xref: /openbsd-src/gnu/usr.bin/binutils/gdb/ppc-linux-tdep.c (revision 11efff7f3ac2b3cfeff0c0cddc14294d9b3aca4f)
1b725ae77Skettenis /* Target-dependent code for GDB, the GNU debugger.
2b725ae77Skettenis 
3b725ae77Skettenis    Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4*11efff7fSkettenis    1997, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5b725ae77Skettenis 
6b725ae77Skettenis    This file is part of GDB.
7b725ae77Skettenis 
8b725ae77Skettenis    This program is free software; you can redistribute it and/or modify
9b725ae77Skettenis    it under the terms of the GNU General Public License as published by
10b725ae77Skettenis    the Free Software Foundation; either version 2 of the License, or
11b725ae77Skettenis    (at your option) any later version.
12b725ae77Skettenis 
13b725ae77Skettenis    This program is distributed in the hope that it will be useful,
14b725ae77Skettenis    but WITHOUT ANY WARRANTY; without even the implied warranty of
15b725ae77Skettenis    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16b725ae77Skettenis    GNU General Public License for more details.
17b725ae77Skettenis 
18b725ae77Skettenis    You should have received a copy of the GNU General Public License
19b725ae77Skettenis    along with this program; if not, write to the Free Software
20b725ae77Skettenis    Foundation, Inc., 59 Temple Place - Suite 330,
21b725ae77Skettenis    Boston, MA 02111-1307, USA.  */
22b725ae77Skettenis 
23b725ae77Skettenis #include "defs.h"
24b725ae77Skettenis #include "frame.h"
25b725ae77Skettenis #include "inferior.h"
26b725ae77Skettenis #include "symtab.h"
27b725ae77Skettenis #include "target.h"
28b725ae77Skettenis #include "gdbcore.h"
29b725ae77Skettenis #include "gdbcmd.h"
30b725ae77Skettenis #include "symfile.h"
31b725ae77Skettenis #include "objfiles.h"
32b725ae77Skettenis #include "regcache.h"
33b725ae77Skettenis #include "value.h"
34b725ae77Skettenis #include "osabi.h"
35*11efff7fSkettenis #include "regset.h"
36b725ae77Skettenis #include "solib-svr4.h"
37b725ae77Skettenis #include "ppc-tdep.h"
38*11efff7fSkettenis #include "trad-frame.h"
39*11efff7fSkettenis #include "frame-unwind.h"
40b725ae77Skettenis 
41b725ae77Skettenis /* The following instructions are used in the signal trampoline code
42b725ae77Skettenis    on GNU/Linux PPC. The kernel used to use magic syscalls 0x6666 and
43b725ae77Skettenis    0x7777 but now uses the sigreturn syscalls.  We check for both.  */
44b725ae77Skettenis #define INSTR_LI_R0_0x6666		0x38006666
45b725ae77Skettenis #define INSTR_LI_R0_0x7777		0x38007777
46b725ae77Skettenis #define INSTR_LI_R0_NR_sigreturn	0x38000077
47b725ae77Skettenis #define INSTR_LI_R0_NR_rt_sigreturn	0x380000AC
48b725ae77Skettenis 
49b725ae77Skettenis #define INSTR_SC			0x44000002
50b725ae77Skettenis 
51b725ae77Skettenis /* Since the *-tdep.c files are platform independent (i.e, they may be
52b725ae77Skettenis    used to build cross platform debuggers), we can't include system
53b725ae77Skettenis    headers.  Therefore, details concerning the sigcontext structure
54b725ae77Skettenis    must be painstakingly rerecorded.  What's worse, if these details
55b725ae77Skettenis    ever change in the header files, they'll have to be changed here
56b725ae77Skettenis    as well. */
57b725ae77Skettenis 
58b725ae77Skettenis /* __SIGNAL_FRAMESIZE from <asm/ptrace.h> */
59b725ae77Skettenis #define PPC_LINUX_SIGNAL_FRAMESIZE 64
60b725ae77Skettenis 
61b725ae77Skettenis /* From <asm/sigcontext.h>, offsetof(struct sigcontext_struct, regs) == 0x1c */
62b725ae77Skettenis #define PPC_LINUX_REGS_PTR_OFFSET (PPC_LINUX_SIGNAL_FRAMESIZE + 0x1c)
63b725ae77Skettenis 
64b725ae77Skettenis /* From <asm/sigcontext.h>,
65b725ae77Skettenis    offsetof(struct sigcontext_struct, handler) == 0x14 */
66b725ae77Skettenis #define PPC_LINUX_HANDLER_PTR_OFFSET (PPC_LINUX_SIGNAL_FRAMESIZE + 0x14)
67b725ae77Skettenis 
68b725ae77Skettenis /* From <asm/ptrace.h>, values for PT_NIP, PT_R1, and PT_LNK */
69b725ae77Skettenis #define PPC_LINUX_PT_R0		0
70b725ae77Skettenis #define PPC_LINUX_PT_R1		1
71b725ae77Skettenis #define PPC_LINUX_PT_R2		2
72b725ae77Skettenis #define PPC_LINUX_PT_R3		3
73b725ae77Skettenis #define PPC_LINUX_PT_R4		4
74b725ae77Skettenis #define PPC_LINUX_PT_R5		5
75b725ae77Skettenis #define PPC_LINUX_PT_R6		6
76b725ae77Skettenis #define PPC_LINUX_PT_R7		7
77b725ae77Skettenis #define PPC_LINUX_PT_R8		8
78b725ae77Skettenis #define PPC_LINUX_PT_R9		9
79b725ae77Skettenis #define PPC_LINUX_PT_R10	10
80b725ae77Skettenis #define PPC_LINUX_PT_R11	11
81b725ae77Skettenis #define PPC_LINUX_PT_R12	12
82b725ae77Skettenis #define PPC_LINUX_PT_R13	13
83b725ae77Skettenis #define PPC_LINUX_PT_R14	14
84b725ae77Skettenis #define PPC_LINUX_PT_R15	15
85b725ae77Skettenis #define PPC_LINUX_PT_R16	16
86b725ae77Skettenis #define PPC_LINUX_PT_R17	17
87b725ae77Skettenis #define PPC_LINUX_PT_R18	18
88b725ae77Skettenis #define PPC_LINUX_PT_R19	19
89b725ae77Skettenis #define PPC_LINUX_PT_R20	20
90b725ae77Skettenis #define PPC_LINUX_PT_R21	21
91b725ae77Skettenis #define PPC_LINUX_PT_R22	22
92b725ae77Skettenis #define PPC_LINUX_PT_R23	23
93b725ae77Skettenis #define PPC_LINUX_PT_R24	24
94b725ae77Skettenis #define PPC_LINUX_PT_R25	25
95b725ae77Skettenis #define PPC_LINUX_PT_R26	26
96b725ae77Skettenis #define PPC_LINUX_PT_R27	27
97b725ae77Skettenis #define PPC_LINUX_PT_R28	28
98b725ae77Skettenis #define PPC_LINUX_PT_R29	29
99b725ae77Skettenis #define PPC_LINUX_PT_R30	30
100b725ae77Skettenis #define PPC_LINUX_PT_R31	31
101b725ae77Skettenis #define PPC_LINUX_PT_NIP	32
102b725ae77Skettenis #define PPC_LINUX_PT_MSR	33
103b725ae77Skettenis #define PPC_LINUX_PT_CTR	35
104b725ae77Skettenis #define PPC_LINUX_PT_LNK	36
105b725ae77Skettenis #define PPC_LINUX_PT_XER	37
106b725ae77Skettenis #define PPC_LINUX_PT_CCR	38
107b725ae77Skettenis #define PPC_LINUX_PT_MQ		39
108b725ae77Skettenis #define PPC_LINUX_PT_FPR0	48	/* each FP reg occupies 2 slots in this space */
109b725ae77Skettenis #define PPC_LINUX_PT_FPR31 (PPC_LINUX_PT_FPR0 + 2*31)
110b725ae77Skettenis #define PPC_LINUX_PT_FPSCR (PPC_LINUX_PT_FPR0 + 2*32 + 1)
111b725ae77Skettenis 
112b725ae77Skettenis static int ppc_linux_at_sigtramp_return_path (CORE_ADDR pc);
113b725ae77Skettenis 
114b725ae77Skettenis /* Determine if pc is in a signal trampoline...
115b725ae77Skettenis 
116b725ae77Skettenis    Ha!  That's not what this does at all.  wait_for_inferior in
117*11efff7fSkettenis    infrun.c calls get_frame_type() in order to detect entry into a
118b725ae77Skettenis    signal trampoline just after delivery of a signal.  But on
119b725ae77Skettenis    GNU/Linux, signal trampolines are used for the return path only.
120b725ae77Skettenis    The kernel sets things up so that the signal handler is called
121b725ae77Skettenis    directly.
122b725ae77Skettenis 
123b725ae77Skettenis    If we use in_sigtramp2() in place of in_sigtramp() (see below)
124b725ae77Skettenis    we'll (often) end up with stop_pc in the trampoline and prev_pc in
125b725ae77Skettenis    the (now exited) handler.  The code there will cause a temporary
126b725ae77Skettenis    breakpoint to be set on prev_pc which is not very likely to get hit
127b725ae77Skettenis    again.
128b725ae77Skettenis 
129b725ae77Skettenis    If this is confusing, think of it this way...  the code in
130b725ae77Skettenis    wait_for_inferior() needs to be able to detect entry into a signal
131b725ae77Skettenis    trampoline just after a signal is delivered, not after the handler
132b725ae77Skettenis    has been run.
133b725ae77Skettenis 
134b725ae77Skettenis    So, we define in_sigtramp() below to return 1 if the following is
135b725ae77Skettenis    true:
136b725ae77Skettenis 
137b725ae77Skettenis    1) The previous frame is a real signal trampoline.
138b725ae77Skettenis 
139b725ae77Skettenis    - and -
140b725ae77Skettenis 
141b725ae77Skettenis    2) pc is at the first or second instruction of the corresponding
142b725ae77Skettenis    handler.
143b725ae77Skettenis 
144b725ae77Skettenis    Why the second instruction?  It seems that wait_for_inferior()
145b725ae77Skettenis    never sees the first instruction when single stepping.  When a
146b725ae77Skettenis    signal is delivered while stepping, the next instruction that
147b725ae77Skettenis    would've been stepped over isn't, instead a signal is delivered and
148b725ae77Skettenis    the first instruction of the handler is stepped over instead.  That
149*11efff7fSkettenis    puts us on the second instruction.  (I added the test for the first
150*11efff7fSkettenis    instruction long after the fact, just in case the observed behavior
151*11efff7fSkettenis    is ever fixed.)  */
152b725ae77Skettenis 
153b725ae77Skettenis int
ppc_linux_in_sigtramp(CORE_ADDR pc,char * func_name)154b725ae77Skettenis ppc_linux_in_sigtramp (CORE_ADDR pc, char *func_name)
155b725ae77Skettenis {
156b725ae77Skettenis   CORE_ADDR lr;
157b725ae77Skettenis   CORE_ADDR sp;
158b725ae77Skettenis   CORE_ADDR tramp_sp;
159b725ae77Skettenis   char buf[4];
160b725ae77Skettenis   CORE_ADDR handler;
161b725ae77Skettenis 
162b725ae77Skettenis   lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
163b725ae77Skettenis   if (!ppc_linux_at_sigtramp_return_path (lr))
164b725ae77Skettenis     return 0;
165b725ae77Skettenis 
166b725ae77Skettenis   sp = read_register (SP_REGNUM);
167b725ae77Skettenis 
168b725ae77Skettenis   if (target_read_memory (sp, buf, sizeof (buf)) != 0)
169b725ae77Skettenis     return 0;
170b725ae77Skettenis 
171b725ae77Skettenis   tramp_sp = extract_unsigned_integer (buf, 4);
172b725ae77Skettenis 
173b725ae77Skettenis   if (target_read_memory (tramp_sp + PPC_LINUX_HANDLER_PTR_OFFSET, buf,
174b725ae77Skettenis 			  sizeof (buf)) != 0)
175b725ae77Skettenis     return 0;
176b725ae77Skettenis 
177b725ae77Skettenis   handler = extract_unsigned_integer (buf, 4);
178b725ae77Skettenis 
179b725ae77Skettenis   return (pc == handler || pc == handler + 4);
180b725ae77Skettenis }
181b725ae77Skettenis 
182b725ae77Skettenis static int
insn_is_sigreturn(unsigned long pcinsn)183b725ae77Skettenis insn_is_sigreturn (unsigned long pcinsn)
184b725ae77Skettenis {
185b725ae77Skettenis   switch(pcinsn)
186b725ae77Skettenis     {
187b725ae77Skettenis     case INSTR_LI_R0_0x6666:
188b725ae77Skettenis     case INSTR_LI_R0_0x7777:
189b725ae77Skettenis     case INSTR_LI_R0_NR_sigreturn:
190b725ae77Skettenis     case INSTR_LI_R0_NR_rt_sigreturn:
191b725ae77Skettenis       return 1;
192b725ae77Skettenis     default:
193b725ae77Skettenis       return 0;
194b725ae77Skettenis     }
195b725ae77Skettenis }
196b725ae77Skettenis 
197b725ae77Skettenis /*
198b725ae77Skettenis  * The signal handler trampoline is on the stack and consists of exactly
199b725ae77Skettenis  * two instructions.  The easiest and most accurate way of determining
200b725ae77Skettenis  * whether the pc is in one of these trampolines is by inspecting the
201b725ae77Skettenis  * instructions.  It'd be faster though if we could find a way to do this
202b725ae77Skettenis  * via some simple address comparisons.
203b725ae77Skettenis  */
204b725ae77Skettenis static int
ppc_linux_at_sigtramp_return_path(CORE_ADDR pc)205b725ae77Skettenis ppc_linux_at_sigtramp_return_path (CORE_ADDR pc)
206b725ae77Skettenis {
207b725ae77Skettenis   char buf[12];
208b725ae77Skettenis   unsigned long pcinsn;
209b725ae77Skettenis   if (target_read_memory (pc - 4, buf, sizeof (buf)) != 0)
210b725ae77Skettenis     return 0;
211b725ae77Skettenis 
212b725ae77Skettenis   /* extract the instruction at the pc */
213b725ae77Skettenis   pcinsn = extract_unsigned_integer (buf + 4, 4);
214b725ae77Skettenis 
215b725ae77Skettenis   return (
216b725ae77Skettenis 	   (insn_is_sigreturn (pcinsn)
217b725ae77Skettenis 	    && extract_unsigned_integer (buf + 8, 4) == INSTR_SC)
218b725ae77Skettenis 	   ||
219b725ae77Skettenis 	   (pcinsn == INSTR_SC
220b725ae77Skettenis 	    && insn_is_sigreturn (extract_unsigned_integer (buf, 4))));
221b725ae77Skettenis }
222b725ae77Skettenis 
223b725ae77Skettenis static CORE_ADDR
ppc_linux_skip_trampoline_code(CORE_ADDR pc)224b725ae77Skettenis ppc_linux_skip_trampoline_code (CORE_ADDR pc)
225b725ae77Skettenis {
226b725ae77Skettenis   char buf[4];
227b725ae77Skettenis   struct obj_section *sect;
228b725ae77Skettenis   struct objfile *objfile;
229b725ae77Skettenis   unsigned long insn;
230b725ae77Skettenis   CORE_ADDR plt_start = 0;
231b725ae77Skettenis   CORE_ADDR symtab = 0;
232b725ae77Skettenis   CORE_ADDR strtab = 0;
233b725ae77Skettenis   int num_slots = -1;
234b725ae77Skettenis   int reloc_index = -1;
235b725ae77Skettenis   CORE_ADDR plt_table;
236b725ae77Skettenis   CORE_ADDR reloc;
237b725ae77Skettenis   CORE_ADDR sym;
238b725ae77Skettenis   long symidx;
239b725ae77Skettenis   char symname[1024];
240b725ae77Skettenis   struct minimal_symbol *msymbol;
241b725ae77Skettenis 
242b725ae77Skettenis   /* Find the section pc is in; return if not in .plt */
243b725ae77Skettenis   sect = find_pc_section (pc);
244b725ae77Skettenis   if (!sect || strcmp (sect->the_bfd_section->name, ".plt") != 0)
245b725ae77Skettenis     return 0;
246b725ae77Skettenis 
247b725ae77Skettenis   objfile = sect->objfile;
248b725ae77Skettenis 
249b725ae77Skettenis   /* Pick up the instruction at pc.  It had better be of the
250b725ae77Skettenis      form
251b725ae77Skettenis      li r11, IDX
252b725ae77Skettenis 
253b725ae77Skettenis      where IDX is an index into the plt_table.  */
254b725ae77Skettenis 
255b725ae77Skettenis   if (target_read_memory (pc, buf, 4) != 0)
256b725ae77Skettenis     return 0;
257b725ae77Skettenis   insn = extract_unsigned_integer (buf, 4);
258b725ae77Skettenis 
259b725ae77Skettenis   if ((insn & 0xffff0000) != 0x39600000 /* li r11, VAL */ )
260b725ae77Skettenis     return 0;
261b725ae77Skettenis 
262b725ae77Skettenis   reloc_index = (insn << 16) >> 16;
263b725ae77Skettenis 
264b725ae77Skettenis   /* Find the objfile that pc is in and obtain the information
265b725ae77Skettenis      necessary for finding the symbol name. */
266b725ae77Skettenis   for (sect = objfile->sections; sect < objfile->sections_end; ++sect)
267b725ae77Skettenis     {
268b725ae77Skettenis       const char *secname = sect->the_bfd_section->name;
269b725ae77Skettenis       if (strcmp (secname, ".plt") == 0)
270b725ae77Skettenis 	plt_start = sect->addr;
271b725ae77Skettenis       else if (strcmp (secname, ".rela.plt") == 0)
272b725ae77Skettenis 	num_slots = ((int) sect->endaddr - (int) sect->addr) / 12;
273b725ae77Skettenis       else if (strcmp (secname, ".dynsym") == 0)
274b725ae77Skettenis 	symtab = sect->addr;
275b725ae77Skettenis       else if (strcmp (secname, ".dynstr") == 0)
276b725ae77Skettenis 	strtab = sect->addr;
277b725ae77Skettenis     }
278b725ae77Skettenis 
279b725ae77Skettenis   /* Make sure we have all the information we need. */
280b725ae77Skettenis   if (plt_start == 0 || num_slots == -1 || symtab == 0 || strtab == 0)
281b725ae77Skettenis     return 0;
282b725ae77Skettenis 
283b725ae77Skettenis   /* Compute the value of the plt table */
284b725ae77Skettenis   plt_table = plt_start + 72 + 8 * num_slots;
285b725ae77Skettenis 
286b725ae77Skettenis   /* Get address of the relocation entry (Elf32_Rela) */
287b725ae77Skettenis   if (target_read_memory (plt_table + reloc_index, buf, 4) != 0)
288b725ae77Skettenis     return 0;
289b725ae77Skettenis   reloc = extract_unsigned_integer (buf, 4);
290b725ae77Skettenis 
291b725ae77Skettenis   sect = find_pc_section (reloc);
292b725ae77Skettenis   if (!sect)
293b725ae77Skettenis     return 0;
294b725ae77Skettenis 
295b725ae77Skettenis   if (strcmp (sect->the_bfd_section->name, ".text") == 0)
296b725ae77Skettenis     return reloc;
297b725ae77Skettenis 
298b725ae77Skettenis   /* Now get the r_info field which is the relocation type and symbol
299b725ae77Skettenis      index. */
300b725ae77Skettenis   if (target_read_memory (reloc + 4, buf, 4) != 0)
301b725ae77Skettenis     return 0;
302b725ae77Skettenis   symidx = extract_unsigned_integer (buf, 4);
303b725ae77Skettenis 
304b725ae77Skettenis   /* Shift out the relocation type leaving just the symbol index */
305b725ae77Skettenis   /* symidx = ELF32_R_SYM(symidx); */
306b725ae77Skettenis   symidx = symidx >> 8;
307b725ae77Skettenis 
308b725ae77Skettenis   /* compute the address of the symbol */
309b725ae77Skettenis   sym = symtab + symidx * 4;
310b725ae77Skettenis 
311b725ae77Skettenis   /* Fetch the string table index */
312b725ae77Skettenis   if (target_read_memory (sym, buf, 4) != 0)
313b725ae77Skettenis     return 0;
314b725ae77Skettenis   symidx = extract_unsigned_integer (buf, 4);
315b725ae77Skettenis 
316b725ae77Skettenis   /* Fetch the string; we don't know how long it is.  Is it possible
317b725ae77Skettenis      that the following will fail because we're trying to fetch too
318b725ae77Skettenis      much? */
319b725ae77Skettenis   if (target_read_memory (strtab + symidx, symname, sizeof (symname)) != 0)
320b725ae77Skettenis     return 0;
321b725ae77Skettenis 
322b725ae77Skettenis   /* This might not work right if we have multiple symbols with the
323b725ae77Skettenis      same name; the only way to really get it right is to perform
324b725ae77Skettenis      the same sort of lookup as the dynamic linker. */
325b725ae77Skettenis   msymbol = lookup_minimal_symbol_text (symname, NULL);
326b725ae77Skettenis   if (!msymbol)
327b725ae77Skettenis     return 0;
328b725ae77Skettenis 
329b725ae77Skettenis   return SYMBOL_VALUE_ADDRESS (msymbol);
330b725ae77Skettenis }
331b725ae77Skettenis 
332b725ae77Skettenis /* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
333b725ae77Skettenis    in much the same fashion as memory_remove_breakpoint in mem-break.c,
334b725ae77Skettenis    but is careful not to write back the previous contents if the code
335b725ae77Skettenis    in question has changed in between inserting the breakpoint and
336b725ae77Skettenis    removing it.
337b725ae77Skettenis 
338b725ae77Skettenis    Here is the problem that we're trying to solve...
339b725ae77Skettenis 
340b725ae77Skettenis    Once upon a time, before introducing this function to remove
341b725ae77Skettenis    breakpoints from the inferior, setting a breakpoint on a shared
342b725ae77Skettenis    library function prior to running the program would not work
343b725ae77Skettenis    properly.  In order to understand the problem, it is first
344b725ae77Skettenis    necessary to understand a little bit about dynamic linking on
345b725ae77Skettenis    this platform.
346b725ae77Skettenis 
347b725ae77Skettenis    A call to a shared library function is accomplished via a bl
348b725ae77Skettenis    (branch-and-link) instruction whose branch target is an entry
349b725ae77Skettenis    in the procedure linkage table (PLT).  The PLT in the object
350b725ae77Skettenis    file is uninitialized.  To gdb, prior to running the program, the
351b725ae77Skettenis    entries in the PLT are all zeros.
352b725ae77Skettenis 
353b725ae77Skettenis    Once the program starts running, the shared libraries are loaded
354b725ae77Skettenis    and the procedure linkage table is initialized, but the entries in
355b725ae77Skettenis    the table are not (necessarily) resolved.  Once a function is
356b725ae77Skettenis    actually called, the code in the PLT is hit and the function is
357b725ae77Skettenis    resolved.  In order to better illustrate this, an example is in
358b725ae77Skettenis    order; the following example is from the gdb testsuite.
359b725ae77Skettenis 
360b725ae77Skettenis 	We start the program shmain.
361b725ae77Skettenis 
362b725ae77Skettenis 	    [kev@arroyo testsuite]$ ../gdb gdb.base/shmain
363b725ae77Skettenis 	    [...]
364b725ae77Skettenis 
365b725ae77Skettenis 	We place two breakpoints, one on shr1 and the other on main.
366b725ae77Skettenis 
367b725ae77Skettenis 	    (gdb) b shr1
368b725ae77Skettenis 	    Breakpoint 1 at 0x100409d4
369b725ae77Skettenis 	    (gdb) b main
370b725ae77Skettenis 	    Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.
371b725ae77Skettenis 
372b725ae77Skettenis 	Examine the instruction (and the immediatly following instruction)
373b725ae77Skettenis 	upon which the breakpoint was placed.  Note that the PLT entry
374b725ae77Skettenis 	for shr1 contains zeros.
375b725ae77Skettenis 
376b725ae77Skettenis 	    (gdb) x/2i 0x100409d4
377b725ae77Skettenis 	    0x100409d4 <shr1>:      .long 0x0
378b725ae77Skettenis 	    0x100409d8 <shr1+4>:    .long 0x0
379b725ae77Skettenis 
380b725ae77Skettenis 	Now run 'til main.
381b725ae77Skettenis 
382b725ae77Skettenis 	    (gdb) r
383b725ae77Skettenis 	    Starting program: gdb.base/shmain
384b725ae77Skettenis 	    Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.
385b725ae77Skettenis 
386b725ae77Skettenis 	    Breakpoint 2, main ()
387b725ae77Skettenis 		at gdb.base/shmain.c:44
388b725ae77Skettenis 	    44        g = 1;
389b725ae77Skettenis 
390b725ae77Skettenis 	Examine the PLT again.  Note that the loading of the shared
391b725ae77Skettenis 	library has initialized the PLT to code which loads a constant
392b725ae77Skettenis 	(which I think is an index into the GOT) into r11 and then
393b725ae77Skettenis 	branchs a short distance to the code which actually does the
394b725ae77Skettenis 	resolving.
395b725ae77Skettenis 
396b725ae77Skettenis 	    (gdb) x/2i 0x100409d4
397b725ae77Skettenis 	    0x100409d4 <shr1>:      li      r11,4
398b725ae77Skettenis 	    0x100409d8 <shr1+4>:    b       0x10040984 <sg+4>
399b725ae77Skettenis 	    (gdb) c
400b725ae77Skettenis 	    Continuing.
401b725ae77Skettenis 
402b725ae77Skettenis 	    Breakpoint 1, shr1 (x=1)
403b725ae77Skettenis 		at gdb.base/shr1.c:19
404b725ae77Skettenis 	    19        l = 1;
405b725ae77Skettenis 
406b725ae77Skettenis 	Now we've hit the breakpoint at shr1.  (The breakpoint was
407b725ae77Skettenis 	reset from the PLT entry to the actual shr1 function after the
408b725ae77Skettenis 	shared library was loaded.) Note that the PLT entry has been
409b725ae77Skettenis 	resolved to contain a branch that takes us directly to shr1.
410b725ae77Skettenis 	(The real one, not the PLT entry.)
411b725ae77Skettenis 
412b725ae77Skettenis 	    (gdb) x/2i 0x100409d4
413b725ae77Skettenis 	    0x100409d4 <shr1>:      b       0xffaf76c <shr1>
414b725ae77Skettenis 	    0x100409d8 <shr1+4>:    b       0x10040984 <sg+4>
415b725ae77Skettenis 
416b725ae77Skettenis    The thing to note here is that the PLT entry for shr1 has been
417b725ae77Skettenis    changed twice.
418b725ae77Skettenis 
419b725ae77Skettenis    Now the problem should be obvious.  GDB places a breakpoint (a
420b725ae77Skettenis    trap instruction) on the zero value of the PLT entry for shr1.
421b725ae77Skettenis    Later on, after the shared library had been loaded and the PLT
422b725ae77Skettenis    initialized, GDB gets a signal indicating this fact and attempts
423b725ae77Skettenis    (as it always does when it stops) to remove all the breakpoints.
424b725ae77Skettenis 
425b725ae77Skettenis    The breakpoint removal was causing the former contents (a zero
426b725ae77Skettenis    word) to be written back to the now initialized PLT entry thus
427b725ae77Skettenis    destroying a portion of the initialization that had occurred only a
428b725ae77Skettenis    short time ago.  When execution continued, the zero word would be
429b725ae77Skettenis    executed as an instruction an an illegal instruction trap was
430b725ae77Skettenis    generated instead.  (0 is not a legal instruction.)
431b725ae77Skettenis 
432b725ae77Skettenis    The fix for this problem was fairly straightforward.  The function
433b725ae77Skettenis    memory_remove_breakpoint from mem-break.c was copied to this file,
434b725ae77Skettenis    modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
435b725ae77Skettenis    In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
436b725ae77Skettenis    function.
437b725ae77Skettenis 
438b725ae77Skettenis    The differences between ppc_linux_memory_remove_breakpoint () and
439b725ae77Skettenis    memory_remove_breakpoint () are minor.  All that the former does
440b725ae77Skettenis    that the latter does not is check to make sure that the breakpoint
441b725ae77Skettenis    location actually contains a breakpoint (trap instruction) prior
442b725ae77Skettenis    to attempting to write back the old contents.  If it does contain
443b725ae77Skettenis    a trap instruction, we allow the old contents to be written back.
444b725ae77Skettenis    Otherwise, we silently do nothing.
445b725ae77Skettenis 
446b725ae77Skettenis    The big question is whether memory_remove_breakpoint () should be
447b725ae77Skettenis    changed to have the same functionality.  The downside is that more
448b725ae77Skettenis    traffic is generated for remote targets since we'll have an extra
449b725ae77Skettenis    fetch of a memory word each time a breakpoint is removed.
450b725ae77Skettenis 
451b725ae77Skettenis    For the time being, we'll leave this self-modifying-code-friendly
452b725ae77Skettenis    version in ppc-linux-tdep.c, but it ought to be migrated somewhere
453b725ae77Skettenis    else in the event that some other platform has similar needs with
454b725ae77Skettenis    regard to removing breakpoints in some potentially self modifying
455b725ae77Skettenis    code.  */
456b725ae77Skettenis int
ppc_linux_memory_remove_breakpoint(CORE_ADDR addr,char * contents_cache)457b725ae77Skettenis ppc_linux_memory_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
458b725ae77Skettenis {
459b725ae77Skettenis   const unsigned char *bp;
460b725ae77Skettenis   int val;
461b725ae77Skettenis   int bplen;
462b725ae77Skettenis   char old_contents[BREAKPOINT_MAX];
463b725ae77Skettenis 
464b725ae77Skettenis   /* Determine appropriate breakpoint contents and size for this address.  */
465b725ae77Skettenis   bp = BREAKPOINT_FROM_PC (&addr, &bplen);
466b725ae77Skettenis   if (bp == NULL)
467b725ae77Skettenis     error ("Software breakpoints not implemented for this target.");
468b725ae77Skettenis 
469b725ae77Skettenis   val = target_read_memory (addr, old_contents, bplen);
470b725ae77Skettenis 
471b725ae77Skettenis   /* If our breakpoint is no longer at the address, this means that the
472b725ae77Skettenis      program modified the code on us, so it is wrong to put back the
473b725ae77Skettenis      old value */
474b725ae77Skettenis   if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
475b725ae77Skettenis     val = target_write_memory (addr, contents_cache, bplen);
476b725ae77Skettenis 
477b725ae77Skettenis   return val;
478b725ae77Skettenis }
479b725ae77Skettenis 
480b725ae77Skettenis /* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather
481b725ae77Skettenis    than the 32 bit SYSV R4 ABI structure return convention - all
482b725ae77Skettenis    structures, no matter their size, are put in memory.  Vectors,
483b725ae77Skettenis    which were added later, do get returned in a register though.  */
484b725ae77Skettenis 
485b725ae77Skettenis static enum return_value_convention
ppc_linux_return_value(struct gdbarch * gdbarch,struct type * valtype,struct regcache * regcache,void * readbuf,const void * writebuf)486b725ae77Skettenis ppc_linux_return_value (struct gdbarch *gdbarch, struct type *valtype,
487b725ae77Skettenis 			struct regcache *regcache, void *readbuf,
488b725ae77Skettenis 			const void *writebuf)
489b725ae77Skettenis {
490b725ae77Skettenis   if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
491b725ae77Skettenis        || TYPE_CODE (valtype) == TYPE_CODE_UNION)
492b725ae77Skettenis       && !((TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 8)
493b725ae77Skettenis 	   && TYPE_VECTOR (valtype)))
494b725ae77Skettenis     return RETURN_VALUE_STRUCT_CONVENTION;
495b725ae77Skettenis   else
496b725ae77Skettenis     return ppc_sysv_abi_return_value (gdbarch, valtype, regcache, readbuf,
497b725ae77Skettenis 				      writebuf);
498b725ae77Skettenis }
499b725ae77Skettenis 
500b725ae77Skettenis /* Fetch (and possibly build) an appropriate link_map_offsets
501b725ae77Skettenis    structure for GNU/Linux PPC targets using the struct offsets
502b725ae77Skettenis    defined in link.h (but without actual reference to that file).
503b725ae77Skettenis 
504b725ae77Skettenis    This makes it possible to access GNU/Linux PPC shared libraries
505b725ae77Skettenis    from a GDB that was not built on an GNU/Linux PPC host (for cross
506b725ae77Skettenis    debugging).  */
507b725ae77Skettenis 
508b725ae77Skettenis struct link_map_offsets *
ppc_linux_svr4_fetch_link_map_offsets(void)509b725ae77Skettenis ppc_linux_svr4_fetch_link_map_offsets (void)
510b725ae77Skettenis {
511b725ae77Skettenis   static struct link_map_offsets lmo;
512b725ae77Skettenis   static struct link_map_offsets *lmp = NULL;
513b725ae77Skettenis 
514b725ae77Skettenis   if (lmp == NULL)
515b725ae77Skettenis     {
516b725ae77Skettenis       lmp = &lmo;
517b725ae77Skettenis 
518b725ae77Skettenis       lmo.r_debug_size = 8;	/* The actual size is 20 bytes, but
519b725ae77Skettenis 				   this is all we need.  */
520b725ae77Skettenis       lmo.r_map_offset = 4;
521b725ae77Skettenis       lmo.r_map_size   = 4;
522b725ae77Skettenis 
523b725ae77Skettenis       lmo.link_map_size = 20;	/* The actual size is 560 bytes, but
524b725ae77Skettenis 				   this is all we need.  */
525b725ae77Skettenis       lmo.l_addr_offset = 0;
526b725ae77Skettenis       lmo.l_addr_size   = 4;
527b725ae77Skettenis 
528b725ae77Skettenis       lmo.l_name_offset = 4;
529b725ae77Skettenis       lmo.l_name_size   = 4;
530b725ae77Skettenis 
531b725ae77Skettenis       lmo.l_next_offset = 12;
532b725ae77Skettenis       lmo.l_next_size   = 4;
533b725ae77Skettenis 
534b725ae77Skettenis       lmo.l_prev_offset = 16;
535b725ae77Skettenis       lmo.l_prev_size   = 4;
536b725ae77Skettenis     }
537b725ae77Skettenis 
538b725ae77Skettenis   return lmp;
539b725ae77Skettenis }
540b725ae77Skettenis 
541b725ae77Skettenis 
542b725ae77Skettenis /* Macros for matching instructions.  Note that, since all the
543b725ae77Skettenis    operands are masked off before they're or-ed into the instruction,
544b725ae77Skettenis    you can use -1 to make masks.  */
545b725ae77Skettenis 
546b725ae77Skettenis #define insn_d(opcd, rts, ra, d)                \
547b725ae77Skettenis   ((((opcd) & 0x3f) << 26)                      \
548b725ae77Skettenis    | (((rts) & 0x1f) << 21)                     \
549b725ae77Skettenis    | (((ra) & 0x1f) << 16)                      \
550b725ae77Skettenis    | ((d) & 0xffff))
551b725ae77Skettenis 
552b725ae77Skettenis #define insn_ds(opcd, rts, ra, d, xo)           \
553b725ae77Skettenis   ((((opcd) & 0x3f) << 26)                      \
554b725ae77Skettenis    | (((rts) & 0x1f) << 21)                     \
555b725ae77Skettenis    | (((ra) & 0x1f) << 16)                      \
556b725ae77Skettenis    | ((d) & 0xfffc)                             \
557b725ae77Skettenis    | ((xo) & 0x3))
558b725ae77Skettenis 
559b725ae77Skettenis #define insn_xfx(opcd, rts, spr, xo)            \
560b725ae77Skettenis   ((((opcd) & 0x3f) << 26)                      \
561b725ae77Skettenis    | (((rts) & 0x1f) << 21)                     \
562b725ae77Skettenis    | (((spr) & 0x1f) << 16)                     \
563b725ae77Skettenis    | (((spr) & 0x3e0) << 6)                     \
564b725ae77Skettenis    | (((xo) & 0x3ff) << 1))
565b725ae77Skettenis 
566b725ae77Skettenis /* Read a PPC instruction from memory.  PPC instructions are always
567b725ae77Skettenis    big-endian, no matter what endianness the program is running in, so
568b725ae77Skettenis    we can't use read_memory_integer or one of its friends here.  */
569b725ae77Skettenis static unsigned int
read_insn(CORE_ADDR pc)570b725ae77Skettenis read_insn (CORE_ADDR pc)
571b725ae77Skettenis {
572b725ae77Skettenis   unsigned char buf[4];
573b725ae77Skettenis 
574b725ae77Skettenis   read_memory (pc, buf, 4);
575b725ae77Skettenis   return (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
576b725ae77Skettenis }
577b725ae77Skettenis 
578b725ae77Skettenis 
579b725ae77Skettenis /* An instruction to match.  */
580b725ae77Skettenis struct insn_pattern
581b725ae77Skettenis {
582b725ae77Skettenis   unsigned int mask;            /* mask the insn with this... */
583b725ae77Skettenis   unsigned int data;            /* ...and see if it matches this. */
584b725ae77Skettenis   int optional;                 /* If non-zero, this insn may be absent.  */
585b725ae77Skettenis };
586b725ae77Skettenis 
587b725ae77Skettenis /* Return non-zero if the instructions at PC match the series
588b725ae77Skettenis    described in PATTERN, or zero otherwise.  PATTERN is an array of
589b725ae77Skettenis    'struct insn_pattern' objects, terminated by an entry whose mask is
590b725ae77Skettenis    zero.
591b725ae77Skettenis 
592b725ae77Skettenis    When the match is successful, fill INSN[i] with what PATTERN[i]
593b725ae77Skettenis    matched.  If PATTERN[i] is optional, and the instruction wasn't
594b725ae77Skettenis    present, set INSN[i] to 0 (which is not a valid PPC instruction).
595b725ae77Skettenis    INSN should have as many elements as PATTERN.  Note that, if
596b725ae77Skettenis    PATTERN contains optional instructions which aren't present in
597b725ae77Skettenis    memory, then INSN will have holes, so INSN[i] isn't necessarily the
598b725ae77Skettenis    i'th instruction in memory.  */
599b725ae77Skettenis static int
insns_match_pattern(CORE_ADDR pc,struct insn_pattern * pattern,unsigned int * insn)600b725ae77Skettenis insns_match_pattern (CORE_ADDR pc,
601b725ae77Skettenis                      struct insn_pattern *pattern,
602b725ae77Skettenis                      unsigned int *insn)
603b725ae77Skettenis {
604b725ae77Skettenis   int i;
605b725ae77Skettenis 
606b725ae77Skettenis   for (i = 0; pattern[i].mask; i++)
607b725ae77Skettenis     {
608b725ae77Skettenis       insn[i] = read_insn (pc);
609b725ae77Skettenis       if ((insn[i] & pattern[i].mask) == pattern[i].data)
610b725ae77Skettenis         pc += 4;
611b725ae77Skettenis       else if (pattern[i].optional)
612b725ae77Skettenis         insn[i] = 0;
613b725ae77Skettenis       else
614b725ae77Skettenis         return 0;
615b725ae77Skettenis     }
616b725ae77Skettenis 
617b725ae77Skettenis   return 1;
618b725ae77Skettenis }
619b725ae77Skettenis 
620b725ae77Skettenis 
621b725ae77Skettenis /* Return the 'd' field of the d-form instruction INSN, properly
622b725ae77Skettenis    sign-extended.  */
623b725ae77Skettenis static CORE_ADDR
insn_d_field(unsigned int insn)624b725ae77Skettenis insn_d_field (unsigned int insn)
625b725ae77Skettenis {
626b725ae77Skettenis   return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
627b725ae77Skettenis }
628b725ae77Skettenis 
629b725ae77Skettenis 
630b725ae77Skettenis /* Return the 'ds' field of the ds-form instruction INSN, with the two
631b725ae77Skettenis    zero bits concatenated at the right, and properly
632b725ae77Skettenis    sign-extended.  */
633b725ae77Skettenis static CORE_ADDR
insn_ds_field(unsigned int insn)634b725ae77Skettenis insn_ds_field (unsigned int insn)
635b725ae77Skettenis {
636b725ae77Skettenis   return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
637b725ae77Skettenis }
638b725ae77Skettenis 
639b725ae77Skettenis 
640b725ae77Skettenis /* If DESC is the address of a 64-bit PowerPC GNU/Linux function
641b725ae77Skettenis    descriptor, return the descriptor's entry point.  */
642b725ae77Skettenis static CORE_ADDR
ppc64_desc_entry_point(CORE_ADDR desc)643b725ae77Skettenis ppc64_desc_entry_point (CORE_ADDR desc)
644b725ae77Skettenis {
645b725ae77Skettenis   /* The first word of the descriptor is the entry point.  */
646b725ae77Skettenis   return (CORE_ADDR) read_memory_unsigned_integer (desc, 8);
647b725ae77Skettenis }
648b725ae77Skettenis 
649b725ae77Skettenis 
650b725ae77Skettenis /* Pattern for the standard linkage function.  These are built by
651b725ae77Skettenis    build_plt_stub in elf64-ppc.c, whose GLINK argument is always
652b725ae77Skettenis    zero.  */
653b725ae77Skettenis static struct insn_pattern ppc64_standard_linkage[] =
654b725ae77Skettenis   {
655b725ae77Skettenis     /* addis r12, r2, <any> */
656b725ae77Skettenis     { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
657b725ae77Skettenis 
658b725ae77Skettenis     /* std r2, 40(r1) */
659b725ae77Skettenis     { -1, insn_ds (62, 2, 1, 40, 0), 0 },
660b725ae77Skettenis 
661b725ae77Skettenis     /* ld r11, <any>(r12) */
662b725ae77Skettenis     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
663b725ae77Skettenis 
664b725ae77Skettenis     /* addis r12, r12, 1 <optional> */
665b725ae77Skettenis     { insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 },
666b725ae77Skettenis 
667b725ae77Skettenis     /* ld r2, <any>(r12) */
668b725ae77Skettenis     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
669b725ae77Skettenis 
670b725ae77Skettenis     /* addis r12, r12, 1 <optional> */
671b725ae77Skettenis     { insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 },
672b725ae77Skettenis 
673b725ae77Skettenis     /* mtctr r11 */
674b725ae77Skettenis     { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467),
675b725ae77Skettenis       0 },
676b725ae77Skettenis 
677b725ae77Skettenis     /* ld r11, <any>(r12) */
678b725ae77Skettenis     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
679b725ae77Skettenis 
680b725ae77Skettenis     /* bctr */
681b725ae77Skettenis     { -1, 0x4e800420, 0 },
682b725ae77Skettenis 
683b725ae77Skettenis     { 0, 0, 0 }
684b725ae77Skettenis   };
685b725ae77Skettenis #define PPC64_STANDARD_LINKAGE_LEN \
686b725ae77Skettenis   (sizeof (ppc64_standard_linkage) / sizeof (ppc64_standard_linkage[0]))
687b725ae77Skettenis 
688b725ae77Skettenis 
689b725ae77Skettenis /* Recognize a 64-bit PowerPC GNU/Linux linkage function --- what GDB
690b725ae77Skettenis    calls a "solib trampoline".  */
691b725ae77Skettenis static int
ppc64_in_solib_call_trampoline(CORE_ADDR pc,char * name)692b725ae77Skettenis ppc64_in_solib_call_trampoline (CORE_ADDR pc, char *name)
693b725ae77Skettenis {
694b725ae77Skettenis   /* Detecting solib call trampolines on PPC64 GNU/Linux is a pain.
695b725ae77Skettenis 
696b725ae77Skettenis      It's not specifically solib call trampolines that are the issue.
697b725ae77Skettenis      Any call from one function to another function that uses a
698b725ae77Skettenis      different TOC requires a trampoline, to save the caller's TOC
699b725ae77Skettenis      pointer and then load the callee's TOC.  An executable or shared
700b725ae77Skettenis      library may have more than one TOC, so even intra-object calls
701b725ae77Skettenis      may require a trampoline.  Since executable and shared libraries
702b725ae77Skettenis      will all have their own distinct TOCs, every inter-object call is
703b725ae77Skettenis      also an inter-TOC call, and requires a trampoline --- so "solib
704b725ae77Skettenis      call trampolines" are just a special case.
705b725ae77Skettenis 
706b725ae77Skettenis      The 64-bit PowerPC GNU/Linux ABI calls these call trampolines
707b725ae77Skettenis      "linkage functions".  Since they need to be near the functions
708b725ae77Skettenis      that call them, they all appear in .text, not in any special
709b725ae77Skettenis      section.  The .plt section just contains an array of function
710b725ae77Skettenis      descriptors, from which the linkage functions load the callee's
711b725ae77Skettenis      entry point, TOC value, and environment pointer.  So
712b725ae77Skettenis      in_plt_section is useless.  The linkage functions don't have any
713b725ae77Skettenis      special linker symbols to name them, either.
714b725ae77Skettenis 
715b725ae77Skettenis      The only way I can see to recognize them is to actually look at
716b725ae77Skettenis      their code.  They're generated by ppc_build_one_stub and some
717b725ae77Skettenis      other functions in bfd/elf64-ppc.c, so that should show us all
718b725ae77Skettenis      the instruction sequences we need to recognize.  */
719b725ae77Skettenis   unsigned int insn[PPC64_STANDARD_LINKAGE_LEN];
720b725ae77Skettenis 
721b725ae77Skettenis   return insns_match_pattern (pc, ppc64_standard_linkage, insn);
722b725ae77Skettenis }
723b725ae77Skettenis 
724b725ae77Skettenis 
725b725ae77Skettenis /* When the dynamic linker is doing lazy symbol resolution, the first
726b725ae77Skettenis    call to a function in another object will go like this:
727b725ae77Skettenis 
728b725ae77Skettenis    - The user's function calls the linkage function:
729b725ae77Skettenis 
730b725ae77Skettenis      100007c4:	4b ff fc d5 	bl	10000498
731b725ae77Skettenis      100007c8:	e8 41 00 28 	ld	r2,40(r1)
732b725ae77Skettenis 
733b725ae77Skettenis    - The linkage function loads the entry point (and other stuff) from
734b725ae77Skettenis      the function descriptor in the PLT, and jumps to it:
735b725ae77Skettenis 
736b725ae77Skettenis      10000498:	3d 82 00 00 	addis	r12,r2,0
737b725ae77Skettenis      1000049c:	f8 41 00 28 	std	r2,40(r1)
738b725ae77Skettenis      100004a0:	e9 6c 80 98 	ld	r11,-32616(r12)
739b725ae77Skettenis      100004a4:	e8 4c 80 a0 	ld	r2,-32608(r12)
740b725ae77Skettenis      100004a8:	7d 69 03 a6 	mtctr	r11
741b725ae77Skettenis      100004ac:	e9 6c 80 a8 	ld	r11,-32600(r12)
742b725ae77Skettenis      100004b0:	4e 80 04 20 	bctr
743b725ae77Skettenis 
744b725ae77Skettenis    - But since this is the first time that PLT entry has been used, it
745b725ae77Skettenis      sends control to its glink entry.  That loads the number of the
746b725ae77Skettenis      PLT entry and jumps to the common glink0 code:
747b725ae77Skettenis 
748b725ae77Skettenis      10000c98:	38 00 00 00 	li	r0,0
749b725ae77Skettenis      10000c9c:	4b ff ff dc 	b	10000c78
750b725ae77Skettenis 
751b725ae77Skettenis    - The common glink0 code then transfers control to the dynamic
752b725ae77Skettenis      linker's fixup code:
753b725ae77Skettenis 
754b725ae77Skettenis      10000c78:	e8 41 00 28 	ld	r2,40(r1)
755b725ae77Skettenis      10000c7c:	3d 82 00 00 	addis	r12,r2,0
756b725ae77Skettenis      10000c80:	e9 6c 80 80 	ld	r11,-32640(r12)
757b725ae77Skettenis      10000c84:	e8 4c 80 88 	ld	r2,-32632(r12)
758b725ae77Skettenis      10000c88:	7d 69 03 a6 	mtctr	r11
759b725ae77Skettenis      10000c8c:	e9 6c 80 90 	ld	r11,-32624(r12)
760b725ae77Skettenis      10000c90:	4e 80 04 20 	bctr
761b725ae77Skettenis 
762b725ae77Skettenis    Eventually, this code will figure out how to skip all of this,
763b725ae77Skettenis    including the dynamic linker.  At the moment, we just get through
764b725ae77Skettenis    the linkage function.  */
765b725ae77Skettenis 
766b725ae77Skettenis /* If the current thread is about to execute a series of instructions
767b725ae77Skettenis    at PC matching the ppc64_standard_linkage pattern, and INSN is the result
768b725ae77Skettenis    from that pattern match, return the code address to which the
769b725ae77Skettenis    standard linkage function will send them.  (This doesn't deal with
770b725ae77Skettenis    dynamic linker lazy symbol resolution stubs.)  */
771b725ae77Skettenis static CORE_ADDR
ppc64_standard_linkage_target(CORE_ADDR pc,unsigned int * insn)772b725ae77Skettenis ppc64_standard_linkage_target (CORE_ADDR pc, unsigned int *insn)
773b725ae77Skettenis {
774b725ae77Skettenis   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
775b725ae77Skettenis 
776b725ae77Skettenis   /* The address of the function descriptor this linkage function
777b725ae77Skettenis      references.  */
778b725ae77Skettenis   CORE_ADDR desc
779b725ae77Skettenis     = ((CORE_ADDR) read_register (tdep->ppc_gp0_regnum + 2)
780b725ae77Skettenis        + (insn_d_field (insn[0]) << 16)
781b725ae77Skettenis        + insn_ds_field (insn[2]));
782b725ae77Skettenis 
783b725ae77Skettenis   /* The first word of the descriptor is the entry point.  Return that.  */
784b725ae77Skettenis   return ppc64_desc_entry_point (desc);
785b725ae77Skettenis }
786b725ae77Skettenis 
787b725ae77Skettenis 
788b725ae77Skettenis /* Given that we've begun executing a call trampoline at PC, return
789b725ae77Skettenis    the entry point of the function the trampoline will go to.  */
790b725ae77Skettenis static CORE_ADDR
ppc64_skip_trampoline_code(CORE_ADDR pc)791b725ae77Skettenis ppc64_skip_trampoline_code (CORE_ADDR pc)
792b725ae77Skettenis {
793b725ae77Skettenis   unsigned int ppc64_standard_linkage_insn[PPC64_STANDARD_LINKAGE_LEN];
794b725ae77Skettenis 
795b725ae77Skettenis   if (insns_match_pattern (pc, ppc64_standard_linkage,
796b725ae77Skettenis                            ppc64_standard_linkage_insn))
797b725ae77Skettenis     return ppc64_standard_linkage_target (pc, ppc64_standard_linkage_insn);
798b725ae77Skettenis   else
799b725ae77Skettenis     return 0;
800b725ae77Skettenis }
801b725ae77Skettenis 
802b725ae77Skettenis 
803b725ae77Skettenis /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG) on PPC64
804b725ae77Skettenis    GNU/Linux.
805b725ae77Skettenis 
806b725ae77Skettenis    Usually a function pointer's representation is simply the address
807b725ae77Skettenis    of the function. On GNU/Linux on the 64-bit PowerPC however, a
808b725ae77Skettenis    function pointer is represented by a pointer to a TOC entry. This
809b725ae77Skettenis    TOC entry contains three words, the first word is the address of
810b725ae77Skettenis    the function, the second word is the TOC pointer (r2), and the
811b725ae77Skettenis    third word is the static chain value.  Throughout GDB it is
812b725ae77Skettenis    currently assumed that a function pointer contains the address of
813b725ae77Skettenis    the function, which is not easy to fix.  In addition, the
814b725ae77Skettenis    conversion of a function address to a function pointer would
815b725ae77Skettenis    require allocation of a TOC entry in the inferior's memory space,
816b725ae77Skettenis    with all its drawbacks.  To be able to call C++ virtual methods in
817b725ae77Skettenis    the inferior (which are called via function pointers),
818b725ae77Skettenis    find_function_addr uses this function to get the function address
819b725ae77Skettenis    from a function pointer.  */
820b725ae77Skettenis 
821b725ae77Skettenis /* If ADDR points at what is clearly a function descriptor, transform
822b725ae77Skettenis    it into the address of the corresponding function.  Be
823b725ae77Skettenis    conservative, otherwize GDB will do the transformation on any
824b725ae77Skettenis    random addresses such as occures when there is no symbol table.  */
825b725ae77Skettenis 
826b725ae77Skettenis static CORE_ADDR
ppc64_linux_convert_from_func_ptr_addr(struct gdbarch * gdbarch,CORE_ADDR addr,struct target_ops * targ)827b725ae77Skettenis ppc64_linux_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
828b725ae77Skettenis 					CORE_ADDR addr,
829b725ae77Skettenis 					struct target_ops *targ)
830b725ae77Skettenis {
831b725ae77Skettenis   struct section_table *s = target_section_by_addr (targ, addr);
832b725ae77Skettenis 
833b725ae77Skettenis   /* Check if ADDR points to a function descriptor.  */
834b725ae77Skettenis   if (s && strcmp (s->the_bfd_section->name, ".opd") == 0)
835b725ae77Skettenis     return get_target_memory_unsigned (targ, addr, 8);
836b725ae77Skettenis 
837b725ae77Skettenis   return addr;
838b725ae77Skettenis }
839b725ae77Skettenis 
840*11efff7fSkettenis static void
right_supply_register(struct regcache * regcache,int wordsize,int regnum,const bfd_byte * buf)841*11efff7fSkettenis right_supply_register (struct regcache *regcache, int wordsize, int regnum,
842*11efff7fSkettenis 		       const bfd_byte *buf)
843b725ae77Skettenis {
844*11efff7fSkettenis   regcache_raw_supply (regcache, regnum,
845*11efff7fSkettenis 		       (buf + wordsize - register_size (current_gdbarch, regnum)));
846b725ae77Skettenis }
847b725ae77Skettenis 
848*11efff7fSkettenis /* Extract the register values found in the WORDSIZED ABI GREGSET,
849*11efff7fSkettenis    storing their values in REGCACHE.  Note that some are left-aligned,
850*11efff7fSkettenis    while others are right aligned.  */
851*11efff7fSkettenis 
852b725ae77Skettenis void
ppc_linux_supply_gregset(struct regcache * regcache,int regnum,const void * gregs,size_t size,int wordsize)853*11efff7fSkettenis ppc_linux_supply_gregset (struct regcache *regcache,
854*11efff7fSkettenis 			  int regnum, const void *gregs, size_t size,
855*11efff7fSkettenis 			  int wordsize)
856b725ae77Skettenis {
857b725ae77Skettenis   int regi;
858*11efff7fSkettenis   struct gdbarch *regcache_arch = get_regcache_arch (regcache);
859*11efff7fSkettenis   struct gdbarch_tdep *regcache_tdep = gdbarch_tdep (regcache_arch);
860*11efff7fSkettenis   const bfd_byte *buf = gregs;
861b725ae77Skettenis 
862*11efff7fSkettenis   for (regi = 0; regi < ppc_num_gprs; regi++)
863*11efff7fSkettenis     right_supply_register (regcache, wordsize,
864*11efff7fSkettenis                            regcache_tdep->ppc_gp0_regnum + regi,
865*11efff7fSkettenis                            buf + wordsize * regi);
866b725ae77Skettenis 
867*11efff7fSkettenis   right_supply_register (regcache, wordsize, gdbarch_pc_regnum (regcache_arch),
868*11efff7fSkettenis 			 buf + wordsize * PPC_LINUX_PT_NIP);
869*11efff7fSkettenis   right_supply_register (regcache, wordsize, regcache_tdep->ppc_lr_regnum,
870*11efff7fSkettenis 			 buf + wordsize * PPC_LINUX_PT_LNK);
871*11efff7fSkettenis   regcache_raw_supply (regcache, regcache_tdep->ppc_cr_regnum,
872*11efff7fSkettenis 		       buf + wordsize * PPC_LINUX_PT_CCR);
873*11efff7fSkettenis   regcache_raw_supply (regcache, regcache_tdep->ppc_xer_regnum,
874*11efff7fSkettenis 		       buf + wordsize * PPC_LINUX_PT_XER);
875*11efff7fSkettenis   regcache_raw_supply (regcache, regcache_tdep->ppc_ctr_regnum,
876*11efff7fSkettenis 		       buf + wordsize * PPC_LINUX_PT_CTR);
877*11efff7fSkettenis   if (regcache_tdep->ppc_mq_regnum != -1)
878*11efff7fSkettenis     right_supply_register (regcache, wordsize, regcache_tdep->ppc_mq_regnum,
879*11efff7fSkettenis 			   buf + wordsize * PPC_LINUX_PT_MQ);
880*11efff7fSkettenis   right_supply_register (regcache, wordsize, regcache_tdep->ppc_ps_regnum,
881*11efff7fSkettenis 			 buf + wordsize * PPC_LINUX_PT_MSR);
882b725ae77Skettenis }
883b725ae77Skettenis 
884b725ae77Skettenis static void
ppc32_linux_supply_gregset(const struct regset * regset,struct regcache * regcache,int regnum,const void * gregs,size_t size)885*11efff7fSkettenis ppc32_linux_supply_gregset (const struct regset *regset,
886*11efff7fSkettenis 			    struct regcache *regcache,
887*11efff7fSkettenis 			    int regnum, const void *gregs, size_t size)
888b725ae77Skettenis {
889*11efff7fSkettenis   ppc_linux_supply_gregset (regcache, regnum, gregs, size, 4);
890b725ae77Skettenis }
891b725ae77Skettenis 
892*11efff7fSkettenis static struct regset ppc32_linux_gregset = {
893*11efff7fSkettenis   NULL, ppc32_linux_supply_gregset
894b725ae77Skettenis };
895b725ae77Skettenis 
896*11efff7fSkettenis struct ppc_linux_sigtramp_cache
897*11efff7fSkettenis {
898*11efff7fSkettenis   CORE_ADDR base;
899*11efff7fSkettenis   struct trad_frame_saved_reg *saved_regs;
900*11efff7fSkettenis };
901*11efff7fSkettenis 
902*11efff7fSkettenis static struct ppc_linux_sigtramp_cache *
ppc_linux_sigtramp_cache(struct frame_info * next_frame,void ** this_cache)903*11efff7fSkettenis ppc_linux_sigtramp_cache (struct frame_info *next_frame, void **this_cache)
904*11efff7fSkettenis {
905*11efff7fSkettenis   CORE_ADDR regs;
906*11efff7fSkettenis   CORE_ADDR gpregs;
907*11efff7fSkettenis   CORE_ADDR fpregs;
908*11efff7fSkettenis   int i;
909*11efff7fSkettenis   struct ppc_linux_sigtramp_cache *cache;
910*11efff7fSkettenis   struct gdbarch *gdbarch = get_frame_arch (next_frame);
911*11efff7fSkettenis   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
912*11efff7fSkettenis 
913*11efff7fSkettenis   if ((*this_cache) != NULL)
914*11efff7fSkettenis     return (*this_cache);
915*11efff7fSkettenis   cache = FRAME_OBSTACK_ZALLOC (struct ppc_linux_sigtramp_cache);
916*11efff7fSkettenis   (*this_cache) = cache;
917*11efff7fSkettenis   cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
918*11efff7fSkettenis 
919*11efff7fSkettenis   cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
920*11efff7fSkettenis 
921*11efff7fSkettenis   /* Find the register pointer, which gives the address of the
922*11efff7fSkettenis      register buffers.  */
923*11efff7fSkettenis   if (tdep->wordsize == 4)
924*11efff7fSkettenis     regs = (cache->base
925*11efff7fSkettenis 	    + 0xd0 /* Offset to ucontext_t.  */
926*11efff7fSkettenis 	    + 0x30 /* Offset to .reg.  */);
927*11efff7fSkettenis   else
928*11efff7fSkettenis     regs = (cache->base
929*11efff7fSkettenis 	    + 0x80 /* Offset to ucontext_t.  */
930*11efff7fSkettenis 	    + 0xe0 /* Offset to .reg.  */);
931*11efff7fSkettenis   /* And the corresponding register buffers.  */
932*11efff7fSkettenis   gpregs = read_memory_unsigned_integer (regs, tdep->wordsize);
933*11efff7fSkettenis   fpregs = gpregs + 48 * tdep->wordsize;
934*11efff7fSkettenis 
935*11efff7fSkettenis   /* General purpose.  */
936*11efff7fSkettenis   for (i = 0; i < ppc_num_gprs; i++)
937*11efff7fSkettenis     {
938*11efff7fSkettenis       int regnum = i + tdep->ppc_gp0_regnum;
939*11efff7fSkettenis       cache->saved_regs[regnum].addr = gpregs + i * tdep->wordsize;
940*11efff7fSkettenis     }
941*11efff7fSkettenis   cache->saved_regs[PC_REGNUM].addr = gpregs + 32 * tdep->wordsize;
942*11efff7fSkettenis   cache->saved_regs[tdep->ppc_ctr_regnum].addr = gpregs + 35 * tdep->wordsize;
943*11efff7fSkettenis   cache->saved_regs[tdep->ppc_lr_regnum].addr = gpregs + 36 * tdep->wordsize;
944*11efff7fSkettenis   cache->saved_regs[tdep->ppc_xer_regnum].addr = gpregs + 37 * tdep->wordsize;
945*11efff7fSkettenis   cache->saved_regs[tdep->ppc_cr_regnum].addr = gpregs + 38 * tdep->wordsize;
946*11efff7fSkettenis 
947*11efff7fSkettenis   /* Floating point registers.  */
948*11efff7fSkettenis   if (ppc_floating_point_unit_p (gdbarch))
949*11efff7fSkettenis     {
950*11efff7fSkettenis       for (i = 0; i < ppc_num_fprs; i++)
951*11efff7fSkettenis         {
952*11efff7fSkettenis           int regnum = i + tdep->ppc_fp0_regnum;
953*11efff7fSkettenis           cache->saved_regs[regnum].addr = fpregs + i * tdep->wordsize;
954*11efff7fSkettenis         }
955*11efff7fSkettenis       cache->saved_regs[tdep->ppc_fpscr_regnum].addr
956*11efff7fSkettenis         = fpregs + 32 * tdep->wordsize;
957*11efff7fSkettenis     }
958*11efff7fSkettenis 
959*11efff7fSkettenis   return cache;
960*11efff7fSkettenis }
961*11efff7fSkettenis 
962*11efff7fSkettenis static void
ppc_linux_sigtramp_this_id(struct frame_info * next_frame,void ** this_cache,struct frame_id * this_id)963*11efff7fSkettenis ppc_linux_sigtramp_this_id (struct frame_info *next_frame, void **this_cache,
964*11efff7fSkettenis 			  struct frame_id *this_id)
965*11efff7fSkettenis {
966*11efff7fSkettenis   struct ppc_linux_sigtramp_cache *info
967*11efff7fSkettenis     = ppc_linux_sigtramp_cache (next_frame, this_cache);
968*11efff7fSkettenis   (*this_id) = frame_id_build (info->base, frame_pc_unwind (next_frame));
969*11efff7fSkettenis }
970*11efff7fSkettenis 
971*11efff7fSkettenis static void
ppc_linux_sigtramp_prev_register(struct frame_info * next_frame,void ** this_cache,int regnum,int * optimizedp,enum lval_type * lvalp,CORE_ADDR * addrp,int * realnump,void * valuep)972*11efff7fSkettenis ppc_linux_sigtramp_prev_register (struct frame_info *next_frame,
973*11efff7fSkettenis 				void **this_cache,
974*11efff7fSkettenis 				int regnum, int *optimizedp,
975*11efff7fSkettenis 				enum lval_type *lvalp, CORE_ADDR *addrp,
976*11efff7fSkettenis 				int *realnump, void *valuep)
977*11efff7fSkettenis {
978*11efff7fSkettenis   struct ppc_linux_sigtramp_cache *info
979*11efff7fSkettenis     = ppc_linux_sigtramp_cache (next_frame, this_cache);
980*11efff7fSkettenis   trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
981*11efff7fSkettenis 				optimizedp, lvalp, addrp, realnump, valuep);
982*11efff7fSkettenis }
983*11efff7fSkettenis 
984*11efff7fSkettenis static const struct frame_unwind ppc_linux_sigtramp_unwind =
985*11efff7fSkettenis {
986*11efff7fSkettenis   SIGTRAMP_FRAME,
987*11efff7fSkettenis   ppc_linux_sigtramp_this_id,
988*11efff7fSkettenis   ppc_linux_sigtramp_prev_register
989*11efff7fSkettenis };
990*11efff7fSkettenis 
991*11efff7fSkettenis static const struct frame_unwind *
ppc_linux_sigtramp_sniffer(struct frame_info * next_frame)992*11efff7fSkettenis ppc_linux_sigtramp_sniffer (struct frame_info *next_frame)
993*11efff7fSkettenis {
994*11efff7fSkettenis   struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
995*11efff7fSkettenis   if (frame_pc_unwind (next_frame)
996*11efff7fSkettenis       > frame_unwind_register_unsigned (next_frame, SP_REGNUM))
997*11efff7fSkettenis     /* Assume anything that is vaguely on the stack is a signal
998*11efff7fSkettenis        trampoline.  */
999*11efff7fSkettenis     return &ppc_linux_sigtramp_unwind;
1000*11efff7fSkettenis   else
1001*11efff7fSkettenis     return NULL;
1002*11efff7fSkettenis }
1003*11efff7fSkettenis 
1004*11efff7fSkettenis static void
ppc64_linux_supply_gregset(const struct regset * regset,struct regcache * regcache,int regnum,const void * gregs,size_t size)1005*11efff7fSkettenis ppc64_linux_supply_gregset (const struct regset *regset,
1006*11efff7fSkettenis 			    struct regcache * regcache,
1007*11efff7fSkettenis 			    int regnum, const void *gregs, size_t size)
1008*11efff7fSkettenis {
1009*11efff7fSkettenis   ppc_linux_supply_gregset (regcache, regnum, gregs, size, 8);
1010*11efff7fSkettenis }
1011*11efff7fSkettenis 
1012*11efff7fSkettenis static struct regset ppc64_linux_gregset = {
1013*11efff7fSkettenis   NULL, ppc64_linux_supply_gregset
1014*11efff7fSkettenis };
1015*11efff7fSkettenis 
1016*11efff7fSkettenis void
ppc_linux_supply_fpregset(const struct regset * regset,struct regcache * regcache,int regnum,const void * fpset,size_t size)1017*11efff7fSkettenis ppc_linux_supply_fpregset (const struct regset *regset,
1018*11efff7fSkettenis 			   struct regcache * regcache,
1019*11efff7fSkettenis 			   int regnum, const void *fpset, size_t size)
1020*11efff7fSkettenis {
1021*11efff7fSkettenis   int regi;
1022*11efff7fSkettenis   struct gdbarch *regcache_arch = get_regcache_arch (regcache);
1023*11efff7fSkettenis   struct gdbarch_tdep *regcache_tdep = gdbarch_tdep (regcache_arch);
1024*11efff7fSkettenis   const bfd_byte *buf = fpset;
1025*11efff7fSkettenis 
1026*11efff7fSkettenis   if (! ppc_floating_point_unit_p (regcache_arch))
1027*11efff7fSkettenis     return;
1028*11efff7fSkettenis 
1029*11efff7fSkettenis   for (regi = 0; regi < ppc_num_fprs; regi++)
1030*11efff7fSkettenis     regcache_raw_supply (regcache,
1031*11efff7fSkettenis                          regcache_tdep->ppc_fp0_regnum + regi,
1032*11efff7fSkettenis                          buf + 8 * regi);
1033*11efff7fSkettenis 
1034*11efff7fSkettenis   /* The FPSCR is stored in the low order word of the last
1035*11efff7fSkettenis      doubleword in the fpregset.  */
1036*11efff7fSkettenis   regcache_raw_supply (regcache, regcache_tdep->ppc_fpscr_regnum,
1037*11efff7fSkettenis                        buf + 8 * 32 + 4);
1038*11efff7fSkettenis }
1039*11efff7fSkettenis 
1040*11efff7fSkettenis static struct regset ppc_linux_fpregset = { NULL, ppc_linux_supply_fpregset };
1041*11efff7fSkettenis 
1042*11efff7fSkettenis static const struct regset *
ppc_linux_regset_from_core_section(struct gdbarch * core_arch,const char * sect_name,size_t sect_size)1043*11efff7fSkettenis ppc_linux_regset_from_core_section (struct gdbarch *core_arch,
1044*11efff7fSkettenis 				    const char *sect_name, size_t sect_size)
1045*11efff7fSkettenis {
1046*11efff7fSkettenis   struct gdbarch_tdep *tdep = gdbarch_tdep (core_arch);
1047*11efff7fSkettenis   if (strcmp (sect_name, ".reg") == 0)
1048*11efff7fSkettenis     {
1049*11efff7fSkettenis       if (tdep->wordsize == 4)
1050*11efff7fSkettenis 	return &ppc32_linux_gregset;
1051*11efff7fSkettenis       else
1052*11efff7fSkettenis 	return &ppc64_linux_gregset;
1053*11efff7fSkettenis     }
1054*11efff7fSkettenis   if (strcmp (sect_name, ".reg2") == 0)
1055*11efff7fSkettenis     return &ppc_linux_fpregset;
1056*11efff7fSkettenis   return NULL;
1057*11efff7fSkettenis }
1058*11efff7fSkettenis 
1059b725ae77Skettenis static void
ppc_linux_init_abi(struct gdbarch_info info,struct gdbarch * gdbarch)1060b725ae77Skettenis ppc_linux_init_abi (struct gdbarch_info info,
1061b725ae77Skettenis                     struct gdbarch *gdbarch)
1062b725ae77Skettenis {
1063b725ae77Skettenis   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1064b725ae77Skettenis 
1065b725ae77Skettenis   if (tdep->wordsize == 4)
1066b725ae77Skettenis     {
1067*11efff7fSkettenis       /* NOTE: jimb/2004-03-26: The System V ABI PowerPC Processor
1068*11efff7fSkettenis          Supplement says that long doubles are sixteen bytes long.
1069*11efff7fSkettenis          However, as one of the known warts of its ABI, PPC GNU/Linux
1070*11efff7fSkettenis          uses eight-byte long doubles.  GCC only recently got 128-bit
1071*11efff7fSkettenis          long double support on PPC, so it may be changing soon.  The
1072*11efff7fSkettenis          Linux[sic] Standards Base says that programs that use 'long
1073*11efff7fSkettenis          double' on PPC GNU/Linux are non-conformant.  */
1074*11efff7fSkettenis       set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1075*11efff7fSkettenis 
1076b725ae77Skettenis       /* Until November 2001, gcc did not comply with the 32 bit SysV
1077b725ae77Skettenis 	 R4 ABI requirement that structures less than or equal to 8
1078b725ae77Skettenis 	 bytes should be returned in registers.  Instead GCC was using
1079b725ae77Skettenis 	 the the AIX/PowerOpen ABI - everything returned in memory
1080b725ae77Skettenis 	 (well ignoring vectors that is).  When this was corrected, it
1081b725ae77Skettenis 	 wasn't fixed for GNU/Linux native platform.  Use the
1082b725ae77Skettenis 	 PowerOpen struct convention.  */
1083b725ae77Skettenis       set_gdbarch_return_value (gdbarch, ppc_linux_return_value);
1084b725ae77Skettenis 
1085b725ae77Skettenis       set_gdbarch_memory_remove_breakpoint (gdbarch,
1086b725ae77Skettenis                                             ppc_linux_memory_remove_breakpoint);
1087*11efff7fSkettenis 
1088b725ae77Skettenis       /* Shared library handling.  */
1089b725ae77Skettenis       set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1090b725ae77Skettenis       set_gdbarch_skip_trampoline_code (gdbarch,
1091b725ae77Skettenis                                         ppc_linux_skip_trampoline_code);
1092b725ae77Skettenis       set_solib_svr4_fetch_link_map_offsets
1093b725ae77Skettenis         (gdbarch, ppc_linux_svr4_fetch_link_map_offsets);
1094b725ae77Skettenis     }
1095b725ae77Skettenis 
1096b725ae77Skettenis   if (tdep->wordsize == 8)
1097b725ae77Skettenis     {
1098b725ae77Skettenis       /* Handle PPC64 GNU/Linux function pointers (which are really
1099b725ae77Skettenis          function descriptors).  */
1100b725ae77Skettenis       set_gdbarch_convert_from_func_ptr_addr
1101b725ae77Skettenis         (gdbarch, ppc64_linux_convert_from_func_ptr_addr);
1102b725ae77Skettenis 
1103b725ae77Skettenis       set_gdbarch_in_solib_call_trampoline
1104b725ae77Skettenis         (gdbarch, ppc64_in_solib_call_trampoline);
1105b725ae77Skettenis       set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code);
1106b725ae77Skettenis 
1107b725ae77Skettenis       /* PPC64 malloc's entry-point is called ".malloc".  */
1108b725ae77Skettenis       set_gdbarch_name_of_malloc (gdbarch, ".malloc");
1109b725ae77Skettenis     }
1110*11efff7fSkettenis   set_gdbarch_regset_from_core_section (gdbarch, ppc_linux_regset_from_core_section);
1111*11efff7fSkettenis   frame_unwind_append_sniffer (gdbarch, ppc_linux_sigtramp_sniffer);
1112b725ae77Skettenis }
1113b725ae77Skettenis 
1114b725ae77Skettenis void
_initialize_ppc_linux_tdep(void)1115b725ae77Skettenis _initialize_ppc_linux_tdep (void)
1116b725ae77Skettenis {
1117b725ae77Skettenis   /* Register for all sub-familes of the POWER/PowerPC: 32-bit and
1118b725ae77Skettenis      64-bit PowerPC, and the older rs6k.  */
1119b725ae77Skettenis   gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX,
1120b725ae77Skettenis                          ppc_linux_init_abi);
1121b725ae77Skettenis   gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX,
1122b725ae77Skettenis                          ppc_linux_init_abi);
1123b725ae77Skettenis   gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX,
1124b725ae77Skettenis                          ppc_linux_init_abi);
1125b725ae77Skettenis }
1126