xref: /openbsd-src/gnu/usr.bin/binutils/gdb/sparc-nat.c (revision b2ea75c1b17e1a9a339660e7ed45cd24946b230e)
1 /* Functions specific to running gdb native on a SPARC running SunOS4.
2    Copyright 1989, 1992, 1993, 1994, 1996 Free Software Foundation, Inc.
3 
4 This file is part of GDB.
5 
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10 
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 GNU General Public License for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
19 
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "gdbcore.h"
24 
25 #include <signal.h>
26 #include <sys/ptrace.h>
27 #include <sys/wait.h>
28 #include <machine/reg.h>
29 #include <sys/user.h>
30 
31 /* We don't store all registers immediately when requested, since they
32    get sent over in large chunks anyway.  Instead, we accumulate most
33    of the changes and send them over once.  "deferred_stores" keeps
34    track of which sets of registers we have locally-changed copies of,
35    so we only need send the groups that have changed.  */
36 
37 #define	INT_REGS	1
38 #define	STACK_REGS	2
39 #define	FP_REGS		4
40 
41 static void
42 fetch_core_registers PARAMS ((char *, unsigned int, int, CORE_ADDR));
43 
44 /* Fetch one or more registers from the inferior.  REGNO == -1 to get
45    them all.  We actually fetch more than requested, when convenient,
46    marking them as valid so we won't fetch them again.  */
47 
48 void
49 fetch_inferior_registers (regno)
50      int regno;
51 {
52   struct regs inferior_registers;
53   struct fp_status inferior_fp_registers;
54   int i;
55 
56   /* We should never be called with deferred stores, because a prerequisite
57      for writing regs is to have fetched them all (PREPARE_TO_STORE), sigh.  */
58   if (deferred_stores) abort();
59 
60   DO_DEFERRED_STORES;
61 
62   /* Global and Out regs are fetched directly, as well as the control
63      registers.  If we're getting one of the in or local regs,
64      and the stack pointer has not yet been fetched,
65      we have to do that first, since they're found in memory relative
66      to the stack pointer.  */
67   if (regno < O7_REGNUM  /* including -1 */
68       || regno >= Y_REGNUM
69       || (!register_valid[SP_REGNUM] && regno < I7_REGNUM))
70     {
71       if (0 != ptrace (PTRACE_GETREGS, inferior_pid,
72 		       (PTRACE_ARG3_TYPE) &inferior_registers, 0))
73 	perror("ptrace_getregs");
74 
75       registers[REGISTER_BYTE (0)] = 0;
76       memcpy (&registers[REGISTER_BYTE (1)], &inferior_registers.r_g1,
77 	      15 * REGISTER_RAW_SIZE (G0_REGNUM));
78       *(int *)&registers[REGISTER_BYTE (PS_REGNUM)] = inferior_registers.r_ps;
79       *(int *)&registers[REGISTER_BYTE (PC_REGNUM)] = inferior_registers.r_pc;
80       *(int *)&registers[REGISTER_BYTE (NPC_REGNUM)] = inferior_registers.r_npc;
81       *(int *)&registers[REGISTER_BYTE (Y_REGNUM)] = inferior_registers.r_y;
82 
83       for (i = G0_REGNUM; i <= O7_REGNUM; i++)
84 	register_valid[i] = 1;
85       register_valid[Y_REGNUM] = 1;
86       register_valid[PS_REGNUM] = 1;
87       register_valid[PC_REGNUM] = 1;
88       register_valid[NPC_REGNUM] = 1;
89       /* If we don't set these valid, read_register_bytes() rereads
90 	 all the regs every time it is called!  FIXME.  */
91       register_valid[WIM_REGNUM] = 1;	/* Not true yet, FIXME */
92       register_valid[TBR_REGNUM] = 1;	/* Not true yet, FIXME */
93       register_valid[CPS_REGNUM] = 1;	/* Not true yet, FIXME */
94     }
95 
96   /* Floating point registers */
97   if (regno == -1 ||
98       regno == FPS_REGNUM ||
99       (regno >= FP0_REGNUM && regno <= FP0_REGNUM + 31))
100     {
101       if (0 != ptrace (PTRACE_GETFPREGS, inferior_pid,
102 		       (PTRACE_ARG3_TYPE) &inferior_fp_registers,
103 		       0))
104 	    perror("ptrace_getfpregs");
105       memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], &inferior_fp_registers,
106 	      sizeof inferior_fp_registers.fpu_fr);
107       memcpy (&registers[REGISTER_BYTE (FPS_REGNUM)],
108 	     &inferior_fp_registers.Fpu_fsr,
109 	     sizeof (FPU_FSR_TYPE));
110       for (i = FP0_REGNUM; i <= FP0_REGNUM+31; i++)
111 	register_valid[i] = 1;
112       register_valid[FPS_REGNUM] = 1;
113     }
114 
115   /* These regs are saved on the stack by the kernel.  Only read them
116      all (16 ptrace calls!) if we really need them.  */
117   if (regno == -1)
118     {
119       target_xfer_memory (*(CORE_ADDR*)&registers[REGISTER_BYTE (SP_REGNUM)],
120 		          &registers[REGISTER_BYTE (L0_REGNUM)],
121 			  16*REGISTER_RAW_SIZE (L0_REGNUM), 0);
122       for (i = L0_REGNUM; i <= I7_REGNUM; i++)
123 	register_valid[i] = 1;
124     }
125   else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
126     {
127       CORE_ADDR sp = *(CORE_ADDR*)&registers[REGISTER_BYTE (SP_REGNUM)];
128       i = REGISTER_BYTE (regno);
129       if (register_valid[regno])
130 	printf_unfiltered("register %d valid and read\n", regno);
131       target_xfer_memory (sp + i - REGISTER_BYTE (L0_REGNUM),
132 			  &registers[i], REGISTER_RAW_SIZE (regno), 0);
133       register_valid[regno] = 1;
134     }
135 }
136 
137 /* Store our register values back into the inferior.
138    If REGNO is -1, do this for all registers.
139    Otherwise, REGNO specifies which register (so we can save time).  */
140 
141 void
142 store_inferior_registers (regno)
143      int regno;
144 {
145   struct regs inferior_registers;
146   struct fp_status inferior_fp_registers;
147   int wanna_store = INT_REGS + STACK_REGS + FP_REGS;
148 
149   /* First decide which pieces of machine-state we need to modify.
150      Default for regno == -1 case is all pieces.  */
151   if (regno >= 0)
152     if (FP0_REGNUM <= regno && regno < FP0_REGNUM + 32)
153       {
154 	wanna_store = FP_REGS;
155       }
156     else
157       {
158 	if (regno == SP_REGNUM)
159 	  wanna_store = INT_REGS + STACK_REGS;
160 	else if (regno < L0_REGNUM || regno > I7_REGNUM)
161 	  wanna_store = INT_REGS;
162 	else if (regno == FPS_REGNUM)
163 	  wanna_store = FP_REGS;
164 	else
165 	  wanna_store = STACK_REGS;
166       }
167 
168   /* See if we're forcing the stores to happen now, or deferring. */
169   if (regno == -2)
170     {
171       wanna_store = deferred_stores;
172       deferred_stores = 0;
173     }
174   else
175     {
176       if (wanna_store == STACK_REGS)
177 	{
178 	  /* Fall through and just store one stack reg.  If we deferred
179 	     it, we'd have to store them all, or remember more info.  */
180 	}
181       else
182 	{
183 	  deferred_stores |= wanna_store;
184 	  return;
185 	}
186     }
187 
188   if (wanna_store & STACK_REGS)
189     {
190       CORE_ADDR sp = *(CORE_ADDR *)&registers[REGISTER_BYTE (SP_REGNUM)];
191 
192       if (regno < 0 || regno == SP_REGNUM)
193 	{
194 	  if (!register_valid[L0_REGNUM+5]) abort();
195 	  target_xfer_memory (sp,
196 			      &registers[REGISTER_BYTE (L0_REGNUM)],
197 			      16*REGISTER_RAW_SIZE (L0_REGNUM), 1);
198 	}
199       else
200 	{
201 	  if (!register_valid[regno]) abort();
202 	  target_xfer_memory (sp + REGISTER_BYTE (regno) - REGISTER_BYTE (L0_REGNUM),
203 			      &registers[REGISTER_BYTE (regno)],
204 			      REGISTER_RAW_SIZE (regno), 1);
205 	}
206 
207     }
208 
209   if (wanna_store & INT_REGS)
210     {
211       if (!register_valid[G1_REGNUM]) abort();
212 
213       memcpy (&inferior_registers.r_g1, &registers[REGISTER_BYTE (G1_REGNUM)],
214 	      15 * REGISTER_RAW_SIZE (G1_REGNUM));
215 
216       inferior_registers.r_ps =
217 	*(int *)&registers[REGISTER_BYTE (PS_REGNUM)];
218       inferior_registers.r_pc =
219 	*(int *)&registers[REGISTER_BYTE (PC_REGNUM)];
220       inferior_registers.r_npc =
221 	*(int *)&registers[REGISTER_BYTE (NPC_REGNUM)];
222       inferior_registers.r_y =
223 	*(int *)&registers[REGISTER_BYTE (Y_REGNUM)];
224 
225       if (0 != ptrace (PTRACE_SETREGS, inferior_pid,
226 		       (PTRACE_ARG3_TYPE) &inferior_registers, 0))
227 	perror("ptrace_setregs");
228     }
229 
230   if (wanna_store & FP_REGS)
231     {
232       if (!register_valid[FP0_REGNUM+9]) abort();
233       memcpy (&inferior_fp_registers, &registers[REGISTER_BYTE (FP0_REGNUM)],
234 	      sizeof inferior_fp_registers.fpu_fr);
235       memcpy (&inferior_fp_registers.Fpu_fsr,
236 	      &registers[REGISTER_BYTE (FPS_REGNUM)], sizeof (FPU_FSR_TYPE));
237       if (0 !=
238 	 ptrace (PTRACE_SETFPREGS, inferior_pid,
239 		 (PTRACE_ARG3_TYPE) &inferior_fp_registers, 0))
240 	 perror("ptrace_setfpregs");
241     }
242 }
243 
244 
245 static void
246 fetch_core_registers (core_reg_sect, core_reg_size, which, ignore)
247   char *core_reg_sect;
248   unsigned core_reg_size;
249   int which;
250   CORE_ADDR ignore;	/* reg addr, unused in this version */
251 {
252 
253   if (which == 0) {
254 
255     /* Integer registers */
256 
257 #define gregs ((struct regs *)core_reg_sect)
258     /* G0 *always* holds 0.  */
259     *(int *)&registers[REGISTER_BYTE (0)] = 0;
260 
261     /* The globals and output registers.  */
262     memcpy (&registers[REGISTER_BYTE (G1_REGNUM)], &gregs->r_g1,
263 	    15 * REGISTER_RAW_SIZE (G1_REGNUM));
264     *(int *)&registers[REGISTER_BYTE (PS_REGNUM)] = gregs->r_ps;
265     *(int *)&registers[REGISTER_BYTE (PC_REGNUM)] = gregs->r_pc;
266     *(int *)&registers[REGISTER_BYTE (NPC_REGNUM)] = gregs->r_npc;
267     *(int *)&registers[REGISTER_BYTE (Y_REGNUM)] = gregs->r_y;
268 
269     /* My best guess at where to get the locals and input
270        registers is exactly where they usually are, right above
271        the stack pointer.  If the core dump was caused by a bus error
272        from blowing away the stack pointer (as is possible) then this
273        won't work, but it's worth the try. */
274     {
275       int sp;
276 
277       sp = *(int *)&registers[REGISTER_BYTE (SP_REGNUM)];
278       if (0 != target_read_memory (sp, &registers[REGISTER_BYTE (L0_REGNUM)],
279 			  16 * REGISTER_RAW_SIZE (L0_REGNUM)))
280 	{
281 	  /* fprintf_unfiltered so user can still use gdb */
282 	  fprintf_unfiltered (gdb_stderr,
283 		   "Couldn't read input and local registers from core file\n");
284 	}
285     }
286   } else if (which == 2) {
287 
288     /* Floating point registers */
289 
290 #define fpuregs  ((struct fpu *) core_reg_sect)
291     if (core_reg_size >= sizeof (struct fpu))
292       {
293 	memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], fpuregs->fpu_regs,
294 		sizeof (fpuregs->fpu_regs));
295 	memcpy (&registers[REGISTER_BYTE (FPS_REGNUM)], &fpuregs->fpu_fsr,
296 		sizeof (FPU_FSR_TYPE));
297       }
298     else
299       fprintf_unfiltered (gdb_stderr, "Couldn't read float regs from core file\n");
300   }
301 }
302 
303 int
304 kernel_u_size ()
305 {
306   return (sizeof (struct user));
307 }
308 
309 
310 /* Register that we are able to handle sparc core file formats.
311    FIXME: is this really bfd_target_unknown_flavour? */
312 
313 static struct core_fns sparc_core_fns =
314 {
315   bfd_target_unknown_flavour,
316   fetch_core_registers,
317   NULL
318 };
319 
320 void
321 _initialize_core_sparc ()
322 {
323   add_core_fns (&sparc_core_fns);
324 }
325