Note that this routine should only
1096    be call for printing things which are independent of the language
1097    of the program being debugged. */
1098 
1099 void
1100 gdb_printchar (c, stream, quoter)
1101      register int c;
1102      FILE *stream;
1103      int quoter;
1104 {
1105 
1106   c &= 0xFF;			/* Avoid sign bit follies */
1107 
1108   if (              c < 0x20  ||		/* Low control chars */
1109       (c >= 0x7F && c < 0xA0) ||		/* DEL, High controls */
1110       (sevenbit_strings && c >= 0x80)) {	/* high order bit set */
1111     switch (c)
1112       {
1113       case '\n':
1114 	fputs_filtered ("\\n", stream);
1115 	break;
1116       case '\b':
1117 	fputs_filtered ("\\b", stream);
1118 	break;
1119       case '\t':
1120 	fputs_filtered ("\\t", stream);
1121 	break;
1122       case '\f':
1123 	fputs_filtered ("\\f", stream);
1124 	break;
1125       case '\r':
1126 	fputs_filtered ("\\r", stream);
1127 	break;
1128       case '\033':
1129 	fputs_filtered ("\\e", stream);
1130 	break;
1131       case '\007':
1132 	fputs_filtered ("\\a", stream);
1133 	break;
1134       default:
1135 	fprintf_filtered (stream, "\\%.3o", (unsigned int) c);
1136 	break;
1137       }
1138   } else {
1139     if (c == '\\' || c == quoter)
1140       fputs_filtered ("\\", stream);
1141     fprintf_filtered (stream, "%c", c);
1142   }
1143 }
1144 
1145 /* Number of lines per page or UINT_MAX if paging is disabled.  */
1146 static unsigned int lines_per_page;
1147 /* Number of chars per line or UNIT_MAX is line folding is disabled.  */
1148 static unsigned int chars_per_line;
1149 /* Current count of lines printed on this page, chars on this line.  */
1150 static unsigned int lines_printed, chars_printed;
1151 
1152 /* Buffer and start column of buffered text, for doing smarter word-
1153    wrapping.  When someone calls wrap_here(), we start buffering output
1154    that comes through fputs_filtered().  If we see a newline, we just
1155    spit it out and forget about the wrap_here().  If we see another
1156    wrap_here(), we spit it out and remember the newer one.  If we see
1157    the end of the line, we spit out a newline, the indent, and then
1158    the buffered output.  */
1159 
1160 /* Malloc'd buffer with chars_per_line+2 bytes.  Contains characters which
1161    are waiting to be output (they have already been counted in chars_printed).
1162    When wrap_buffer[0] is null, the buffer is empty.  */
1163 static char *wrap_buffer;
1164 
1165 /* Pointer in wrap_buffer to the next character to fill.  */
1166 static char *wrap_pointer;
1167 
1168 /* String to indent by if the wrap occurs.  Must not be NULL if wrap_column
1169    is non-zero.  */
1170 static char *wrap_indent;
1171 
1172 /* Column number on the screen where wrap_buffer begins, or 0 if wrapping
1173    is not in effect.  */
1174 static int wrap_column;
1175 
1176 /* ARGSUSED */
1177 static void
1178 set_width_command (args, from_tty, c)
1179      char *args;
1180      int from_tty;
1181      struct cmd_list_element *c;
1182 {
1183   if (!wrap_buffer)
1184     {
1185       wrap_buffer = (char *) xmalloc (chars_per_line + 2);
1186       wrap_buffer[0] = '\0';
1187     }
1188   else
1189     wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2);
1190   wrap_pointer = wrap_buffer;	/* Start it at the beginning */
1191 }
1192 
1193 /* Wait, so the user can read what's on the screen.  Prompt the user
1194    to continue by pressing RETURN.  */
1195 
1196 static void
1197 prompt_for_continue ()
1198 {
1199   char *ignore;
1200   char cont_prompt[120];
1201 
1202   if (annotation_level > 1)
1203     printf_unfiltered ("\n\032\032pre-prompt-for-continue\n");
1204 
1205   strcpy (cont_prompt,
1206 	  "---Type <return> to continue, or q <return> to quit---");
1207   if (annotation_level > 1)
1208     strcat (cont_prompt, "\n\032\032prompt-for-continue\n");
1209 
1210   /* We must do this *before* we call gdb_readline, else it will eventually
1211      call us -- thinking that we're trying to print beyond the end of the
1212      screen.  */
1213   reinitialize_more_filter ();
1214 
1215   immediate_quit++;
1216   /* On a real operating system, the user can quit with SIGINT.
1217      But not on GO32.
1218 
1219      'q' is provided on all systems so users don't have to change habits
1220      from system to system, and because telling them what to do in
1221      the prompt is more user-friendly than expecting them to think of
1222      SIGINT.  */
1223   /* Call readline, not gdb_readline, because GO32 readline handles control-C
1224      whereas control-C to gdb_readline will cause the user to get dumped
1225      out to DOS.  */
1226   ignore = readline (cont_prompt);
1227 
1228   if (annotation_level > 1)
1229     printf_unfiltered ("\n\032\032post-prompt-for-continue\n");
1230 
1231   if (ignore)
1232     {
1233       char *p = ignore;
1234       while (*p == ' ' || *p == '\t')
1235 	++p;
1236       if (p[0] == 'q')
1237 	request_quit (SIGINT);
1238       free (ignore);
1239     }
1240   immediate_quit--;
1241 
1242   /* Now we have to do this again, so that GDB will know that it doesn't
1243      need to save the ---Type <return>--- line at the top of the screen.  */
1244   reinitialize_more_filter ();
1245 
1246   dont_repeat ();		/* Forget prev cmd -- CR won't repeat it. */
1247 }
1248 
1249 /* Reinitialize filter; ie. tell it to reset to original values.  */
1250 
1251 void
1252 reinitialize_more_filter ()
1253 {
1254   lines_printed = 0;
1255   chars_printed = 0;
1256 }
1257 
1258 /* Indicate that if the next sequence of characters overflows the line,
1259    a newline should be inserted here rather than when it hits the end.
1260    If INDENT is non-null, it is a string to be printed to indent the
1261    wrapped part on the next line.  INDENT must remain accessible until
1262    the next call to wrap_here() or until a newline is printed through
1263    fputs_filtered().
1264 
1265    If the line is already overfull, we immediately print a newline and
1266    the indentation, and disable further wrapping.
1267 
1268    If we don't know the width of lines, but we know the page height,
1269    we must not wrap words, but should still keep track of newlines
1270    that were explicitly printed.
1271 
1272    INDENT should not contain tabs, as that will mess up the char count
1273    on the next line.  FIXME.
1274 
1275    This routine is guaranteed to force out any output which has been
1276    squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be
1277    used to force out output from the wrap_buffer.  */
1278 
1279 void
1280 wrap_here(indent)
1281      char *indent;
1282 {
1283   /* This should have been allocated, but be paranoid anyway. */
1284   if (!wrap_buffer)
1285     abort ();
1286 
1287   if (wrap_buffer[0])
1288     {
1289       *wrap_pointer = '\0';
1290       fputs_unfiltered (wrap_buffer, gdb_stdout);
1291     }
1292   wrap_pointer = wrap_buffer;
1293   wrap_buffer[0] = '\0';
1294   if (chars_per_line == UINT_MAX)		/* No line overflow checking */
1295     {
1296       wrap_column = 0;
1297     }
1298   else if (chars_printed >= chars_per_line)
1299     {
1300       puts_filtered ("\n");
1301       if (indent != NULL)
1302 	puts_filtered (indent);
1303       wrap_column = 0;
1304     }
1305   else
1306     {
1307       wrap_column = chars_printed;
1308       if (indent == NULL)
1309 	wrap_indent = "";
1310       else
1311 	wrap_indent = indent;
1312     }
1313 }
1314 
1315 /* Ensure that whatever gets printed next, using the filtered output
1316    commands, starts at the beginning of the line.  I.E. if there is
1317    any pending output for the current line, flush it and start a new
1318    line.  Otherwise do nothing. */
1319 
1320 void
1321 begin_line ()
1322 {
1323   if (chars_printed > 0)
1324     {
1325       puts_filtered ("\n");
1326     }
1327 }
1328 
1329 
1330 GDB_FILE *
1331 gdb_fopen (name, mode)
1332      char * name;
1333      char * mode;
1334 {
1335   return fopen (name, mode);
1336 }
1337 
1338 void
1339 gdb_flush (stream)
1340      FILE *stream;
1341 {
1342   if (flush_hook)
1343     {
1344       flush_hook (stream);
1345       return;
1346     }
1347 
1348   fflush (stream);
1349 }
1350 
1351 /* Like fputs but if FILTER is true, pause after every screenful.
1352 
1353    Regardless of FILTER can wrap at points other than the final
1354    character of a line.
1355 
1356    Unlike fputs, fputs_maybe_filtered does not return a value.
1357    It is OK for LINEBUFFER to be NULL, in which case just don't print
1358    anything.
1359 
1360    Note that a longjmp to top level may occur in this routine (only if
1361    FILTER is true) (since prompt_for_continue may do so) so this
1362    routine should not be called when cleanups are not in place.  */
1363 
1364 static void
1365 fputs_maybe_filtered (linebuffer, stream, filter)
1366      const char *linebuffer;
1367      FILE *stream;
1368      int filter;
1369 {
1370   const char *lineptr;
1371 
1372   if (linebuffer == 0)
1373     return;
1374 
1375   /* Don't do any filtering if it is disabled.  */
1376   if (stream != gdb_stdout
1377    || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX))
1378     {
1379       fputs_unfiltered (linebuffer, stream);
1380       return;
1381     }
1382 
1383   /* Go through and output each character.  Show line extension
1384      when this is necessary; prompt user for new page when this is
1385      necessary.  */
1386 
1387   lineptr = linebuffer;
1388   while (*lineptr)
1389     {
1390       /* Possible new page.  */
1391       if (filter &&
1392 	  (lines_printed >= lines_per_page - 1))
1393 	prompt_for_continue ();
1394 
1395       while (*lineptr && *lineptr != '\n')
1396 	{
1397 	  /* Print a single line.  */
1398 	  if (*lineptr == '\t')
1399 	    {
1400 	      if (wrap_column)
1401 		*wrap_pointer++ = '\t';
1402 	      else
1403 		fputc_unfiltered ('\t', stream);
1404 	      /* Shifting right by 3 produces the number of tab stops
1405 	         we have already passed, and then adding one and
1406 		 shifting left 3 advances to the next tab stop.  */
1407 	      chars_printed = ((chars_printed >> 3) + 1) << 3;
1408 	      lineptr++;
1409 	    }
1410 	  else
1411 	    {
1412 	      if (wrap_column)
1413 		*wrap_pointer++ = *lineptr;
1414 	      else
1415 	        fputc_unfiltered (*lineptr, stream);
1416 	      chars_printed++;
1417 	      lineptr++;
1418 	    }
1419 
1420 	  if (chars_printed >= chars_per_line)
1421 	    {
1422 	      unsigned int save_chars = chars_printed;
1423 
1424 	      chars_printed = 0;
1425 	      lines_printed++;
1426 	      /* If we aren't actually wrapping, don't output newline --
1427 		 if chars_per_line is right, we probably just overflowed
1428 		 anyway; if it's wrong, let us keep going.  */
1429 	      if (wrap_column)
1430 		fputc_unfiltered ('\n', stream);
1431 
1432 	      /* Possible new page.  */
1433 	      if (lines_printed >= lines_per_page - 1)
1434 		prompt_for_continue ();
1435 
1436 	      /* Now output indentation and wrapped string */
1437 	      if (wrap_column)
1438 		{
1439 		  fputs_unfiltered (wrap_indent, stream);
1440 		  *wrap_pointer = '\0';	/* Null-terminate saved stuff */
1441 		  fputs_unfiltered (wrap_buffer, stream); /* and eject it */
1442 		  /* FIXME, this strlen is what prevents wrap_indent from
1443 		     containing tabs.  However, if we recurse to print it
1444 		     and count its chars, we risk trouble if wrap_indent is
1445 		     longer than (the user settable) chars_per_line.
1446 		     Note also that this can set chars_printed > chars_per_line
1447 		     if we are printing a long string.  */
1448 		  chars_printed = strlen (wrap_indent)
1449 				+ (save_chars - wrap_column);
1450 		  wrap_pointer = wrap_buffer;	/* Reset buffer */
1451 		  wrap_buffer[0] = '\0';
1452 		  wrap_column = 0;		/* And disable fancy wrap */
1453  		}
1454 	    }
1455 	}
1456 
1457       if (*lineptr == '\n')
1458 	{
1459 	  chars_printed = 0;
1460 	  wrap_here ((char *)0);  /* Spit out chars, cancel further wraps */
1461 	  lines_printed++;
1462 	  fputc_unfiltered ('\n', stream);
1463 	  lineptr++;
1464 	}
1465     }
1466 }
1467 
1468 void
1469 fputs_filtered (linebuffer, stream)
1470      const char *linebuffer;
1471      FILE *stream;
1472 {
1473   fputs_maybe_filtered (linebuffer, stream, 1);
1474 }
1475 
1476 int
1477 putchar_unfiltered (c)
1478      int c;
1479 {
1480   char buf[2];
1481 
1482   buf[0] = c;
1483   buf[1] = 0;
1484   fputs_unfiltered (buf, gdb_stdout);
1485   return c;
1486 }
1487 
1488 int
1489 fputc_unfiltered (c, stream)
1490      int c;
1491      FILE * stream;
1492 {
1493   char buf[2];
1494 
1495   buf[0] = c;
1496   buf[1] = 0;
1497   fputs_unfiltered (buf, stream);
1498   return c;
1499 }
1500 
1501 
1502 /* Print a variable number of ARGS using format FORMAT.  If this
1503    information is going to put the amount written (since the last call
1504    to REINITIALIZE_MORE_FILTER or the last page break) over the page size,
1505    call prompt_for_continue to get the users permision to continue.
1506 
1507    Unlike fprintf, this function does not return a value.
1508 
1509    We implement three variants, vfprintf (takes a vararg list and stream),
1510    fprintf (takes a stream to write on), and printf (the usual).
1511 
1512    Note also that a longjmp to top level may occur in this routine
1513    (since prompt_for_continue may do so) so this routine should not be
1514    called when cleanups are not in place.  */
1515 
1516 static void
1517 vfprintf_maybe_filtered (stream, format, args, filter)
1518      FILE *stream;
1519      const char *format;
1520      va_list args;
1521      int filter;
1522 {
1523   char *linebuffer;
1524   struct cleanup *old_cleanups;
1525 
1526   vasprintf (&linebuffer, format, args);
1527   if (linebuffer == NULL)
1528     {
1529       fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
1530       exit (1);
1531     }
1532   old_cleanups = make_cleanup (free, linebuffer);
1533   fputs_maybe_filtered (linebuffer, stream, filter);
1534   do_cleanups (old_cleanups);
1535 }
1536 
1537 
1538 void
1539 vfprintf_filtered (stream, format, args)
1540      FILE *stream;
1541      const char *format;
1542      va_list args;
1543 {
1544   vfprintf_maybe_filtered (stream, format, args, 1);
1545 }
1546 
1547 void
1548 vfprintf_unfiltered (stream, format, args)
1549      FILE *stream;
1550      const char *format;
1551      va_list args;
1552 {
1553   char *linebuffer;
1554   struct cleanup *old_cleanups;
1555 
1556   vasprintf (&linebuffer, format, args);
1557   if (linebuffer == NULL)
1558     {
1559       fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
1560       exit (1);
1561     }
1562   old_cleanups = make_cleanup (free, linebuffer);
1563   fputs_unfiltered (linebuffer, stream);
1564   do_cleanups (old_cleanups);
1565 }
1566 
1567 void
1568 vprintf_filtered (format, args)
1569      const char *format;
1570      va_list args;
1571 {
1572   vfprintf_maybe_filtered (gdb_stdout, format, args, 1);
1573 }
1574 
1575 void
1576 vprintf_unfiltered (format, args)
1577      const char *format;
1578      va_list args;
1579 {
1580   vfprintf_unfiltered (gdb_stdout, format, args);
1581 }
1582 
1583 /* VARARGS */
1584 void
1585 #ifdef ANSI_PROTOTYPES
1586 fprintf_filtered (FILE *stream, const char *format, ...)
1587 #else
1588 fprintf_filtered (va_alist)
1589      va_dcl
1590 #endif
1591 {
1592   va_list args;
1593 #ifdef ANSI_PROTOTYPES
1594   va_start (args, format);
1595 #else
1596   FILE *stream;
1597   char *format;
1598 
1599   va_start (args);
1600   stream = va_arg (args, FILE *);
1601   format = va_arg (args, char *);
1602 #endif
1603   vfprintf_filtered (stream, format, args);
1604   va_end (args);
1605 }
1606 
1607 /* VARARGS */
1608 void
1609 #ifdef ANSI_PROTOTYPES
1610 fprintf_unfiltered (FILE *stream, const char *format, ...)
1611 #else
1612 fprintf_unfiltered (va_alist)
1613      va_dcl
1614 #endif
1615 {
1616   va_list args;
1617 #ifdef ANSI_PROTOTYPES
1618   va_start (args, format);
1619 #else
1620   FILE *stream;
1621   char *format;
1622 
1623   va_start (args);
1624   stream = va_arg (args, FILE *);
1625   format = va_arg (args, char *);
1626 #endif
1627   vfprintf_unfiltered (stream, format, args);
1628   va_end (args);
1629 }
1630 
1631 /* Like fprintf_filtered, but prints its result indented.
1632    Called as fprintfi_filtered (spaces, stream, format, ...);  */
1633 
1634 /* VARARGS */
1635 void
1636 #ifdef ANSI_PROTOTYPES
1637 fprintfi_filtered (int spaces, FILE *stream, const char *format, ...)
1638 #else
1639 fprintfi_filtered (va_alist)
1640      va_dcl
1641 #endif
1642 {
1643   va_list args;
1644 #ifdef ANSI_PROTOTYPES
1645   va_start (args, format);
1646 #else
1647   int spaces;
1648   FILE *stream;
1649   char *format;
1650 
1651   va_start (args);
1652   spaces = va_arg (args, int);
1653   stream = va_arg (args, FILE *);
1654   format = va_arg (args, char *);
1655 #endif
1656   print_spaces_filtered (spaces, stream);
1657 
1658   vfprintf_filtered (stream, format, args);
1659   va_end (args);
1660 }
1661 
1662 
1663 /* VARARGS */
1664 void
1665 #ifdef ANSI_PROTOTYPES
1666 printf_filtered (const char *format, ...)
1667 #else
1668 printf_filtered (va_alist)
1669      va_dcl
1670 #endif
1671 {
1672   va_list args;
1673 #ifdef ANSI_PROTOTYPES
1674   va_start (args, format);
1675 #else
1676   char *format;
1677 
1678   va_start (args);
1679   format = va_arg (args, char *);
1680 #endif
1681   vfprintf_filtered (gdb_stdout, format, args);
1682   va_end (args);
1683 }
1684 
1685 
1686 /* VARARGS */
1687 void
1688 #ifdef ANSI_PROTOTYPES
1689 printf_unfiltered (const char *format, ...)
1690 #else
1691 printf_unfiltered (va_alist)
1692      va_dcl
1693 #endif
1694 {
1695   va_list args;
1696 #ifdef ANSI_PROTOTYPES
1697   va_start (args, format);
1698 #else
1699   char *format;
1700 
1701   va_start (args);
1702   format = va_arg (args, char *);
1703 #endif
1704   vfprintf_unfiltered (gdb_stdout, format, args);
1705   va_end (args);
1706 }
1707 
1708 /* Like printf_filtered, but prints it's result indented.
1709    Called as printfi_filtered (spaces, format, ...);  */
1710 
1711 /* VARARGS */
1712 void
1713 #ifdef ANSI_PROTOTYPES
1714 printfi_filtered (int spaces, const char *format, ...)
1715 #else
1716 printfi_filtered (va_alist)
1717      va_dcl
1718 #endif
1719 {
1720   va_list args;
1721 #ifdef ANSI_PROTOTYPES
1722   va_start (args, format);
1723 #else
1724   int spaces;
1725   char *format;
1726 
1727   va_start (args);
1728   spaces = va_arg (args, int);
1729   format = va_arg (args, char *);
1730 #endif
1731   print_spaces_filtered (spaces, gdb_stdout);
1732   vfprintf_filtered (gdb_stdout, format, args);
1733   va_end (args);
1734 }
1735 
1736 /* Easy -- but watch out!
1737 
1738    This routine is *not* a replacement for puts()!  puts() appends a newline.
1739    This one doesn't, and had better not!  */
1740 
1741 void
1742 puts_filtered (string)
1743      const char *string;
1744 {
1745   fputs_filtered (string, gdb_stdout);
1746 }
1747 
1748 void
1749 puts_unfiltered (string)
1750      const char *string;
1751 {
1752   fputs_unfiltered (string, gdb_stdout);
1753 }
1754 
1755 /* Return a pointer to N spaces and a null.  The pointer is good
1756    until the next call to here.  */
1757 char *
1758 n_spaces (n)
1759      int n;
1760 {
1761   register char *t;
1762   static char *spaces;
1763   static int max_spaces;
1764 
1765   if (n > max_spaces)
1766     {
1767       if (spaces)
1768 	free (spaces);
1769       spaces = (char *) xmalloc (n+1);
1770       for (t = spaces+n; t != spaces;)
1771 	*--t = ' ';
1772       spaces[n] = '\0';
1773       max_spaces = n;
1774     }
1775 
1776   return spaces + max_spaces - n;
1777 }
1778 
1779 /* Print N spaces.  */
1780 void
1781 print_spaces_filtered (n, stream)
1782      int n;
1783      FILE *stream;
1784 {
1785   fputs_filtered (n_spaces (n), stream);
1786 }
1787 
1788 /* C++ demangler stuff.  */
1789 
1790 /* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language
1791    LANG, using demangling args ARG_MODE, and print it filtered to STREAM.
1792    If the name is not mangled, or the language for the name is unknown, or
1793    demangling is off, the name is printed in its "raw" form. */
1794 
1795 void
1796 fprintf_symbol_filtered (stream, name, lang, arg_mode)
1797      FILE *stream;
1798      char *name;
1799      enum language lang;
1800      int arg_mode;
1801 {
1802   char *demangled;
1803 
1804   if (name != NULL)
1805     {
1806       /* If user wants to see raw output, no problem.  */
1807       if (!demangle)
1808 	{
1809 	  fputs_filtered (name, stream);
1810 	}
1811       else
1812 	{
1813 	  switch (lang)
1814 	    {
1815 	    case language_cplus:
1816 	      demangled = cplus_demangle (name, arg_mode);
1817 	      break;
1818 	    case language_chill:
1819 	      demangled = chill_demangle (name);
1820 	      break;
1821 	    default:
1822 	      demangled = NULL;
1823 	      break;
1824 	    }
1825 	  fputs_filtered (demangled ? demangled : name, stream);
1826 	  if (demangled != NULL)
1827 	    {
1828 	      free (demangled);
1829 	    }
1830 	}
1831     }
1832 }
1833 
1834 /* Do a strcmp() type operation on STRING1 and STRING2, ignoring any
1835    differences in whitespace.  Returns 0 if they match, non-zero if they
1836    don't (slightly different than strcmp()'s range of return values).
1837 
1838    As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO".
1839    This "feature" is useful when searching for matching C++ function names
1840    (such as if the user types 'break FOO', where FOO is a mangled C++
1841    function). */
1842 
1843 int
1844 strcmp_iw (string1, string2)
1845      const char *string1;
1846      const char *string2;
1847 {
1848   while ((*string1 != '\0') && (*string2 != '\0'))
1849     {
1850       while (isspace (*string1))
1851 	{
1852 	  string1++;
1853 	}
1854       while (isspace (*string2))
1855 	{
1856 	  string2++;
1857 	}
1858       if (*string1 != *string2)
1859 	{
1860 	  break;
1861 	}
1862       if (*string1 != '\0')
1863 	{
1864 	  string1++;
1865 	  string2++;
1866 	}
1867     }
1868   return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0');
1869 }
1870 
1871 
1872 void
1873 initialize_utils ()
1874 {
1875   struct cmd_list_element *c;
1876 
1877   c = add_set_cmd ("width", class_support, var_uinteger,
1878 		  (char *)&chars_per_line,
1879 		  "Set number of characters gdb thinks are in a line.",
1880 		  &setlist);
1881   add_show_from_set (c, &showlist);
1882   c->function.sfunc = set_width_command;
1883 
1884   add_show_from_set
1885     (add_set_cmd ("height", class_support,
1886 		  var_uinteger, (char *)&lines_per_page,
1887 		  "Set number of lines gdb thinks are in a page.", &setlist),
1888      &showlist);
1889 
1890   /* These defaults will be used if we are unable to get the correct
1891      values from termcap.  */
1892 #if defined(__GO32__)
1893   lines_per_page = ScreenRows();
1894   chars_per_line = ScreenCols();
1895 #else
1896   lines_per_page = 24;
1897   chars_per_line = 80;
1898 
1899 #if !defined MPW && !defined _WIN32
1900   /* No termcap under MPW, although might be cool to do something
1901      by looking at worksheet or console window sizes. */
1902   /* Initialize the screen height and width from termcap.  */
1903   {
1904     char *termtype = getenv ("TERM");
1905 
1906     /* Positive means success, nonpositive means failure.  */
1907     int status;
1908 
1909     /* 2048 is large enough for all known terminals, according to the
1910        GNU termcap manual.  */
1911     char term_buffer[2048];
1912 
1913     if (termtype)
1914       {
1915 	status = tgetent (term_buffer, termtype);
1916 	if (status > 0)
1917 	  {
1918 	    int val;
1919 
1920 	    val = tgetnum ("li");
1921 	    if (val >= 0)
1922 	      lines_per_page = val;
1923 	    else
1924 	      /* The number of lines per page is not mentioned
1925 		 in the terminal description.  This probably means
1926 		 that paging is not useful (e.g. emacs shell window),
1927 		 so disable paging.  */
1928 	      lines_per_page = UINT_MAX;
1929 
1930 	    val = tgetnum ("co");
1931 	    if (val >= 0)
1932 	      chars_per_line = val;
1933 	  }
1934       }
1935   }
1936 #endif /* MPW */
1937 
1938 #if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
1939 
1940   /* If there is a better way to determine the window size, use it. */
1941   SIGWINCH_HANDLER ();
1942 #endif
1943 #endif
1944   /* If the output is not a terminal, don't paginate it.  */
1945   if (!ISATTY (gdb_stdout))
1946     lines_per_page = UINT_MAX;
1947 
1948   set_width_command ((char *)NULL, 0, c);
1949 
1950   add_show_from_set
1951     (add_set_cmd ("demangle", class_support, var_boolean,
1952 		  (char *)&demangle,
1953 		"Set demangling of encoded C++ names when displaying symbols.",
1954 		  &setprintlist),
1955      &showprintlist);
1956 
1957   add_show_from_set
1958     (add_set_cmd ("sevenbit-strings", class_support, var_boolean,
1959 		  (char *)&sevenbit_strings,
1960    "Set printing of 8-bit characters in strings as \\nnn.",
1961 		  &setprintlist),
1962      &showprintlist);
1963 
1964   add_show_from_set
1965     (add_set_cmd ("asm-demangle", class_support, var_boolean,
1966 		  (char *)&asm_demangle,
1967 	"Set demangling of C++ names in disassembly listings.",
1968 		  &setprintlist),
1969      &showprintlist);
1970 }
1971 
1972 /* Machine specific function to handle SIGWINCH signal. */
1973 
1974 #ifdef  SIGWINCH_HANDLER_BODY
1975         SIGWINCH_HANDLER_BODY
1976 #endif
1977 
1978 /* Support for converting target fp numbers into host DOUBLEST format.  */
1979 
1980 /* XXX - This code should really be in libiberty/floatformat.c, however
1981    configuration issues with libiberty made this very difficult to do in the
1982    available time.  */
1983 
1984 #include "floatformat.h"
1985 #include <math.h>		/* ldexp */
1986 
1987 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
1988    going to bother with trying to muck around with whether it is defined in
1989    a system header, what we do if not, etc.  */
1990 #define FLOATFORMAT_CHAR_BIT 8
1991 
1992 static unsigned long get_field PARAMS ((unsigned char *,
1993 					enum floatformat_byteorders,
1994 					unsigned int,
1995 					unsigned int,
1996 					unsigned int));
1997 
1998 /* Extract a field which starts at START and is LEN bytes long.  DATA and
1999    TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER.  */
2000 static unsigned long
2001 get_field (data, order, total_len, start, len)
2002      unsigned char *data;
2003      enum floatformat_byteorders order;
2004      unsigned int total_len;
2005      unsigned int start;
2006      unsigned int len;
2007 {
2008   unsigned long result;
2009   unsigned int cur_byte;
2010   int cur_bitshift;
2011 
2012   /* Start at the least significant part of the field.  */
2013   cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2014   if (order == floatformat_little)
2015     cur_byte = (total_len / FLOATFORMAT_CHAR_BIT) - cur_byte - 1;
2016   cur_bitshift =
2017     ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2018   result = *(data + cur_byte) >> (-cur_bitshift);
2019   cur_bitshift += FLOATFORMAT_CHAR_BIT;
2020   if (order == floatformat_little)
2021     ++cur_byte;
2022   else
2023     --cur_byte;
2024 
2025   /* Move towards the most significant part of the field.  */
2026   while (cur_bitshift < len)
2027     {
2028       if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
2029 	/* This is the last byte; zero out the bits which are not part of
2030 	   this field.  */
2031 	result |=
2032 	  (*(data + cur_byte) & ((1 << (len - cur_bitshift)) - 1))
2033 	    << cur_bitshift;
2034       else
2035 	result |= *(data + cur_byte) << cur_bitshift;
2036       cur_bitshift += FLOATFORMAT_CHAR_BIT;
2037       if (order == floatformat_little)
2038 	++cur_byte;
2039       else
2040 	--cur_byte;
2041     }
2042   return result;
2043 }
2044 
2045 /* Convert from FMT to a DOUBLEST.
2046    FROM is the address of the extended float.
2047    Store the DOUBLEST in *TO.  */
2048 
2049 void
2050 floatformat_to_doublest (fmt, from, to)
2051      const struct floatformat *fmt;
2052      char *from;
2053      DOUBLEST *to;
2054 {
2055   unsigned char *ufrom = (unsigned char *)from;
2056   DOUBLEST dto;
2057   long exponent;
2058   unsigned long mant;
2059   unsigned int mant_bits, mant_off;
2060   int mant_bits_left;
2061   int special_exponent;		/* It's a NaN, denorm or zero */
2062 
2063   exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2064 			fmt->exp_start, fmt->exp_len);
2065   /* Note that if exponent indicates a NaN, we can't really do anything useful
2066      (not knowing if the host has NaN's, or how to build one).  So it will
2067      end up as an infinity or something close; that is OK.  */
2068 
2069   mant_bits_left = fmt->man_len;
2070   mant_off = fmt->man_start;
2071   dto = 0.0;
2072 
2073   special_exponent = exponent == 0 || exponent == fmt->exp_nan;
2074 
2075 /* Don't bias zero's, denorms or NaNs.  */
2076   if (!special_exponent)
2077     exponent -= fmt->exp_bias;
2078 
2079   /* Build the result algebraically.  Might go infinite, underflow, etc;
2080      who cares. */
2081 
2082 /* If this format uses a hidden bit, explicitly add it in now.  Otherwise,
2083    increment the exponent by one to account for the integer bit.  */
2084 
2085   if (!special_exponent)
2086     if (fmt->intbit == floatformat_intbit_no)
2087       dto = ldexp (1.0, exponent);
2088     else
2089       exponent++;
2090 
2091   while (mant_bits_left > 0)
2092     {
2093       mant_bits = min (mant_bits_left, 32);
2094 
2095       mant = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2096 			 mant_off, mant_bits);
2097 
2098       dto += ldexp ((double)mant, exponent - mant_bits);
2099       exponent -= mant_bits;
2100       mant_off += mant_bits;
2101       mant_bits_left -= mant_bits;
2102     }
2103 
2104   /* Negate it if negative.  */
2105   if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
2106     dto = -dto;
2107   *to = dto;
2108 }
2109 
2110 static void put_field PARAMS ((unsigned char *, enum floatformat_byteorders,
2111 			       unsigned int,
2112 			       unsigned int,
2113 			       unsigned int,
2114 			       unsigned long));
2115 
2116 /* Set a field which starts at START and is LEN bytes long.  DATA and
2117    TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER.  */
2118 static void
2119 put_field (data, order, total_len, start, len, stuff_to_put)
2120      unsigned char *data;
2121      enum floatformat_byteorders order;
2122      unsigned int total_len;
2123      unsigned int start;
2124      unsigned int len;
2125      unsigned long stuff_to_put;
2126 {
2127   unsigned int cur_byte;
2128   int cur_bitshift;
2129 
2130   /* Start at the least significant part of the field.  */
2131   cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2132   if (order == floatformat_little)
2133     cur_byte = (total_len / FLOATFORMAT_CHAR_BIT) - cur_byte - 1;
2134   cur_bitshift =
2135     ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2136   *(data + cur_byte) &=
2137     ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1) << (-cur_bitshift));
2138   *(data + cur_byte) |=
2139     (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
2140   cur_bitshift += FLOATFORMAT_CHAR_BIT;
2141   if (order == floatformat_little)
2142     ++cur_byte;
2143   else
2144     --cur_byte;
2145 
2146   /* Move towards the most significant part of the field.  */
2147   while (cur_bitshift < len)
2148     {
2149       if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
2150 	{
2151 	  /* This is the last byte.  */
2152 	  *(data + cur_byte) &=
2153 	    ~((1 << (len - cur_bitshift)) - 1);
2154 	  *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
2155 	}
2156       else
2157 	*(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
2158 			      & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
2159       cur_bitshift += FLOATFORMAT_CHAR_BIT;
2160       if (order == floatformat_little)
2161 	++cur_byte;
2162       else
2163 	--cur_byte;
2164     }
2165 }
2166 
2167 #ifdef HAVE_LONG_DOUBLE
2168 /* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
2169    The range of the returned value is >= 0.5 and < 1.0.  This is equivalent to
2170    frexp, but operates on the long double data type.  */
2171 
2172 static long double ldfrexp PARAMS ((long double value, int *eptr));
2173 
2174 static long double
2175 ldfrexp (value, eptr)
2176      long double value;
2177      int *eptr;
2178 {
2179   long double tmp;
2180   int exp;
2181 
2182   /* Unfortunately, there are no portable functions for extracting the exponent
2183      of a long double, so we have to do it iteratively by multiplying or dividing
2184      by two until the fraction is between 0.5 and 1.0.  */
2185 
2186   if (value < 0.0l)
2187     value = -value;
2188 
2189   tmp = 1.0l;
2190   exp = 0;
2191 
2192   if (value >= tmp)		/* Value >= 1.0 */
2193     while (value >= tmp)
2194       {
2195 	tmp *= 2.0l;
2196 	exp++;
2197       }
2198   else if (value != 0.0l)	/* Value < 1.0  and > 0.0 */
2199     {
2200       while (value < tmp)
2201 	{
2202 	  tmp /= 2.0l;
2203 	  exp--;
2204 	}
2205       tmp *= 2.0l;
2206       exp++;
2207     }
2208 
2209   *eptr = exp;
2210   return value/tmp;
2211 }
2212 #endif /* HAVE_LONG_DOUBLE */
2213 
2214 
2215 /* The converse: convert the DOUBLEST *FROM to an extended float
2216    and store where TO points.  Neither FROM nor TO have any alignment
2217    restrictions.  */
2218 
2219 void
2220 floatformat_from_doublest (fmt, from, to)
2221      CONST struct floatformat *fmt;
2222      DOUBLEST *from;
2223      char *to;
2224 {
2225   DOUBLEST dfrom;
2226   int exponent;
2227   DOUBLEST mant;
2228   unsigned int mant_bits, mant_off;
2229   int mant_bits_left;
2230   unsigned char *uto = (unsigned char *)to;
2231 
2232   memcpy (&dfrom, from, sizeof (dfrom));
2233   memset (uto, 0, fmt->totalsize / FLOATFORMAT_CHAR_BIT);
2234   if (dfrom == 0)
2235     return;			/* Result is zero */
2236   if (dfrom != dfrom)
2237     {
2238       /* From is NaN */
2239       put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2240 		 fmt->exp_len, fmt->exp_nan);
2241       /* Be sure it's not infinity, but NaN value is irrel */
2242       put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2243 		 32, 1);
2244       return;
2245     }
2246 
2247   /* If negative, set the sign bit.  */
2248   if (dfrom < 0)
2249     {
2250       put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1);
2251       dfrom = -dfrom;
2252     }
2253 
2254   /* How to tell an infinity from an ordinary number?  FIXME-someday */
2255 
2256 #ifdef HAVE_LONG_DOUBLE
2257   mant = ldfrexp (dfrom, &exponent);
2258 #else
2259   mant = frexp (dfrom, &exponent);
2260 #endif
2261 
2262   put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, fmt->exp_len,
2263 	     exponent + fmt->exp_bias - 1);
2264 
2265   mant_bits_left = fmt->man_len;
2266   mant_off = fmt->man_start;
2267   while (mant_bits_left > 0)
2268     {
2269       unsigned long mant_long;
2270       mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
2271 
2272       mant *= 4294967296.0;
2273       mant_long = (unsigned long)mant;
2274       mant -= mant_long;
2275 
2276       /* If the integer bit is implicit, then we need to discard it.
2277 	 If we are discarding a zero, we should be (but are not) creating
2278 	 a denormalized	number which means adjusting the exponent
2279 	 (I think).  */
2280       if (mant_bits_left == fmt->man_len
2281 	  && fmt->intbit == floatformat_intbit_no)
2282 	{
2283 	  mant_long <<= 1;
2284 	  mant_bits -= 1;
2285 	}
2286 
2287       if (mant_bits < 32)
2288 	{
2289 	  /* The bits we want are in the most significant MANT_BITS bits of
2290 	     mant_long.  Move them to the least significant.  */
2291 	  mant_long >>= 32 - mant_bits;
2292 	}
2293 
2294       put_field (uto, fmt->byteorder, fmt->totalsize,
2295 		 mant_off, mant_bits, mant_long);
2296       mant_off += mant_bits;
2297       mant_bits_left -= mant_bits;
2298     }
2299 }
2300 
2301 /* temporary storage using circular buffer */
2302 #define NUMCELLS 16
2303 #define CELLSIZE 32
2304 static char*
2305 get_cell()
2306 {
2307   static char buf[NUMCELLS][CELLSIZE];
2308   static int cell=0;
2309   if (++cell>=NUMCELLS) cell=0;
2310   return buf[cell];
2311 }
2312 
2313 /* print routines to handle variable size regs, etc */
2314 char*
2315 paddr(addr)
2316   t_addr addr;
2317 {
2318   char *paddr_str=get_cell();
2319   switch (sizeof(t_addr))
2320     {
2321       case 8:
2322         sprintf(paddr_str,"%08x%08x",
2323 		(unsigned long)(addr>>32),(unsigned long)(addr&0xffffffff));
2324 	break;
2325       case 4:
2326         sprintf(paddr_str,"%08x",(unsigned long)addr);
2327 	break;
2328       case 2:
2329         sprintf(paddr_str,"%04x",(unsigned short)(addr&0xffff));
2330 	break;
2331       default:
2332         sprintf(paddr_str,"%x",addr);
2333     }
2334   return paddr_str;
2335 }
2336 
2337 char*
2338 preg(reg)
2339   t_reg reg;
2340 {
2341   char *preg_str=get_cell();
2342   switch (sizeof(t_reg))
2343     {
2344       case 8:
2345         sprintf(preg_str,"%08x%08x",
2346 		(unsigned long)(reg>>32),(unsigned long)(reg&0xffffffff));
2347 	break;
2348       case 4:
2349         sprintf(preg_str,"%08x",(unsigned long)reg);
2350 	break;
2351       case 2:
2352         sprintf(preg_str,"%04x",(unsigned short)(reg&0xffff));
2353 	break;
2354       default:
2355         sprintf(preg_str,"%x",reg);
2356     }
2357   return preg_str;
2358 }
2359 
2360